JP6851601B2 - Iron supply container - Google Patents

Iron supply container Download PDF

Info

Publication number
JP6851601B2
JP6851601B2 JP2018103343A JP2018103343A JP6851601B2 JP 6851601 B2 JP6851601 B2 JP 6851601B2 JP 2018103343 A JP2018103343 A JP 2018103343A JP 2018103343 A JP2018103343 A JP 2018103343A JP 6851601 B2 JP6851601 B2 JP 6851601B2
Authority
JP
Japan
Prior art keywords
iron
supply container
water
iron supply
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103343A
Other languages
Japanese (ja)
Other versions
JP2019154427A5 (en
JP2019154427A (en
Inventor
明夫 林
明夫 林
吉村悦郎
北辻政文
Original Assignee
株式会社アベゼン
明夫 林
明夫 林
吉村 悦郎
吉村 悦郎
公立大学法人宮城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アベゼン, 明夫 林, 明夫 林, 吉村 悦郎, 吉村 悦郎, 公立大学法人宮城大学 filed Critical 株式会社アベゼン
Publication of JP2019154427A publication Critical patent/JP2019154427A/en
Publication of JP2019154427A5 publication Critical patent/JP2019154427A5/ja
Application granted granted Critical
Publication of JP6851601B2 publication Critical patent/JP6851601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)

Description

本発明は、海藻類等の成長を促進するために海水中や水中に安定して鉄イオンを供給する手段および方法に関する。 The present invention relates to means and methods for stably supplying iron ions to seawater or water in order to promote the growth of seaweeds and the like.

近年川、湖沼や海への廃棄物が減少し、水生植物や海藻類等の植物の生育が悪くなっている。特に鉄分は植物の光合成に必須の元素であるが、この鉄分の量が海水や川水や湖沼水等で不足している。植物は鉄分を2価の鉄イオンとして吸収し、植物の成長に利用している。そこで、鉄分を人工的に供給することが行なわれている。たとえば、製鋼スラグ中には2価の鉄イオンが豊富に含まれており(3〜20原子%)、これらのスラグを海底に散布すると2価の鉄イオンが海水中に溶けていくので、これらのスラグは鉄分供給体として使用されてきた。しかし、スラグや廃棄物等の物質中の2価の鉄イオンが海水や水に溶けて単独で海水中や水中へ出ていくと速やかに酸化されて3価の鉄イオンになり酸化鉄として沈殿し、植物には吸収されなくなる。すなわち、2価の鉄イオンの水中での寿命は短く、スラグ単独では鉄分供給体としては効率が悪い。 In recent years, waste to rivers, lakes and the sea has decreased, and the growth of plants such as aquatic plants and seaweeds has deteriorated. In particular, iron is an essential element for photosynthesis in plants, but the amount of iron is insufficient in seawater, river water, lake water, and the like. Plants absorb iron as divalent iron ions and use it for plant growth. Therefore, iron is artificially supplied. For example, steelmaking slag contains abundant divalent iron ions (3 to 20 atomic%), and when these slags are sprayed on the seabed, divalent iron ions dissolve in seawater. Slag has been used as an iron feeder. However, when divalent iron ions in substances such as slag and waste dissolve in seawater or water and go out alone into seawater or water, they are rapidly oxidized to become trivalent iron ions and precipitate as iron oxide. However, it will not be absorbed by plants. That is, the life of divalent iron ions in water is short, and slag alone is inefficient as an iron feeder.

一方、鉄鋼スラグとグルタミン酸やグルコン酸等のキレート剤を混合させて水に溶かすと、2価の鉄イオンをキレート化したキレート化合物(錯体)を生成する。この鉄キレート化合物は海水中に溶解するとともに海水中でも長期間安定して2価の鉄イオンの形態を維持できる。海藻類はこの鉄キレート化合物を摂取して2価の鉄イオンを体内に取り込むことができる。(特許文献1)また、2価の鉄イオンキレートが3価に酸化された場合、さらに、スラグ中の3価の鉄をキレートした場合でもキレート鉄が溶解していれば海藻類はこれを2価に還元してから鉄を取り込むことができる。 On the other hand, when steel slag is mixed with a chelating agent such as glutamate or gluconic acid and dissolved in water, a chelate compound (complex) in which divalent iron ions are chelated is produced. This iron chelate compound dissolves in seawater and can stably maintain the form of divalent iron ions even in seawater for a long period of time. Seaweeds can ingest this iron chelate compound to take up divalent iron ions into their bodies. (Patent Document 1) Further, when the divalent iron ion chelate is trivalently oxidized, and even when the trivalent iron in the slag is chelated, if the chelated iron is dissolved, the seaweed will reduce this to 2. Iron can be taken in after being reduced to a value.

特開2011−160764JP 2011-160764

しかし、スラグとキレート剤を混合させた混合体を海水中や海底に散布したり、布等の袋に入れて海水中や海底に設置しただけでは、生成したキレート化合物が海水中に拡散したり、海流等で流されたりして、折角生成した鉄イオンを含む鉄キレート化合物が設置した領域に長期間滞留せず、その領域内の海藻類に充分供給されないという問題がある。また、スラグとキレート剤の混合体が海水の流れにより移動して所定の領域からなくなってしまうという問題もある。さらにキレート化合物の生成は海水の流れに任せているだけで制御されていないので、海藻類への鉄分供給方法としては効率が悪く、海藻類の育成および収穫に多くの労力とコストを要している。 However, if a mixture of slag and chelating agent is sprayed on the seawater or the seabed, or if it is placed in a bag such as cloth and placed in the seawater or the seabed, the generated chelating compound will diffuse into the seawater. , There is a problem that the iron chelate compound containing iron ions generated by the ocean current does not stay in the region where it is installed for a long period of time and is not sufficiently supplied to the seaweeds in the region. There is also a problem that the mixture of the slag and the chelating agent moves due to the flow of seawater and disappears from the predetermined region. Furthermore, since the production of chelate compounds is not controlled only by leaving it to the flow of seawater, it is inefficient as a method of supplying iron to seaweeds, and it takes a lot of labor and cost to grow and harvest seaweeds. There is.

本発明は、上記課題を解決するために、スラグおよびキレート剤の混合体を容器内の空洞に配置して、空洞内に浸入した海水で生成したキレート鉄をコントロールしながら容器の外側へ溶出する手段を提供する。具体的には、以下の特徴を有する。
(1)本発明は、内部に空間(内部空間)を有する容器において、前記内部空間に配置されたスラグおよびキレート剤を含む混合体を配置した鉄分供給容器であって、前記鉄分供給容器は、海水中又は水中に設置して、前記鉄分供給容器内部空間に海水または水を取り込んで、前記取り込んだ海水または水と一緒にスラグ中に含有される鉄分が海中または水中にキレート鉄として鉄分を供給することを特徴とする鉄分供給容器である。
(2)本発明は、(1)に加えて、前記鉄分供給容器は前記内部空間に接続する容器の開口部および前記開口部に配置された透水性蓋を含み、前記透水性蓋は開口部が開閉可能であり、前記内部空間に配置された混合体は前記透水性蓋を開閉して交換可能であり、前記鉄分供給容器を海水中又は水中に設置されているときは、前記透水性蓋は閉じた状態であり、
前記容器開口部に配置された透水性蓋を通して海水または水と一緒にスラグ中に含有される鉄分が海中または水中にキレート鉄として鉄分を供給し、前記開口部は、前記鉄分供給容器において複数存在し、海水または水が前記複数の開口部から流入または流出することを特徴とする。本発明は、さらに前記鉄分供給容器には、吊り下げ可能な連結具および/または前記鉄分供給容器を連結する連結具が存在し、前記鉄分供給容器を連結する場合、前記鉄分供給容器は立方体または直方体形状であり、前記鉄分供給容器の側面同士が連結され、前記鉄分供給容器の側面および/または上面に開口部が存在することを特徴とする。
In the present invention, in order to solve the above problems, a mixture of slag and a chelating agent is placed in a cavity inside the container, and the chelated iron generated by seawater infiltrated into the cavity is eluted to the outside of the container while being controlled. Provide means. Specifically, it has the following features.
(1) The present invention is an iron supply container in which a mixture containing slag and a chelating agent arranged in the internal space is arranged in a container having a space (internal space) inside, and the iron supply container is the iron supply container. Installed in seawater or water, seawater or water is taken into the space inside the iron supply container, and the iron contained in the slag together with the taken-in seawater or water supplies iron as chelated iron to the sea or water. It is an iron supply container characterized by slag.
(2) In the present invention, in addition to (1), the iron supply container includes an opening of a container connected to the internal space and a water-permeable lid arranged in the opening, and the water-permeable lid has an opening. Can be opened and closed, the mixture arranged in the internal space can be replaced by opening and closing the water permeable lid, and when the iron supply container is installed in seawater or water, the water permeable lid Is closed and
Iron contained in seawater or water together with seawater or water supplies iron as chelated iron to the sea or water through a water-permeable lid arranged in the container opening, and a plurality of the openings are present in the iron supply container. However, it is characterized in that seawater or water flows in or out from the plurality of openings. In the present invention, the iron supply container further includes a hanging connector and / or a connector for connecting the iron supply container, and when the iron supply container is connected, the iron supply container is a rectangular parallelepiped or a cube. It has a rectangular parallelepiped shape, and the side surfaces of the iron supply container are connected to each other, and an opening is present on the side surface and / or the upper surface of the iron supply container.

(3)本発明は、(1)または(2)に加えて、前記混合体は、一定時間後に海水や水に溶ける材質の中に袋詰めされ、前記袋詰めされた状態で前記内部空間に配置され、また前記混合体は、メッシュ状容器に収納された状体で前記内部空間に配置されることを特徴とし、前記鉄分供給容器の材質はコンクリートまたはスラグを骨材とする重量コンクリート(スラグ含有重量コンクリート)であり、前記スラグ含有重量コンクリートは透水性コンクリートであることを特徴とする。
(4)本発明は、少なくともスラグを骨材とする透水性コンクリートである鉄分供給容器において、前記コンクリート鉄分供給容器表面に形成された複数の開口部、前記複数の開口部から前記コンクリート鉄分容器内部に配置された孔部、前記複数の孔部に配置されたキレート剤、前記開口部に配置された蓋または透水性蓋を含む鉄分供給容器であって、前記鉄分供給容器は、海中または水中に設置して、前記透水性コンクリート鉄分容器および/または透水性蓋を通して海水または水と一緒に鉄分が海中または水中にキレート鉄として鉄分を供給することを特徴とする鉄分供給容器であり、前記キレート剤は前記孔部に挿入可能なカートリッジに入れられ、前記カートリッジは、前記孔部に配置され交換可能であり、前記カートリッジは、前記カートリッジ容器の一部または全部は透水性材料か、またはカートリッジ容器はメッシュ状容器であり、前記カートリッジの透水性材料またはメッシュの隙間を通してキレート剤が前記コンクリート容器に溶出しキレート鉄を形成して、前記キレート鉄が前記コンクリート容器の外側に溶出することを特徴とする。
(3) In the present invention, in addition to (1) or (2), the mixture is packaged in seawater or a material that dissolves in water after a certain period of time, and the packaged state is placed in the internal space. The mixture is arranged, and the mixture is arranged in the internal space in a form housed in a mesh-like container, and the material of the iron supply container is concrete or heavy concrete (slag) having slag as an aggregate. It is a heavy-duty concrete containing slag), and the heavy-duty concrete containing slag is a water-permeable concrete.
(4) In the present invention, in an iron supply container which is a water-permeable concrete using at least slag as an aggregate, a plurality of openings formed on the surface of the concrete iron supply container, and the inside of the concrete iron container from the plurality of openings. An iron supply container including a hole arranged in a hole, a chelating agent arranged in the plurality of holes, a lid arranged in the opening, or a water-permeable lid, and the iron supply container is placed in the sea or in water. An iron supply container, which is installed and is characterized in that iron supplies iron as chelating iron into the sea or water together with seawater or water through the water permeable concrete iron container and / or the water permeable lid, and the chelating agent. Is placed in a cartridge that can be inserted into the hole, the cartridge is placed in the hole and is replaceable, the cartridge is part or all of the cartridge container made of water permeable material, or the cartridge container is It is a mesh-like container, and is characterized in that a chelating agent elutes into the concrete container through a gap between the water-permeable material or the mesh of the cartridge to form chelate iron, and the chelate iron elutes to the outside of the concrete container. ..

