JP2005088221A - Porous concrete body - Google Patents

Porous concrete body Download PDF

Info

Publication number
JP2005088221A
JP2005088221A JP2003321090A JP2003321090A JP2005088221A JP 2005088221 A JP2005088221 A JP 2005088221A JP 2003321090 A JP2003321090 A JP 2003321090A JP 2003321090 A JP2003321090 A JP 2003321090A JP 2005088221 A JP2005088221 A JP 2005088221A
Authority
JP
Japan
Prior art keywords
concrete body
porous concrete
aggregate
slag
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321090A
Other languages
Japanese (ja)
Inventor
Takefumi Sakamoto
武文 坂本
Kesami Kono
今朝美 河野
Toshihiro Otani
俊浩 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOSHIN NAMAKON KK
Original Assignee
TOSHIN NAMAKON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOSHIN NAMAKON KK filed Critical TOSHIN NAMAKON KK
Priority to JP2003321090A priority Critical patent/JP2005088221A/en
Publication of JP2005088221A publication Critical patent/JP2005088221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Cultivation Of Seaweed (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Artificial Fish Reefs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous concrete body constituted so as to realize a structure suitable for growing algae at a low cost using a waste material such as slag or the like and capable of accelerating the adhesion growth of algae to restore a submarine forest. <P>SOLUTION: Blast furnace slow cooling slag is used as coarse aggregate becoming the principal part of concrete or copper slag is used as regenerated aggregate and fine aggregate to form the porous concrete body in a porous state with a predetermined void ratio. Bamboo materials having through-holes formed by processing the nodal parts of a bamboo are arranged so as to be embedded in concrete in a piercing state to provide a large number of voids and through-holes in a state arranged in the sea. Cost reduction is realized using slag being a waste material as aggregate and metal components essential to organisms are dissolved in seawater to accelerate the addition and growth of algae on the surface of the porous concrete body. Further, the inhabitation of small fishes and shellfishes is assisted by the through-holes in the bamboo material, and algae and fishes and shellfishers living in an ecosystem in a mutually related state are fixed at the same time not only to establish a state nearer to nature but also to restore the submarine forest. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、藻場を復元する藻礁を構成するために海中に設置される多孔質コンクリート体に関し、特に低コストで海藻が定着しやすく藻場復元に適した構造が得られる多孔質コンクリート体に関する。   The present invention relates to a porous concrete body that is installed in the sea in order to construct a seaweed reef that restores a seaweed bed, and in particular, a porous concrete body that can easily establish seaweed at a low cost and that is suitable for a seaweed bed restoration. About.

近年、「磯焼け」と呼ばれる海藻の衰退現象が日本各地の海岸で生じている。この「磯焼け」の原因としては、水温や栄養素などの海況変動、台風等の一時的な環境変化、植食動物による摂食、サンゴ藻などによる他の海藻の着生阻害、海水汚濁等、様々な要素が複合的に作用していると考えられている。   In recent years, a phenomenon of seaweed decay called “sake burning” has occurred on the coasts of Japan. Causes of this `` burning '' are sea level fluctuations such as water temperature and nutrients, temporary environmental changes such as typhoons, feeding by herbivores, inhibition of other seaweed formation by coral algae, seawater pollution, etc. It is thought that various elements act in a complex manner.

このため、従来から、海藻を定着させたコンクリートブロック等の藻礁を海中に設置して藻場を復元する試みがなされている。こうした中、多孔質コンクリート体は、小さな海洋生物の生息に適した多孔質構造をなし、一般的なコンクリートと同様にその形状を自由に加工できるなど、藻礁及び魚礁を構成する材料として優れた特性を有しており、従来から藻場復元の用途に利用されている。こうした藻場復元用の多孔質コンクリート体としては、例えば、窒素化合物、燐酸または鉄等の海藻の栄養素を含む材料を多孔質材料中に組み込んだ例が特開平5−308871号公報に記載されている他、多孔質コンクリート中に強度増進・鉄イオン溶出用の鋼繊維及びカルシウムイオン溶出用の化石貝殻を混合したものの例が特開2002−315468号公報に記載されている。
特開平5−308871号公報 特開2002−315468号公報
For this reason, conventionally, attempts have been made to restore algae beds by installing algae reefs such as concrete blocks in which seaweed has been established in the sea. Under such circumstances, the porous concrete body is excellent as a material constituting algae reefs and fish reefs because it has a porous structure suitable for the inhabiting of small marine organisms, and its shape can be freely processed in the same way as general concrete. It has characteristics and has been conventionally used for the purpose of restoring seaweed beds. As such a porous concrete body for seaweed restoration, an example in which a material containing a seaweed nutrient such as a nitrogen compound, phosphoric acid or iron is incorporated in a porous material is described in JP-A-5-308771. In addition, JP 2002-315468 A discloses an example in which a steel fiber for enhancing strength and elution of iron ions and a fossil shell for elution of calcium ions are mixed in porous concrete.
Japanese Patent Laid-Open No. 5-308871 JP 2002-315468 A

従来の多孔質コンクリート体は以上のように構成されており、多孔質コンクリート体の材料はいずれも新規に収集あるいは精製して用意する必要があり、またコンクリート体の製造にも複雑で手間のかかる工程を含んでいることから、コストが高くなるという課題を有していた。   The conventional porous concrete body is configured as described above, and it is necessary to prepare all the materials of the porous concrete body by collecting or refining them. Also, the production of the concrete body is complicated and time-consuming. Since the process was included, there existed a subject that cost became high.

