JP6863251B2 - Silicon wafer processing method - Google Patents

Silicon wafer processing method Download PDF

Info

Publication number
JP6863251B2
JP6863251B2 JP2017232570A JP2017232570A JP6863251B2 JP 6863251 B2 JP6863251 B2 JP 6863251B2 JP 2017232570 A JP2017232570 A JP 2017232570A JP 2017232570 A JP2017232570 A JP 2017232570A JP 6863251 B2 JP6863251 B2 JP 6863251B2
Authority
JP
Japan
Prior art keywords
silicon wafer
polishing
heat treatment
metal impurities
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017232570A
Other languages
Japanese (ja)
Other versions
JP2019102658A (en
Inventor
正彬 大関
正彬 大関
阿部 達夫
達夫 阿部
健作 五十嵐
健作 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2017232570A priority Critical patent/JP6863251B2/en
Publication of JP2019102658A publication Critical patent/JP2019102658A/en
Application granted granted Critical
Publication of JP6863251B2 publication Critical patent/JP6863251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、少なくとも研磨を行うシリコンウェーハの加工方法に関する。 The present invention relates to at least a method for processing a silicon wafer to be polished.

シリコンを用いた半導体デバイスは微細化が進むにつれ、より微細なLLS(Localized light Scattering)欠陥の抑制が求められている。LLS欠陥の中には、洗浄で落としきれない異物や研磨中に導入されるスクラッチの他に、NiやCuなどの金属不純物が原因で発生する欠陥がある。これらの金属不純物が原因の欠陥は、突起状になっているものやピット状になっているものもあり、その凹凸自体がデバイス不良を引き起こす可能性があるだけでなく、その欠陥中に含まれる金属不純物が熱処理により拡散してデバイス不良を引き起こす可能性もあるため、厳重に発生を抑制しなければいけない。 As the miniaturization of semiconductor devices using silicon progresses, it is required to suppress finer LLS (Located light Scattering) defects. Among the LLS defects, there are defects generated due to metal impurities such as Ni and Cu, in addition to foreign substances that cannot be completely removed by cleaning and scratches introduced during polishing. Defects caused by these metal impurities may be prominent or pit-like, and the unevenness itself can cause device failure and is included in the defects. Since metal impurities may diffuse due to heat treatment and cause device defects, the generation must be strictly suppressed.

図2に、従来におけるウェーハの製造方法の工程フロー図を示す。上記LLS欠陥を形成する金属不純物は、結晶引き上げ工程(図2(a))やスライス工程(図2(b))、研削(ラップ)工程(図2(c))、研磨工程(図2(d))で導入されることが分かっている。特に、NiやCuなど比較的シリコンウェーハ内の移動度が高い金属不純物は拡散速度が高いため、研削や研磨工程等のウェーハ加工工程でも容易に侵入し、LLS欠陥を形成してしまう。図4に、代表的なLLS欠陥のSEM像を示す。 FIG. 2 shows a process flow chart of a conventional wafer manufacturing method. The metal impurities forming the LLS defect include a crystal pulling step (FIG. 2 (a)), a slicing step (FIG. 2 (b)), a grinding (wrapping) step (FIG. 2 (c)), and a polishing step (FIG. 2 (c)). It is known to be introduced in d)). In particular, metal impurities such as Ni and Cu, which have a relatively high mobility in a silicon wafer, have a high diffusion rate, so that they easily invade even in a wafer processing process such as a grinding or polishing process and form LLS defects. FIG. 4 shows an SEM image of a typical LLS defect.

金属不純物を除去するために、例えば特許文献1では、スライス工程後に熱処理を行うことで、金属不純物を表面に誘起させて除去する手法が開示されている。この手法であれば、結晶引き上げ工程やスライス工程で導入された金属不純物を除去することはできるが、スライス工程後の、研削、研磨工程等のウェーハ加工工程で導入される金属不純物の除去手段がないため、研削、研磨工程の状況によっては再び表面に金属不純物起因のLLS欠陥を形成してしまうという問題があった。 In order to remove metal impurities, for example, Patent Document 1 discloses a method of inducing and removing metal impurities on the surface by performing a heat treatment after the slicing step. With this method, it is possible to remove the metal impurities introduced in the crystal pulling process and the slicing process, but the means for removing the metal impurities introduced in the wafer processing process such as grinding and polishing after the slicing process is available. Therefore, there is a problem that LLS defects due to metal impurities are formed on the surface again depending on the conditions of the grinding and polishing processes.