(5)本発明は、(1)に加えて、前記鉄分供給容器はパイプ状容器であり、前記鉄分供給容器の外壁は少なくともスラグを骨材とする透水性コンクリートであり、前記鉄分供給容器の内部空間にキレート剤が配置されており、前記鉄分供給容器は、海中または水中に設置して、前記鉄分供給容器の外壁を通して海水または水と一緒に鉄分が海中または水中にキレート鉄として鉄分を供給することを特徴とする。
(6)本発明は、(1)〜(5)に加えて、前記キレート剤は、クエン酸、グルタミン酸、グルコン酸、これらの塩類、およびこれらの精製前物質から選択される少なくとも1つであり、また、前記スラグは、製鋼スラグ、一般廃棄物の溶融スラグ、銅スラグ、フェロアロイスラグ、ミルスケール、酸洗工程で生じた塩化鉄から選択される少なくとも1つであることを特徴とする。
(5) In the present invention, in addition to (1), the iron supply container is a pipe-shaped container, and the outer wall of the iron supply container is at least a water-permeable concrete using slag as an aggregate, and the iron supply container of the iron supply container. A chelating agent is arranged in the internal space, and the iron supply container is installed in the sea or water, and iron is supplied as chelated iron into the sea or water together with seawater or water through the outer wall of the iron supply container. It is characterized by doing.
(6) In the present invention, in addition to (1) to (5), the chelating agent is at least one selected from citric acid, glutamic acid, gluconic acid, salts thereof, and substances before purification thereof. Further, the slag is characterized by being at least one selected from steelmaking slag, molten slag of general waste, copper slag, ferroalloy slag, mill scale, and iron chloride produced in the pickling step.

本発明は、スラグとキレート剤を混ぜた混合体を内部空間に配置した鉄分供給容器であり、内部空間に浸入した海水中でキレート鉄が生成され、そのキレート鉄が透水性蓋を通して鉄分供給容器の外側に制御されて溶出するので、鉄分供給容器周囲を鉄分量が豊富な状態に長期間維持できる。このため、鉄分供給容器の上面や側面等、あるいは鉄分供給容器周辺に海藻類の育成・成長を促進させて、多量の海藻類の収穫を実現できる。鉄分供給容器は、混合体を交換することにより繰り返し使用できる。この結果、海藻類のコスト低減をはかることもできる。また、混合体は鉄分供給容器に保持されるので、海流等により流失することもなく、効率良く鉄分が供給される。 The present invention is an iron supply container in which a mixture of slag and a chelating agent is arranged in an internal space. Chelated iron is generated in seawater that has infiltrated the internal space, and the chelated iron is passed through a water-permeable lid to the iron supply container. Since it elutes under the control of the outside of the iron supply container, the iron content around the iron supply container can be maintained for a long period of time. Therefore, it is possible to promote the growth and growth of seaweeds on the upper surface and side surfaces of the iron supply container, or around the iron supply container, and to realize the harvesting of a large amount of seaweeds. The iron supply container can be used repeatedly by exchanging the mixture. As a result, the cost of seaweed can be reduced. Further, since the mixture is held in the iron supply container, iron is efficiently supplied without being washed away by an ocean current or the like.

図1は、本発明の鉄分供給容器の実施形態を示す図である。FIG. 1 is a diagram showing an embodiment of the iron supply container of the present invention. 図2は、本発明の鉄分供給容器の別の実施形態を示す図である。FIG. 2 is a diagram showing another embodiment of the iron supply container of the present invention. 図3は、図3は、本発明の単体の鉄分供給容器を連結した鉄分供給容器連結体を示す図である。FIG. 3 is a diagram showing an iron supply container connector in which a single iron supply container of the present invention is connected. 図4は、本発明の別の実施形態を示す図であり、鉄分供給容器本体がスラグを用いた透水性コンクリートで形成され、鉄分供給容器内にキレート剤が配置された構造である。FIG. 4 is a diagram showing another embodiment of the present invention, in which the iron supply container main body is formed of permeable concrete using slag, and the chelating agent is arranged in the iron supply container.

本発明は、海水中へ海藻類の成長に必要な鉄分を制御しながら供給する手段を提供するものであり、海藻類、海草類や水生植物の成長に必要な鉄イオンを含むキレート化合物(鉄イオンキレート化合物やキレート鉄とも記載)を供給する鉄分供給容器および鉄分供給方法に関する発明である。ここで、海藻類とは海に生える藻であり、たとえば、コンブ、ひじき、モズク、ワカメ、アオクサノリ、テングサ、アオサ、アオノリ等である。海草とは海に生える種子植物であり、たとえば、アマモ、スガモ、ウミヒルモ等である。水生植物とは、ここでは海以外の水場(河川、池、湖沼、養殖池等)に生える植物で、たとえば睡蓮、ハス、ヒシ、ジュンサイ等である。ただし、水生植物には、広義には海藻類や海草類も含まれる。以下では、総称して海藻または海藻類または海藻類等と称する。 The present invention provides a means for supplying iron necessary for the growth of seaweeds to seawater while controlling it, and is a chelate compound containing iron ions necessary for the growth of seaweeds, seaweeds and aquatic plants (iron ions). It is an invention relating to an iron supply container and an iron supply method for supplying (also referred to as a chelate compound or chelate iron). Here, seaweeds are algae that grow in the sea, such as kelp, hijiki, mozuku, wakame seaweed, sea lettuce, gelidiaceae, sea lettuce, and green laver. Seagrass is a seed plant that grows in the sea, such as eelgrass, sugamo, and halophila. Here, aquatic plants are plants that grow in water fields other than the sea (rivers, ponds, lakes, farm ponds, etc.), such as water lilies, lotus, trapa japonica, and water shields. However, aquatic plants also include seaweeds and seaweeds in a broad sense. Hereinafter, they are collectively referred to as seaweed, seaweed, seaweed, or the like.

図1は、本発明の鉄分供給容器の実施形態を示す図である。図1(a)は本発明の鉄分供給容器11の斜視図で、図1(b)は図1(a)の斜視図における上面側から見た透視平面図である。図1において直接的に見えない部分は破線で示している。図1は鉄分供給容器を海底、河川底や湖沼底(以下、海底(等)に統一して記載)に設置した状態、あるいは海水中や水中(以下、海水中(等)に統一して記載)に設置した状態で示す。従って、鉄分供給容器の上面側は海上を向いており、鉄分供給容器の下面側は海底を向いていると考えて良い。 FIG. 1 is a diagram showing an embodiment of the iron supply container of the present invention. FIG. 1A is a perspective view of the iron supply container 11 of the present invention, and FIG. 1B is a perspective plan view seen from the upper surface side in the perspective view of FIG. 1A. The part that cannot be seen directly in FIG. 1 is shown by a broken line. Fig. 1 shows the state where the iron supply container is installed on the seabed, river bottom, lake bottom (hereinafter, unified to the seabed (etc.)), or seawater or underwater (hereinafter, unified to seawater (etc.)). ) Is shown in the installed state. Therefore, it can be considered that the upper surface side of the iron supply container faces the sea and the lower surface side of the iron supply container faces the seabed.

図1に示す鉄分供給容器は立方体形状または直方体形状であり、鉄分供給容器11の内部には空間(内部空間とも言う、または空洞とも称す)13が存在し、この内部空間13は鉄分供給容器11の向かい合う対側面11−S1および11−S3に形成された開口部12(12−1)および12(12−2)に直接的につながり、内部空間13および開口部12に何もなければ、海水中等に沈めたときに海水等の流れが一方の開口部12から入り、内部空間13を通って他方の開口部12から出ていく。本実施形態では、開口部12(12−1)および12(12−2)には透水性の開閉蓋(透水性蓋または透水性開閉蓋とも記載)14(14−1)および14(14−2)が開閉自在に取り付けられている。内部空間13にはスラグとキレート剤の混合体(スラグ・キレート剤混合体とも記載)15を配置している。 The iron supply container shown in FIG. 1 has a cubic shape or a rectangular parallelepiped shape, and a space (also referred to as an internal space or a cavity) 13 exists inside the iron supply container 11, and the internal space 13 is the iron supply container 11. Directly connected to the openings 12 (12-1) and 12 (12-2) formed on the opposite side surfaces 11-S1 and 11-S3, and if there is nothing in the internal space 13 and the opening 12, seawater When submerged in the middle, a flow of seawater or the like enters through one opening 12, passes through the internal space 13, and exits through the other opening 12. In the present embodiment, the openings 12 (12-1) and 12 (12-2) have a water-permeable opening / closing lid (also referred to as a water-permeable lid or a water-permeable opening / closing lid) 14 (14-1) and 14 (14-). 2) is attached so that it can be opened and closed. A mixture of slag and a chelating agent (also referred to as a slag / chelating agent mixture) 15 is arranged in the internal space 13.

透水性蓋とは透水性を有する材料または透水性を示す構造(形態)で作製された蓋を言う。透水性を持つ材料として、多孔質材料(鉄鋼スラグ、軽石等)や透水率の高い材料(たとえば、ポリ塩化ビニル、ポリエチレン、およびポリウレタン等のプラスチック類、あるいは植物繊維等の天然有機材料)が挙げられる。透水性がないか透水性の低い材料の場合、透水性を高める(透水性を示す)構造を採用すれば良い。透水性を示す構造として、たとえばインターロッキング(ブロック)構造や間隙率を高めた構造が挙げられる。あるいは、これらの材料を組み合わせたり、これらの材料と構造を組み合わせたりすることもできる。尚、本発明で使用する透水性蓋の透水係数は1×10−7cm/sec〜10cm/secの範囲が良い。透水係数が1×10−7cm/se未満の場合はとキレート鉄の溶出量が少なすぎる。また透水係数が10cm/secを越える場合はキレート鉄の溶出量が多すぎて短期間にキレート鉄量が少なくなってしまう。海藻類の育成〜収穫期間に対応して、この透水係数の範囲内で透水性蓋の透水係数や厚さを調節してキレート鉄の溶出をコントロールする。 The water-permeable lid refers to a lid made of a material having water permeability or a structure (form) exhibiting water permeability. Examples of water-permeable materials include porous materials (steel slag, pumice stone, etc.) and materials with high water permeability (for example, plastics such as polyvinyl chloride, polyethylene, and polyurethane, or natural organic materials such as plant fibers). Be done. In the case of a material having no or low water permeability, a structure that enhances water permeability (indicates water permeability) may be adopted. Examples of the structure exhibiting water permeability include an interlocking (block) structure and a structure having an increased pore space. Alternatively, these materials can be combined, or these materials and structures can be combined. The water permeability coefficient of the water permeable lid used in the present invention is preferably in the range of 1 × 10 -7 cm / sec to 10 cm / sec. When the hydraulic conductivity is less than 1 × 10-7 cm / se, the amount of chelated iron eluted is too small. If the hydraulic conductivity exceeds 10 cm / sec, the amount of chelated iron eluted is too large and the amount of chelated iron decreases in a short period of time. The elution of chelated iron is controlled by adjusting the permeability coefficient and thickness of the permeability lid within the range of the permeability coefficient according to the growth-harvest period of seaweed.