本発明は前記課題を解消するためになされたもので、スラグ等の廃材を材料に用いて低コストながら海藻の生育に適した構造を実現し、海藻の付着成長を促進して藻場復元を図れる多孔質コンクリート体を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and by using a waste material such as slag as a material, a low-cost structure suitable for seaweed growth is realized, and seaweed adhesion growth is promoted to restore seaweed beds. It aims at providing the porous concrete body which can be aimed at.

本発明に係る多孔質コンクリート体は、セメントと水、粗骨材、及び細骨材を少なくとも用いて所定立体形状に形成されてなる多孔質コンクリート体において、前記粗骨材として、粒径5ないし25mmの高炉除冷スラグ又は粒径5ないし20mmの再生骨材を所定量用いると共に、前記細骨材として粒径2.5mm以下の銅スラグを所定量用い、空隙率を10ないし20%とされると共に圧縮強度を18N/mm2以上、さらに単位容積質量を2.3t/m3以上とされてなり、少なくとも硬化前に、節部を貫通加工された竹材を一又は複数箇所に貫通状態で配置され、そのまま埋込まれるものである。 The porous concrete body according to the present invention is a porous concrete body formed into a predetermined three-dimensional shape using at least cement and water, coarse aggregate, and fine aggregate. A predetermined amount of 25 mm blast furnace cooling slag or recycled aggregate having a particle size of 5 to 20 mm is used, and a predetermined amount of copper slag having a particle size of 2.5 mm or less is used as the fine aggregate, so that the porosity is 10 to 20%. At the same time, the compressive strength is 18 N / mm 2 or more and the unit volume mass is 2.3 t / m 3 or more. It is arranged and embedded as it is.

このように本発明においては、コンクリートの主要部分となる粗骨材に高炉除冷スラグ又は再生骨材、細骨材に銅スラグをそれぞれ用い、所定空隙率の多孔質状態に形成されると共に、節部を加工されて貫通孔を有する竹材が貫通状態で埋込み配設され、海中への配設状態で生物の生息に適した多数の空隙及び竹材に囲まれる貫通孔を提供することにより、骨材に廃材であるスラグを使用して低コスト化が実現することに加え、スラグから生物にとっての必須金属成分の海水への溶け込みも生じて海藻の生育を助ける状態が得られ、表面への海藻の付着が多孔質のためにより強靱となることと合わせて海藻の生長を促進でき、また、竹材内の孔が小さな魚介の隠れる場所となって生息を助け、生態系の中で互いに関連し合って生息する海藻と魚介を同時に定着させて、より自然に近い状態の藻礁及び魚礁とすることができ、藻場の復元に適する。さらに、貫通孔を囲む竹材も山林から除伐された廃材を使用するとコスト増を招かないと共に、竹材は海中で次第に腐敗、分解して海藻や微生物の栄養源となるため、海藻や魚介の生育を補助でき、より多数の海藻を表面に付着、生長させられる。   As described above, in the present invention, the blast furnace decooled slag or recycled aggregate is used as the coarse aggregate which is the main part of the concrete, and the copper slag is used as the fine aggregate, respectively. Bamboo material having a through-hole processed into a knot is embedded and arranged in a penetrating state, and by providing a large number of voids suitable for living organisms and a through-hole surrounded by the bamboo material in an underwater state, In addition to being able to reduce costs by using slag, which is a waste material, lumber also dissolves essential metal components for living organisms into seawater, resulting in a state that helps the growth of seaweed, and seaweed on the surface The growth of seaweed can be promoted together with the attachment of the seawater to be more tough due to the porous nature, and the holes in the bamboo become a place to hide small seafood, helping inhabit and interacting with each other in the ecosystem Seaweed Through the by simultaneously fixed, it is possible to more algae reefs and reef naturally close state, suitable for recovery of the seaweed. In addition, the use of scrap wood that has been cut from the forest for the bamboo that surrounds the through-holes does not increase costs, and bamboo gradually decays and decomposes in the sea to become a nutrient source for seaweed and microorganisms. It is possible to assist, and more seaweed can adhere to the surface and grow.

また、本発明に係る多孔質コンクリート体は必要に応じて、各原料を混練した未硬化コンクリートの型枠への投入が複数層詰めとされると共に、粒状肥料が、複数回の前記未硬化コンクリートの投入及び突き固めで得られる各層の間に所定量ずつ散布投入されるものである。   Moreover, the porous concrete body according to the present invention is filled with a plurality of layers of uncured concrete kneaded with each raw material, if necessary, and the granular fertilizer is a plurality of times of the uncured concrete. A predetermined amount is sprayed and injected between each layer obtained by charging and tamping.