特許第6187689号Patent No. 6187689

本発明は、上記問題点に鑑みてなされたものであって、ウェーハ表面に存在する金属不純物および金属不純物起因の欠陥を抑制することができるシリコンウェーハの加工方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for processing a silicon wafer capable of suppressing metal impurities existing on the wafer surface and defects caused by the metal impurities.

上記課題を解決するために、本発明は、シリコンウェーハに対し少なくとも研磨を行うシリコンウェーハの加工方法であって、前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用いて研磨を行い、該研磨後の前記シリコンウェーハを、過酸化水素又はオゾンを含む薬液で洗浄し、該洗浄後の前記シリコンウェーハに、400℃以上700℃以下の温度で熱処理を行い、その後、前記熱処理後の前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用い、取り代を5nm以上100nm以下として最終仕上げ研磨を行うことを特徴とするシリコンウェーハの加工方法を提供する。 In order to solve the above problems, the present invention is a method for processing a silicon wafer that at least polishes a silicon wafer, and the silicon wafer is polished by using a resin pad and a polishing agent containing abrasive grains. Then, the polished silicon wafer is washed with a chemical solution containing hydrogen peroxide or ozone, and the cleaned silicon wafer is heat-treated at a temperature of 400 ° C. or higher and 700 ° C. or lower, and then after the heat treatment. Provided is a method for processing a silicon wafer, which comprises using a resin pad and a polishing agent containing abrasive grains to perform final finish polishing on the silicon wafer with a removal allowance of 5 nm or more and 100 nm or less.

このようなシリコンウェーハの加工方法であれば、ウェーハ表面に存在する金属不純物、及び金属不純物起因の欠陥を確実に抑制することができ、高品質のシリコンウェーハを得ることができる。 With such a silicon wafer processing method, metal impurities existing on the wafer surface and defects caused by metal impurities can be reliably suppressed, and a high-quality silicon wafer can be obtained.

本発明のシリコンウェーハの加工方法であれば、金属不純物及び金属不純物に起因する欠陥(LLS欠陥)を確実に低減することができ、高品質のシリコンウェーハを得ることができる。 According to the silicon wafer processing method of the present invention, metal impurities and defects (LLS defects) caused by metal impurities can be reliably reduced, and a high quality silicon wafer can be obtained.

本発明のシリコンウェーハの加工方法の一実施形態を含んだシリコンウェーハ製造工程フロー図である。It is a silicon wafer manufacturing process flow chart which includes one Embodiment of the silicon wafer processing method of this invention. 従来のシリコンウェーハの製造方法を示す工程フロー図である。It is a process flow diagram which shows the manufacturing method of the conventional silicon wafer. 実施例、比較例のLLS欠陥数の評価結果を示すグラフである。It is a graph which shows the evaluation result of the number of LLS defects of an Example and a comparative example. LLS欠陥のSEM画像である。It is an SEM image of an LLS defect.

上述したように、従来の、スライス工程後に熱処理を行うシリコンウェーハの製造方法では、スライス工程後の研削、研磨工程で導入される金属不純物の除去手段がないため、研削、研磨工程において再び表面に金属不純物起因のLLS欠陥が発生してしまうという問題があった。 As described above, in the conventional method for manufacturing a silicon wafer in which heat treatment is performed after the slicing process, there is no means for removing metal impurities introduced in the grinding and polishing steps after the slicing process. There is a problem that LLS defects caused by metal impurities occur.