本発明で用いるスラグは、金属の製造(製錬)過程で生じる鉱滓(こうさい)であり鉄分(特に2価の鉄イオン)を一定量含有する。たとえば、製鋼スラグ、一般廃棄物の溶融スラグ、銅スラグ、フェロアロイスラグ、ミルスケール、酸洗工程で生じた塩化鉄などであり、これらの混合物も含む。たとえば製鋼スラグには3〜20質量%の鉄分が2価鉄として含有されており、本発明に用いる鉄イオン供給物として好適である。 The slag used in the present invention is a slag produced in the process of metal production (smelting) and contains a certain amount of iron (particularly divalent iron ions). For example, steelmaking slag, molten slag of general waste, copper slag, ferroalloy slag, mill scale, iron chloride produced in the pickling process, and the like, and a mixture thereof is also included. For example, steelmaking slag contains 3 to 20% by mass of iron as divalent iron, and is suitable as an iron ion supply used in the present invention.

キレート剤は、金属イオン(鉄イオン)とキレート錯体を形成する有機物である。スラグは2価の鉄イオンを含有するので、海水中へ2価の鉄イオンが溶出するが、2価の単独鉄イオンは海水中では安定せず、速やかに酸化して3価の鉄イオンとなり、不溶性の水酸化鉄や酸化鉄となるので、植物では利用されない。すなわち、海藻等の植物の成長に必要な鉄成分は海水に溶けた鉄イオンである。海水中で安定的に(2価または3価の)鉄イオンを存在させる方法としてキレート化がある。鉄イオンとキレート錯体を形成する有機物として、たとえばカルボン酸、アミノ酸が挙げられ、カルボン酸としてたとえばクエン酸やグルコン酸、これらの塩類(たとえば、クエン酸ナトリウム、グルコン酸ナトリウム)が挙げられ、アミノ酸としてたとえばグルタミン酸やグルタミン酸塩が挙げられる。上記キレート剤は精製して最終製品とするが、本発明で使用する場合は、精製前の状態でもスラグ中の鉄イオンを十分にキレート化できるので、精製前のもの(精製前物質)も本発明のキレート剤として使用できる。たとえば、クエン酸はクエン酸発酵により製造する(クエン酸発酵の培養液からクエン酸を精製する)が、精製工程を省いた培養液から抽出したもの(精製前物質)を本発明のキレート剤として使用できる。このように最終精製工程を省いても得られる効果(キレート鉄の生成)はほぼ同じなので、キレート剤の価格低減をはかることができる。
尚、クエン酸として、クエン酸の製造工程で排出されるクエン酸を含む副産物やクエン酸を含む廃棄物を利用することもできる。さらには、クエン酸の製造工程で排出されるクエン酸を含む副産物やクエン酸を含む廃棄物から抽出したクエン酸を利用することもできる。あるいは、食品の製造工程で排出されるクエン酸を含む副産物やクエン酸を含む廃棄物も利用することも可能である。さらには、食品の製造工程で排出されるクエン酸を含む副産物やクエン酸を含む廃棄物から抽出したクエン酸を利用することもできる。たとえば、柑橘類はクエン酸を多く含むので、食品として柑橘類を挙げることができる。柑橘類の中でもたとえば、シークワーサー、レモン、ライムはクエン酸の含有量が多いので、これらの柑橘類の場合はクエン酸の収集効率が良い。ただし、クエン酸の多い食品はもちろん、クエン酸の余り多くない食品でもろ過や蒸留等で濃縮してクエン酸量を増大することもできる。
The chelating agent is an organic substance that forms a chelate complex with a metal ion (iron ion). Since slag contains divalent iron ions, divalent iron ions are eluted into seawater, but divalent single iron ions are not stable in seawater and rapidly oxidize to become trivalent iron ions. Since it becomes insoluble iron hydroxide and iron oxide, it is not used in plants. That is, the iron component required for the growth of plants such as seaweed is iron ions dissolved in seawater. Chelation is a method for stably (divalent or trivalent) iron ions to be present in seawater. Examples of organic substances forming a chelate complex with iron ions include carboxylic acids and amino acids, and examples of carboxylic acids include citric acid and glutamic acid, and salts thereof (for example, sodium citrate and sodium gluconate). For example, glutamic acid and glutamic acid salt can be mentioned. The above chelating agent is purified to make a final product, but when used in the present invention, iron ions in the slag can be sufficiently chelated even in the state before purification. It can be used as a chelating agent of the invention. For example, citric acid is produced by citric acid fermentation (citric acid is purified from the culture solution of citric acid fermentation), but the one extracted from the culture solution without the purification step (pre-purification substance) is used as the chelating agent of the present invention. Can be used. Since the effect (generation of chelated iron) obtained by omitting the final refining step is almost the same as described above, the price of the chelating agent can be reduced.
As citric acid, by-products containing citric acid and waste containing citric acid discharged in the production process of citric acid can also be used. Furthermore, citric acid extracted from by-products containing citric acid and waste containing citric acid discharged in the production process of citric acid can also be used. Alternatively, by-products containing citric acid and wastes containing citric acid discharged in the food manufacturing process can also be used. Furthermore, citric acid extracted from by-products containing citric acid and waste containing citric acid discharged in the food manufacturing process can also be used. For example, since citrus fruits contain a large amount of citric acid, citrus fruits can be mentioned as foods. Among citrus fruits, for example, shikuwasa, lemon, and lime have a high content of citric acid, and therefore, in the case of these citrus fruits, the collection efficiency of citric acid is good. However, not only foods containing a large amount of citric acid but also foods containing a small amount of citric acid can be concentrated by filtration, distillation, or the like to increase the amount of citric acid.

スラグとキレート剤は水を通す袋{混合体袋または混合体容器とも言う。たとえば、布性袋、網目状繊維製容器(袋)}15に入れられており、鉄分供給容器11の開口部12の蓋14を開くか取り外して開口部12から内部空間13に配置する。スラグやキレート剤は適当な大きさの粉状、粒状、または塊状で充分に混合された混合体として混合体袋に収納される。混合体袋のサイズは開口部12および内部空間13のサイズより小さく、開口部12および内部空間13に入れやすくなっている。人間でも運搬しやすいように混合体袋は小分けされても良い。鉄分供給容器のサイズが、たとえば1辺が1mの立方体形状の場合、開口部の大きさが80cm×80cm、内部空間が1辺80cmの立方体形状(ただし、開口部までの接続部分を含む場合は、80cm×80cm×100cm)であり、混合体袋のサイズはこの開口部および内部空間以下の大きさとなる。 The slag and chelating agent are water-permeable bags {also called mixture bags or mixture containers. For example, it is placed in a cloth bag or a mesh fiber container (bag)} 15, and the lid 14 of the opening 12 of the iron supply container 11 is opened or removed and placed in the internal space 13 from the opening 12. The slag or chelating agent is stored in a mixture bag as a well-mixed mixture in the form of powder, granules, or lumps of appropriate size. The size of the mixture bag is smaller than the size of the opening 12 and the internal space 13, and it is easy to put it in the opening 12 and the internal space 13. The mixture bag may be subdivided so that it can be easily carried by humans. If the size of the iron supply container is, for example, a cube with a side of 1 m, the size of the opening is 80 cm x 80 cm, and the internal space is a cube with a side of 80 cm (however, if the connection to the opening is included). , 80 cm x 80 cm x 100 cm), and the size of the mixture bag is smaller than or equal to this opening and the internal space.

スラグおよびキレート剤を混合した混合体を入れる袋(混合体袋)は水を通すと同時にスラグおよびキレート剤が外側に漏れ出ないようになっている。すなわち、混合体袋は、水が袋内に浸入し、また浸入した水が浸出しやすい材料や適度な隙間を有するもので構成されており、かつ、ズラグおよびキレート剤が粉状、粒状、または塊状であれば、混合体袋は、その粉等のサイズより小さな隙間を有しており、ズラグおよびキレート剤が外側に漏れ出ないようになっている。また、混合体にはズラグおよびキレート剤以外の材料(たとえば結合剤やキレート促進剤)も含まれても良い。 The bag (mixture bag) containing the mixture of the slag and the chelating agent allows water to pass through and prevents the slag and the chelating agent from leaking to the outside at the same time. That is, the mixture bag is made of a material in which water penetrates into the bag and the infiltrated water easily exudes or has an appropriate gap, and the zlag and chelating agent are powdery, granular, or chelating agent. If it is agglomerated, the mixture bag has a gap smaller than the size of the powder or the like so that the slag and the chelating agent do not leak to the outside. The mixture may also contain materials other than slag and chelating agents (eg, binders and chelating promoters).

混合体袋の材質として、布等の繊維製袋(または容器)、スチール等の金属製メッシュ袋(または容器)、プラスチック製メッシュ袋(または容器)、あるいは一定時間後に海水や水に溶ける材質(たとえば、水溶性フィルム(たとえば、ポリビニールアルコールを主成分としたもの))の袋(または容器)などが挙げられる。これらを用いれば、海水中でもスラグやキレート剤の溶出を防止しながら、混合体袋を交換可能である。 The material of the mixture bag is a fiber bag (or container) such as cloth, a metal mesh bag (or container) such as steel, a plastic mesh bag (or container), or a material that dissolves in seawater or water after a certain period of time (or a material). For example, a bag (or container) of a water-soluble film (for example, one containing polyvinyl alcohol as a main component) can be mentioned. By using these, the mixture bag can be replaced while preventing the elution of slag and chelating agent even in seawater.

混合体袋15を内部空間13に配置した後に、開閉蓋14で開口部12を閉じて、海水等の水流で混合体袋15が鉄分供給容器11の外側に出て来ないようにする。開閉蓋14は留め具で鉄分供給容器11の(外枠)に固定する。あるいは、鉄分供給容器11の(外枠)に取り付けたガイドに開閉蓋14を嵌め込んで固定しても良い。鉄分供給容器11の外側に所定量の鉄分が供給されなくなったときには、混合体袋15内の鉄分の量が少なくなったときと判断して、鉄分供給容器11を水中から引き揚げて開閉蓋14を開くかまたは取り外して、内部空13に配置した混合体袋15を取り出す。再度鉄分供給容器11を使用して海水中に鉄分を供給する場合は、新しい混合体袋15を内部空間13に配置し開閉蓋14で開口部12を塞いだ後に、再度鉄分供給容器11を海水中に沈めて海水中や海底の所定場所に設置する。 After arranging the mixture bag 15 in the internal space 13, the opening 12 is closed by the opening / closing lid 14 to prevent the mixture bag 15 from coming out of the iron supply container 11 due to a stream of seawater or the like. The opening / closing lid 14 is fixed to the (outer frame) of the iron supply container 11 with a fastener. Alternatively, the opening / closing lid 14 may be fitted and fixed to the guide attached to the (outer frame) of the iron supply container 11. When a predetermined amount of iron is no longer supplied to the outside of the iron supply container 11, it is determined that the amount of iron in the mixture bag 15 has decreased, and the iron supply container 11 is lifted from the water to open and close the lid 14. Open or remove and remove the mixture bag 15 placed in the internal empty 13. When iron is supplied into seawater again using the iron supply container 11, a new mixture bag 15 is placed in the internal space 13, the opening 12 is closed with the opening / closing lid 14, and then the iron supply container 11 is again filled with seawater. Submerge it in seawater or install it in a designated place on the seabed.

