KR20010082428A - Electrolyte for Lithium Rechargeable Batteries - Google Patents

Electrolyte for Lithium Rechargeable Batteries Download PDF

Info

Publication number
KR20010082428A
KR20010082428A KR1020010040032A KR20010040032A KR20010082428A KR 20010082428 A KR20010082428 A KR 20010082428A KR 1020010040032 A KR1020010040032 A KR 1020010040032A KR 20010040032 A KR20010040032 A KR 20010040032A KR 20010082428 A KR20010082428 A KR 20010082428A
Authority
KR
South Korea
Prior art keywords
electrolyte
electrolyte solution
battery
compounds
lithium
Prior art date
Application number
KR1020010040032A
Other languages
Korean (ko)
Other versions
KR100342605B1 (en
Inventor
김영규
김승기
전병희
김민성
노영배
Original Assignee
이원재
주식회사 이스퀘어텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이원재, 주식회사 이스퀘어텍 filed Critical 이원재
Priority to KR1020010040032A priority Critical patent/KR100342605B1/en
Publication of KR20010082428A publication Critical patent/KR20010082428A/en
Application granted granted Critical
Publication of KR100342605B1 publication Critical patent/KR100342605B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: An electrolytic solution for the lithium secondary battery is provided, to improve the internal resistance of a battery in high speed discharging at low temperature and to reduce the expansion of thickness at high temperature. CONSTITUTION: The electrolytic solution is used in the lithium secondary battery comprising an anode made of LiCoO2, LiMnO2, LiMN2O4, LiNiO2 or complex compound (LiM1xM2yO2) and a cathode made of crystalline or amorphous carbon or metal lithium, wherein M1 and M2 are a metal element and x and y are a rational number of 0-2. The electrolytic solution comprises ethylene carbonate; γ-butyrolactone; a lithium salt selected from LiPF6, LiBF4, LiClO4, LiN(SO2CF3)2, LiN(SO2CF2CF3)2 and their mixtures; and additives selected from phosphates of the formula 1, sulfones, sulfites, sulfates, sultones and their mixtures. Also the electrolytic solution comprises ethylene carbonate; esters of the formula 2, wherein R8-R13 are a saturated or unsaturated hydrocarbon group of C1-C12, and R14 is a saturated or unsaturated hydrocarbon group of C1-C6; lithium salt selected from LiPF6, LiBF4, LiClO4, LiN(SO2CF3)2, LiN(SO2CF2CF3)2 and their mixtures; and additives selected from phosphates, sulfones, sulfites, sulfates, sultones and their mixtures.

Description

리튬 이차전지용 전해액{Electrolyte for Lithium Rechargeable Batteries}Electrolyte for Lithium Secondary Battery {Electrolyte for Lithium Rechargeable Batteries}

전지는 원래 내부에 들어 있는 화학물질의 전기화학적 산화-환원 반응시 발생하는 화학에너지를 전기에너지로 변환하는 장치를 말하는 것으로서, 그 사용상 특성에 따라 전지속의 에너지가 고갈되면 폐기해야 하는 일차전지(Primary battery)와 계속 충전하면서 여러번 재사용이 가능한 이차전지(Rechargeable battery)로 구분할 수 있다.A battery is a device that converts chemical energy generated during electrochemical oxidation-reduction reaction of a chemical substance contained therein into electrical energy. The primary battery that should be discarded when energy in the battery is depleted according to its usage characteristics. battery) and a rechargeable battery that can be reused many times while being continuously charged.

최근들어 전자, 통신, 컴퓨터 산업 등의 급속한 발전에 힘입어 기기의 소형, 경량화 및 고기능화와 함께, 캠코더, 휴대폰, 노트북 PC 등 휴대용 전자제품의 사용이 일반화됨으로써, 가볍고 오래 사용할 수 있으며 신뢰성이 높은 고성능의 소형 전지들이 절실히 요청되고 있는데, 이러한 수요에 상응하여 많은 관심과 각광을 받고 있는 것이 바로 리튬 이차전지이다.In recent years, thanks to the rapid development of the electronics, telecommunications, and computer industries, the use of portable electronic products such as camcorders, mobile phones, notebook PCs, etc. as well as the miniaturization, light weight, and high functionality of the devices are becoming common. 'S small batteries are desperately required, and lithium secondary batteries are attracting much attention and attention in response to such demand.

리튬은 지구상에 존재하는 금속중 가장 가볍기 때문에 단위 질량당 전기용량이 가장 크며, 열역학적 산화전위의 값이 커서 전압이 높은 전지를 만들 수 있는 물질이기 때문에, 제한된 양의 화학물질로 최대한의 에너지를 낼 수 있도록 해야하는 전지, 특히 이차전지에서는 근래 가장 선호되고 있는 정극물질이다.Lithium is the lightest metal on the planet, and therefore has the highest electric capacity per unit mass. Since lithium has a large thermodynamic oxidation potential, it can produce a high voltage battery. It is a positive electrode material which is the most preferred in the battery which should be able to make it, especially the secondary battery.

본 발명은 이와 같은 리튬 이차전지의 전해액 및 전해액 첨가제에 관한 것으로서, 구체적으로는, 전지의 충방전 특성, 수명 특성 및 온도 특성을 향상시킬 수 있는 리튬 이차전지용 전해액 및 첨가제에 관한 것이다.The present invention relates to an electrolyte solution and an electrolyte additive of such a lithium secondary battery, and more particularly, to an electrolyte solution and an additive for a lithium secondary battery capable of improving charge / discharge characteristics, lifetime characteristics, and temperature characteristics of a battery.

근래 노트북 컴퓨터, 캠코더, 휴대폰 등에 가장 많이 사용되고 있는 소형화, 슬림화된 리튬 이차전지는 리튬 이온의 탈리(deintercalation) 및 삽입(Intercalation)이 가능한 리튬 금속 혼합 산화물을 양극 활물질로 하고, 탄소 재료 또는 금속 리튬 등을 음극으로 하며, 혼합 유기 용매에 리튬염을 적당량 용해시킨 것을 전해액으로 하여 구성되며, 전해질로 사용되는 용매의 특성에 의해 리튬이온전지와 리튬폴리머전지로 구분된다.Recently, the miniaturized and slimmed lithium secondary battery, which is most commonly used in notebook computers, camcorders, mobile phones, and the like, is made of a lithium metal mixed oxide capable of deintercalation and intercalation of lithium ions as a cathode active material, and a carbon material or metal lithium. The anode is used as the cathode, and an appropriate amount of lithium salt dissolved in a mixed organic solvent is used as an electrolyte, and it is classified into a lithium ion battery and a lithium polymer battery by the characteristics of the solvent used as the electrolyte.

이와 같은 리튬 이차전지에서, 전해액의 이온전도도는 전지의 충방전 성능과 급속 방전 성능에 큰 영향을 미치기 때문에 높은 값을 가져야 하는데, 이를 위해서 전해액은, 높은 유전율을 가져야 하고, 리튬이온의 용액내 이동이 용이해야 하므로 낮은 점도를 가지고 있어야 한다.In such a lithium secondary battery, the ion conductivity of the electrolyte has a high value because it greatly affects the charge / discharge performance and the rapid discharge performance of the battery. For this purpose, the electrolyte must have a high dielectric constant and transfer lithium ions in solution. It should be easy and should have a low viscosity.

또한, 저온에서 전해액의 응고 현상이 발생할 경우 이온의 이동이 제한되어 전지의 충방전이 불가능해지므로 낮은 응고점을 가져야 한다. (Makoto Ue, Solution Chemistry of Organic Electrolytes,Progress in Battery Materials, Vol. 16 (1997))In addition, when a solidification phenomenon of the electrolyte occurs at low temperatures, the movement of ions is restricted and thus the charging and discharging of the battery is impossible, so that the solidification point should be low. (Makoto Ue, Solution Chemistry of Organic Electrolytes, Progress in Battery Materials , Vol. 16 (1997))

따라서, 리튬 이차전지와 관련한 전지업계에서는 전해액의 이온전도도를 높이기 위해 고유전율 용매와 저점도의 용매를 혼합하여 전지의 전기화학적인 특성을 개선시키고자 하는 실험이 널리 수행되어 왔으며, 동시에, 어는점이 낮은 용매를 혼합함으로써 전지의 저온에서의 성능을 개선시키고자 하는 시험이 널리 수행되어 왔다. (USP 5639575(97, Sony), USP 5525443(96, Matsushita)Therefore, in the battery industry related to lithium secondary batteries, experiments have been widely conducted to improve the electrochemical characteristics of batteries by mixing a high dielectric constant solvent and a low viscosity solvent in order to increase the ionic conductivity of the electrolyte. Tests to improve the performance at low temperatures of batteries by mixing low solvents have been widely conducted. (USP 5639575 (97, Sony), USP 5525443 (96, Matsushita)

또한, 고온 안정성을 향상시키기 위해서 고비점의 용매를 혼합하여 전해액의성능을 개선시키는 연구도 폭넓게 진행되고 있다.(일본특허공개 평11-111306)In addition, researches to improve the performance of the electrolyte by mixing high boiling point solvents in order to improve high temperature stability have been widely conducted. (Japanese Patent Laid-Open No. 11-111306)

리튬 이차전지의 일반적인 평균 방전전압인 3.6-3.7V는 다른 알칼리(alkali) 전지 또는 Ni-MH, Ni-Cd 전지에 비하여 높은 전력을 얻을 수 있게 하는 가장 큰 장점중의 하나이다.3.6-3.7V, which is a general average discharge voltage of a lithium secondary battery, is one of the biggest advantages of obtaining high power compared to other alkaline batteries or Ni-MH or Ni-Cd batteries.