本発明者らは、ウェーハ加工プロセス中で低温熱処理を行うことで上記問題点の解決を図った。そして、なるべく加工プロセスの後半に低温熱処理を行い、低温熱処理後の工程は少なくする方が良いことを知見した。更に、低温熱処理後に、厳重に不純物管理された状態で、わずかな取り代で凹凸平坦化および表面金属除去工程を導入する必要があることを知見した。 The present inventors have tried to solve the above problems by performing low-temperature heat treatment in the wafer processing process. Then, it was found that it is better to perform low temperature heat treatment in the latter half of the processing process as much as possible and reduce the number of steps after the low temperature heat treatment. Furthermore, it was found that after low-temperature heat treatment, it is necessary to introduce a step of flattening unevenness and removing surface metal with a small allowance in a state where impurities are strictly controlled.

そして、本発明者らは上記の問題を解決するために鋭意検討を重ねた結果、シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用いて研磨を行い、該研磨後の前記シリコンウェーハを、過酸化水素又はオゾンを含む薬液で洗浄し、該洗浄後の前記シリコンウェーハに、400℃以上700℃以下の温度で熱処理を行い、その後、前記熱処理後の前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用い、取り代を5nm以上100nm以下として最終仕上げ研磨を行うシリコンウェーハの加工方法であれば、ウェーハ表面に存在する金属不純物および金属不純物起因の欠陥を抑制することができることを見出し、本発明に到達した。 Then, as a result of diligent studies to solve the above problems, the present inventors polished the silicon wafer using a resin pad and a polishing agent containing abrasive grains, and the silicon after polishing. The wafer is washed with a chemical solution containing hydrogen peroxide or ozone, the cleaned silicon wafer is heat-treated at a temperature of 400 ° C. or higher and 700 ° C. or lower, and then the silicon wafer after the heat treatment is subjected to a resin. A silicon wafer processing method that uses a pad and a polishing agent containing abrasive grains and performs final finish polishing with a removal allowance of 5 nm or more and 100 nm or less suppresses metal impurities existing on the wafer surface and defects caused by metal impurities. We have found that we can do this and have arrived at the present invention.

即ち、本発明は、シリコンウェーハに対し少なくとも研磨を行うシリコンウェーハの加工方法であって、前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用いて研磨を行い、該研磨後の前記シリコンウェーハを、過酸化水素又はオゾンを含む薬液で洗浄し、該洗浄後の前記シリコンウェーハに、400℃以上700℃以下の温度で熱処理を行い、その後、前記熱処理後の前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用い、取り代を5nm以上100nm以下として最終仕上げ研磨を行うことを特徴とするシリコンウェーハの加工方法を提供する。 That is, the present invention is a method for processing a silicon wafer that at least polishes a silicon wafer. The silicon wafer is polished using a resin pad and a polishing agent containing abrasive grains, and after the polishing. The silicon wafer is washed with a chemical solution containing hydrogen peroxide or ozone, and the cleaned silicon wafer is heat-treated at a temperature of 400 ° C. or higher and 700 ° C. or lower, and then the silicon wafer after the heat treatment is subjected to heat treatment. Provided is a method for processing a silicon wafer, which comprises using a resin pad and a polishing agent containing abrasive grains to perform final finish polishing with a removal allowance of 5 nm or more and 100 nm or less.

以下、本発明のシリコンウェーハの加工方法を説明する。図1は、本発明のシリコンウェーハの加工方法の一実施形態を含んだシリコンウェーハ製造工程フロー図である。 Hereinafter, a method for processing a silicon wafer of the present invention will be described. FIG. 1 is a silicon wafer manufacturing process flow chart including an embodiment of the silicon wafer processing method of the present invention.

まず、本発明のシリコンウェーハの加工方法では、シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用いて研磨を行う(図1(d))。研磨を施すシリコンウェーハとしては、通常、結晶引き上げ工程(図1(a))、スライス工程(図1(b))、研削(ラップ)工程(図1(c))後のシリコンウェーハを用いることができる。 First, in the silicon wafer processing method of the present invention, the silicon wafer is polished using a resin pad and an abrasive containing abrasive grains (FIG. 1 (d)). As the silicon wafer to be polished, a silicon wafer after the crystal pulling step (FIG. 1 (a)), the slicing step (FIG. 1 (b)), and the grinding (wrapping) step (FIG. 1 (c)) is usually used. Can be done.