鉄分供給容器11の上部(たとえば、図1に示すように、開口部14のない対側面11−S2、11−S4と上面11−Uとの交叉角部中央)に窪み部16を設け、その窪み部16にフック(連結具)20が装着されている。鉄分供給容器11を海域や水域(以下、海域と記載)の所定場所に設置する場合、運搬船に鉄分供給容器11を積載して、所定場所まで鉄分供給容器11を運び、鉄分供給容器11に備えたこれらのフック20にロープや鎖等を取り付けて運搬船のクレーンを使って鉄分供給容器11を海域の所定場所に設置することができる。この窪み部16は、開口部14のある側にも設けても良く、それらの窪み部に装着されたフック20にもロープ等を取り付けて、鉄分供給容器11の上面側4か所でロープ等を4角錐状にして、クレーンで引き上げれば、鉄分供給容器11を安定した状態に保持できる。 A recess 16 is provided in the upper part of the iron supply container 11 (for example, as shown in FIG. 1, the center of the crossing angle between the opposite side surfaces 11-S2, 11-S4 and the upper surface 11-U without the opening 14). A hook (connector) 20 is attached to the recessed portion 16. When the iron supply container 11 is installed in a predetermined place in a sea area or a water area (hereinafter referred to as a sea area), the iron supply container 11 is loaded on a carrier, the iron supply container 11 is carried to the predetermined place, and the iron supply container 11 is prepared. A rope, a chain, or the like can be attached to these hooks 20, and the iron supply container 11 can be installed at a predetermined place in the sea area by using the crane of the carrier. The recesses 16 may be provided on the side with the openings 14, and ropes or the like may be attached to the hooks 20 attached to the recesses, and the ropes or the like may be provided at four locations on the upper surface side of the iron supply container 11. The iron supply container 11 can be held in a stable state by forming a quadrangular pyramid and pulling it up with a crane.

混合体袋15を内部空間13に配置した鉄分供給容器11を、下面11−Bを下側にして海水中等に沈め海底に設置する。鉄分供給容器11が移動しないように、鉄分供給容器11を配置する海底は平坦であることが望ましいが、傾斜面である場合は、あらかじめ砂や砂利等で海底等を平坦にしても良い。砂や砂利に換えておよび/または加えてスラグを敷いて海底等を平坦にしても良い。スラグを用いた場合はスラグ中の鉄分もある程度供給されるので海藻類の成長には好ましい。鉄分供給容器11の上面が傾斜せず水平状態であれば、鉄分供給容器11の上面に成長した海藻類を機械等を用いて収穫しやすい。海底等までの水深が深く、鉄分供給容器11を海底等に設置困難である場合や任意の深さの海水中等に配置する場合は、前述したフック20に取り付けたロープ等の別の一端にブイ(浮き)を取り付けて鉄分供給容器11を海水中等に浮遊させることもできる。ブイをつけておけば、海域のどの場所に鉄分供給容器があるかも即座に分かる。ブイ等に発振器等をつけておけば仮に移動した場合でも鉄分供給容器の位置を知ることができる。 The iron supply container 11 in which the mixture bag 15 is arranged in the internal space 13 is submerged in seawater or the like with the lower surface 11-B facing down and installed on the seabed. It is desirable that the seabed on which the iron supply container 11 is arranged is flat so that the iron supply container 11 does not move, but if it is an inclined surface, the seabed or the like may be flattened in advance with sand, gravel, or the like. Instead of sand or gravel and / or in addition, slag may be laid to flatten the seabed or the like. When slag is used, iron in the slag is also supplied to some extent, which is preferable for the growth of seaweeds. If the upper surface of the iron supply container 11 is not inclined and is in a horizontal state, the seaweed grown on the upper surface of the iron supply container 11 can be easily harvested by using a machine or the like. When the water depth to the seabed or the like is deep and it is difficult to install the iron supply container 11 on the seabed or the like, or when the iron supply container 11 is placed in seawater or the like at an arbitrary depth, a buoy is attached to another end of the rope or the like attached to the hook 20 described above. It is also possible to attach a (float) to float the iron supply container 11 in seawater or the like. If you attach a buoy, you can instantly know where in the sea the iron supply container is located. If an oscillator or the like is attached to the buoy or the like, the position of the iron supply container can be known even if the buoy or the like is moved.

海底等や海水中等に設置した鉄分供給容器11において、海水等は透水性開閉蓋14を通って内部空間13に入り混合体袋15内にも浸水する。混合体袋15内のキレート剤は海水等に徐々に溶けていき、キレート液としてスラグ中にも浸入し、スラグに含まれる鉄分と反応してキレート鉄となる。内部空間13内は徐々にキレート鉄が増えていき、透水性開閉蓋14を通って鉄分供給容器11の外側に溶出していく。この結果、鉄分供給容器11の周囲はキレート鉄としての鉄分の量が増えて、鉄分リッチの海水等になる。鉄分供給容器11の周囲に存在する海藻類はキレート鉄を吸収して充分な鉄分を補強される。その結果、成長が促進されて、鉄分供給容器11の周囲に海藻類が豊富に育成される。海藻類の胞子等が少ない場合は、あらかじめおよび/または設置後に鉄分供給容器11やその周囲に海藻類の胞子等を供給しておけば良い。たとえば、フック20に取り付けたロープや鎖等に海藻類の胞子等の供給装置を設置しておき、必要な時に適宜その供給装置から海藻類の胞子等を海水中に散布すれば、鉄分供給容器11の上面や周囲に海藻類の胞子等が付着して、鉄分供給容器11から長期間成長に必要な鉄分が供給されることもあり、鉄分供給容器11の上面や周囲に海藻類を成長させることもできる。 In the iron supply container 11 installed on the seabed or the like, seawater or the like enters the internal space 13 through the permeable opening / closing lid 14 and is also flooded into the mixture bag 15. The chelating agent in the mixture bag 15 gradually dissolves in seawater or the like, penetrates into the slag as a chelating solution, and reacts with iron contained in the slag to become chelated iron. Chelated iron gradually increases in the internal space 13 and elutes to the outside of the iron supply container 11 through the water-permeable opening / closing lid 14. As a result, the amount of iron as chelated iron increases around the iron supply container 11, resulting in iron-rich seawater or the like. Seaweeds existing around the iron supply container 11 absorb chelated iron to reinforce sufficient iron content. As a result, growth is promoted and seaweeds are abundantly grown around the iron supply container 11. When the amount of seaweed spores or the like is small, the seaweed spores or the like may be supplied to the iron supply container 11 or its surroundings in advance and / or after installation. For example, if a supply device for seaweed spores or the like is installed on a rope or chain attached to the hook 20, and seaweed spores or the like is sprayed into seawater from the supply device as needed, an iron supply container can be used. Seaweed spores and the like may adhere to the upper surface and the surroundings of the iron supply container 11 to supply iron necessary for long-term growth from the iron supply container 11, and the seaweeds grow on the upper surface and the surroundings of the iron supply container 11. You can also do it.

海水中に海水の流れがある場合(通常は存在する)は、図1に示すように海水流17が透水性開閉蓋14(14−1)を通って内部空間13内へ入り、内部空間13内で形成されたキレート鉄を含んだ海水は、内部空間13内でも水流19となり、他方の透水性開閉蓋14(14−2)から水流18となり鉄分供給容器11の外側に出ていく。透水性開閉蓋14を通過する海水の量は、主として透水性開閉蓋の透水化率(透水係数)、透水性開閉蓋の厚み、水流の速度によって決まる。また内部空間13内のキレート鉄の濃度は定常化するので、透水性開閉蓋14を通過する(鉄分供給容器11の外側へ溶出する)キレート鉄量も主として透水性開閉蓋の透水化率、透水性開閉蓋の厚み、水流の速度によって決まると考えられる。 When there is a seawater flow (usually present) in the seawater, the seawater flow 17 enters the internal space 13 through the permeable opening / closing lid 14 (14-1) as shown in FIG. 1, and the internal space 13 The seawater containing the chelated iron formed inside becomes a water flow 19 even in the internal space 13, and becomes a water flow 18 from the other water-permeable opening / closing lid 14 (14-2) and goes out to the outside of the iron supply container 11. The amount of seawater passing through the water-permeable opening / closing lid 14 is mainly determined by the water permeability rate (water permeability coefficient) of the water-permeable opening / closing lid, the thickness of the water-permeable opening / closing lid, and the speed of water flow. Further, since the concentration of chelate iron in the internal space 13 becomes constant, the amount of chelate iron passing through the water-permeable opening / closing lid 14 (eluting to the outside of the iron supply container 11) is also mainly the water permeability of the water-permeable opening / closing lid and water permeability. It is considered to be determined by the thickness of the opening / closing lid and the speed of water flow.

海藻の成長に最適な鉄分の量を鉄分供給容器11から溶出すれば、海藻は鉄分供給容器11の周囲に繁茂するから、あらかじめ鉄分供給容器11を設置する場所における水流速度を測定しておき、鉄分供給容器11の外側に出ていくキレート鉄量を一定に維持するための透水性開閉蓋の透水化率と透水性開閉蓋の厚みを適宜選択し、最適化することができる。さらに、キレート剤とスラグの混合比率を変化させることによって、キレート鉄の生成量や生成期間をコントロールすることができるので、海藻の成長期間に合わせた海藻の成長に必要な鉄分量を供給できる混合比率と総量に調節しておけば良い。また、鉄分供給容器11を設置する領域における生成環境のpH値も海藻類の生育に合わせるように、コンクリートは主としてアルカリ性であり、キレート剤は酸性であることを考慮して、キレート剤とスラグの量を調節して制御できる。さらに、キレート剤の形状(粉状、粒状、塊状等)や粒度、スラグの種類や形状、粒度によってもキレート鉄の生成量や生成速度をコントロールできるので、混合体における最適な組み合わせを選択すると良い。 If the optimum amount of iron for the growth of seaweed is eluted from the iron supply container 11, the seaweed will grow around the iron supply container 11. Therefore, the water flow velocity at the place where the iron supply container 11 is installed should be measured in advance. The water permeability of the water-permeable opening / closing lid and the thickness of the water-permeable opening / closing lid for maintaining a constant amount of chelated iron that goes out to the outside of the iron supply container 11 can be appropriately selected and optimized. Furthermore, by changing the mixing ratio of the chelating agent and slag, the amount and period of production of chelated iron can be controlled, so that the amount of iron required for the growth of seaweed can be supplied according to the growth period of seaweed. You can adjust the ratio and total amount. In addition, considering that concrete is mainly alkaline and chelating agent is acidic so that the pH value of the production environment in the region where the iron supply container 11 is installed also matches the growth of seaweed, the chelating agent and slag The amount can be adjusted and controlled. Furthermore, the amount and rate of chelated iron produced can be controlled by the shape (powdered, granular, lumpy, etc.) and particle size of the chelating agent, the type and shape of the slag, and the particle size, so it is advisable to select the optimum combination in the mixture. ..