このように本発明においては、未硬化コンクリートが型枠に複数回投入されるごとに突き固められて生じる各層の間に粒状肥料を位置させるように、投入の合間に前に突き固めたコンクリート層上に粒状肥料を散布配置し、未硬化コンクリート中に粒状肥料を分散させずに混入させることにより、含まれる有機分のためにセメントとの接触面積が増えるとセメントの凝結を妨げる粒状肥料を適切な配置でセメントとの接触を必要最小限に抑えられ、確実にコンクリート体の一体硬化が図れることとなり、海中での強度を確保できる。また、粒状肥料や貝殻粉末からの養分が海水中でコンクリート体の内部からゆっくり溶け出して海藻の生育を助けることから、表面への海藻の付着、生長をより確実化できる。   In this way, in the present invention, the concrete layer that has been tamped before between the inputs so that the granular fertilizer is positioned between each layer produced by tamping each time the uncured concrete is thrown into the formwork multiple times. Appropriate granular fertilizer that prevents the cement from agglomerating when the contact area with cement increases due to the organic content contained by dispersing granular fertilizer on top and mixing it in uncured concrete without dispersing it With a simple arrangement, the contact with the cement can be kept to the minimum necessary, and the concrete body can be hardened assuredly, thus ensuring strength in the sea. Moreover, since nutrients from granular fertilizer and shell powder are slowly dissolved from the inside of the concrete body in seawater to help the growth of seaweed, the adhesion and growth of seaweed on the surface can be further ensured.

以下、本発明の一実施の形態に係る多孔質コンクリート体を図1に基づいて説明する。この図1は本実施の形態に係る多孔質コンクリート体の概略構成図である。
前記図1に示すように本実施の形態に係る多孔質コンクリート体1は、原材料としてセメントと水、粗骨材、及び細骨材等を用いて型枠により所定の立体形状に成形されてなるものであり、締め固めにより、最終的に、空隙率を10ないし20%、圧縮強度を18N/mm2以上、単位容積質量を2.3t/m3以上とされる構成である。望ましくは、空隙率は約15%、圧縮強度は約21N/mm2である。そして、この多孔質コンクリート体1には、硬化前に、節部を貫通加工された竹材2が複数箇所に貫通状態で配置され、そのまま埋込まれる。
Hereinafter, the porous concrete body which concerns on one embodiment of this invention is demonstrated based on FIG. FIG. 1 is a schematic configuration diagram of a porous concrete body according to the present embodiment.
As shown in FIG. 1, the porous concrete body 1 according to the present embodiment is formed into a predetermined three-dimensional shape by a mold using cement and water, coarse aggregate, fine aggregate, and the like as raw materials. By compaction, the porosity is finally 10 to 20%, the compression strength is 18 N / mm 2 or more, and the unit volume mass is 2.3 t / m 3 or more. Desirably, the porosity is about 15% and the compressive strength is about 21 N / mm 2 . And in this porous concrete body 1, before hardening, the bamboo material 2 which penetrated the node part is arrange | positioned in the penetration state in several places, and is embedded as it is.

前記各材料のうち、前記粗骨材として、粒径5ないし25mmの高炉除冷スラグ、又は粒径5ないし20mmの再生骨材を所定量用いると共に、前記細骨材として粒径2.5mm以下の銅スラグを所定量用いている。細骨材に密度の大きい銅スラグを用いることで、単位容積あたりの重量を増加させられ、海流に流されにくくすることができる。   Among the above materials, a blast furnace decooling slag having a particle size of 5 to 25 mm or a regenerated aggregate having a particle size of 5 to 20 mm is used as the coarse aggregate, and a particle size of 2.5 mm or less is used as the fine aggregate. A predetermined amount of copper slag is used. By using high-density copper slag for the fine aggregate, the weight per unit volume can be increased and it can be made difficult to be washed away by the ocean current.

加えて、前記多孔質コンクリート体1には、粒状肥料が対セメント質量比2.5%、また必要に応じて貝殻粉末が対セメント質量比1.0%、それぞれ混入される。これら粒状肥料及び貝殻粉末は各材料と一体に混練されず、他の材料を混練した未硬化コンクリートに後工程で別途投入される。   In addition, in the porous concrete body 1, granular fertilizer is mixed with a cement mass ratio of 2.5%, and if necessary, shell powder is mixed with a cement mass ratio of 1.0%. These granular fertilizer and shell powder are not kneaded integrally with each material, but are separately added to uncured concrete kneaded with other materials in a later step.

次に、前記構成に基づく多孔質コンクリート体の製造工程について説明する。まず、コンクリートの練り混ぜ工程として、セメントと細骨材をミキサーに投入して約30秒程度練り混ぜ、続いて水と混和剤を投入して約180秒間練り混ぜる。この時、目標とするフロー値となるように水を増減調整しつつ練り混ぜる。最後に、粗骨材を投入して約60秒間練り混ぜると、生コンクリートとして利用可能となるため、ミキサーから排出する。   Next, the manufacturing process of the porous concrete body based on the said structure is demonstrated. First, as a concrete mixing step, cement and fine aggregate are put into a mixer and mixed for about 30 seconds, and then water and an admixture are added and mixed for about 180 seconds. At this time, the water is kneaded while increasing / decreasing the water so that the target flow value is obtained. Finally, when coarse aggregate is added and kneaded for about 60 seconds, it can be used as ready-mixed concrete and is discharged from the mixer.