이와 같은 높은 구동전압을 내기 위해서는 리튬 이차전지의 충방전 전압 영역인 2.75-4.2V에서 전기화학적으로 안정한 조성의 전해액이 필요한데, 이러한 요구사항에 맞추어 사용되는 것이 바로 EC(Ethylene carbonate), PC(Propylene Carbonate), DMC(Dimethyl Carbonate), EMC(Ethylmethyl Carbonate), DEC(Diethyl Carbonate) 등 카보네이트(carbonate) 류의 조합으로 이루어진, 이른바 비수계(非水系) 혼합물 용매이다.In order to achieve such a high driving voltage, an electrolyte having an electrochemically stable composition is required at 2.75-4.2V, which is a charge / discharge voltage range of a lithium secondary battery.Ethylene carbonate (EC) and PC (Propylene) are used to meet these requirements. It is a so-called non-aqueous mixture solvent composed of a combination of carbonates such as carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), and diethyl carbonate (DEC).

그러나, 이러한 조성의 전해액은, 대체적으로, Ni-MH 또는 Ni-Cd전지에서 사용하는 이른바 수계(水系) 전해액에 비하여 이온전도도가 현저히 낮기 때문에 고율 충방전 등에는 불리하다는 단점을 가지고 있기도 하다.However, the electrolyte solution having such a composition generally has a disadvantage in that it is disadvantageous for high rate charge and discharge because the ion conductivity is significantly lower than the so-called aqueous electrolyte solution used in Ni-MH or Ni-Cd batteries.

예를 들어, EC의 경우 어는점이 36℃로서 저온 특성에 단점을 가지고 있으나 전지의 전기적 성능을 위해 반드시 사용되는 용매이며, PC의 경우 현재 부극으로 가장 선호되고 있는 인조 흑연에서 충방전시 분해가 많이 일어나는 단점을 가지고 있고, DMC의 경우 어는점이 3℃이고 끓는점이 90℃ 정도로서 EC와 마찬가지로 저온 특성이 떨어지며 고온 방치 특성이 특히 불리하다. DEC의 경우 어는점 -40℃ 이하이고 끓는점 126℃ 정도로서 우수한 성능을 가지고 있으나 다른 용매와의 혼용성(Mixability)이 나쁜 단점을 가지고 있고, 어는점 -30℃ 이하 끓는점이 107℃ 정도로서 현재 가장 많이 혼용되고 있는 EMC의 경우에도 아직 온도특성 등 만족스럽지 못한 면을 많이 가지고 있다.For example, in the case of EC, the freezing point is 36 ° C, which has a disadvantage in low temperature characteristics, but it is a solvent that is necessarily used for the electrical performance of a battery. In the case of DMC, the freezing point is 3 ° C. and the boiling point is about 90 ° C., which lowers the low temperature characteristics like the EC, and the high temperature standing characteristics are particularly disadvantageous. In case of DEC, the freezing point is below -40 ℃ and the boiling point is about 126 ℃, but it has the disadvantage of poor compatibility with other solvents. EMC also has many unsatisfactory aspects such as temperature characteristics.

이와 같이 용매들은 각각의 고유한 장점과 단점을 가지고 있어서 실제 사용시 어떻게 조합하느냐에 따라 전지 성능에 큰 차이를 보이기 때문에, 전지 업계에서는 더 성능이 향상된 조합을 찾아내기 위한 시험이 꾸준히 수행되고 있는 상황으로서, 일반적으로 EC/DMC/EMC, EC/EMC/DEC, EC/DMC/EMC/PC 등이 자주 사용되고 있다.As these solvents have their own advantages and disadvantages, and there is a big difference in battery performance depending on how they are combined in actual use, the battery industry is constantly conducting tests to find more improved combinations. In general, EC / DMC / EMC, EC / EMC / DEC, EC / DMC / EMC / PC are frequently used.

이상과 같이 설명한 리튬 이차전지의 전해액은 통상 -20℃-60℃의 온도범위에서 안정해야 하며, 4V 영역의 전압에서도 안정적인 특성을 유지할 수 있어야 한다.The electrolyte of the lithium secondary battery described above should be stable in the temperature range of -20 ° C-60 ° C, and should be able to maintain stable characteristics even at a voltage of 4V region.

리튬 이차전지에서 저온에서의 전기화학적인 특성을 높이기 위해서는 저온에서도 높은 이온전도도를 나타내는 전해액을 필요로 하며, 고온 저장 특성을 향상시키기 위해서는 비점이 높고 전지 부극과의 반응성이 적은 전해액 및 전해염을 필요로 한다.In order to improve the electrochemical characteristics at low temperatures in the lithium secondary battery, an electrolyte having high ionic conductivity is required at low temperatures, and an electrolyte and an electrolyte salt having high boiling point and low reactivity with the battery negative electrode are required to improve high temperature storage characteristics. Shall be.

따라서, 전해액이 높은 이온전도도를 가지도록 하기 위해서 고유전율 용매와 저점도의 용매를 혼합함과 동시에, 여기에 어는점이 낮은 용매를 혼합함으로써 저온에서의 전지 성능을 개선시키고자 한 것이 근래 일반적인 리튬 이차전지 전해액의 조성이라고 할 수 있다.Therefore, in order to improve the battery performance at low temperatures by mixing a high dielectric constant solvent and a low viscosity solvent and a low freezing solvent in order to have a high ionic conductivity of the electrolyte solution, it is common to use a lithium secondary battery. It can be said that it is a composition of a battery electrolyte solution.

그러나, 저온, 특히 -20℃정도의 저온에서는 리튬 이온의 이동도가 현저히 낮아지기 때문에 이러한 종래의 용매 조성 변화만으로는 고율(1C) 방전시 급격한내부 저항의 증가로 인해 방전 특성이 급격히 떨어지는 것을 방지하기 어렵다는 단점을 여전히 가지게 된다.However, since the mobility of lithium ions is significantly lowered at low temperatures, particularly at temperatures of about -20 ° C., it is difficult to prevent the rapid deterioration of the discharge characteristics due to the rapid increase in internal resistance during high rate (1C) discharges only by changing the conventional solvent composition. You still have the disadvantages.

한편, 리튬 이차전지의 고온에서의 특성은 전해염에 따라서 많이 좌우되는데, 리튬 이차전지 전해액의 용질로서 통상 사용하는 LiPF6, LiBF4, LiClO4, LiN(SO2CF3)2및 LiN(SO2CF2CF3)2등의 물질들은 전지 셀(cell) 내에서 리튬 이온 소스로 작용하여 기본적인 리튬 이차전지의 작동을 가능하게 하는 역할을 하며, 일반적으로 전해염 중에서도 LiBF4의 경우가 고온에서의 열적 안정성 면에서 가장 우수하다고 알려져 있다.On the other hand, the characteristics of the lithium secondary battery at high temperatures are highly dependent on the electrolytic salt, and LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2, and LiN (SO) which are commonly used as solutes for lithium secondary battery electrolytes. Materials such as 2 CF 2 CF 3 ) 2 act as a lithium ion source in a battery cell to enable the operation of a basic lithium secondary battery. In general, LiBF 4 among electrolytic salts is used at high temperatures. Is best known for its thermal stability.

이상과 같이 볼 때, 리튬 이차전지의 저온에서의 고율 방전 특성을 향상시키기 위해서는 높은 이온전도도를 가지는 고유전율 및 저점도 전해액이 필요할 뿐만 아니라 저온에서의 고율 방전시 리튬이온이 전극으로 이동할 때의 전지 내부 저항을 줄일 수 있는 저응고점 전해액이 부가적으로 첨가되어야 한다고 할 수 있고, 고온에서의 방전 특성을 향상시키기 위해서는 충전 후 전해액의 분해 및 기화를 적게 할 수 있는 용매 및 전해염이 사용되어야 한다고 할 수 있다.As described above, in order to improve the high-rate discharge characteristics at low temperatures of the lithium secondary battery, not only a high dielectric constant and a low viscosity electrolyte having high ion conductivity are required, but also a battery when lithium ions move to the electrode during high-rate discharge at low temperatures. It can be said that an additional low solidification electrolyte which can reduce the internal resistance must be added, and in order to improve the discharge characteristics at high temperature, a solvent and an electrolyte salt which can reduce the decomposition and vaporization of the electrolyte after filling should be used. Can be.

이렇게 용매와 전해액으로 구성되는 리튬 이차전지용 전해액은 음극을 구성하는 탄소와 반응하여 음극 표면에 SEI(Solid Electrolyte Interface) 라 불리우는 엷은 막을 형성하게 되는데, 이것은 이온 및 전하 이동에 영향을 미침으로써 전지의 성능 변화를 초래하는 주요인자중 하나이며, 형성되는 막의 성질은 전해액으로 사용되는 용매의 종류나 첨가제의 특성 등에 따라 크게 달라지는 것으로 알려져 있다. (Shoichiro Mori, Chemical properties of various organic electrolytes for lithium rechargeable batteries,J.Power Source68 (1997))The electrolyte for a lithium secondary battery composed of a solvent and an electrolyte reacts with the carbon constituting the negative electrode to form a thin film called SEI (Solid Electrolyte Interface) on the surface of the negative electrode, which affects ion and charge transfer, thereby affecting battery performance. It is one of the main factors causing change, and the properties of the formed film are known to vary greatly depending on the type of the solvent used as the electrolyte, the properties of the additives, and the like. (Shoichiro Mori, Chemical properties of various organic electrolytes for lithium rechargeable batteries, J. Power Source 68 (1997))

이와 같은 SEI 막과 관련하여, 전해액에 첨가제를 첨가하여 SEI형성 반응을 변화시킴으로써 그 물리화학적 특성을 좀 더 향상시키고자 하는 연구가 꾸준히 있어 왔는데, 예를 들면, CO2를 전해액에 첨가하는 기술이 제시되어 있는 일본특허공개 95-176323A, 전해액에 설파이드(Sulfide)계 화합물을 첨가하여 전해액 분해를 억제하는 기술이 제시되어 있는 일본국 특허공개 95-320779A 등이 바로 그것이다.In relation to such SEI membranes, research has been continuously conducted to further improve the physicochemical properties by adding additives to the electrolyte to change the SEI formation reaction. For example, a technique of adding CO 2 to the electrolyte Japanese Patent Laid-Open Publication No. 95-176323A, Japanese Patent Laid-Open Publication No. 95-320779A, and the like, in which a technique of suppressing decomposition of an electrolyte by adding a sulfide compound to an electrolyte is proposed.