図1では、鉄分供給容器11の2つの対向する側面に開口部を設けて透水性開閉蓋を取り付けているが、他の側面または上面や下面に開口部を設けて透水性開閉蓋を取り付けることもできる。4側面に開口部・透水性開閉蓋を取り付けておけば、水流の向きが変化しても鉄分供給容器11から溶出するキレート鉄量を比較的一定とすることもできる。あるいは、鉄分供給容器11を円筒形状にしておき、円筒形の側面周囲全体または一定間隔で開口部・透水性開閉蓋を取り付けておけば、水流の向きがどのように変化しても鉄分供給容器11から溶出するキレート鉄量を一定にすることができる。 In FIG. 1, openings are provided on the two opposite side surfaces of the iron supply container 11 to attach the water-permeable opening / closing lid, but openings are provided on the other side surface or the upper surface or the lower surface to attach the water-permeable opening / closing lid. You can also. If an opening and a water-permeable opening / closing lid are attached to the four side surfaces, the amount of chelated iron eluted from the iron supply container 11 can be made relatively constant even if the direction of the water flow changes. Alternatively, if the iron supply container 11 is formed into a cylindrical shape and openings and water-permeable opening / closing lids are attached to the entire circumference of the cylindrical side surface or at regular intervals, the iron supply container can be used regardless of the direction of the water flow. The amount of chelated iron eluted from 11 can be kept constant.

図2は、本発明の鉄分供給容器の別の実施形態を示す図であり、立方体形状または直方体形状の鉄分供給容器31の斜視図である。図2において直接的に見えない部分は破線で示している。図1に示す鉄分供給容器と異なるのは、開口部32が鉄分供給容器31の上面31−U側にある。鉄分供給容器31の内部に内部空間33が存在し、開口部32に接続する。開口部32は透水性蓋34で固定具35を用いて閉鎖できる。内部空間33には、スラグとキレート剤を含む混合体38が収納される。混合体38はたとえば袋状容器{たとえば、布性袋、網目状繊維製容器(袋)}38に入れられており、鉄分供給容器11の開口部32の透水性蓋34を開くか取り外して開口部32から内部空間33に配置する。混合体38を内部空間33に収納した後、透水性蓋34で開口部32を閉じる。上面側に窪み部36が2箇所以上に形成されており、その窪み部36にフック37が備わっており、このフック37にロープや鎖を結びクレーン船のクレーン等で所定の海水または水中に沈める。 FIG. 2 is a diagram showing another embodiment of the iron supply container of the present invention, and is a perspective view of a cube-shaped or rectangular parallelepiped-shaped iron supply container 31. The part that cannot be seen directly in FIG. 2 is shown by a broken line. The difference from the iron supply container shown in FIG. 1 is that the opening 32 is on the upper surface 31-U side of the iron supply container 31. An internal space 33 exists inside the iron supply container 31 and is connected to the opening 32. The opening 32 can be closed with a water permeable lid 34 using a fixture 35. The internal space 33 houses the mixture 38 containing the slag and the chelating agent. The mixture 38 is placed in, for example, a bag-shaped container {for example, a cloth bag, a mesh fiber container (bag)} 38, and the water-permeable lid 34 of the opening 32 of the iron supply container 11 is opened or removed to open The portion 32 is arranged in the internal space 33. After storing the mixture 38 in the internal space 33, the opening 32 is closed with the water permeable lid 34. Two or more recesses 36 are formed on the upper surface side, and the recesses 36 are provided with hooks 37, and ropes and chains are tied to the hooks 37 and submerged in predetermined seawater or water with a crane of a crane ship or the like. ..

海水中や海底に設置された鉄分供給容器31の下面31−Bが下方を、上面31−Uが上方を向いており、海水は(たとえば、破線矢印39で示すように)透水性蓋34を通して内部空間33へ入り、定常状態では内部空間33は海水で満たされる。キレート剤は内部空間33に入った海水に溶けてスラグ中の鉄分を取り込んで、キレート鉄が形成される。このキレート鉄は(たとえば、破線矢印40に示すように)徐々に透水性蓋34を通して鉄分供給容器31の外側に出ていき、鉄分供給容器31の上面31−Uや側面(31−S1、S2,・・)等の周囲にキレート鉄の豊富な領域が形成される。鉄分供給容器31の上面や側面(31−S1、S2、・・)等に海藻等の胞子等が付着していれば、キレート鉄を吸収して成長する。海藻等の充分な成長期間中に必要な鉄分を供給可能な混合体38を内部空間33に収納しておけば、海藻等の収穫までは混合体38を新たに供給する必要はない。鉄分供給容器31の上面31−U等に海藻等を成長させる場合は、海藻等を収穫した後に、透水性蓋34を開くか取り外して、内部空間に収納した混合体38を取り出して、新しい混合体を収納した後に、再度透水性蓋34を閉じるか取り付けて、所定の海水中や海底に設置し、再度海藻等を育成できる。このように本発明の鉄分供給容器は(劣化するまで)繰り返し使用できる。尚、透水性蓋は透水性が弱くなれば(たとえば、目詰まりしたり、表面が汚れたりして)、その都度交換すれば良い。 The lower surface 31-B of the iron supply container 31 installed in the seawater or the seabed faces downward, the upper surface 31-U faces upward, and the seawater passes through the permeable lid 34 (as shown by the dashed arrow 39, for example). It enters the internal space 33, and in a steady state, the internal space 33 is filled with seawater. The chelating agent dissolves in the seawater that has entered the internal space 33 and takes in iron in the slag to form chelated iron. This chelated iron gradually exits the iron supply container 31 through the water permeable lid 34 (for example, as shown by the broken line arrow 40), and the upper surface 31-U and the side surface (31-S1, S2) of the iron supply container 31. , ・ ・), Etc., a chelated iron-rich region is formed. If spores such as seaweed are attached to the upper surface or the side surface (31-S1, S2, ...) Of the iron supply container 31, chelated iron is absorbed and grown. If the mixture 38 capable of supplying the necessary iron during a sufficient growth period of the seaweed or the like is stored in the internal space 33, it is not necessary to newly supply the mixture 38 until the seaweed or the like is harvested. When seaweed or the like is to be grown on the upper surface 31-U or the like of the iron supply container 31, after harvesting the seaweed or the like, the water permeable lid 34 is opened or removed, and the mixture 38 stored in the internal space is taken out and a new mixture is prepared. After storing the body, the permeable lid 34 can be closed or attached again, installed in a predetermined seawater or seabed, and seaweed and the like can be grown again. In this way, the iron supply container of the present invention can be used repeatedly (until it deteriorates). If the water permeability of the water-permeable lid becomes weak (for example, it is clogged or the surface becomes dirty), the water-permeable lid may be replaced each time.

図3は、本発明の第3の実施形態を示す図である。図3は、たとえば図1や図2で示した本発明の(単体の)鉄分供給容器を横(水平)方向に連結した鉄分供給容器連結体51を示す図である。単体の鉄分供給容器52は水平方向に多数並べて配置できるように、同じ大きさの直方体形状または立方体形状が望ましい。鉄分供給容器52を同じ型等で多数量産的に作製できるので作製コストも安い。鉄分供給容器連結体51の窪み部周辺54を拡大したものを下図(図3(b))に示す、隣接する鉄分供給容器52に備わる窪み部53に取り付けられたフック55に連結冶具56を取り付けて隣接する鉄分供給容器52を連結する。水平方向(X方向×Y方向)に並べていくためには、単体の鉄分供給容器52の窪み部は図3(a)に示すように4側面の各側面に配置する必要がある。 FIG. 3 is a diagram showing a third embodiment of the present invention. FIG. 3 is a diagram showing an iron supply container connector 51 in which the (single) iron supply containers of the present invention shown in FIGS. 1 and 2 are connected in the horizontal (horizontal) direction, for example. A rectangular parallelepiped shape or a cube shape having the same size is desirable so that a large number of single iron supply containers 52 can be arranged side by side in the horizontal direction. Since a large number of iron supply containers 52 can be mass-produced with the same mold or the like, the production cost is low. An enlarged view of the periphery 54 of the recessed portion of the iron supply container connecting body 51 is shown in the figure below (FIG. 3B), and the connecting jig 56 is attached to the hook 55 attached to the recessed portion 53 provided in the adjacent iron supply container 52. The adjacent iron supply containers 52 are connected to each other. In order to arrange them in the horizontal direction (X direction × Y direction), it is necessary to arrange the recessed portions of the single iron supply container 52 on each of the four side surfaces as shown in FIG. 3 (a).

これを多数接続して連結すれば、任意の面積の鉄分供給容器連結体51を作製できる。単体の鉄分供給容器52の大きさを1mの立方体として25個連結すれば、5m×5m=25mの大きな面積の鉄分供給容器連結体(高さ1m)を作製できる。単体の鉄分供給容器52の大きさを1m×2mの大きさの直方体として50個連結すれば、50個連結すれば、10m×10m=100mの大きな面積の鉄分供給容器連結体(高さ50cm)を作製できる。この鉄分供給容器連結体を運搬船に積んで所定海域(水域)まで運んで海水中または海底に設置すれば良い。小型の運搬船の場合は、単体の鉄分供給容器のまま所定海域(水域)まで運んで、その場で大面積の空気浮船を造り、その空気浮船上で単体の鉄分供給容器を連結して鉄分供給容器連結体を作製した後、空気浮船の空気を抜いて鉄分供給容器連結体を沈めれば良い。空気浮船は回収すれば繰り返し使用できる。 If a large number of these are connected and connected, an iron supply container connecting body 51 having an arbitrary area can be manufactured. By connecting 25 single iron supply containers 52 as a cube of 1 m, a large area iron supply container connection (height 1 m) of 5 m × 5 m = 25 m 2 can be produced. If 50 single iron supply containers 52 are connected as a rectangular parallelepiped with a size of 1 m × 2 m, and if 50 are connected, a large area iron supply container connection (height 50 cm) of 10 m × 10 m = 100 m 2 is connected. ) Can be produced. The iron supply container connecting body may be loaded on a carrier, transported to a predetermined sea area (water area), and installed in seawater or on the seabed. In the case of a small carrier, carry the iron supply container as a single iron supply container to the specified sea area (water area), build a large-area air floater on the spot, and connect the single iron supply container on the air floater to supply iron. After producing the container connecting body, the air of the air floating ship may be deflated and the iron supply container connecting body may be submerged. The air ukifune can be used repeatedly if it is collected.

鉄分供給容器連結体用の単体の鉄分供給容器は図2に示すような上面に透水性蓋を用いた容器を使用できる。図1に示すような鉄分供給容器の場合は、4側面の各側面に透水性蓋を備えて、側面が接触している場合にも側面を通して海水が通るようにすることができる。あるいじは、隣接する単体の鉄分供給容器同士の間を少しあけて、海水が側面から入り易くするとともに、キレート鉄がその隙間から鉄分供給容器連結体全体や周囲に溶出させるようにするのが良い。あるいは、側面だけでなく上面や下面にも透水性蓋(および開口部)を設けても良い。 As a single iron supply container for the iron supply container connector, a container having a water permeable lid on the upper surface as shown in FIG. 2 can be used. In the case of the iron supply container as shown in FIG. 1, a water permeable lid can be provided on each side surface of the four side surfaces so that seawater can pass through the side surfaces even when the side surfaces are in contact with each other. One method is to leave a small space between adjacent single iron supply containers to make it easier for seawater to enter from the side, and to allow chelated iron to elute from the gap to the entire iron supply container connection or the surrounding area. good. Alternatively, a water permeable lid (and an opening) may be provided not only on the side surface but also on the upper surface and the lower surface.