得られた生コンクリートは、未硬化の状態で藻礁形成用の型枠に投入して成形を行う。型枠内にはあらかじめ節を抜いて貫通状態とした竹材2が複数本配置されており、コンクリートが一体に硬化した形状において竹材2が中心の貫通孔3と共にコンクリート体を貫通した状態が得られる。   The obtained ready-mixed concrete is put into a mold for forming an algal reef in an uncured state and molded. In the formwork, a plurality of bamboo materials 2 which have been pulled out in advance and placed in a penetrating state are arranged, and in a shape in which the concrete is integrally cured, a state in which the bamboo material 2 penetrates the concrete body together with the central through hole 3 is obtained. .

コンクリートの型枠への投入は、2層以上の複数層詰めとされ、コンクリートの所定量投入、突き固めで一つの層を形成する作業が複数回繰返される。あらかじめ、重量増を図るために下部に所定厚さモルタルを別途敷詰めてモルタル層4を形成してからコンクリートの投入、突き固めを行ってもよい。各層を十分に突き固めた後、確実に締め固まるまで上面より型枠バイブレータをかけて締固めを行う。   The concrete is put into a formwork with two or more layers, and a predetermined amount of concrete is charged and tamped to form one layer a plurality of times. In order to increase the weight in advance, a mortar layer 4 may be separately laid on the lower portion to form a mortar layer 4, and then the concrete may be charged and tamped. After each layer is sufficiently tamped, it is compacted by applying a formwork vibrator from the upper surface until it is firmly compacted.

この未硬化コンクリートの型枠への投入、突き固めで一つの層が得られる都度、粒状肥料及び貝殻粉末を所定量ずつ散布投入し、これらをコンクリート各層間に位置させる。未硬化コンクリート中に粒状肥料を分散させずに混入させることで、粒状肥料とセメントとの接触面積を必要最小限に抑えており、粒状肥料とセメントとの接触面積が増えると粒状肥料がその有機分によってセメントの硬化を妨げる性質を発現させないようにしており、確実にコンクリート体の一体硬化を図って強度を確保している。こうして型枠内に作成した多孔質コンクリート体1は、所定時間後脱型し、さらに所定期間の養生を経て完成状態となる。   Each time a layer is obtained by putting and solidifying the uncured concrete into a mold, a predetermined amount of granular fertilizer and shell powder are sprayed and placed between the concrete layers. By mixing granular fertilizer in uncured concrete without dispersing it, the contact area between granular fertilizer and cement is minimized, and when the contact area between granular fertilizer and cement increases, the granular fertilizer becomes organic. The property of preventing the cement from hardening is not expressed by the minute, and the strength of the concrete body is ensured by ensuring the integral hardening of the concrete body. The porous concrete body 1 thus created in the mold is demolded after a predetermined time, and after completion of curing for a predetermined period, it is in a completed state.

得られた多孔質コンクリート体1は、海中の磯焼けによる海藻の減少が生じている箇所に、常に海中に没した状態で設置する。海中へ設置した状態で、多孔質コンクリート体1は、生物の生息に適した多数の空隙及び竹材2に囲まれる貫通孔3を提供すると共に、粒状肥料や貝殻粉末からの養分が内部からゆっくり海水に溶け出すことから、コンクリート体表面への海藻の付着及び成長を促進できる。また、竹材2内の貫通孔3が小さな魚介の隠れる場所となって生息を助ける一方、この竹材2は海中で次第に腐敗、分解して海藻や微生物の栄養源となるため、海藻や魚介の生育を補助でき、より多数の海藻を表面に付着、生長させられることとなる。この他、多孔質コンクリート体1は、海藻が付着、生長し易い箇所に設置し、十分に海藻が表面に付いた後、別の磯焼けによる海藻の減少が生じている箇所へ運んで設置することもできる。   The obtained porous concrete body 1 is always installed in a state where it is submerged in the sea where seaweed is reduced due to burning in the sea. When installed in the sea, the porous concrete body 1 provides a large number of voids suitable for living organisms and through holes 3 surrounded by the bamboo material 2, and the nutrients from the granular fertilizer and shell powder are slowly added from the inside to the seawater. It can promote the adhesion and growth of seaweed on the concrete body surface. In addition, the through-holes 3 in the bamboo material 2 serve as a place where small fish and shellfish are hidden to help the habitat. On the other hand, the bamboo material 2 gradually decays and decomposes in the sea and becomes a nutrient source for seaweed and microorganisms. It is possible to assist and to allow more seaweed to adhere to the surface and grow. In addition, the porous concrete body 1 is installed in a place where seaweed is likely to adhere and grow. After the seaweed is sufficiently attached to the surface, the porous concrete body 1 is carried to another place where seaweed is reduced due to another burning of seaweed. You can also.