이하, 음극을 구성하는 탄소와 전해액이 반응하여 음극 표면에 생성되는 SEI 막에 대하여 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the SEI film generated on the surface of the cathode by reacting carbon and the electrolyte constituting the cathode will be described in more detail.

리튬 이차전지의 초기 충전시 정극으로 사용되는 리튬 금속산화물로부터 나온 리튬이온이 부극으로 사용되는 탄소(결정질 또는 비결정질) 전극으로 이동하며 부극의 탄소에 삽입되게 되는데, 이때 리튬은 반응성이 강하므로 탄소 부극과 반응하여 Li2CO3, Li2O, LiOH 등을 형성하게 되고 이것들은 부극의 표면에 피막을 형성하게 된다. 이 막(Film)이 바로 SEI 막이다.During the initial charging of the lithium secondary battery, lithium ions from the lithium metal oxide used as the positive electrode move to the carbon (crystalline or amorphous) electrode used as the negative electrode and are inserted into the carbon of the negative electrode. And react to form Li 2 CO 3 , Li 2 O, LiOH, etc. These form a film on the surface of the negative electrode. This film is an SEI film.

이 SEI 막은 최초 충전시 일단 형성되고 나면 이후 전지 사용에 의한 충방전 반복시 리튬이온과 탄소 부극 또는 다른 물질과의 반응을 막아주게 되며, 전해액과 부극 사이에서 리튬 이온 만을 통과시키는 이온 터널(Ion Tunnel)로서의 역할을 수행하게 된다.Once formed, the SEI membrane prevents the reaction between lithium ions and carbon negative electrodes or other materials during repeated charging and discharging by using a battery, and passes only lithium ions between the electrolyte and the negative electrode (Ion Tunnel). It will serve as).

이와 같은 이온 터널 효과는 리튬 이온을 용해시켜 함께 이동하는 분자량이큰 전해액의 유기 용매들, 예를 들면 EC, DMC, DEC 등의 탄소 부극으로의 이동을 봉쇄함으로써, 이들이 탄소 부극에 리튬 이온과 함께 동반삽입(cointercalation)되어 탄소 부극의 구조를 붕괴시키는 것을 막아 주는데, 일단 이 막이 형성되고 나면 리튬이온은 다시 탄소 부극이나 다른 물질과의 부반응을 하지 않게 됨으로써 이후 전지 사용에 의한 충방전시 리튬이온의 양을 가역적으로 유지시키게 되는 것이다.This ion tunnel effect blocks the migration of organic solvents of large molecular weight electrolytes, such as EC, DMC, DEC, etc., that dissolve and move lithium ions together, so that they are accompanied by lithium ions in the carbon negative electrode. It is cointercalated to prevent the structure of the carbon negative electrode from collapsing. Once this film is formed, the lithium ions do not react sideways with the carbon negative electrode or other materials, and thus the lithium ion is not charged during the charge and discharge of the battery. The amount will be reversible.

다시 말하면, 부극의 탄소 재료는 초충전시 전해액과 반응하여 음극표면에 통과층(passivation layer)을 형성함으로써 더 이상의 전해액 분해가 발생하지 않고 안정적인 충방전을 유지할 수 있도록 해주는데(J.Power Sources, 51 (1994) 79-104),이때, 음극표면의 통과층 형성에 소모된 전하량은 비가역 용량으로서, 방전시 가역적으로 반응하지 않는 특징을 가지고 있는 것이며, 이러한 이유로 리튬 이차전지는 초기 충전 반응 이후 더 이상의 비가역 반응을 나타내지 않고 안정적인 life cycle을 유지할 수 있게 되는 것이다.In other words, the carbon material of the negative electrode reacts with the electrolyte during supercharge to form a passivation layer on the surface of the cathode, thereby maintaining stable charge and discharge without further decomposition of the electrolyte (J. Power Sources, 51). (1994) 79-104), in which the amount of charge consumed to form the passivation layer on the negative electrode surface is an irreversible capacity, which is characterized by not reversibly reacting at the time of discharge. It is possible to maintain a stable life cycle without exhibiting an irreversible reaction.

상기한 바와 같이, 이러한 SEI의 형성은 전해액의 종류 뿐만 아니라 첨가제의 특성에 의해 크게 영향을 받게 되는데, 첨가제가 사용되지 않거나 특성이 좋지 않은 첨가제가 사용됨으로 인해 불균일한 SEI가 형성되었을 경우, 활물질 내의 전자가 유출되어 전해액을 환원시킴으로써 전해액 분해반응을 일으키게 되고, 이것은 전지 활물질의 비가역 용량을 증가시키게 되며, 결국 전지의 용량 및 수명 감소와 이에 따른 전지 경량화의 불가능을 초래하게 된다.As described above, the formation of such SEI is greatly influenced by not only the type of electrolyte but also the properties of the additive. When the non-uniform SEI is formed due to the use of an additive or an additive having poor properties, the SEI is formed in the active material. The electrons are leaked to reduce the electrolyte by causing the electrolyte to decompose, which increases the irreversible capacity of the battery active material, which in turn leads to the reduction of the capacity and life of the battery and thus the weight reduction of the battery.

이상을 종합하여 볼 때, 리튬 이차전지에서는, 저온에서의 고율 방전 특성을 향상시키기 위해 고유전율, 저점도 및 저응고점의 특성을 가지며, 고온에서의 고율방전 특성 향상을 위해 고비점의 특성을 가지는 전해액이 요구됨과 동시에 리튬이온은 잘 통과시키고 다른 물질은 통과시키지 않는 고성능의 균일한 SEI를 형성할 수 있는 첨가제가 요구되고 있다고 할 수 있을 것이다.In summary, the lithium secondary battery has characteristics of high dielectric constant, low viscosity and low solidification point to improve high rate discharge characteristics at low temperatures, and high boiling point characteristics to improve high rate discharge characteristics at high temperatures. At the same time that the electrolyte is required, additives capable of forming high-performance uniform SEIs that allow lithium ions to pass through but do not allow other materials to pass through will be required.

본 발명은 상기와 같은 종래기술의 문제점 및 요구사항을 해결하고자 하는 것으로, 그 목적은, 종래의 전해액에 비해 충방전 특성은 물론 수명특성, 온도 특성 특히 저온에서의 고율 방전 특성이 개선되고, 고온에서의 두께 팽창성을 감소시킬 수 있는 리튬 이차전지용 전해액 및 첨가제를 제공하고자 하는 것이다.The present invention is to solve the problems and requirements of the prior art as described above, the object of the charge and discharge characteristics as compared to the conventional electrolyte solution, the life characteristics, temperature characteristics, especially high rate discharge characteristics at low temperatures are improved, It is an object of the present invention to provide an electrolyte and additive for a lithium secondary battery capable of reducing thickness expandability.

이를 위한 본 발명은, EC와 고비점의 환상 에스테르인 감마-부티로락톤(GBL) 및 전해액의 용질로서 리튬염을 포함하는 전해액 시스템에 전지의 성능에는 큰 영향을 미치지 않으면서 환상 에스테르의 젖음(wetting)성을 증가 시켜줄 수 있는 첨가제가 첨가된 전해액을 제공하는 것으로 이루어진다.To this end, the present invention provides the wettability of cyclic esters without significantly affecting the performance of the battery in an electrolyte solution containing gamma-butyrolactone (GBL), which is a cyclic ester having a high boiling point, and lithium salt as the solute of the electrolyte. It provides an electrolyte solution with an additive which can increase the wetting property.