鉄分供給容器連結体の場合、大面積の平坦面が上面として形成されるので、この大面積の平坦面に海藻等の畑を形成することができ、大面積の平坦面で成長した海藻を容易に収穫できるので収穫効率が良い。鉄分供給容器連結体の場合は、単体の鉄分供給容器の重量が余り大きくなく海流に流される可能性がある場合でも、連結することによって総重量が重くなって海流に流されて移動されないようにすることができる。鉄分供給容器連結体を海上へ引き上げて成長した海藻を収穫する場合は、クレーン船を用いてフックにかけたロープ等を用いて鉄分供給容器連結体を引き上げることができる。あるいは、前述した空気浮船を鉄分供給容器連結体の下方に配置して空気浮船に空気を入れて浮力で海上まで浮き上がらせることもできる。同一サイズの単体の鉄分供給容器連結体を用いれば、鉄分供給容器連結体の上面を平坦にすることができるので、機械等で容易に成長した海藻を収穫することもできる。 In the case of the iron supply container connection, a large-area flat surface is formed as the upper surface, so that a field such as seaweed can be formed on this large-area flat surface, and seaweed grown on the large-area flat surface can be easily produced. Harvesting efficiency is good because it can be harvested. In the case of an iron supply container connector, even if the weight of a single iron supply container is not too large and there is a possibility that it will be washed away by the ocean current, the total weight will be heavy by connecting it so that it will not be washed away by the ocean current and moved. can do. When the iron supply container connection is pulled up to the sea to harvest the grown seaweed, the iron supply container connection can be pulled up by using a rope or the like hooked on a crane vessel. Alternatively, the above-mentioned air ukifune can be arranged below the iron supply container connecting body to inject air into the air ukifune so that it can be lifted to the sea by buoyancy. By using a single iron supply container joint of the same size, the upper surface of the iron supply container connection can be flattened, so that seaweed that has grown easily can be harvested by a machine or the like.

図1〜図3に示す鉄分供給容器の材料は、たとえば通常のコンクリートであり、コンクリートブロックと称しても良い。すなわち、骨材(砂や砂利等)、水などをセメント等の糊状のもので結合させたものであり、強度補強用の鉄筋や繊維等を含んでも良い。小型クレーン船で運搬する場合は、単体の鉄分供給容器の重量は1トン〜5トン程度のものが良い。海流等の流速が大きくて移動する可能性がある場合は、比重の大きい骨材を用いて作製した重量コンクリートにするか、サイズを大きくしても良い。スラグを骨材として用いた重量コンクリートでも良く、前述した様に効率は良くないがある程度の鉄分供給の役割も果たすこともできる。鉄分供給容器連結体の場合は、個々の鉄分供給容器が小さくて軽量でも連結によりサイズが大きくなり重くなるので、海流等による移動を防止できる。 The material of the iron supply container shown in FIGS. 1 to 3 is, for example, ordinary concrete, and may be referred to as a concrete block. That is, it is made by binding aggregates (sand, gravel, etc.), water, etc. with a paste-like material such as cement, and may contain reinforcing bars, fibers, etc. for strength reinforcement. When transporting by a small crane vessel, the weight of a single iron supply container is preferably about 1 ton to 5 tons. If the flow velocity such as ocean current is large and there is a possibility of movement, heavy concrete made from aggregate having a large specific gravity may be used, or the size may be increased. Heavy-duty concrete using slag as an aggregate may be used, and as described above, it is not efficient, but it can also play a role of supplying iron to some extent. In the case of an iron supply container connected body, even if each iron supply container is small and lightweight, the size becomes large and heavy due to the connection, so that movement due to ocean current or the like can be prevented.

図4は、本発明の別の実施形態を示す図であり、鉄分供給容器本体61がスラグを用いた透水性コンクリートで形成され、鉄分供給容器61内にキレート剤が配置された構造となっている。すなわち、鉄分供給容器本体61のコンクリートの骨材は主としてスラグである。スラグ自体は多孔質体であるがさらに多孔質性を高める処理(たとえば、水砕処理)により透水性を高めることもでき、このスラグを骨材の主成分とする。骨材としてスラグの他に通常の砂や砂利を加えることにより透水性コンクリートの透水性(透水係数)を調節することもできる。透水係数として0.02cm/sec以上を有するスラグが望ましい。スラグには鉄分が相当量含まれているので、本実施形態の鉄分供給容器は鉄分含有コンクリートブロックである。 FIG. 4 is a diagram showing another embodiment of the present invention, in which the iron supply container main body 61 is formed of water-permeable concrete using slag, and the chelating agent is arranged in the iron supply container 61. There is. That is, the concrete aggregate of the iron supply container main body 61 is mainly slag. Although the slag itself is a porous body, it is also possible to increase the water permeability by a treatment for further increasing the porosity (for example, a water grinding treatment), and this slag is used as the main component of the aggregate. The permeability (permeability coefficient) of water-permeable concrete can also be adjusted by adding ordinary sand or gravel in addition to slag as an aggregate. A slag having a hydraulic conductivity of 0.02 cm / sec or more is desirable. Since the slag contains a considerable amount of iron, the iron supply container of the present embodiment is an iron-containing concrete block.

鉄分供給容器本体61内に複数の孔62を形成し、その孔62の開口部(図4では、鉄分供給容器本体61の上面に開口しているが、鉄分供給容器本体61の側面61−S1、S2等に開口しても良い。)からクエン酸等のキレート剤67を挿入して開口部63を蓋または栓等で閉じる。孔62にキレート剤67が充填された状態を符号69で示す。このキレート剤含有透水性スラグ使用コンクリート製鉄分供給容器61を海水中または海底に設置すると、海水が透水性コンクリート(鉄分供給容器)61を浸透してキレート剤が挿入された孔部62に達する。海水が透水性コンクリートを通過する間にコンクリート中の鉄分が鉄イオンとして海水に溶出する。孔部62に浸入した海水にキレート剤が溶けて、海水中の鉄イオンとキレート剤が反応してキレート鉄となる。あるいは、キレート剤が溶けた海水が鉄分供給容器61に浸透するときに鉄分供給容器61中のスラグ鉄イオンを取り込んでキレート鉄となる。キレート鉄は鉄分供給容器61中に浸透した海水とともに鉄分供給容器61の外側に出ていき、鉄分供給容器61の周囲はキレート鉄(鉄イオン)リッチの環境となる。鉄分供給容器本体61の表面または周囲に海藻類の胞子が存在すれば、海藻等はこのキレート鉄を吸収して大きく成長する。孔62の開口部を塞ぐ蓋または栓は孔62に挿入されたキレート剤67が外側に出ていかないようにするためであり固定具で固定することもできるが、蓋または栓自体を透水性蓋(栓)としても良く、その場合は、透水性蓋を通して海水が孔62に浸入し、また透水性蓋を通して海水が鉄分供給容器61の外側に出ていく。 A plurality of holes 62 are formed in the iron supply container main body 61, and the openings of the holes 62 (in FIG. 4, the holes are opened on the upper surface of the iron supply container main body 61, but the side surfaces 61-S1 of the iron supply container main body 61 are opened. , S2 and the like may be opened.), A chelating agent 67 such as citric acid is inserted, and the opening 63 is closed with a lid or a stopper. A state in which the holes 62 are filled with the chelating agent 67 is indicated by reference numeral 69. When the concrete iron supply container 61 using a permeable slag containing a chelating agent is installed in seawater or the seabed, the seawater permeates the permeable concrete (iron supply container) 61 and reaches the hole 62 into which the chelating agent is inserted. While seawater passes through permeable concrete, iron in the concrete elutes into seawater as iron ions. The chelating agent dissolves in the seawater that has entered the pores 62, and the iron ions in the seawater react with the chelating agent to form chelated iron. Alternatively, when seawater in which the chelating agent is dissolved permeates the iron supply container 61, the slag iron ions in the iron supply container 61 are taken in to become chelated iron. The chelated iron goes out of the iron supply container 61 together with the seawater that has permeated into the iron supply container 61, and the surroundings of the iron supply container 61 become a chelate iron (iron ion) rich environment. If spores of seaweed are present on or around the iron supply container body 61, the seaweed or the like absorbs this chelated iron and grows large. The lid or stopper that closes the opening of the hole 62 is to prevent the chelating agent 67 inserted in the hole 62 from coming out, and can be fixed with a fixture, but the lid or the stopper itself is a permeable lid. It may be used as a (plug), in which case seawater enters the hole 62 through the water permeable lid, and seawater goes out of the iron supply container 61 through the water permeable lid.

鉄分供給容器本体61内にはスラグが多量に存在するので鉄分の供給は十分であるが、その鉄分量に見合うキレート剤の量は少ないので、定期的に補充する必要がある。海藻類の育成中にキレート剤を補充するのは効率が悪いので、海藻類が充分成長して収穫した後にキレート剤を補充(交換)することが望ましい。従って、孔62に収納するキレート剤が生成するキレート鉄としての鉄分量が海藻類の成長に必要な孔を海藻類の成長に必要な鉄分量を供給できるキレート剤が収納できる程度の大きさとするのが良い。孔62に収納するキレート剤の交換は、鉄分供給容器61に備わる窪み部70に配置されたフック等71にロープや鎖等を取り付けて、クレーンを用いて鉄分供給容器61を引き上げて、孔62にキレート剤を挿入しても良いし。潜水者が海水中でキレート剤を孔62に挿入しても良い。 Since a large amount of slag is present in the iron supply container main body 61, the iron content is sufficient, but the amount of the chelating agent corresponding to the iron content is small, so that it is necessary to replenish the iron regularly. Since it is inefficient to replenish the chelating agent during the growth of seaweed, it is desirable to replenish (replace) the chelating agent after the seaweed has fully grown and harvested. Therefore, the amount of iron as chelating iron produced by the chelating agent stored in the hole 62 is set so that the hole required for the growth of seaweed can accommodate the chelating agent capable of supplying the amount of iron required for the growth of seaweed. Is good. To replace the chelating agent stored in the hole 62, attach a rope, a chain, or the like to a hook or the like 71 arranged in the recess 70 provided in the iron supply container 61, pull up the iron supply container 61 using a crane, and pull up the iron supply container 61 to form the hole 62. You may insert a chelating agent in. The diver may insert the chelating agent into the hole 62 in seawater.

図4に示すように、孔62に適合するカートリッジ65にキレート剤67を入れて蓋(または栓)66で閉じて、キレート剤入りカートリッジ65を孔62に挿入して嵌め込むこともできる。カートリッジ65の容器壁を透水性材料で作製すれば、繰り返しカートリッジ65を使用できる。あるいは、カートリッジ65の容器壁をメッシュ状にすれば海水は自由に流入・流出できる。メッシュの隙間の大きさはキレート剤の粒子サイズより小さくしておけばキレート剤が漏れることはない。メッシュ材料は海水に対して耐性を持つ材料(たとえば、プラスチック、ステンレス製)にすれば、メッシュ製カートリッジも繰り返し使用できるので、コストを低減できる。カートリッジ形状は、図4においては円柱形または円筒形で示したが、これに限定されず、たとえば角柱形状でも良い。また、孔62は上面から下面に貫く貫通孔でも良く、カートリッジを下面側からも交換できるだけでなく、上面側だけでなく下面側にもカートリッジの蓋(栓)を設けて、その蓋(栓)を透水性蓋(栓)とすれば、海水は上面側だけでなく下面側からも流入または流出でき、キレート鉄を鉄分供給容器の周辺に効率的に散布できる。 As shown in FIG. 4, the chelating agent 67 can be put into the cartridge 65 compatible with the hole 62 and closed with the lid (or stopper) 66, and the chelating agent-containing cartridge 65 can be inserted into the hole 62 and fitted. If the container wall of the cartridge 65 is made of a water-permeable material, the cartridge 65 can be used repeatedly. Alternatively, if the container wall of the cartridge 65 is made into a mesh shape, seawater can freely flow in and out. If the size of the gaps in the mesh is smaller than the particle size of the chelating agent, the chelating agent will not leak. If the mesh material is a material that is resistant to seawater (for example, made of plastic or stainless steel), the mesh cartridge can be used repeatedly, so that the cost can be reduced. The shape of the cartridge is shown as a cylinder or a cylinder in FIG. 4, but the cartridge shape is not limited to this, and may be a prism shape, for example. Further, the hole 62 may be a through hole penetrating from the upper surface to the lower surface, and not only the cartridge can be replaced from the lower surface side, but also the cartridge lid (plug) is provided not only on the upper surface side but also on the lower surface side, and the lid (plug) is provided. If the water-permeable lid (plug) is used, seawater can flow in or out not only from the upper surface side but also from the lower surface side, and chelated iron can be efficiently sprayed around the iron supply container.