このように本実施の形態に係る多孔質コンクリート体では、コンクリートの主要部分となる粗骨材に高炉除冷スラグ又は再生骨材、細骨材に銅スラグをそれぞれ用い、所定空隙率の多孔質状態に形成されると共に、節部を加工されて貫通孔3を有する竹材2が貫通状態で埋込み配設され、海中への配設状態で生物の生息に適した多数の空隙及び竹材2に囲まれる貫通孔3を提供することから、骨材に廃材であるスラグ等を使用して低コスト化が実現することに加え、スラグから生物にとっての必須金属成分の海水への溶け込みも生じて海藻の生育を助ける状態が得られ、表面への海藻の付着及び生長を促進でき、また、竹材内の孔が小さな魚介の隠れる場所となって生息を助け、生態系の中で互いに関連し合って生息する海藻と魚介を同時に定着させて、より自然に近い状態の藻礁及び魚礁とすることができ、藻場の復元に適する。また、粒状肥料や貝殻粉末を混入し、この粒状肥料や貝殻粉末からの養分が海水中でコンクリート体の内部からゆっくり溶け出して海藻の生育を助けることから、表面への海藻の付着、生長をより確実化できる。   Thus, in the porous concrete body according to the present embodiment, blast furnace decooled slag or recycled aggregate is used as the coarse aggregate that is the main part of the concrete, and copper slag is used as the fine aggregate. The bamboo material 2 having a through-hole 3 formed in a state and having a through hole 3 is embedded and disposed in a state of being surrounded by a large number of voids and bamboo material suitable for living organisms in the state of being placed in the sea. In addition to realizing cost reduction by using waste slag and the like as aggregate, the indispensable metal component for living organisms also melts into seawater, resulting in seaweed A state that helps the growth is obtained, the adhesion and growth of seaweed to the surface can be promoted, and the holes in the bamboo become a place where small fish and shellfish are hidden, helping the habitat, and living in relation to each other in the ecosystem Seaweed and seafood By wearing it can be more algae reefs and reef naturally close state, suitable for recovery of the seaweed. In addition, granular fertilizer and shell powder are mixed in, and nutrients from the granular fertilizer and shell powder are slowly dissolved from the inside of the concrete body in seawater to help the growth of seaweed. More reliable.

なお、前記実施の形態に係る多孔質コンクリート体においては、コンクリートに粒状肥料を混入させ、これを海中で溶出させて海藻の付着、生長を補助する構成としているが、これに限らず、多孔質の高炉除冷スラグに水溶性の肥料分をあらかじめ含浸させてから粗骨材としてセメント等と混練、一体硬化させる構成とすることもでき、海中設置後、海水に接する除冷スラグ表面の孔から肥料分が海水に溶け出し、海藻の付着、生長を助けることとなる。   In the porous concrete body according to the above-described embodiment, granular fertilizer is mixed into the concrete, and this is eluted in the sea so as to assist the adhesion and growth of seaweed. The blast furnace chilled slag can be pre-impregnated with water-soluble fertilizer and then kneaded with cement as a coarse aggregate, and then integrally hardened. After installation in the sea, from the hole on the surface of the chilled slag in contact with seawater The fertilizer will dissolve in the seawater, helping the adhesion and growth of seaweed.

また、前記実施の形態に係る多孔質コンクリート体において、表面はセメントや粗骨材、細骨材の色が表れた状態のままとされる構成としているが、この他、コンクリート練り混ぜの際に液体塗料または着色粉体を混入して着色する構成とすることもでき、得られたコンクリート体をより自然の海底色に近付けられ、海藻以外の海洋生物、特に魚介類がコンクリート体へ住み着きやすくして魚礁としての役割も十分果せることとなる。さらに、コンクリート体を全体的に着色していることで海水中で表面が侵食されても色はそのまま保持され、生物に違和感を与えない効果を維持できる。   Moreover, in the porous concrete body according to the embodiment, the surface is configured to remain in a state where the color of cement, coarse aggregate, and fine aggregate appears, but in addition, when mixing concrete It can also be configured to mix with liquid paint or colored powder, making the obtained concrete body closer to the natural sea floor color, making it easier for marine organisms other than seaweed, especially seafood to settle on the concrete body. Therefore, the role as a fish reef can be fully fulfilled. Furthermore, since the concrete body is colored as a whole, even if the surface is eroded in seawater, the color is maintained as it is, and the effect that does not give a sense of incongruity to living things can be maintained.

本発明に係る多孔質コンクリート体を、調合条件を変えて複数種類製作し、粗骨材種類等を変えた比較例と共に海中に設置して海藻の付着状態について比較した評価結果を説明する。   A plurality of types of porous concrete bodies according to the present invention will be manufactured under different mixing conditions, and the evaluation results will be described in comparison with the adhesion state of seaweeds installed in the sea together with comparative examples in which the types of coarse aggregates were changed.