도 1은 본 발명에서 첨가제로 사용되는 포스페이트계 화합물의 분자구조를 나타내는 구조식이다. (여기서, R 및 R1은 탄소수가 1-12인 탄화수소로서, 1°, 2°또는 3°의 포화 탄화수소, 아릴(Aryl), 에스테르 또는 에테르임)1 is a structural formula showing the molecular structure of a phosphate compound used as an additive in the present invention. Wherein R and R 1 are hydrocarbons having 1-12 carbon atoms and are 1 °, 2 ° or 3 ° saturated hydrocarbons, aryl, esters or ethers

도 2는 본 발명에서 첨가제로 사용되는 설폰(Sulfone)류, 설파이트(Sulfite)류, 설페이트(sulfate)류 및 설톤(Sultone)류의 분자구조를 나타내는 구조식이다. (여기서, R2-R7는 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소이며, n은 2-5의 정수임)Figure 2 is a structural formula showing the molecular structure of sulfone (Sulfone), sulfite (Sulfite), sulfate (sulfate) and Sultone (Sultone) used as an additive in the present invention. Wherein R 2 -R 7 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms, n is an integer of 2-5

도 3은 본 발명에 사용되는 에스테르류의 분자구조를 나타내는 구조식이다. (여기서, R8-R13은 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소이며, R14는 탄소수 1-6인 포화 또는 불포화 탄화수소임)Figure 3 is a structural formula showing the molecular structure of the esters used in the present invention. Wherein R 8 -R 13 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms, and R 14 is saturated or unsaturated hydrocarbons having 1-6 carbon atoms)

도 4는 본 발명에 사용되는 선형카보네이트의 분자구조를 나타내는 구조식이다. (여기서, R15-R16은 탄소수 1-4인 탄화수소임)Figure 4 is a structural formula showing the molecular structure of the linear carbonate used in the present invention. Wherein R 15 -R 16 are hydrocarbons having 1-4 carbon atoms

본 발명은, 저온에서의 고율 방전시 전지 내부의 저항을 줄이고 고온에서의 두께 팽창이 적게 하기 위하여, 에틸렌 카보네이트(이하 EC로 칭함)와 고비점의 환상 에스테르 및 리튬염이 포함된 전해액에, 전지의 성능에는 큰 영향을 미치지 않으면서 환상 에스테르의 젖음(wetting)성을 증가 시켜줄 수 있는 첨가제를 첨가한 리튬 이차전지용 전해액에 관한 것이다.The present invention provides a battery in an electrolyte solution containing ethylene carbonate (hereinafter referred to as EC), a high boiling point cyclic ester, and a lithium salt in order to reduce the internal resistance of the battery during high rate discharge at low temperature and to reduce the thickness expansion at high temperature. The present invention relates to an electrolyte for a lithium secondary battery with an additive added to increase the wettability of the cyclic ester without significantly affecting the performance of the present invention.

본 발명이 적용되는 리튬 이차전지는양극활물질로 LiCoO2, LiMnO2, LiMn2O4, LiNiO2중 어느 하나 또는 복합화합물(LiM1xM2yO2)을 사용하며, 음극활물질로 결정질 또는 비정질의 탄소(Carbon) 또는 금속리튬을 사용하는 리튬이온전지 및 리튬폴리머전지로서,여기서, M1및 M2는 금속원소, x 및 y는 0-2의 유리수이다.The lithium secondary battery to which the present invention is applied uses any one of LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 or a composite compound (LiM 1x M 2y O 2 ) as a cathode active material, and is crystalline or amorphous as an anode active material. A lithium ion battery and a lithium polymer battery using carbon or metal lithium, wherein M 1 and M 2 are metal elements, and x and y are free numbers of 0-2.

본 발명에서 환상 에스테르 용매로는 감마-부티로락톤(γ-butyrolactone, 이하 GBL로 칭함)이 사용되고, 첨가제로서는 포스페이트(Phosphate)계 화합물, 설폰(Sulfone)류, 설파이트(Sulfite)류, 설페이트(sulfate)류 및 설톤(Sultone)류가 사용되었다.In the present invention, the cyclic ester solvent is gamma-butyrolactone (γ-butyrolactone, hereinafter referred to as GBL), and as an additive, a phosphate-based compound, sulfones, sulfites, and sulfates sulfates and Sultones were used.

본 발명에서 상기 EC는 5-50vol%의 함량으로, GBL은 50-95vol%의 함량으로 사용되며, 상기 첨가제들의 구조는 도 1 및 도 2에 나타내었다.In the present invention, the EC is used in an amount of 5-50 vol%, GBL is used in an amount of 50-95 vol%, and the structure of the additives is shown in FIGS. 1 and 2.

본 발명 전해액에서 전해염으로는 리튬이온 전지 전해액의 용질로서 통상 사용되는 LiPF6, LiBF4, LiClO4, LiN(SO2CF3)2및 LiN(SO2CF2CF3)2중 하나 이상이 0.5-2.0M의 농도로 사용된다.In the electrolyte solution of the present invention, at least one of LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2, and LiN (SO 2 CF 2 CF 3 ) 2 , which is commonly used as a solute of a lithium ion battery electrolyte, Used at a concentration of 0.5-2.0M.

본 발명에 사용되는 GBL은 어는점 -45℃ 이하, 끓는점 204℃ 이상의, 전해액으로서 매우 선호될 수 있는 특성을 가지고 있으나 다른 용매와의 혼용성이 좋지 않고 젖음(wetting)성이 나쁜 것으로 알려졌던 물질이다.GBL used in the present invention has a characteristic that can be very preferred as the electrolyte, freezing point -45 ℃ or less, boiling point 204 ℃ or more, but is known to be poor compatibility with other solvents and poor wetting (wetting) .

그러나, 본 발명에서는, GBL과 함께 이의 혼용성 및 젖음성을 증가시켜줄 수 있는 첨가제를 첨가함으로써 상기와 같은 문제를 극복할 수 있었다.However, in the present invention, the above problems can be overcome by adding an additive which can increase its compatibility and wettability together with GBL.

원래, 전지 제조시 첨가제가 들어가는 것이 일반적인 사항은 아니며, 특별히각 부문의 특성, 예를 들면 수명 특성, 저온 고율방전 특성, 고온 안전성, 과충전 방지, 고온 부풀림 개선 등을 향상시키고자 하는 경우에 목적에 따라 첨가되는 것으로서, 본 발명에서는 용매의 젖음성을 향상시키고 GBL의 다른 용매와의 혼용성을 증가시키기 위해 상기와 같은 첨가제들이 사용되었으며, 이로 이하여 위에서 언급한 수명특성, 저온 고율방전, 고온 안정성, 안전성 및 고온 부풀림 개선효과가 탁월하게 개선되었다고 할 수 있다.Originally, it is not common to include additives in battery manufacturing, especially in the case of improving the characteristics of each sector, for example, life characteristics, low temperature high rate discharge characteristics, high temperature safety, overcharge prevention, and high temperature swelling. As added according to the present invention, the above additives have been used in the present invention to improve the wettability of the solvent and increase the compatibility with other solvents of the GBL, and thus the above-mentioned life characteristics, low temperature high rate discharge, high temperature stability, The safety and high temperature swelling effect has been improved.

즉, GBL을 사용하는 전해액은 정극, 부극 및 분리막(separator)에 대한 젖음성(Wettability)이 나쁘기 때문에 리튬이온의 이동이 가역적으로 이루어지지 않아 전지의 성능이 제대로 발휘될 수 없었는데, 본 발명에서 EC/GBL 시스템의 전해액을 리튬 이차전지에 적용할 수 있도록 해주는 첨가제를 개발함으로써 리튬 이차전지의 성능을 획기적으로 개선할 수 있게 된 것이다.That is, since the electrolyte using GBL has poor wettability with respect to the positive electrode, the negative electrode, and the separator, lithium ions cannot be reversibly moved, and thus the battery performance cannot be properly exhibited. By developing an additive that can apply the electrolyte of the GBL system to the lithium secondary battery, the performance of the lithium secondary battery can be significantly improved.

특히, 상기 첨가제들중 도 2에 나타낸 첨가제의 경우, EC/GBL 전해액 시스템에서 최초 충전시 전해액이 분해되기 전에 자신이 먼저 부극에서 분해되어 SEI를 형성시키는 특징을 가지고 있어서 전해액의 분해를 막아주므로 리튬 이차전지의 고율 충방전 특성, 수명 특성, 온도 특성 특히 저온에서의 고율 방전특성과 고온 저장 안정성을 크게 개선시킬 수 있다.In particular, in the case of the additives shown in Figure 2 of the additives, the first charge in the EC / GBL electrolyte system before the decomposition of the electrolyte is characterized in that it firstly decomposes at the negative electrode to form the SEI, which prevents the decomposition of the electrolyte High rate charge and discharge characteristics, life characteristics, temperature characteristics of the secondary battery can be significantly improved, especially high rate discharge characteristics and high temperature storage stability at low temperatures.

본 발명 전해액에서 이와 같은 첨가제들은 0.1-10.0중량%의 함량으로 사용된다.In the electrolyte solution of the present invention, such additives are used in an amount of 0.1-10.0% by weight.

한편, 본 발명에서는, 상기 EC/GBL에 첨가제가 혼합된 전해액 시스템을 기본으로 하여, 일반적으로 리튬 이차전지에 사용되는 다른 선형 카보네이트 또는 에스테르류가 용매로서 전체 전해액 대비 각각 5vol%-50vol%의 함량으로 혼합되어 사용될 수도 있다.On the other hand, in the present invention, based on the electrolytic solution system in which the additive is mixed in the EC / GBL, other linear carbonates or esters generally used in lithium secondary batteries are 5% by volume to 50% by volume relative to the total electrolyte as a solvent. It can also be mixed and used.

본 발명에 용매로서 사용될 수 있는 에스테르류 및 선형 카보네이트의 구조는 각각 도 3 및 도 4에 나타내었다.The structures of esters and linear carbonates that can be used as solvents in the present invention are shown in FIGS. 3 and 4, respectively.

도 1 및 도 2에 나타낸 첨가제와 더불어 EC/GBL 전해액 시스템에 일반 선형 카보네이트 또는 에스테르류 유기용매를 첨가할 경우, 유화작용을 통하여 EC/GBL 혼합용매 전해액의 표면장력이 낮아지기 때문에, 정극, 부극 및 분리막에 대한 전해액의 젖음성이 더 향상되어 리튬 이차전지의 내부 저항이 급격히 감소됨으로써, 전지의 고율 충방전 특성, 수명 특성, 온도 특성, 특히 저온에서의 고율 방전특성과 고온 저장 안정성이 획기적으로 개선될 수 있다.When the general linear carbonate or ester organic solvent is added to the EC / GBL electrolyte system together with the additives shown in FIGS. 1 and 2, the surface tension of the EC / GBL mixed solvent electrolyte is lowered through emulsification. As the wettability of the electrolyte to the separator is further improved, the internal resistance of the lithium secondary battery is drastically reduced, thereby greatly improving the high rate charge / discharge characteristics, life characteristics, temperature characteristics, particularly high rate discharge characteristics and high temperature storage stability at low temperatures. Can be.