このようなシリコンウェーハに対して、樹脂パッドと砥粒を含む研磨剤とを用いて研磨を行う(図1(d))。当該研磨は、硬質や軟質の樹脂パッドと砥粒を含む研磨剤とを用いる従来の研磨方法に従って行うことができ、例えば、研磨条件を変更して複数回行う多段研磨とすることができ、軟質パッドと砥粒を含む研磨剤を用いた研磨で終えることが好ましい。研磨剤は、砥粒としてのコロイダルシリカ、アルカリを含むものとすることができる。 Such a silicon wafer is polished using a resin pad and an abrasive containing abrasive grains (FIG. 1 (d)). The polishing can be performed according to a conventional polishing method using a hard or soft resin pad and an abrasive containing abrasive grains. For example, the polishing conditions can be changed to perform multi-stage polishing, which is soft. It is preferable to finish by polishing with an abrasive containing a pad and abrasive grains. The abrasive may contain colloidal silica and alkali as abrasive grains.

次いで、研磨後(好ましくは、軟質パッドと砥粒を含む研磨剤を用いた研磨後)のシリコンウェーハを、過酸化水素又はオゾンを含む薬液で洗浄する(図1(e))。当該洗浄により、シリコンウェーハに残存していた砥粒やパッドから脱落した樹脂等の異物を除去することができると共に、ケミカル酸化膜を形成することにより、例えば搬送時のパーティクル付着を抑制することができる。 Next, the silicon wafer after polishing (preferably after polishing with a soft pad and an abrasive containing abrasive grains) is washed with a chemical solution containing hydrogen peroxide or ozone (FIG. 1 (e)). By the cleaning, foreign substances such as resin that have fallen off from the abrasive grains and pads remaining on the silicon wafer can be removed, and by forming a chemical oxide film, for example, particle adhesion during transportation can be suppressed. it can.

尚、過酸化水素又はオゾンを含む薬液としては、H濃度0.1〜5%の過酸化水素水や、オゾン濃度10〜30ppmのオゾン水等が挙げられる。 As the chemical solution containing hydrogen peroxide or ozone, H 2 O 2 concentration 0.1% to 5% of hydrogen peroxide and ozone water or the like of the ozone concentration 10~30ppm the like.

このような研磨後の洗浄を行わない場合、上記異物(砥粒やパッドから脱落した樹脂等)がウェーハ表面に残存し、それらが後工程である熱処理により不純物としてウェーハ中に拡散してしまう。また、研磨直後にベアシリコンが露出している状態となるため、搬送時のパーティクル等の付着が顕著となってしまう。従って、熱処理後の研磨工程で多くの取り代(数ミクロン以上)が必要となってしまう。 If such cleaning after polishing is not performed, the foreign substances (abrasive grains, resin that has fallen off from the pad, etc.) remain on the wafer surface, and they are diffused into the wafer as impurities by the heat treatment in the subsequent process. In addition, since the bare silicon is exposed immediately after polishing, the adhesion of particles and the like during transportation becomes remarkable. Therefore, a large amount of allowance (several microns or more) is required in the polishing process after the heat treatment.

次いで、洗浄後のシリコンウェーハに、400℃以上700℃以下の温度で熱処理を行う(図1(f))。このような、400℃〜700℃の低温熱処理は、金属不純物の拡散係数を増大させ、表面に誘起することができる。700℃より高い温度での高温熱処理では、確かに金属不純物の拡散係数はより増大するものの、BMD(Bulk Micro Defect)等の酸素析出物の増大や、熱応力による転位の発生がみられる可能性もあり、また生産性、電力消費の面からも望ましくない。尚、低温熱処理は、窒素雰囲気下の常圧で行うことが好ましく、熱処理時間は30分〜3時間とすることができる。 Next, the cleaned silicon wafer is heat-treated at a temperature of 400 ° C. or higher and 700 ° C. or lower (FIG. 1 (f)). Such a low temperature heat treatment at 400 ° C. to 700 ° C. can increase the diffusion coefficient of metal impurities and induce them on the surface. High-temperature heat treatment at a temperature higher than 700 ° C. does increase the diffusion coefficient of metal impurities, but there is a possibility that oxygen precipitates such as BMD (Bulk Micro Defect) may increase and dislocations may occur due to thermal stress. It is also undesirable in terms of productivity and power consumption. The low temperature heat treatment is preferably performed at normal pressure under a nitrogen atmosphere, and the heat treatment time can be 30 minutes to 3 hours.