本発明に係る多孔質コンクリート体の実施例1として、粗骨材に高炉除冷スラグを用いると共に、海藻の付着生長促進用栄養材となる粒状肥料を混入して成形した多孔質コンクリート体を得た。この多孔質コンクリート体は、底面が300×400mm、高さが300mmの略台形状のブロック体である。   As Example 1 of the porous concrete body according to the present invention, a porous concrete body formed by using blast furnace decooling slag as coarse aggregate and mixing with granular fertilizer serving as a nutrient for promoting adhesion growth of seaweed is obtained. It was. This porous concrete body is a substantially trapezoidal block body having a bottom surface of 300 × 400 mm and a height of 300 mm.

また、多孔質コンクリート体の実施例2として、前記実施例1の粗骨材を再生骨材に代えて成形した多孔質コンクリート体を得た。この多孔質コンクリート体も前記実施例1と同様の形状及び大きさとなっている。   Moreover, as Example 2 of the porous concrete body, a porous concrete body obtained by replacing the coarse aggregate of Example 1 with a recycled aggregate was obtained. This porous concrete body also has the same shape and size as the first embodiment.

また、多孔質コンクリート体の実施例3として、前記実施例2の調合に加えて栄養材としての貝殻粉末、塗料として黒色粉末を混入して成形した多孔質コンクリート体を得た。この多孔質コンクリート体も前記実施例1と同様の形状及び大きさとなっている。   Moreover, as Example 3 of the porous concrete body, in addition to the preparation of Example 2, a porous concrete body formed by mixing shell powder as a nutrient and black powder as a paint was obtained. This porous concrete body also has the same shape and size as the first embodiment.

また、多孔質コンクリート体の実施例4として、前記実施例3の塗料を緑色アクリル樹脂系液体に代えて成形した多孔質コンクリート体を得た。この多孔質コンクリート体も前記実施例1と同様の形状及び大きさとなっている。   Moreover, as Example 4 of the porous concrete body, a porous concrete body obtained by replacing the paint of Example 3 with a green acrylic resin liquid was obtained. This porous concrete body also has the same shape and size as the first embodiment.

さらに、多孔質コンクリート体の実施例5として、前記実施例3の塗料を赤色アクリル樹脂系液体に代えて成形した多孔質コンクリート体を得た。この多孔質コンクリート体も前記実施例1と同様の形状及び大きさとなっている。   Furthermore, as Example 5 of the porous concrete body, a porous concrete body formed by replacing the paint of Example 3 with a red acrylic resin liquid was obtained. This porous concrete body also has the same shape and size as the first embodiment.

この他、比較例1として、前記実施例1の粗骨材を一般的な砕石(粒径13〜20mmの砕石5号)に代え、粒状肥料を混入せずに成形した多孔質コンクリート体を得た。この多孔質コンクリート体も前記実施例1と同様の形状及び大きさとなっている。   In addition, as a comparative example 1, the coarse aggregate of Example 1 is replaced with a general crushed stone (crushed stone No. 5 having a particle size of 13 to 20 mm) to obtain a porous concrete body formed without mixing granular fertilizer. It was. This porous concrete body also has the same shape and size as the first embodiment.

さらに、比較例2として、一般的な粗骨材、細骨材を用いた普通コンクリートで製作した多孔質コンクリート体を得た。この多孔質コンクリート体も前記実施例及び比較例1の多孔質コンクリート体と同様の形状及び大きさとしている。   Furthermore, as Comparative Example 2, a porous concrete body made of ordinary concrete using general coarse aggregate and fine aggregate was obtained. This porous concrete body also has the same shape and size as the porous concrete bodies of the above-described Examples and Comparative Example 1.

前記各実施例及び比較例1における多孔質コンクリート体の成形に使用した材料について説明する。セメントは、密度3.04g/cm3の高炉セメントB種、粗骨材は砕石5号(比較例1の場合)、または粒径5〜25mmの高炉除冷スラグ、あるいは粒径8〜20mmの再生骨材である。細骨材は、粒径2.5mm以下の銅スラグを用いた。また、ポリカルボン酸系減水剤等の混和剤も必要量用いている。調合は、水セメント比を25%、目標空隙率を15%とする。また、粒状肥料混入率は対セメント質量比2.5%とする。その他、貝殻粉末混入率は対セメント質量比1.0%、黒色粉体塗料混入率は対セメント質量比5%とし、緑色及び赤色の液体塗料混入率は対水容積比5%として水と置換している。 The materials used for forming the porous concrete bodies in the respective Examples and Comparative Example 1 will be described. Cement is Blast Furnace Cement Type B with a density of 3.04 g / cm 3 , Coarse Aggregate is Crushed Stone No. 5 (in the case of Comparative Example 1), Blast Furnace Cooling Slag with Particle Size of 5-25 mm, or Particle Size of 8-20 mm Recycled aggregate. As the fine aggregate, copper slag having a particle size of 2.5 mm or less was used. In addition, a necessary amount of an admixture such as a polycarboxylic acid-based water reducing agent is also used. In the blending, the water cement ratio is 25% and the target porosity is 15%. The granular fertilizer mixing rate is 2.5% of the cement mass ratio. In addition, the shell powder mixing ratio is 1.0% to cement mass ratio, the black powder paint mixing ratio is 5% to cement weight ratio, and the green and red liquid paint mixing ratio is 5% to water volume ratio to replace water. doing.

コンクリートの練り混ぜには、ミキサを使用し、まず、セメントと細骨材を投入して30秒間練り混ぜ、続いて水と混和剤を投入して180秒間練り混ぜる。この時、目標とするフロー値(190mm)となるように水を増減させて調整し、最後に、粗骨材を投入して60秒間練り混ぜて、ミキサーから排出する。   For mixing the concrete, a mixer is used. First, cement and fine aggregate are added and mixed for 30 seconds, and then water and an admixture are added and mixed for 180 seconds. At this time, it adjusts by increasing / decreasing water so that it may become the target flow value (190 mm), and finally, coarse aggregate is thrown in, it mixes for 60 seconds, and it discharges | emits from a mixer.

海中浸漬試験用供試体は、節が貫通状態とされた直径約40mmの竹材を複数本配置した型枠内の下部50mmにモルタルを敷詰めてから三層詰めで打設する。締固めは、各層を十分に突き棒で突き固めた後、確実に締め固まるまで上面より型枠バイブレータをかける。各層への投入、突き固めの都度、粒状肥料を所定量ずつ散布配設し、層間に位置させる。竹材ごと一体化して作製した供試体は24時間後脱型し、屋外湿布養生を行った。   The underwater immersion test specimen is placed in three layers after mortar is laid on the lower 50 mm in a formwork in which a plurality of bamboo materials having a diameter of about 40 mm with nodes pierced are arranged. For compaction, after each layer is sufficiently solidified with a stick, a mold vibrator is applied from the upper surface until it is firmly compacted. Each time it is put into each layer and tamped, a predetermined amount of granular fertilizer is sprayed and placed between the layers. Specimens produced by integrating the bamboo material were demolded after 24 hours and subjected to outdoor poultice curing.

上記の如くして得た多孔質コンクリート体の各実施例及び比較例を、十分な養生後、海中に沈めた。そして、海中浸漬から約3ヶ月後、各実施例及び比較例の多孔質コンクリート体への海藻の付着面積を測定した。この測定結果のグラフを図2に示す。   Each example and comparative example of the porous concrete body obtained as described above were submerged in the sea after sufficient curing. And about 3 months after immersion in the sea, the adhesion area of the seaweed to the porous concrete bodies of each Example and Comparative Example was measured. A graph of the measurement results is shown in FIG.

海藻の付着量については、図2から、除冷スラグや再生骨材を粗骨材として用いた多孔質コンクリート体は、粗骨材を砕石としたものや普通コンクリートを用いたものに比べて海藻がより多く付着していることがわかる。   As for the amount of seaweed attached, from Fig. 2, the porous concrete body using uncooled slag or recycled aggregate as coarse aggregate is more seaweed than those using coarse aggregate as crushed stone or ordinary concrete. It can be seen that more is attached.

これによって、本発明に係る多孔質コンクリート体は、粗骨材に高炉除冷スラグや再生骨材を用いると共に粒状肥料を混入していることにより、海藻の付着、成長を促せることが確認できた。   Thus, it can be confirmed that the porous concrete body according to the present invention can promote adhesion and growth of seaweed by using blast furnace decooled slag and recycled aggregate in coarse aggregate and mixing granular fertilizer. It was.

本発明の一実施の形態に係る多孔質コンクリート体の概略構成図である。It is a schematic block diagram of the porous concrete body which concerns on one embodiment of this invention. 本発明の実施例及び比較例の海藻付着面積測定結果説明図である。It is seaweed adhesion area measurement result explanatory drawing of the Example and comparative example of this invention.

符号の説明Explanation of symbols

1 多孔質コンクリート体
2 竹材
3 貫通孔
4 モルタル層
DESCRIPTION OF SYMBOLS 1 Porous concrete body 2 Bamboo material 3 Through-hole 4 Mortar layer

Claims (2)

セメントと水、粗骨材、及び細骨材を少なくとも用いて所定立体形状に形成されてなる多孔質コンクリート体において、
前記粗骨材として、粒径5ないし25mmの高炉除冷スラグ又は粒径5ないし20mmの再生骨材を所定量用いると共に、前記細骨材として粒径2.5mm以下の銅スラグを所定量用い、空隙率を10ないし20%とされると共に圧縮強度を18N/mm2以上、さらに単位容積質量を2.3t/m3以上とされてなり、
少なくとも硬化前に、節部を貫通加工された竹材を一又は複数箇所に貫通状態で配置され、そのまま埋込まれることを
特徴とする多孔質コンクリート体。
In a porous concrete body formed into a predetermined three-dimensional shape using at least cement and water, coarse aggregate, and fine aggregate,
As the coarse aggregate, a predetermined amount of blast furnace cooling slag having a particle size of 5 to 25 mm or recycled aggregate having a particle size of 5 to 20 mm is used, and a predetermined amount of copper slag having a particle size of 2.5 mm or less is used as the fine aggregate. The porosity is 10 to 20%, the compressive strength is 18 N / mm 2 or more, and the unit volume mass is 2.3 t / m 3 or more.
A porous concrete body characterized in that bamboo material, which has been processed to penetrate through a node portion, is disposed in one or a plurality of locations in a penetrating state at least before being hardened, and is embedded as it is.
前記請求項1に記載の多孔質コンクリート体において、
各原料を混練した未硬化コンクリートの型枠への投入が複数層詰めとされると共に、粒状肥料が、複数回の前記未硬化コンクリートの投入及び突き固めで得られる各層の間に所定量ずつ散布投入されることを
特徴とする多孔質コンクリート体。
In the porous concrete body according to claim 1,
The uncured concrete mixed with each raw material is put into a plurality of layers, and granular fertilizer is sprayed in a predetermined amount between each layer obtained by multiple times of the uncured concrete filling and tamping. Porous concrete body characterized by being introduced.
JP2003321090A 2003-09-12 2003-09-12 Porous concrete body Pending JP2005088221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321090A JP2005088221A (en) 2003-09-12 2003-09-12 Porous concrete body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321090A JP2005088221A (en) 2003-09-12 2003-09-12 Porous concrete body