또한, 본 발명에서는, EC가 포함되는 리튬 이차전지의 일반적인 전해액 시스템을 기본으로 하여, 상기 도 3에 나타낸 에스테르류가 용매로서 전체 전해액 대비 각각 5vol%-50vol%의 함량으로 혼합되고, 여기에 첨가제로서 포스페이트(Phosphate)계 화합물, 설폰(Sulfone)류, 설파이트(Sulfite)류, 설페이트(sulfate)류 및 설톤(Sultone)류가 0.1-10.0중량%의 함량으로 첨가되어 사용될 수도 있다.In addition, in the present invention, based on the general electrolyte solution system of the lithium secondary battery containing EC, the esters shown in FIG. 3 are mixed in a content of 5 vol% -50 vol% with respect to the total electrolyte as solvent, respectively, and additives Phosphate-based compounds, sulfones, sulfites, sulfates, and sultones may be added in an amount of 0.1-10.0% by weight.

이하, 실시예 및 시험예로서 본 발명을 더 구체적으로 실시하고자 하나, 본 발명을 이에 제한하고자 하는 것은 아니다.Hereinafter, one or more embodiments of the present invention as examples and test examples, but the present invention is not intended to be limited thereto.

[실시예1-2]Example 1-2

하기과 같은 순서에 의하여 리튬이온전지를 제작하였다.A lithium ion battery was produced by the following procedure.

먼저, 양극 활물질인 LiCoO2와 바인더인 PVDF 및 도전제인 탄소를 일정 중량비로 혼합하고 N-메틸-2-피롤리돈(N-methyl-2-pyrrolydone)을 사용하여 분산시킴으로써 양극 슬러리(slurry)를 제조하였다. 이 슬러리를 두께 15㎛의 알미늄 포일(aluminium foil)에 코팅하고 건조, 압연하여 양극을 제조하였다.First, a positive electrode slurry is prepared by mixing LiCoO 2 as a positive electrode active material, PVDF as a binder and carbon as a conductive agent at a predetermined weight ratio, and dispersing it using N-methyl-2-pyrrolidone. Prepared. The slurry was coated on an aluminum foil having a thickness of 15 μm, dried, and rolled to prepare a positive electrode.

다음에, 음극 활물질인 결정성 인조흑연과 바인더인 PVDF를 일정 중량비로 혼합하고 N-메틸-2-피롤리디논(N-methyl-2-pyrrolydinone)을 사용하여 분산시킴으로써 음극 슬러리를 제조하였다. 이 slurry를 두께 12㎛의 구리 포일(copper foil)에 코팅하고 건조, 압연하여 음극을 제조하였다.Next, a negative electrode slurry was prepared by mixing crystalline artificial graphite, which is a negative electrode active material, and PVDF, which is a binder, in a predetermined weight ratio and dispersing the mixture using N-methyl-2-pyrrolidinone. The slurry was coated on a copper foil having a thickness of 12 μm, dried, and rolled to prepare a negative electrode.

이와 같이 제조한 양, 음극과 두께 20㎛의 PE재질 분리막을 권취, 압축하여 34mm×48mm×4.2mm 알미늄 박판 리튬이온(aluminium laminated Li-ion) 전지에 조립하였다.The positive electrode and the negative electrode and 20 μm-thick PE separator were wound and compressed to assemble a 34 mm x 48 mm x 4.2 mm aluminum laminated Li-ion battery.

다음에, EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 1.0중량% 와 2.0중량%의 비율로 각각 첨가함으로써 실시예 1 및 2의 전지를 제작하였다.Next, LiBF 4 was dissolved in a solvent having a composition of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte solution, and 1.0 wt% of Tris (2-ethylhexyl) phosphate was added to the electrolyte solution as an additive. The battery of Examples 1 and 2 was produced by adding in the ratio of 2.0 weight%, respectively.

[실시예3-4]Example 3-4

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, 일반 선형 카보네이트로서 디에틸 카보네이트(Diethyl Carbonate)를 5.0vol%와 10.0vol%의 비율로 각각 첨가하여 실시예 3 및 4로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. Diethyl carbonate (Diethyl Carbonate) was added as a general linear carbonate at a ratio of 5.0 vol% and 10.0 vol%, to obtain Examples 3 and 4.

[실시예5-6]Example 5-6

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, 일반 선형 카보네이트로서 비닐렌 카보네이트(Vinylene Carbonate)를 전체 전해액 대비 1.0vol%와 2.0vol%의 비율로 각각 첨가하여 실시예 5 및 6으로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. In addition, vinylene carbonate (Vinylene Carbonate) was added as a general linear carbonate at a ratio of 1.0 vol% and 2.0 vol%, respectively, to prepare Examples 5 and 6.

[실시예7-8]Example 7-8

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, 1,3-Propane sultone을 2.0중량%와 3.0중량%의 비율로 각각 첨가하여 실시예 7 및 8로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. 1,3-Propane sultone was added in the ratio of 2.0% by weight and 3.0% by weight, respectively, to obtain Examples 7 and 8.

[실시예9-10]Example 9-10

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, Vinyl sulfone를 1.0중량%와 2.0중량%의 비율로 각각 첨가하여 실시예 9 및 10으로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. And vinyl sulfone was added in the ratio of 1.0% by weight and 2.0% by weight, respectively, to obtain Examples 9 and 10.

[실시예 11]Example 11

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, Dimethyl Sulfite를 1.0중량%의 비율로 첨가하여 실시예 11로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. Then, Dimethyl Sulfite was added in a ratio of 1.0% by weight to make Example 11.

[실시예 12]Example 12

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, Dimethyl Sulfate를 1.0중량%의 비율로 첨가하여 실시예 12로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. Then, Dimethyl Sulfate was added in a ratio of 1.0% by weight to make Example 12.

[실시예 13-14]Example 13-14

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-butoxyethyl) phosphate를 전체 전해액 대비 2.0중량%와 3.0중량%의 비율로 각각 첨가하여 실시예 13 및 14로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte solution, and tris (2-butoxyethyl) phosphate was added to the electrolyte solution as an additive in an amount of 2.0% by weight and 3.0% by weight. It added in the ratio of respectively and set as Example 13 and 14.

[실시예 15-16]Example 15-16

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, 에스테르류로서 디메틸 디에틸말로네이트(Dimethyl diethylmalonate)를 10.0vol%와 20.0vol%로 각각 첨가하여 실시예 15 및 16으로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte solution, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight relative to the total electrolyte solution. As the esters, dimethyl diethylmalonate (Dimethyl diethylmalonate) was added at 10.0 vol% and 20.0 vol% to obtain Examples 15 and 16, respectively.

[실시예 17]Example 17

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량% 비율로 첨가하고, 에스테르류로서 디메틸 디에틸말로네이트(Dimethyl diethylmalonate) 10.0vol%와 일반 선형 카보네이트로서 비닐렌 카보네이트(Vinylene Carbonate) 1.0vol%를 첨가하여 실시예 17로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte solution, and tris (2-ethylhexyl) phosphate was added to this electrolyte as an additive in a ratio of 2.0% by weight relative to the total electrolyte solution. Example 17 was prepared by adding 10.0 vol% of dimethyl diethylmalonate as ester and 1.0 vol% of vinylene carbonate as general linear carbonate.

[실시예 18-19]Example 18-19

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하고, 에스테르류로서 메틸 카프로에이트(methyl caproate)를 2.0vol%와 3.0vol%의 비율로 각각 첨가하여 실시예 18 및 19로 하였다.LiBF 4 was dissolved in a solvent of EC: GBL = 3: 7 vol% to 1.5M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight based on the total electrolyte. As the esters, methyl caproate was added at a ratio of 2.0 vol% and 3.0 vol%, to give Examples 18 and 19, respectively.

[실시예 20]Example 20

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:EMC=5:5 vol% 조성의 용매에 LiPF6를 1.0M이 되도록 용해시켜 전해액을 제조하고, 이 전해액에 첨가제로서 Tris(2-ethylhexyl) phosphate를 전체 전해액 대비 2.0중량%의 비율로 첨가하여 실시예 20으로 하였다.LiPF 6 was dissolved in a solvent of EC: EMC = 5: 5 vol% to 1.0M to prepare an electrolyte, and tris (2-ethylhexyl) phosphate was added to the electrolyte as an additive at a ratio of 2.0% by weight relative to the total electrolyte. It was set as Example 20.

[비교예 1]Comparative Example 1

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:EMC=5:5 vol% 조성의 용매에 LiPF6를 1.0M이 되도록 용해시켜 전해액을 제조하였다. 첨가제는 첨가하지 않았다.An electrolyte solution was prepared by dissolving LiPF 6 to 1.0 M in a solvent having an EC: EMC = 5: 5 vol% composition. No additives were added.

[비교예 2]Comparative Example 2

하기의 부분을 제외하고는 상기 실시예 1과 동일한 과정으로 전지를 제작하였다.A battery was manufactured in the same manner as in Example 1, except for the following part.

EC:GBL=3:7 vol% 조성의 용매에 LiBF4를 1.5M이 되도록 용해시켜 전해액을 제조하였다. 첨가제는 첨가하지 않았다.An electrolytic solution was prepared by dissolving LiBF 4 in a solvent of EC: GBL = 3: 7 vol% to 1.5M. No additives were added.