その後、熱処理後のシリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用い、取り代を5nm以上100nm以下として最終仕上げ研磨を行う(図1(g))。樹脂パッドとしては、通常、仕上げ研磨で用いられている軟質樹脂パッドを用いることができ、研磨剤は、砥粒としてのコロイダルシリカ、アルカリを含むものとすることができる。 Then, the silicon wafer after the heat treatment is subjected to final finish polishing using a resin pad and an abrasive containing abrasive grains with a removal allowance of 5 nm or more and 100 nm or less (FIG. 1 (g)). As the resin pad, a soft resin pad usually used for finish polishing can be used, and the abrasive may contain colloidal silica and alkali as abrasive grains.

このような最終仕上げ研磨により、低温熱処理(図1(f))により表面に誘起した金属不純物を除去することができる。そして、本発明においては、最終仕上げ研磨を5nm以上100nm以下の微少量の取り代とすることで、最終仕上げ研磨中に不純物が混入することを防ぐことができる。最終仕上げ研磨における取り代が5nmより少ないと、金属不純物により形成される凹凸を修正できない。また、本発明においては、洗浄(図1(e))により厳重に不純物の抑制管理がされているため、表面に誘起した金属不純物の除去には100nm以下の取り代で十分であり、100nmを超えるとかえってフラットネスの悪化が顕著となってしまう。 By such final finish polishing, metal impurities induced on the surface by low temperature heat treatment (FIG. 1 (f)) can be removed. Then, in the present invention, by setting the final finish polishing as a small amount of allowance of 5 nm or more and 100 nm or less, it is possible to prevent impurities from being mixed during the final finish polishing. If the allowance in the final finish polishing is less than 5 nm, the unevenness formed by the metal impurities cannot be corrected. Further, in the present invention, since impurities are strictly suppressed and controlled by cleaning (FIG. 1 (e)), a allowance of 100 nm or less is sufficient for removing metal impurities induced on the surface, and 100 nm is used. If it exceeds the limit, the deterioration of flatness becomes remarkable.

このように、本発明においては、低温熱処理後に、取り代を5nm以上100nm以下とした最終仕上げ研磨を行うことにより、低温熱処理後の金属混入を抑制しつつ、低温熱処理により表面に誘起した金属不純物を除去することができる。 As described above, in the present invention, after the low-temperature heat treatment, the final finish polishing with a removal allowance of 5 nm or more and 100 nm or less is performed to suppress metal contamination after the low-temperature heat treatment, and metal impurities induced on the surface by the low-temperature heat treatment. Can be removed.

一方、スライス工程後のウェーハ加工プロセスの早いうち(例えば、研磨工程前)に低温熱処理を行うと、その後の加工プロセス(例えば、研磨工程)で金属不純物を導入してしまう。また、全加工工程後(例えば、最終仕上げ研磨後)に低温熱処理を行うと、金属不純物を表面に誘起しただけで除去できておらず、また金属不純物が作る凹凸も平坦化できないため、LLS欠陥として認識されてしまう。 On the other hand, if low-temperature heat treatment is performed early in the wafer processing process after the slicing process (for example, before the polishing process), metal impurities are introduced in the subsequent processing process (for example, polishing process). In addition, if low-temperature heat treatment is performed after the entire processing process (for example, after final finish polishing), metal impurities are only induced on the surface and cannot be removed, and the irregularities created by the metal impurities cannot be flattened, resulting in LLS defects. Will be recognized as.