Publications (1)

Publication Number Publication Date
JP2005088221A true JP2005088221A (en) 2005-04-07

Family

ID=34452865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321090A Pending JP2005088221A (en) 2003-09-12 2003-09-12 Porous concrete body

Country Status (1)

Country Link
JP (1) JP2005088221A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416327A (en) * 2004-07-20 2006-01-25 Oakdale Contracts Ltd Method of producing a shaped concrete product
JP2007152929A (en) * 2005-11-08 2007-06-21 Milcon:Kk Manufacturing method of concrete molding, and concrete molding
JP2007261119A (en) * 2006-03-29 2007-10-11 Milcon:Kk Manufacturing method of concrete molding, and concrete molding
CN103553505A (en) * 2013-11-25 2014-02-05 济南大学 Fertilizer slow-release type portland cement based gel material
CN104072061A (en) * 2014-07-04 2014-10-01 北京东方建宇混凝土科学技术研究院有限公司 Macroporous concrete containing low grade recycled aggregates and preparation method of concrete
JP2019154427A (en) * 2018-03-07 2019-09-19 株式会社アベゼン Iron supply container
CN113653006A (en) * 2021-05-26 2021-11-16 江苏恒诺农业科技发展有限公司 Greening method for protecting urban river revetment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2416327A (en) * 2004-07-20 2006-01-25 Oakdale Contracts Ltd Method of producing a shaped concrete product
JP2007152929A (en) * 2005-11-08 2007-06-21 Milcon:Kk Manufacturing method of concrete molding, and concrete molding
JP2007261119A (en) * 2006-03-29 2007-10-11 Milcon:Kk Manufacturing method of concrete molding, and concrete molding
CN103553505A (en) * 2013-11-25 2014-02-05 济南大学 Fertilizer slow-release type portland cement based gel material
CN104072061A (en) * 2014-07-04 2014-10-01 北京东方建宇混凝土科学技术研究院有限公司 Macroporous concrete containing low grade recycled aggregates and preparation method of concrete
JP2019154427A (en) * 2018-03-07 2019-09-19 株式会社アベゼン Iron supply container
CN113653006A (en) * 2021-05-26 2021-11-16 江苏恒诺农业科技发展有限公司 Greening method for protecting urban river revetment

Similar Documents

Publication Publication Date Title
JP3169581U (en) Hardened product for seaweed formation
JP5872199B2 (en) Reef block and method for forming seaweed beds
JP5224692B2 (en) Dredging block construction method
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP2005088221A (en) Porous concrete body
JP5531555B2 (en) Stone for underwater settling
CN104727273B (en) A kind of employing carries out the method for upright embankment restoration of the ecosystem from embedded building block
JP5896057B2 (en) Manufacturing method of artificial stone
JP5907246B2 (en) Manufacturing method of solidified body
JP5242332B2 (en) Sand substitute and manufacturing method thereof
JP2004035366A (en) Concrete formed body and block
KR101381261B1 (en) Method for preparing scs concrete composition
WO2011136395A1 (en) Method for producing artificial stone material
JP2004292244A (en) Concrete-like colored solid body and its manufacture method
JP2002176877A (en) Block to be installed under water
JP5114840B2 (en) Underwater fauna and flora and marine ranch using the same
JP4736448B2 (en) Construction method of shallow ground
KR100482378B1 (en) Manufacturing methods of multi-functional environment block for kelp forest regeneration using recycled aggregate and by-product
JP2003116398A (en) Fishing bank or rocky shore animal-protecting bank using scallop shell
JP2000143304A (en) Artificial stone made from slag as principal raw material and production of the same stone
JP4411159B2 (en) Porous concrete molded body using shell, porous concrete block for seawall and porous concrete block for artificial reef
JP4656472B2 (en) Artificial reef block
JP2000007457A (en) Porous lumpy body and its production
JP2008303708A (en) Repair method of steel revetment structure
JP2000143305A (en) Building stone to be sunk in water and production of the same stone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202