이상의 실시예 및 비교예에서 제작된 전지들을 전류 120mA, 충전전압 4.2V, CC-CV(Constant Current-Constant Voltage) 조건으로 최초충전하여 1시간 방치시킨 다음, 120mA의 전류로 2.75V까지 방전하고 다시 1시간 방치하였다.The batteries produced in the above examples and comparative examples were initially charged under conditions of 120 mA, charging voltage 4.2 V, and constant current-constant voltage (CC-CV) for 1 hour, then discharged to 2.75 V with a current of 120 mA and again. It was left for 1 hour.

이와 같은 과정을 2회 실시한 전지를 전류 300mA, 충전전압 4.2V로 2시간 30분간 충전한 후 -20℃ 오븐에 넣어 5시간 방치하였다. 이를 다시 120mA의 전류로 2.75V까지 방전시켜 그 용량을 측정하고 결과를 하기 표 1에 나타내었다.The battery subjected to this process twice was charged with a current of 300 mA and a charging voltage of 4.2 V for 2 hours and 30 minutes, and placed in a -20 ° C oven for 5 hours. This was again discharged to 2.75V at a current of 120mA to measure its capacity, and the results are shown in Table 1 below.

-20℃, 120mA 방전용량 비교-20 ℃, 120mA discharge capacity comparison 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 비교예 1Comparative Example 1 79.279.2 실시예 10Example 10 85.185.1 비교예 2Comparative Example 2 13.213.2 실시예 11Example 11 86.186.1 실시예 1Example 1 78.478.4 실시예 12Example 12 81.581.5 실시예 2Example 2 87.187.1 실시예 13Example 13 89.189.1 실시예 3Example 3 90.590.5 실시예 14Example 14 86.386.3 실시예 4Example 4 88.388.3 실시예 15Example 15 85.985.9 실시예 5Example 5 82.182.1 실시예 16Example 16 86.186.1 실시예 6Example 6 83.083.0 실시예 17Example 17 84.684.6 실시예 7Example 7 79.179.1 실시예 18Example 18 83.183.1 실시예 8Example 8 75.375.3 실시예 19Example 19 85.285.2 실시예 9Example 9 93.393.3 실시예 20Example 20 85.685.6

이 전지를 다시 상온에서 전류 120mA, 충전전압 4.2V, CC-CV 조건으로 충전한 후 -20℃ 오븐에 넣어 5시간 방치하였다. 이를 다시 600mA의 전류로 2.75V까지 방전시켜 그 용량을 측정하고 결과를 하기 표 2에 나타내었다.The battery was again charged at room temperature with a current of 120 mA, a charging voltage of 4.2 V, and CC-CV, and then placed in an oven at -20 ° C. for 5 hours. This was again discharged to 2.75V at a current of 600mA to measure its capacity and the results are shown in Table 2 below.

-20℃, 600mA 방전용량 비교-20 ℃, 600mA discharge capacity comparison 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 비교예 1Comparative Example 1 20.320.3 실시예 10Example 10 43.943.9 비교예 2Comparative Example 2 6.56.5 실시예 11Example 11 38.338.3 실시예 1Example 1 25.325.3 실시예 12Example 12 31.731.7 실시예 2Example 2 35.735.7 실시예 13Example 13 39.539.5 실시예 3Example 3 40.240.2 실시예 14Example 14 43.543.5 실시예 4Example 4 47.847.8 실시예 15Example 15 41.841.8 실시예 5Example 5 35.135.1 실시예 16Example 16 38.638.6 실시예 6Example 6 36.836.8 실시예 17Example 17 40.840.8 실시예 7Example 7 41.641.6 실시예 18Example 18 36.136.1 실시예 8Example 8 43.243.2 실시예 19Example 19 38.338.3 실시예 9Example 9 45.245.2 실시예 20Example 20 25.625.6

상기 표 1 및 표 2에 나타난 결과를 볼 때, 첨가제를 첨가하지 않은 비교예 1 및 2에 비하여 첨가제가 첨가된 본 발명 실시예 1-19의 경우가 -20℃에서의 방전 특성이 획기적으로 개선 되는것을 확인할 수 있다. 특히, 실시예 4, 9, 10 및 14의 경우가 가장 우수한 저온 방전 성능을 나타내었다.In view of the results shown in Tables 1 and 2, the discharge characteristics at -20 ° C were significantly improved in Examples 1-19 of the present invention, in which the additives were added, compared to Comparative Examples 1 and 2, in which the additives were not added. You can see that. In particular, Examples 4, 9, 10 and 14 showed the best low temperature discharge performance.

상기 실시예 및 비교예에서 제작된 전지들을 전류 120mA, 충전전압 4.2V, CC-CV조건으로 최초충전하여 1시간 방치시킨 다음, 120mA의 전류로 2.5V까지 방전하고 다시 1시간 방치하였다.The batteries prepared in Examples and Comparative Examples were initially charged under a current of 120 mA, a charging voltage of 4.2 V, and CC-CV conditions and left for 1 hour, then discharged to 2.5 V with a current of 120 mA, and then left for 1 hour.

이와 같은 과정을 2회 실시한 전지를 전류 300mA, 충전전압 4.2V로 2시간30분간 충전한 후, 충전 전에 대비한 전지의 두께변화를 측정하여 하기 표 3에 나타내었다.The battery subjected to this process twice was charged with a current of 300 mA and a charging voltage of 4.2 V for 2 hours and 30 minutes, and the thickness change of the battery prepared before charging was measured and shown in Table 3 below.

또한, 이와 같이 충전된 전지를 85℃ 오븐에 넣어서 각각 4시간 및 4일간(96시간) 방치한 후, 그 두께의 변화를 측정하여 하기 표 4에 나타내었으며, 용량회복 성능을 알아보기 위하여, 4일간 방치되었던 전지를 다시 상온에서 600mA의 전류로 2.75V까지 방전시켜 그 용량을 측정하고 그 결과를 하기 표 5에 나타내었다.In addition, the battery thus charged was placed in an 85 ° C. oven and left for 4 hours and 4 days (96 hours), respectively, and the change in thickness thereof was measured and shown in Table 4 below. The battery, which was left for one day, was discharged to 2.75 V at a current of 600 mA at room temperature, and its capacity was measured. The results are shown in Table 5 below.

충전후 두께변화Thickness change after filling 실시예 및 비교예Examples and Comparative Examples 두께변화(%)Thickness change (%) 실시예 및 비교예Examples and Comparative Examples 두께변화(%)Thickness change (%) 비교예 1Comparative Example 1 7.97.9 실시예 10Example 10 1.71.7 비교예 2Comparative Example 2 3.13.1 실시예 11Example 11 2.32.3 실시예 1Example 1 2.92.9 실시예 12Example 12 2.22.2 실시예 2Example 2 2.62.6 실시예 13Example 13 2.32.3 실시예 3Example 3 3.13.1 실시예 14Example 14 1.91.9 실시예 4Example 4 3.53.5 실시예 15Example 15 3.63.6 실시예 5Example 5 3.23.2 실시예 16Example 16 3.83.8 실시예 6Example 6 3.23.2 실시예 17Example 17 3.13.1 실시예 7Example 7 3.63.6 실시예 18Example 18 2.62.6 실시예 8Example 8 3.83.8 실시예 19Example 19 2.92.9 실시예 9Example 9 2.12.1 실시예 20Example 20 4.64.6

충전후 85℃에서의 전지 두께변화Battery thickness change at 85 ℃ after charging 실시예 및 비교예Examples and Comparative Examples 4시간(%)4 hours (%) 96시간(%)96 hours (%) 비교예 1Comparative Example 1 12.512.5 35.535.5 비교예 2Comparative Example 2 3.13.1 7.17.1 실시예 1Example 1 3.23.2 6.96.9 실시예 2Example 2 3.43.4 7.17.1 실시예 3Example 3 4.54.5 7.37.3 실시예 4Example 4 5.15.1 7.97.9 실시예 5Example 5 4.34.3 12.612.6 실시예 6Example 6 26.426.4 42.342.3 실시예 7Example 7 2.92.9 7.67.6 실시예 8Example 8 3.23.2 7.37.3 실시예 9Example 9 2.62.6 5.35.3 실시예 10Example 10 2.32.3 3.93.9 실시예 11Example 11 4.64.6 8.88.8 실시예 12Example 12 3.93.9 7.17.1 실시예 13Example 13 3.23.2 6.86.8 실시예 14Example 14 3.53.5 7.37.3 실시예 15Example 15 4.14.1 7.97.9 실시예 16Example 16 4.34.3 8.98.9 실시예 17Example 17 4.64.6 10.510.5 실시예 18Example 18 3.83.8 7.67.6 실시예 19Example 19 4.04.0 7.37.3 실시예 20Example 20 7.57.5 17.517.5

충전후 85℃ 4일 방치시 잔류 방전용량Residual discharge capacity when left at 85 ℃ for 4 days after charging 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 비교예 1Comparative Example 1 70.170.1 실시예 10Example 10 78.578.5 비교예 2Comparative Example 2 53.253.2 실시예 11Example 11 72.172.1 실시예 1Example 1 73.173.1 실시예 12Example 12 77.277.2 실시예 2Example 2 72.672.6 실시예 13Example 13 76.676.6 실시예 3Example 3 79.179.1 실시예 14Example 14 75.275.2 실시예 4Example 4 77.377.3 실시예 15Example 15 72.472.4 실시예 5Example 5 76.176.1 실시예 16Example 16 72.972.9 실시예 6Example 6 78.278.2 실시예 17Example 17 75.475.4 실시예 7Example 7 75.975.9 실시예 18Example 18 73.673.6 실시예 8Example 8 73.473.4 실시예 19Example 19 72.872.8 실시예 9Example 9 80.180.1 실시예 20Example 20 77.477.4

상기 표 3 및 4의 결과를 볼 때, 첨가제를 첨가하지 않은 비교예 1 및 2에비하여 첨가제가 첨가된 본 발명 실시예 1-20의 경우가 만충전시의 두께 팽창 및 고온 방치시 두께 팽창을 획기적으로 감소시켜 주는 것을 확인할 수 있다. 또한, 상기 표 5의 결과를 볼 때 고온 방치후의 용량 회복 측면에서도 획기적인 향상이 있음을 알 수 있다.In view of the results of Tables 3 and 4, compared to Comparative Examples 1 and 2 in which no additives were added, Examples 1-20 of the present invention, in which the additives were added, significantly reduced the thickness expansion at full charge and the thickness expansion at high temperature. It can be confirmed that the reduction. In addition, it can be seen from the results of Table 5 that there is a significant improvement in terms of capacity recovery after high temperature standing.