以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例1〜8、比較例1〜12)
軟質樹脂パッドと、コロイダルシリカ、アルカリを含む研磨剤とを用いて、研磨ヘッドの回転数及び押圧を30rpm、20kPaで研磨した後のウェーハを、薬液で洗浄した後、窒素雰囲気下で表1に示す様々な温度で30分熱処理を行った。その後、取り代を0nm、5nm、15nmとして最終仕上げ研磨を行い、LLS欠陥数の評価を行った。尚、薬液はアンモニア水と過酸化水素水の混合液を用いた。最終仕上げ研磨は軟質樹脂パッドにコロイダルシリカ、アルカリを含む研磨剤で、30rpm、20kPaで行った。LLS欠陥数の評価はKLAテンコール社製表面欠陥検出器SP3を用いて行った。
(Examples 1 to 8 and Comparative Examples 1 to 12)
The wafer after polishing the polishing head at 30 rpm and 20 kPa using a soft resin pad and an abrasive containing colloidal silica and alkali was washed with a chemical solution and then shown in Table 1 under a nitrogen atmosphere. Heat treatment was performed for 30 minutes at the various temperatures shown. Then, the final finish polishing was performed with the removal allowances set to 0 nm, 5 nm, and 15 nm, and the number of LLS defects was evaluated. As the chemical solution, a mixed solution of ammonia water and hydrogen peroxide solution was used. The final finish polishing was performed with a polishing agent containing colloidal silica and alkali on a soft resin pad at 30 rpm and 20 kPa. The number of LLS defects was evaluated using a surface defect detector SP3 manufactured by KLA Corporation.

実施例、比較例の熱処理温度、熱処理後の研磨取り代(最終仕上げ研磨取り代)を表1に、LLS欠陥数の評価結果を図3に示す。低温熱処理を行っていない比較例1〜3、熱処理を200℃で行った比較例4〜6ではLLSが改善していないのに対し、熱処理温度を400℃〜700℃で行い、なおかつその後5nm以上研磨を行った実施例1〜8では良好なLLS欠陥数結果となり、図4のような金属汚染によるLLS欠陥は見られなかった。また、熱処理後に研磨を行わなかった比較例7〜9(即ち、取り代0nm)では、LLSが改善していなかった。また、1000℃で熱処理を行った比較例10〜12では逆に悪化してしまった。 Table 1 shows the heat treatment temperature of Examples and Comparative Examples, and the polishing removal allowance (final finish polishing removal allowance) after the heat treatment, and FIG. 3 shows the evaluation results of the number of LLS defects. In Comparative Examples 1 to 3 in which the low temperature heat treatment was not performed and Comparative Examples 4 to 6 in which the heat treatment was performed at 200 ° C., the LLS was not improved, whereas the heat treatment temperature was 400 ° C. to 700 ° C. and then 5 nm or more. In Examples 1 to 8 where polishing was performed, a good LLS defect number result was obtained, and no LLS defect due to metal contamination as shown in FIG. 4 was observed. Further, in Comparative Examples 7 to 9 (that is, the removal allowance 0 nm) in which polishing was not performed after the heat treatment, the LLS was not improved. On the contrary, in Comparative Examples 10 to 12 in which the heat treatment was performed at 1000 ° C.

Figure 0006863251
Figure 0006863251

上記結果から、研磨後のウェーハを洗浄し、その後400〜700℃で熱処理を行い、更にその後5nm以上100nm以下の取り代で最終仕上げ研磨を行うことによって、金属不純物及び金属不純物起因の欠陥を抑制することができ、良好なLLSレベルを達成することができた。 Based on the above results, the wafer after polishing is washed, then heat-treated at 400 to 700 ° C., and then final finish polishing is performed with a allowance of 5 nm or more and 100 nm or less to suppress metal impurities and defects caused by metal impurities. And was able to achieve good LLS levels.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. It is included in the technical scope of the invention.