あるいは、カートリッジ65の容器壁を海水で分解(溶解)可能でしかも環境に負荷を与えない材料で作製すれば、孔62に海水が流入して一定時間後にカートリッジ65の容器壁がなくなり、孔62の内部にキレート剤だけが存在する状態にできる。キレート剤がなくなったら、蓋66を外して(回収して)新しいキレート剤入りカートリッジ65を挿入すれば良い。このような材料として前述した水溶性フィルムを挙げることができる。このように、カートリッジ方式にすれば、水中でも水上でも交換も容易であり、作業効率が飛躍的に高まり、コスト軽減をはかることができる。
内部が空洞で外側がスラグを骨材として用いた透水性コンクリートのパイプ状のものも鉄分供給容器として使用できる。パイプの内部の空洞部分にキレート剤を挿入して、海中に配置すれば、海水がパイプの外壁(スラグを含む透水性コンクリート)を浸透してパイプ内部のキレート剤を溶解してキレート鉄を生成する。このキレート鉄はパイプ外壁を通ってパイプの外側に溶出し、パイプ周辺はキレート鉄の豊富な領域となる。あるいは、パイプの外壁が通常のコンクリート、塩化ビニールやプロピレン等のプラスチック、ステンレス等の金属のものでも、パイプ外壁に複数の孔をあけて、パイプ内部には少なくともスラグとキレート剤の混合体を入れて、前記孔を透水性蓋等で塞ぐことによって、キレート鉄が透水性蓋等を通して前記孔から溶出するので、パイプ外壁周辺はキレート鉄の豊富な領域となる。この場合、孔の大きさを調節すれば透水性蓋を用いずに開放しておくだけでもキレート鉄量を調節することができ、パイプ周辺はキレート鉄の豊富な領域とすることができる。パイプの外壁に海藻の胞子を付着させておけば、海藻はキレート鉄を摂取して活発な光合成を行ない大きく成長する。たとえば、このようなパイプで網状にしたり、スノコ状にしたりして、大量の海藻(たとえば、海苔)を収穫することができる。また、洋上風力発電の基礎として使用する護岸となるコンクリートに本発明を使用することもできる。
Alternatively, if the container wall of the cartridge 65 is made of a material that can be decomposed (dissolved) with seawater and does not impose an environmental load, the container wall of the cartridge 65 disappears after a certain period of time after the seawater flows into the hole 62, and the hole 62 Only the chelating agent can be present inside the container. When the chelating agent runs out, the lid 66 may be removed (recovered) and a new chelating agent-containing cartridge 65 may be inserted. Examples of such a material include the above-mentioned water-soluble film. In this way, if the cartridge method is adopted, it is easy to replace it in water or on the water, the work efficiency is dramatically improved, and the cost can be reduced.
A permeable concrete pipe-shaped container with a hollow inside and slag on the outside can also be used as an iron supply container. If a chelating agent is inserted into the hollow part inside the pipe and placed in the sea, seawater permeates the outer wall of the pipe (permeable concrete containing slag) and dissolves the chelating agent inside the pipe to generate chelated iron. To do. This chelated iron elutes to the outside of the pipe through the outer wall of the pipe, and the periphery of the pipe becomes a chelated iron-rich region. Alternatively, even if the outer wall of the pipe is ordinary concrete, plastic such as vinyl chloride or propylene, or metal such as stainless steel, make multiple holes in the outer wall of the pipe and put at least a mixture of slag and chelating agent inside the pipe. By closing the hole with a water-permeable lid or the like, chelated iron is eluted from the hole through the water-permeable lid or the like, so that the periphery of the outer wall of the pipe becomes a region rich in chelated iron. In this case, if the size of the hole is adjusted, the amount of chelated iron can be adjusted simply by opening the pipe without using the water permeable lid, and the area around the pipe can be a region rich in chelated iron. If seaweed spores are attached to the outer wall of the pipe, the seaweed ingests chelated iron and actively photosynthesizes to grow large. For example, such pipes can be reticulated or slatted to harvest large amounts of seaweed (eg, seaweed). The present invention can also be used for concrete as a revetment used as a basis for offshore wind power generation.

以上詳細に説明した様に、本発明の鉄分供給容器は安定して長期間鉄分を海水中に供給できるので、鉄分供給容器の周囲に海藻類を効率良く効果的に育成・成長させ、収穫でき、海藻類の成育収穫コストの低減をはかることができる。尚、本明細書において、明細書のある部分に記載し説明した内容について記載しなかった他の部分においても矛盾なく適用できることに関しては、当該他の部分に当該内容を適用できることは言うまでもない。さらに、前記実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施でき、本発明の権利範囲が前記実施形態に限定されないことも言うまでもない。 As described in detail above, since the iron supply container of the present invention can stably supply iron to seawater for a long period of time, seaweeds can be efficiently and effectively grown and grown around the iron supply container and harvested. , It is possible to reduce the growth and harvesting cost of seaweed. It goes without saying that the contents can be applied to the other parts of the present specification without any contradiction as to the fact that the contents described and explained in a certain part of the specification can be applied without contradiction. Furthermore, it goes without saying that the embodiment is an example and can be modified in various ways without departing from the gist, and the scope of rights of the present invention is not limited to the embodiment.

スラグ中には、鉄分のほかにカルシウム等のミネラルも含有されているため、これらのミネラルがキレート剤によりキレート化してキレート化合物となり海水中へ溶出する。海水中へ溶出したキレートミネラルは海藻等に摂取されて海藻の成長に寄与するので、本発明の鉄分供給容器はミネラル供給容器としても適用できる。 Since minerals such as calcium are contained in the slag in addition to iron, these minerals are chelated by a chelating agent to become chelate compounds, which are eluted into seawater. Since the chelate mineral eluted in seawater is ingested by seaweed and the like and contributes to the growth of seaweed, the iron supply container of the present invention can also be applied as a mineral supply container.

11・・・鉄分供給容器、11−S1、S2、S3、S4・・・側面、
12・・・開口部、13・・・内部空間、14・・・透水性蓋、
15・・・スラグ・キレート剤混合体、16・・・窪み部、17・・・海水流、
18・・・海水流、19・・・海水流、20・・・フック(連結具)、

11 ... Iron supply container, 11-S1, S2, S3, S4 ... Side surface,
12 ... opening, 13 ... internal space, 14 ... water permeable lid,
15 ... slag-chelating agent mixture, 16 ... depression, 17 ... seawater flow,
18 ... seawater flow, 19 ... seawater flow, 20 ... hook (connector),

Claims (16)

内部に空間(内部空間という)を有する容器において、前記内部空間に配置されたスラグおよびキレート剤を含む混合体を配置した鉄分供給容器であって、
前記鉄分供給容器は、海水中又は水中に設置して、前記鉄分供給容器内部空間に海水または水を取り込んで、前記取り込んだ海水または水と一緒にスラグ中に含有される鉄分が海中または水中にキレート鉄として鉄分を供給する機能を有するとともに、
前記鉄分供給容器は、前記内部空間に接続する容器の開口部(内部空間接続開口部という)および前記内部空間接続開口部に配置された透水性を持つ透水性蓋(鉄分供給容器透水性蓋という)を含み、
前記鉄分供給容器透水性蓋は開口部で開閉可能であり、
前記内部空間に配置された混合体は前記鉄分供給容器透水性蓋を開閉して交換可能であり、
前記鉄分供給容器を海水中又は水中に設置されているときは、前記鉄分供給容器透水性蓋は閉じた状態であり、
前記内部空間接続開口部に配置された前記鉄分供給容器透水性蓋を通して海水または水と一緒にスラグ中に含有される鉄分が海中または水中にキレート鉄として鉄分を供給する機能を有することを特徴とする、鉄分供給容器。
An iron supply container in which a mixture containing a slag and a chelating agent arranged in the internal space is arranged in a container having a space (referred to as an internal space) inside.
The iron supply container is installed in seawater or water, and seawater or water is taken into the space inside the iron supply container, and the iron contained in the slag together with the taken-in seawater or water is put into the sea or water. It has the function of supplying iron as chelated iron and also has the function of supplying iron .
The iron supply container includes an opening of a container connected to the internal space (referred to as an internal space connection opening) and a water-permeable lid (referred to as an iron supply container water-permeable lid ) arranged in the internal space connection opening. ) Including
The iron supply container water permeable lid can be opened and closed at the opening.
The mixture arranged in the internal space can be replaced by opening and closing the water permeable lid of the iron supply container.
When the iron supply container is installed in seawater or water, the iron supply container water permeable lid is in a closed state.
It is characterized in that iron contained in seawater or water together with seawater or water has a function of supplying iron as chelated iron to the sea or water through the iron supply container water permeable lid arranged in the internal space connection opening. Iron supply container.
前記内部空間接続開口部は、前記鉄分供給容器において複数存在し、海水または水が前記複数の内部空間接続開口から流入または流出することを特徴とする、
請求項1に記載の鉄分供給容器。
A plurality of the internal space connection openings are present in the iron supply container, and seawater or water flows in or out from the plurality of internal space connection openings.
The iron supply container according to claim 1.
前記混合体は、一定時間後に海水や水に溶ける材質を持つ材料の中に袋詰めされ、前記袋詰めされた状態で前記内部空間に配置されるか、
あるいは、前記混合体は、メッシュ状容器に収納された状態で前記内部空間に配置されることを特徴とする、
請求項1または2に記載の鉄分供給容器。
The mixture is bagged in seawater or a material having a material that is soluble in water after a certain period of time, and is placed in the internal space in the bagged state.
Alternatively, the mixture is arranged in the internal space in a state of being housed in a mesh-like container.
The iron supply container according to claim 1 or 2.
前記鉄分供給容器の一部/または全部はスラグを骨材とする透水性コンクリート(スラグ骨材透水性コンクリートという)であり、
前記スラグ骨材透水性コンクリートを通して、海水または水と一緒に鉄分が海中または水中にキレート鉄として鉄分を供給する機能を有することを特徴とする
請求項1〜3のいずれかの項に記載の鉄分供給容器。
A part / or all of the iron supply container is permeable concrete using slag as an aggregate (referred to as slag aggregate permeable concrete ).
Through the slag aggregate permeable concrete, iron has a function of supplying iron as chelated iron into the sea or water together with seawater or water .
The iron supply container according to any one of claims 1 to 3.
前記スラグ骨材透水性コンクリートは、さらに、その表面から形成された複数の孔部、前記孔部の表面における開口部(孔部開口部という)、前記複数の孔部に配置されたキレート剤、前記孔部開口部に配置された透水性を持つ透水性蓋(孔部開口部透水性蓋という)を含み、前記孔部開口部透水性蓋および前記スラグ骨材透水性コンクリートを通して、海水または水と一緒に鉄分が海中または水中にキレート鉄として鉄分を供給する機能を有することを特徴とする、請求項4に記載の鉄分供給容器。
The slag aggregate water-permeable concrete further comprises a plurality of holes formed from the surface thereof, an opening on the surface of the hole (referred to as a hole opening), and a chelating agent arranged in the plurality of holes. Seawater or water includes a water permeable lid having water permeability (referred to as a hole water permeable lid) arranged in the hole opening, and through the hole opening water permeable lid and the slag aggregate water permeable concrete. The iron supply container according to claim 4, wherein the iron content together with the iron content has a function of supplying iron content as chelated iron into the sea or water.
前記孔部に配置されたキレート剤は前記孔部に挿入可能なカートリッジ容器に入れられ、前記カートリッジ容器は、前記孔部に配置され交換可能であることを特徴とする、
請求項5に記載の鉄分供給容器。
The chelating agent arranged in the hole is placed in a cartridge container that can be inserted into the hole, and the cartridge container is arranged in the hole and is replaceable.
The iron supply container according to claim 5.
前記カートリッジ容器の一部または全部は透水性材料か、あるいは前記カートリッジ容器はメッシュ状容器であり、
前記カートリッジの透水性材料またはメッシュの隙間を通してキレート剤が前記スラグ骨材透水性コンクリートの鉄分供給容器に溶出しキレート鉄を形成して、前記キレート鉄が前記スラグ骨材透水性コンクリートの鉄分供給容器の外側に溶出する機能を有することを特徴とする、請求項6に記載の鉄分供給容器。
Part or all of the cartridge container is a water permeable material, or the cartridge container is a mesh container.
The chelating agent is eluted into the iron supply container of the slag aggregate water permeable concrete through the gaps between the water permeable material or the mesh of the cartridge to form chelate iron, and the chelate iron is the iron supply container of the slag aggregate water permeable concrete. The iron supply container according to claim 6, wherein the iron supply container has a function of eluting to the outside of the concrete.
前記鉄分供給容器は、さらにパイプ状の鉄分供給容器(パイプ状鉄分容器という)を含み、
前記パイプ状鉄分容器の外壁はスラグを骨材とする透水性を持つ透水性コンクリート(スラグ骨材透水性コンクリートという)であり、前記パイプ状鉄分容器の内部空間にキレート剤が配置されており、前記パイプ状鉄分容器は、海中または水中に設置して、前記パイプ状鉄分容器の外壁を通して海水または水と一緒に鉄分が海中または水中にキレート鉄として鉄分を供給する機能を有することを特徴とする、請求項1〜7のいずれかの項に記載の鉄分供給容器。
The iron supply container further includes a pipe-shaped iron supply container (referred to as a pipe-shaped iron container).
The outer wall of the pipe-shaped iron container is a water-permeable concrete (referred to as slag aggregate water-permeable concrete) having slag as an aggregate, and a chelating agent is arranged in the internal space of the pipe-shaped iron container. The pipe-shaped iron container is installed in the sea or water, and has a function of supplying iron as chelated iron to the sea or water together with seawater or water through the outer wall of the pipe-shaped iron container. , The iron supply container according to any one of claims 1 to 7.
前記鉄分供給容器はパイプ状容器であり、前記パイプ状容器の外壁に前記内部空間接続開口部である複数の孔が前記パイプ状容器の内部空間に接続しており、前記孔に前記鉄分供給容器透水性蓋が配置され、前記パイプ状容器の内部空間に前記混合体が配置されていることを特徴とする、請求項1〜4のいずれかの項に記載の鉄分供給容器。The iron supply container is a pipe-shaped container, and a plurality of holes, which are internal space connection openings, are connected to the internal space of the pipe-shaped container in the outer wall of the pipe-shaped container, and the iron supply container is connected to the holes. The iron supply container according to any one of claims 1 to 4, wherein a water-permeable lid is arranged and the mixture is arranged in the internal space of the pipe-shaped container.