다음에, 실시예 및 비교예에서 제작된 전지들을 전류 120mA, 충전전압 4.2V, CC-CV조건으로 최초충전하여 1시간 방치시킨 다음, 120mA의 전류로 2.5V까지 방전하고 다시 1시간 방치하였다.Next, the batteries produced in Examples and Comparative Examples were initially charged with a current of 120 mA, a charging voltage of 4.2 V, and CC-CV conditions and left for 1 hour, then discharged to 2.5 V with a current of 120 mA, and left for another hour.

이 과정을 2회 실시한 다음, 600mA의 전류로 4.2V로의 충전 및 2.75V로의 방전을 반복하는 충전/방전 시험을 300회 실시한 후 전지 용량을 측정함으로써 수명을 비교하였다. 결과를 하기 표 6에 나타내었다.After performing this process twice, the battery life was measured by measuring the battery capacity after carrying out 300 charge / discharge tests which repeat charging to 4.2V and discharging to 2.75V at a current of 600mA. The results are shown in Table 6 below.

300회 충전/방전 후의 전지 용량Battery capacity after 300 charges / discharges 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 실시예 및 비교예Examples and Comparative Examples 방전용량(%)Discharge capacity (%) 비교예 1Comparative Example 1 85.985.9 실시예 10Example 10 87.687.6 비교예 2Comparative Example 2 43.243.2 실시예 11Example 11 85.885.8 실시예 1Example 1 75.375.3 실시예 12Example 12 88.288.2 실시예 2Example 2 86.286.2 실시예 13Example 13 93.293.2 실시예 3Example 3 91.291.2 실시예 14Example 14 89.689.6 실시예 4Example 4 93.693.6 실시예 15Example 15 89.289.2 실시예 5Example 5 92.192.1 실시예 16Example 16 86.786.7 실시예 6Example 6 89.289.2 실시예 17Example 17 89.289.2 실시예 7Example 7 92.392.3 실시예 18Example 18 86.186.1 실시예 8Example 8 90.290.2 실시예 19Example 19 83.683.6 실시예 9Example 9 94.294.2 실시예 20Example 20 87.287.2

상기 표 6의 결과를 볼 때, 첨가제를 첨가하지 않은 비교예 1 및 2에 비하여첨가제가 첨가된 본 발명 실시예 1-20의 경우가 장기간 사용후에도 원래의 방전용량에 가까운 방전용량을 유지함으로써 수명특성이 크게 개선되었음을 알 수 있다.In view of the results in Table 6, the present invention Examples 1-20, in which the additive is added as compared to Comparative Examples 1 and 2 without the addition of the additive, maintain the discharge capacity close to the original discharge capacity even after long-term use. It can be seen that the characteristics are greatly improved.

이상과 같이 본 발명이 완성됨으로써, 전해액에 GBL이 첨가되고 이의 젖음성을 증가시키기 위하여 첨가제가 더 첨가된 리튬이온전지용 전해액이 제공될 수 있게 되었다.As the present invention is completed as described above, GBL is added to the electrolyte solution, and an electrolyte solution for a lithium ion battery to which an additive is further added in order to increase its wettability can be provided.

이에 따라, 종래의 전해액에 비해 충방전 특성은 물론 수명특성, 온도 특성 특히 저온에서의 고율 방전 특성이 개선되고, 고온에서의 두께 팽창성이 감소된 리튬이온전지가 제공될 수 있게 되었다.Accordingly, it is possible to provide a lithium ion battery having improved charge and discharge characteristics, life characteristics, temperature characteristics, particularly high rate discharge characteristics at low temperatures, and reduced thickness expandability at high temperatures, compared to conventional electrolyte solutions.

Claims (15)

양극활물질로 LiCoO2, LiMnO2, LiMn2O4, LiNiO2또는 복합화합물(LiM1xM2yO2) 중 어느 하나를 사용하며, 여기서, M1및 M2는 금속원소, x 및 y는 0-2의 유리수이고, 음극활물질로 결정질 또는 비정질의 탄소(Carbon) 또는 금속리튬을 사용하는 리튬이온전지 및 리튬폴리머전지의 전해액에 있어서,LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 or a composite compound (LiM 1x M 2y O 2 ) is used as the cathode active material, where M 1 and M 2 are metal elements, and x and y are 0 In a lithium ion battery and a lithium polymer battery having a free number of -2 and using crystalline or amorphous carbon or metal lithium as a negative electrode active material, 에틸렌 카보네이트(Ethylene carbonate);Ethylene carbonate; 감마-부티로락톤(γ-butyrolactone);Gamma-butyrolactone; LiPF6, LiBF4, LiClO4, LiN(SO2CF3)2및 LiN(SO2CF2CF3)2중 하나 이상인 리튬염; 및Lithium salts of at least one of LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 CF 2 CF 3 ) 2 ; And 포스페이트(Phosphate)계 화합물들, 설폰(Sulfone)계 화합물들, 설파이트(Sulfite)계 화합물들, 설페이트(sulfate)계 화합물들 및 설톤(Sultone)계 화합물들중 하나 이상인 첨가제를 포함하여 구성됨을 특징으로 하는,Phosphate compounds, sulfone compounds, sulfite compounds, sulfate compounds and sulftone compounds Made, 전해액.Electrolyte solution. 제 1항에 있어서,The method of claim 1, 포스페이트계 화합물들은 하기의 구조를 가짐을 특징으로 하는,Phosphate compounds have the following structure, 전해액.Electrolyte solution. (여기서, R 및 R1은 탄소수가 1-12인 탄화수소로서, 1°, 2°또는 3°의 포화 탄화수소, 아릴(Aryl), 에스테르 또는 에테르임)Wherein R and R 1 are hydrocarbons having 1-12 carbon atoms and are 1 °, 2 ° or 3 ° saturated hydrocarbons, aryl, esters or ethers 제 1항에 있어서,The method of claim 1, 설폰계 화합물들은 하기의 구조를 가짐을 특징으로 하는,The sulfone compounds have the following structure, 전해액.Electrolyte solution. (여기서, R2및 R3는 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소임)Wherein R 2 and R 3 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms 제 1항에 있어서,The method of claim 1, 설파이트계 화합물들은 하기의 구조를 가짐을 특징으로 하는,전해액. The sulfite compounds have the following structure, Electrolyte. (여기서, R4및 R5는 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소임)Wherein R 4 and R 5 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms 제 1항에 있어서,The method of claim 1, 설페이트계 화합물들은 하기의 구조를 가짐을 특징으로 하는,Sulfate compounds are characterized by having the structure 전해액.Electrolyte solution. (여기서, R6및 R7는 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소임)Wherein R 6 and R 7 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms 제 1항에 있어서,The method of claim 1, 설톤계 화합물들은 하기의 구조를 가짐을 특징으로 하는,Sulton compounds are characterized by having the following structure, 전해액.Electrolyte solution. (여기서, n은 2-5의 정수임)Where n is an integer from 2-5 제 1항에 있어서,The method of claim 1, 전해액중 에틸렌 카보네이트의 함량은 5-50vol%임을 특징으로 하는,The content of ethylene carbonate in the electrolyte is characterized in that 5-50vol%, 전해액.Electrolyte solution. 제 1항에 있어서,The method of claim 1, 전해액중 감마-부티로락톤의 함량은 50-95vol%임을 특징으로 하는,Characterized in that the content of gamma-butyrolactone in the electrolyte is 50-95vol%, 전해액.Electrolyte solution. 제 1항에 있어서,The method of claim 1, 전해액중 리튬염의 농도는 0.5-2.0M임을 특징으로 하는,Characterized in that the concentration of lithium salt in the electrolyte is 0.5-2.0M, 전해액.Electrolyte solution. 제 1항에 있어서,The method of claim 1, 전해액중 첨가제의 함량은 0.1-10.0중량%임을 특징으로 하는,The content of the additive in the electrolyte is characterized in that 0.1-10.0% by weight, 전해액.Electrolyte solution. 제 1항에 있어서,The method of claim 1, 하기의 구조를 가지는 에스테르류를 더 포함하여 구성됨을 특징으로 하는,Characterized in that it further comprises a ester having the structure 전해액.Electrolyte solution. (여기서, R8-R13은 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소이며, R14는 탄소수 1-6인 포화 또는 불포화 탄화수소임)Wherein R 8 -R 13 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms, and R 14 is saturated or unsaturated hydrocarbons having 1-6 carbon atoms) 제 1항에 있어서,The method of claim 1, 하기의 구조를 가지는 선형 카보네이트를 더 포함하여 구성됨을 특징으로 하는,Characterized in that further comprises a linear carbonate having the following structure, 전해액.Electrolyte solution. (여기서, R15-R16은 탄소수 1-4인 탄화수소임)Wherein R 15 -R 16 are hydrocarbons having 1-4 carbon atoms 양극활물질로 LiCoO2, LiMnO2, LiMn2O4, LiNiO2또는 복합화합물(LiM1xM2yO2) 중 어느 하나를 사용하며, 여기서, M1 및 M2는 금속원소, x 및 y는 0-2의 유리수이고, 음극활물질로 결정질 또는 비정질의 탄소(Carbon) 또는 금속리튬을 사용하는 리튬이온이차전지 및 리튬폴리머전지의 전해액에 있어서,LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 or a composite compound (LiM 1x M 2y O 2 ) is used as the positive electrode active material, where M1 and M2 are metal elements, and x and y are 0-2. In a lithium ion secondary battery and a lithium polymer battery, which is a free number and uses crystalline or amorphous carbon or metal lithium as a negative electrode active material, 에틸렌 카보네이트(Ethylene carbonate);Ethylene carbonate; 하기의 구조를 가지는 에스테르류;Esters having the following structure; (여기서, R8-R13은 탄소수 1-12인 1°, 2°또는 3°의 포화 또는 불포화 탄화수소이며, R14는 탄소수 1-6인 포화 또는 불포화 탄화수소임)Wherein R 8 -R 13 are 1 °, 2 ° or 3 ° saturated or unsaturated hydrocarbons having 1-12 carbon atoms, and R 14 is saturated or unsaturated hydrocarbons having 1-6 carbon atoms) LiPF6, LiBF4, LiClO4, LiN(SO2CF3)2및 LiN(SO2CF2CF3)2중 하나 이상인 리튬염; 및Lithium salts of at least one of LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 CF 2 CF 3 ) 2 ; And 포스페이트(Phosphate)계 화합물들, 설폰(Sulfone)계 화합물들, 설파이트(Sulfite)계 화합물들, 설페이트(sulfate)계 화합물들 및 설톤(Sultone)계 화합물들중 하나 이상인 첨가제를 포함하여 구성됨을 특징으로 하는,Phosphate compounds, sulfone compounds, sulfite compounds, sulfate compounds and sulftone compounds Made, 전해액.Electrolyte solution. 제 13항에 있어서,The method of claim 13, 전해액중 에스테르류의 함량은 5-50vol%임을 특징으로 하는,Ester content of the electrolyte is characterized in that 5-50vol%, 전해액.Electrolyte solution. 제 13항에 있어서,The method of claim 13, 전해액중 첨가제의 함량은 0.1-10.0중량%임을 특징으로 하는,The content of the additive in the electrolyte is characterized in that 0.1-10.0% by weight, 전해액.Electrolyte solution.
KR1020010040032A 2001-07-05 2001-07-05 Electrolyte for Lithium Rechargeable Batteries KR100342605B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010040032A KR100342605B1 (en) 2001-07-05 2001-07-05 Electrolyte for Lithium Rechargeable Batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010040032A KR100342605B1 (en) 2001-07-05 2001-07-05 Electrolyte for Lithium Rechargeable Batteries