Claims (1)

シリコンウェーハに対し少なくとも研磨を行うシリコンウェーハの加工方法であって、
前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用いて研磨を行い、
該研磨後の前記シリコンウェーハを、過酸化水素又はオゾンを含む薬液で洗浄し、
該洗浄後の前記シリコンウェーハに、400℃以上700℃以下の温度で熱処理を行って金属不純物を表面に誘起し
その後、前記熱処理後の前記シリコンウェーハに対し、樹脂パッドと砥粒を含む研磨剤とを用い、取り代を5nm以上100nm以下として最終仕上げ研磨を行うことによって、前記熱処理工程により前記表面に誘起した金属不純物を除去することを特徴とするシリコンウェーハの加工方法。
A silicon wafer processing method that at least polishes a silicon wafer.
The silicon wafer is polished with a resin pad and an abrasive containing abrasive grains.
The polished silicon wafer is washed with a chemical solution containing hydrogen peroxide or ozone.
On the silicon wafer after the washing, to induce the metal impurities on the surface I line heat treatment at a temperature of 700 ° C. 400 ° C. or higher,
Then, with respect to the silicon wafer after the heat treatment, induction using a polishing agent containing resin pad and abrasive grains, the final finish polishing the allowance as 5nm or 100nm or less by the row Ukoto, to the surface by the heat treatment step A method for processing a silicon wafer, which comprises removing metal impurities.
JP2017232570A 2017-12-04 2017-12-04 Silicon wafer processing method Active JP6863251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232570A JP6863251B2 (en) 2017-12-04 2017-12-04 Silicon wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232570A JP6863251B2 (en) 2017-12-04 2017-12-04 Silicon wafer processing method

Publications (2)

Publication Number Publication Date
JP2019102658A JP2019102658A (en) 2019-06-24
JP6863251B2 true JP6863251B2 (en) 2021-04-21

Family

ID=66974113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232570A Active JP6863251B2 (en) 2017-12-04 2017-12-04 Silicon wafer processing method

Country Status (1)

Country Link
JP (1) JP6863251B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023109901A1 (en) 2023-04-19 2024-10-24 Provisur Technologies, Inc. Planar motor drive system and associated cleaning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3252702B2 (en) * 1996-03-28 2002-02-04 信越半導体株式会社 Method for manufacturing semiconductor single crystal mirror-finished wafer including vapor phase etching step and semiconductor single crystal mirror wafer manufactured by this method
JPH11288941A (en) * 1998-04-03 1999-10-19 Memc Kk Method for processing silicon wafer
JP4854936B2 (en) * 2004-06-15 2012-01-18 信越半導体株式会社 Silicon wafer manufacturing method and silicon wafer
JP6027346B2 (en) * 2012-06-12 2016-11-16 Sumco Techxiv株式会社 Manufacturing method of semiconductor wafer

Also Published As

Publication number Publication date
JP2019102658A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP5238251B2 (en) Method for reducing metal contamination in silicon wafers
JP6933187B2 (en) Method for removing metal impurities from semiconductor silicon wafers
JP5278549B2 (en) Silicon wafer cleaning method and epitaxial wafer manufacturing method using the cleaning method
US8058173B2 (en) Methods for producing smooth wafers
JP2014212213A (en) Method for polishing silicon wafer and method for manufacturing epitaxial wafer
TW201814782A (en) Method for polishing semiconductor wafer
JP2010034128A (en) Production method of wafer and wafer obtained by this method
JP6863251B2 (en) Silicon wafer processing method
WO2013179569A1 (en) Method for cleaning semiconductor wafer
KR20210015762A (en) Silicon wafer cleaning method
US20090203212A1 (en) Surface Grinding Method and Manufacturing Method for Semiconductor Wafer
TW202141611A (en) Semiconductor wafer cleaning method
US20060027161A1 (en) Method for heat-treating silicon wafer and silicon wafer
TW201921472A (en) Method for manufacturing semiconductor wafer
JP7193026B1 (en) Cleaning liquid and wafer cleaning method
KR20110036990A (en) Method of growing uniform oxide layer and method of cleaning substrate
JP2010040876A (en) Method of manufacturing semiconductor wafer
JP2008227060A (en) Method of manufacturing annealed wafer
JP5584959B2 (en) Silicon wafer manufacturing method
JP2007123383A (en) Method of manufacturing and cleaning semiconductor wafer
JP2000173956A (en) Polishing agent for semiconductor silicon wafer and polishing method
JP7380492B2 (en) Polishing composition and wafer processing method
JP2009182233A (en) Washing method of annealed wafer
JP2006245301A (en) Manufacturing method of silicon wafer
KR20130069935A (en) Fabricating method of wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6863251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250