前記パイプ状容器は、網状またはスノコ状に配置されていることを特徴とする、請求項8または9に記載の鉄分供給容器。The iron supply container according to claim 8 or 9, wherein the pipe-shaped container is arranged in a net shape or a slatted shape.
前記透水性蓋は、1部または全部に透水性部分を有する蓋であることを特徴とする、The water permeable lid is a lid having a water permeable portion in one part or the whole.
請求項1〜10のいずれかの項に記載の鉄分供給容器。The iron supply container according to any one of claims 1 to 10.
前記キレート剤は、クエン酸、グルタミン酸、グルコン酸、これらの塩類、およびこれらの精製前物質から選択される少なくとも1つであることを特徴とする、
請求項1〜11のいずれかの項に記載の鉄分供給容器。
The chelating agent is at least one selected from citric acid, glutamic acid, gluconic acid, salts thereof, and pre-purification substances thereof.
The iron supply container according to any one of claims 1 to 11.
前記スラグは、製鋼スラグ、一般廃棄物の溶融スラグ、銅スラグ、フェロアロイスラグ、ミルスケール、酸洗工程で生じた塩化鉄から選択される少なくとも1つであることを特徴とする、
請求項1〜12のいずれかの項に記載の鉄分供給容器。
The slag is at least one selected from steelmaking slag, molten slag of general waste, copper slag, ferroalloy slag, mill scale, and iron chloride produced in the pickling process.
The iron supply container according to any one of claims 1 to 12.
鉄分供給容器透水性蓋、透水性コンクリート、透水性材料、スラグ骨材透水性コンクリート、および孔部開口部透水性蓋の透水係数は、1×10Iron supply container Water permeable lid, water permeable concrete, water permeable material, slag aggregate water permeable concrete, and hole opening water permeable lid have a water permeability coefficient of 1 x 10 −7-7 cm/sec〜10cm/secの範囲であることを特徴とする、It is characterized in that it is in the range of cm / sec to 10 cm / sec.
請求項1〜13のいずれかの項に記載の鉄分供給容器。The iron supply container according to any one of claims 1 to 13.
請求項1〜14に記載の鉄分供給容器を水中または海中に配置する鉄分供給容器の配置方法であって、空気浮舟上に鉄分供給容器または鉄分供給容器を連結した鉄分供給容器連結体を載せた後、前記空気浮舟の空気を抜いて鉄分供給容器または鉄分供給容器連結体を水中または海中に沈めて、水底または海底に配置することを特徴とする、鉄分供給容器の配置方法。The method for arranging an iron supply container in which the iron supply container is arranged in water or in the sea according to claims 1 to 14, wherein an iron supply container or an iron supply container connector in which the iron supply container is connected is placed on an air floating boat. After that, the method for arranging the iron supply container, which comprises removing the air from the air floating boat, submerging the iron supply container or the iron supply container connector in water or the sea, and arranging the iron supply container on the bottom of the water or the sea.
水中または海中に設置された請求項1〜14に記載の鉄分供給容器を水上または海上に引き上げる鉄分供給容器の引き上げ方法であって、水中または海中に設置された鉄分供給容器または鉄分供給容器連結体の下に空気浮舟を配置した後、空気浮船に空気を入れて浮力で海上まで浮き上がらせることにより鉄分供給容器を引き上げることを特徴とする、鉄分供給容器の引き上げ方法。The method for pulling up an iron supply container for pulling up the iron supply container on the water or the sea according to claim 1 to 14 installed underwater or in the sea, and the iron supply container or the iron supply container connector installed in the water or the sea. A method of pulling up an iron supply container, which comprises placing an air float underneath and then injecting air into the air float to lift it to the sea by buoyancy, thereby pulling up the iron supply container.


JP2018103343A 2018-03-07 2018-05-30 Iron supply container Active JP6851601B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040422 2018-03-07
JP2018040422 2018-03-07

Publications (3)

Publication Number Publication Date
JP2019154427A JP2019154427A (en) 2019-09-19
JP2019154427A5 JP2019154427A5 (en) 2020-06-11
JP6851601B2 true JP6851601B2 (en) 2021-03-31

Family

ID=67994474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103343A Active JP6851601B2 (en) 2018-03-07 2018-05-30 Iron supply container

Country Status (1)

Country Link
JP (1) JP6851601B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102437308B1 (en) * 2020-05-12 2022-09-02 주식회사 두니 Feeder for seaweed growth promoting
KR102672846B1 (en) * 2022-03-21 2024-06-04 최준식 Watering machine for agricultural products

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065734Y2 (en) * 1990-09-26 1994-02-16 義雄 伊藤 Aquatic culture block
JP2598348B2 (en) * 1991-09-09 1997-04-09 株式会社テラックス Multilayer sheet and method for manufacturing concrete structure using the same
JP3654487B2 (en) * 1997-09-08 2005-06-02 株式会社ホクエツ Seaweed community creation method
JP2002058382A (en) * 2000-08-18 2002-02-26 Marine Planet:Kk Artificial bank for growing seaweed
JP2005088221A (en) * 2003-09-12 2005-04-07 Toshin Namakon Kk Porous concrete body
JP5665254B2 (en) * 2007-08-20 2015-02-04 Jfeスチール株式会社 Hydrated solidified body for submerged submergence
JP5190601B2 (en) * 2007-09-25 2013-04-24 地方独立行政法人 岩手県工業技術センター Algae reef unit and manufacturing method thereof
JP2012075398A (en) * 2010-10-04 2012-04-19 Kobe Steel Ltd Material for supplying iron ions
JP5884631B2 (en) * 2012-05-14 2016-03-15 新日鐵住金株式会社 Water environment container

Also Published As

Publication number Publication date
JP2019154427A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP4489043B2 (en) Water area environmental conservation material and water area environmental conservation method
JP6851601B2 (en) Iron supply container
JP2005320230A (en) Environmental preservation material for water area and its using method
JP6012128B2 (en) Artificial mineral supply material for water environment conservation and its water environment conservation method
JP4736449B2 (en) Construction method of shallow ground
JP6469410B2 (en) Materials for supplying nutrients to algae and systems for supplying nutrients to algae
WO2023183911A1 (en) Floating substrates for offshore cultivation of target products and methods of making and using the same
JP2010104362A (en) Hardened material for creating seaweed bed
WO2023183913A1 (en) Floating substrates including carbonaceous coatings for offshore cultivation of target products and methods of making and using the same
JP5208979B2 (en) Seaweed nutrient supply apparatus and seaweed nutrient supply method
JP5305047B2 (en) Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method
JP2013081901A (en) Tool for improving water quality and environment
CN107223620A (en) Water treatment system and method for treating water based on shellfish culture
JPH0819774A (en) Magnesia type modifier of water quality and bottom material
JP5216708B2 (en) Nutrient dispersion in the aquatic environment
JP5884631B2 (en) Water environment container
JP2006081457A (en) Environmental protection material for water area
KR101427485B1 (en) Artificial reefs supplies a deep seawater and nutrient salts
JP7424933B2 (en) Algae growing material
JP2008253163A (en) Eelgrass zone reclaiming method
JP2006214084A (en) Method for developing shallows and the like
JP4363589B2 (en) Structure for creating seaweed beds and method for creating seaweed beds
JP2019149963A (en) Ferrous ion controlled release unglazing and manufacturing method thereof, and bivalve farming tool and aquatic environment maintenance method using the unglazing
JP3128386U (en) FRP floating fishing reef
JP2004166513A (en) Reef for preparing seaweed bed and method for culturing seaweed

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200428

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201230

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6851601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250