Publications (2)

Publication Number Publication Date
KR20010082428A true KR20010082428A (en) 2001-08-30
KR100342605B1 KR100342605B1 (en) 2002-06-29

Family

ID=19711782

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010040032A KR100342605B1 (en) 2001-07-05 2001-07-05 Electrolyte for Lithium Rechargeable Batteries

Country Status (1)

Country Link
KR (1) KR100342605B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463189B1 (en) * 2002-07-15 2004-12-23 삼성에스디아이 주식회사 A lithium secondary battery and a method for preparing the same
KR100597143B1 (en) * 2002-07-16 2006-07-06 미쯔이가가꾸가부시끼가이샤 Electrolyte Additive, Non-aqueous Electrolyte Comprising the Additive, And Secondary Battery Comprising the Electrolyte
KR100642435B1 (en) * 2003-12-30 2006-11-03 제일모직주식회사 Nonaqueous Electrolyte for Battery
US7261972B2 (en) 2002-07-25 2007-08-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
KR100778961B1 (en) * 2002-11-06 2007-11-28 가부시끼가이샤 도시바 Nonaqueous electrolyte secondary battery
WO2008015987A1 (en) * 2006-08-04 2008-02-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
WO2008050971A1 (en) * 2006-10-25 2008-05-02 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
WO2009020369A1 (en) * 2007-08-09 2009-02-12 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US7608364B2 (en) * 2003-01-10 2009-10-27 Nec Corporation Lithium ion secondary battery
US7998623B2 (en) 2004-10-01 2011-08-16 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
KR101233517B1 (en) * 2006-03-28 2013-02-14 삼성에스디아이 주식회사 Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
US8586249B2 (en) 2004-10-01 2013-11-19 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
US8916292B2 (en) 2006-03-21 2014-12-23 Samsung Sdi Co., Ltd. Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same and method of fabricating the lithium rechargeable battery
US8936881B2 (en) 2011-02-09 2015-01-20 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11251423B2 (en) 2016-01-13 2022-02-15 Sk Innovation Co., Ltd. Lithium secondary battery
CN115579519A (en) * 2022-10-31 2023-01-06 江西安驰新能源科技有限公司 Lithium ion battery electrolyte additive and lithium ion battery electrolyte

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101682084A (en) 2007-06-07 2010-03-24 株式会社Lg化学 Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
KR101073221B1 (en) 2007-06-12 2011-10-12 주식회사 엘지화학 Non-aqueous electrolyte and secondary battery using the same
KR101073233B1 (en) * 2007-06-15 2011-10-12 주식회사 엘지화학 Non-aqueous electrolyte and electrochemical device comprising the same
EP2238643B1 (en) 2008-01-02 2014-03-26 LG Chem, Ltd. Pouch-type lithium secondary battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100463189B1 (en) * 2002-07-15 2004-12-23 삼성에스디아이 주식회사 A lithium secondary battery and a method for preparing the same
KR100597143B1 (en) * 2002-07-16 2006-07-06 미쯔이가가꾸가부시끼가이샤 Electrolyte Additive, Non-aqueous Electrolyte Comprising the Additive, And Secondary Battery Comprising the Electrolyte
US7261972B2 (en) 2002-07-25 2007-08-28 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US7642015B2 (en) 2002-07-25 2010-01-05 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
KR100778961B1 (en) * 2002-11-06 2007-11-28 가부시끼가이샤 도시바 Nonaqueous electrolyte secondary battery
US7608364B2 (en) * 2003-01-10 2009-10-27 Nec Corporation Lithium ion secondary battery
KR100642435B1 (en) * 2003-12-30 2006-11-03 제일모직주식회사 Nonaqueous Electrolyte for Battery
US8586249B2 (en) 2004-10-01 2013-11-19 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
US7998623B2 (en) 2004-10-01 2011-08-16 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
US8916292B2 (en) 2006-03-21 2014-12-23 Samsung Sdi Co., Ltd. Positive electrode for lithium rechargeable battery and lithium rechargeable battery including the same and method of fabricating the lithium rechargeable battery
KR101233517B1 (en) * 2006-03-28 2013-02-14 삼성에스디아이 주식회사 Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery comprising the same
WO2008015987A1 (en) * 2006-08-04 2008-02-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8663850B2 (en) 2006-08-04 2014-03-04 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8895195B2 (en) 2006-10-25 2014-11-25 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
WO2008050971A1 (en) * 2006-10-25 2008-05-02 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
US9466856B2 (en) 2006-10-25 2016-10-11 Lg Chem, Ltd. Non-aqueous electrolyte and electrochemical device comprising the same
US8524399B2 (en) 2007-08-09 2013-09-03 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
WO2009020369A1 (en) * 2007-08-09 2009-02-12 Lg Chem, Ltd. Non-aqueous electrolyte and secondary battery comprising the same
US8936881B2 (en) 2011-02-09 2015-01-20 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11251423B2 (en) 2016-01-13 2022-02-15 Sk Innovation Co., Ltd. Lithium secondary battery
CN115579519A (en) * 2022-10-31 2023-01-06 江西安驰新能源科技有限公司 Lithium ion battery electrolyte additive and lithium ion battery electrolyte
CN115579519B (en) * 2022-10-31 2024-01-26 江西安驰新能源科技有限公司 Additive for lithium ion battery electrolyte and lithium ion battery electrolyte

Also Published As

Publication number Publication date
KR100342605B1 (en) 2002-06-29

Similar Documents

Publication Publication Date Title
US7241536B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100342605B1 (en) Electrolyte for Lithium Rechargeable Batteries
JP4252503B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
KR20050014408A (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100984134B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR100335222B1 (en) Nonaqueous Electrolyte
KR100515331B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100412522B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20040037053A (en) Electrolyte for Lithium Rechargeable Battery to Control Swelling
KR101349941B1 (en) Electrolyte For Lithium Secondary Battery and Lithium Secondary Battery Including The Same
KR20120132811A (en) Non-aqueous electrolyte comprising difluoro phosphate
US7736812B2 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
KR100490626B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100801592B1 (en) Nonaqueous electrolyte including succinic acid and tri-methylsillyl borate and lithium secondary battery using thereof
KR100450199B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR100708210B1 (en) Nonaqueous electrolyte for secondary battery
KR100370387B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370384B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100395818B1 (en) Organic electrolyte solution and lithium batteries adopting the same
KR100370386B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100412527B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
KR20040037054A (en) Electrolyte for Lithium Rechargeable Battery
KR100370385B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100370383B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100521868B1 (en) Nonaqueous Electrolyte For Secondary Battery

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121218

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee