JP2013081901A - Tool for improving water quality and environment - Google Patents

Tool for improving water quality and environment Download PDF

Info

Publication number
JP2013081901A
JP2013081901A JP2011223576A JP2011223576A JP2013081901A JP 2013081901 A JP2013081901 A JP 2013081901A JP 2011223576 A JP2011223576 A JP 2011223576A JP 2011223576 A JP2011223576 A JP 2011223576A JP 2013081901 A JP2013081901 A JP 2013081901A
Authority
JP
Japan
Prior art keywords
metal
water
water quality
electronegativity
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011223576A
Other languages
Japanese (ja)
Inventor
Mikio Sugimoto
幹生 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011223576A priority Critical patent/JP2013081901A/en
Publication of JP2013081901A publication Critical patent/JP2013081901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tool for improving water quality and environment which has a lot of contact boundary parts between a first metal and a second metal, can elute metal ions over a long term, and can reduce manufacturing cost.SOLUTION: In a process of manufacturing reduced iron in a reduction furnace by mixing an oxidized iron material 1 being a first metal having larger ionization tendency or/and lower electronegativity with a carbon material 2 being a reduction material as a second metal having smaller ionization tendency or/and higher electronegativity, reduced iron obtained by suspending a reduction process at a stage where a carbon content in process of reduction remains to some extent is formed into a substance 3 in a state crushed into cluster-like or particle-like shapes.

Description

本発明は、池、湖、プール、河川、海等の水中に没することでこれらの水中に金属イオンを溶出させて水質を改善する水質及び環境改善具に関する。   The present invention relates to a water quality and environment improvement tool for improving water quality by leaching metal ions into water such as ponds, lakes, pools, rivers, seas, and the like.

従来の水質改善具として特許文献1に記載の技術が公知になっている。
この従来の技術は、イオン化傾向又は/及び電気陰性度の異なる2種類の異種金属(例えば、イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属として鉄と、イオン化傾向の小さい又は/及び電気陰性度の高い方の第2金属として炭素)を互いに密着させると共に、該2種類の異種金属の接触境界部分が水と接触する状態で露出形成されている構成とすることにより水中において該接触境界部分で局部電池が形成されてイオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属(例えば鉄)が酸化する際に水中に金属イオン(例えば鉄イオン)を溶出させて水に所定の機能を付加する水質及び環境改善具であって、2種類の異種金属のうちの一方の金属に対し、もう一方の金属がねじ込まれることにより2種類の異種金属が互いに密着され、2種類の金属のいずれか一方又は両方に、もう一方の金属とのねじ込み接触部分まで到達する複数の貫通孔が形成されることにより、2種類の異種金属の接触境界部分が貫通孔の底部においても形成され、これにより、金属イオンの溶出量を多くすることができるようにしたものであった。
As a conventional water quality improvement tool, the technique described in Patent Document 1 is publicly known.
This conventional technique has two kinds of different metals having different ionization tendency and / or electronegativity (for example, iron as a first metal having a higher ionization tendency or / and lower electronegativity, and a lower ionization tendency or And / or carbon as the second metal having the higher electronegativity, and the contact boundary portion between the two kinds of different metals is exposed and formed in contact with water. When a local battery is formed at the contact boundary portion and the first metal (eg, iron) having a higher ionization tendency and / or lower electronegativity is oxidized, metal ions (eg, iron ions) are eluted in water. A water quality and environment improvement tool for adding a predetermined function to water, and the other metal is screwed into one of the two kinds of different metals, so that the two kinds of different metals The contact boundary part of two kinds of dissimilar metals penetrates by forming a plurality of through-holes that are in close contact with each other and reach one or both of the two kinds of metals to the screwed contact part with the other metal. It was also formed at the bottom of the hole, so that the amount of metal ions eluted could be increased.

特開2007−098352号公報JP 2007-098352 A

しかしながら、従来例の水質及び環境改善具にあっては、2種類の異種金属の接触境界部分が少なく、また、接触境界部分におけるイオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属(例えば鉄)が酸化して金属イオンを溶出することで、第1金属と第2金属とが接触不良状態に陥るため、金属イオンを長期に亘って溶出することができないという問題があった。
また、両金属の加工が面倒であるため、コストが高くつくという問題もあった。
However, in the conventional water quality and environment improvement tool, there are few contact boundary portions of two kinds of different metals, and the first metal having a higher ionization tendency and / or lower electronegativity at the contact boundary portion. There is a problem that the metal ions cannot be eluted over a long period of time because the first metal and the second metal fall into a poor contact state due to the oxidation of metal ions (for example, iron).
In addition, since the processing of both metals is troublesome, there is a problem that the cost is high.

本発明の解決しようとする課題は、第1金属と第2金属との接触境界部分が多く金属イオンを長期に亘って溶出させることができるとともに、製造コストの低減化が可能な水質及び環境改善具を提供することにある。   The problem to be solved by the present invention is that there are many contact boundary portions between the first metal and the second metal, and metal ions can be eluted over a long period of time, and the water quality and environment can be reduced so that the manufacturing cost can be reduced. It is in providing tools.

上記課題を解決するため請求項1記載の発明は、
イオン化傾向又は/及び電気陰性度の異なる2種類の異種金属を互いに密着させると共に該2種類の異種金属の接触境界部分が水と接触する状態で露出形成されている構成とすることにより水中において該接触境界部分で局部電池が形成されてイオン化傾向の大きい又は/及び電気陰性度の低い方の金属が酸化する際に水中に金属イオンを溶出させて水に所定の機能を付加する水質及び環境改善具であって、
前記イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属である酸化した鉄材とイオン化傾向の小さい又は/及び電気陰性度の高い方の第2金属として還元材である炭素材とを混合して還元炉で還元鉄を製造する工程において還元途中の炭素分がある程度残留している段階で得られた粗還元鉄を、塊状又は粒状に砕いた状態の物であることを特徴とする手段とした。
In order to solve the above problems, the invention according to claim 1
Two kinds of different metals having different ionization tendencies and / or electronegativity are brought into close contact with each other, and a contact boundary portion between the two kinds of different metals is exposed and formed in contact with water. Water quality and environmental improvement by adding a specific function to water by eluting metal ions when a local battery is formed at the contact boundary and a metal having a higher ionization tendency and / or a metal having a lower electronegativity oxidizes. Tools,
An oxidized iron material which is the first metal having a higher ionization tendency or / and a lower electronegativity and a carbon material which is a reducing material as the second metal having a lower ionization tendency or / and a higher electronegativity In the process of mixing and producing reduced iron in a reduction furnace, it is characterized in that the crude reduced iron obtained at the stage where carbon during the reduction remains to some extent, is in a state of being crushed into a lump or granular form As a means.

また、請求項2記載の発明は、
請求項1に記載の水質及び環境改善具において、
前記塊状又は粒状に砕いた状態のものが通水性を有する収容容器に収容されていることを特徴とする手段とした。
The invention according to claim 2
In the water quality and environment improvement tool of Claim 1,
The crushed or granular crushed material is accommodated in a water-permeable container.

請求項1記載の発明では、上述のように、イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属である酸化した鉄材とイオン化傾向の小さい又は/及び電気陰性度の高い方の第2金属として還元材である炭素材とを混合して還元炉で還元鉄を製造する工程において還元途中の炭素分がある程度残っている時点で得られた粗還元鉄を、塊状又は粒状に砕いた状態の物とした。
このように、鉄材として製鉄所などででる副産物である既酸化の鉄のミルスケールを用いることができるので、材料コストを低減することができる。
In the invention according to claim 1, as described above, the oxidized iron material which is the first metal having the higher ionization tendency and / or the lower electronegativity and the ionization tendency having the lower ionization tendency and / or the higher electronegativity. Crude reduced iron obtained at the time when a part of carbon in the course of reduction remains in the process of mixing reduced carbon as the second metal and producing reduced iron in a reduction furnace is crushed into blocks or granules It was the thing of the state.
Thus, since the mill scale of the already oxidized iron which is a by-product which appears in a steelworks etc. can be used as an iron material, material cost can be reduced.

また、還元鉄の製造工程の途中までで良いため、製造が簡単で制作費を低減することができる。
また、還元鉄の製造工程において鉄材と炭素材とが互いに結合した状態となるため、鉄材と炭素材との接触境界部分が多くなり、したがって、金属イオンの溶出効率が高まるとともに、金属イオンを長期に亘って溶出させることができるようになるという効果が得られる。
Moreover, since it is sufficient to complete the manufacturing process of reduced iron, manufacturing is easy and production costs can be reduced.
Further, since the iron material and the carbon material are in a state of being bonded to each other in the manufacturing process of the reduced iron, the contact boundary portion between the iron material and the carbon material is increased. The effect of being able to elute over the range is obtained.

また、イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属として鉄(Fe)を用いることにより、二価鉄イオン(Fe2+)が溶出される。
すなわち、鉄(Fe)と炭素(C)の接触部分を無数に形成維持したり、密着部を無限に形成したFe/Cの混合混在物を液中に存置すると、Fe−Cの接触部(密着部)において、水(媒体)を介してFeとCの電気陰性度差による局部電位差の電池が生まれ、Fe側からC側へFeの電子eが流れてFeはeを失って、酸化すると、Fe2+となって媒体の水中へ溶出する。
そして水中に溶出したこの二価鉄イオン(Fe2+)の一部は、水中に溶存する化学物質で栄養塩類その他と結合して鉄の複合塩類を作る。例えば栄養塩類のリン酸や硝酸及び二酸化炭素が溶けてできる炭酸及びその他の塩類は鉄の化合物塩類を作り、溶存化学物質を減容し沈殿して水中底質の微生物及び植物の肥料、養分として供給することができる。
一方、結合しなかったFe2+(水溶性のまま)は、水中の動物、植物や植物プランクトンなどの生き物の必須ミネラルとして吸収される。これにより、食物連鎖など生物循環を活性化する効果が得られる。
なお、鉄も炭素も地球自然を構成する主な物質であるので安全性にも優れる。
Further, by using iron (Fe) as the first metal having a higher ionization tendency and / or lower electronegativity, divalent iron ions (Fe 2+ ) are eluted.
That is, when an infinite number of contact portions of iron (Fe) and carbon (C) are formed and maintained, or a mixed mixture of Fe / C having infinite contact portions is placed in the liquid, the contact portion of Fe-C ( In the contact portion), a battery having a local potential difference due to an electronegativity difference between Fe and C is born through water (medium), and an electron e of Fe flows from the Fe side to the C side, and Fe loses e , When oxidized, it becomes Fe 2+ and elutes into the medium water.
A part of the divalent iron ions (Fe 2+ ) eluted in water is a chemical substance dissolved in water and combines with nutrients and others to form iron complex salts. For example, carbonic acid and other salts made by dissolving phosphoric acid, nitric acid, and carbon dioxide of nutrients make iron compound salts, reduce dissolved chemicals, precipitate, and subsidize microorganisms and plant fertilizers and nutrients in water Can be supplied.
On the other hand, Fe 2+ (which remains water-soluble) that has not been bound is absorbed as an essential mineral of creatures such as animals in water, plants, and phytoplankton. Thereby, the effect which activates biological circulation, such as a food chain, is acquired.
Since iron and carbon are the main substances constituting earth nature, they are excellent in safety.

請求項2記載の発明では、上述のように、塊状又は粒状に砕いた状態のものが通水性を有する収容容器に収容されることにより、川底や海底などに散在させる以外に、浮きに吊したり、杭状の中空収容容器内に収容して定置網、養殖用海苔網などの漁業用網や養殖イカダを定置固定し、波浪と潮流などから網やイカダを守る杭あるいは錘として使用することができるようになるなど、使用用途を広げることができる。
また、収容容器に収容することにより、流れの早い場所での移動を防止することができる。
In the second aspect of the invention, as described above, the crushed or granular crushed material is housed in a water-permeable container, so that it is suspended in the float in addition to being scattered on the riverbed or the seabed. It can be used as a pile or weight that can be housed in a pile-shaped hollow storage container and fixed in place for fishing nets such as stationary nets and aquaculture laver nets and cultured squid, and protect the nets and squid from waves and tides. The usage can be expanded, such as being able to do so.
Moreover, the movement in the place where a flow is early can be prevented by accommodating in a storage container.

実施例1の水質及び環境改善具を示す平面図である。It is a top view which shows the water quality of Example 1, and an environmental improvement tool.

以下にこの発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、この実施例1の水質及び環境改善具は、イオン化傾向又は/及び電気陰性度の異なる2種類の異種金属を互いに密着させると共に該2種類の異種金属の接触境界部分が水と接触する状態で露出形成されている構成とすることにより水中において該接触境界部分で局部電池が形成されてイオン化傾向の大きい又は/及び電気陰性度の低い方の金属が酸化する際に水中に金属イオンを溶出させて水に所定の機能を付加する水質及び環境改善具であって、図1に示すように、イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属である酸化した鉄材1とイオン化傾向の小さい又は/及び電気陰性度の高い方の第2金属として還元材である炭素材2とを混合して還元炉で還元鉄を製造する工程において還元途中の炭素分がある程度残留している段階得られた粗還元鉄を、塊状又は粒状に砕いた状態の物3とした。   First, in the water quality and environment improvement tool of Example 1, two kinds of different metals having different ionization tendency and / or electronegativity are brought into close contact with each other, and the contact boundary portion between the two kinds of different metals is in contact with water. In this structure, a local battery is formed at the contact boundary in water, and metal ions are eluted in water when a metal having a higher ionization tendency and / or a metal having a lower electronegativity is oxidized. A water quality and environmental improvement tool for adding a predetermined function to water, as shown in FIG. 1, an oxidized iron material 1 which is a first metal having a higher ionization tendency and / or a lower electronegativity In the process of producing reduced iron in a reduction furnace by mixing the carbon material 2 which is a reducing material as the second metal having a lower ionization tendency and / or higher electronegativity, a certain amount of carbon during the reduction remains. The crude reduced iron obtained phase is to obtain a thing third state crushed in bulk or granular.

炭素材3としては、石炭、ピッチなどを使ったコークス、人造黒鉛、天然黒鉛などが用いられる。   As the carbon material 3, coke using coal, pitch, artificial graphite, natural graphite, or the like is used.

さらに詳述すると、粗還元鉄を、塊状又は粒状に砕いた状態のもの3を、通水性を有する収容容器(図示を省略)に収容した状態で用いるようにしてもよい。
通水性を有する収容容器としては、その材料、形状、大きさなど任意であり、例えば、材料として多数の通水孔を有するものあるいは加工したものであれば、紙管、樹脂製パイプ、不織布袋、麻袋などを用いることができる。
In more detail, you may make it use in the state accommodated in the accommodation container (illustration omitted) which has the water-permeable accommodation thing 3 in the state which grind | pulverized coarse reduced iron in the block shape or the granule.
The material, shape, size, and the like of the container having water permeability are arbitrary. For example, a paper tube, a resin pipe, a non-woven bag if the material has a large number of water holes or is processed. A hemp bag can be used.

次に、この実施例1の作用・効果を説明する。
この実施例1の水質改善材にあっては、上述のように、イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属である酸化した鉄材1とイオン化傾向の小さい又は/及び電気陰性度の高い方の第2金属として還元材である炭素材2とを混合して還元炉で還元鉄を製造する工程において還元途中の炭素分がある程度残っている時点で得られた粗還元鉄を、塊状又は粒状に砕いた状態の物3とした。
このように、鉄材1として製鉄所などででる副産物である既酸化の鉄のミルスケールを用いることができるので、リサイクルになって材料コストを低減することができる。
また、還元鉄の製造工程の途中までで良いため、製造が簡単で制作費を低減することができる。
Next, operations and effects of the first embodiment will be described.
In the water quality improving material of Example 1, as described above, the oxidized iron material 1 which is the first metal having the higher ionization tendency or / and the lower electronegativity and the ionization tendency is lower or / and the electricity. Crude reduced iron obtained at the time when carbon in the reduction remains to some extent in the process of producing reduced iron in a reduction furnace by mixing the carbon material 2 as the reducing material as the second metal having the higher negative degree Was made into the thing 3 of the state crushed in the block shape or the granular form.
Thus, since the iron material 1 can be a mill scale of already oxidized iron, which is a by-product produced at a steel mill or the like, the material cost can be reduced by recycling.
Moreover, since it is sufficient to complete the manufacturing process of reduced iron, manufacturing is easy and production costs can be reduced.

また、還元鉄の製造工程において鉄材1と炭素材2とが互いに結合した状態となるため、鉄材1と炭素材2との接触境界部分が多くなり、したがって、金属イオンの溶出効率が高まるとともに、金属イオンを長期に亘って溶出させることができるようになるという効果が得られる。   In addition, since the iron material 1 and the carbon material 2 are in a state of being bonded to each other in the manufacturing process of reduced iron, the contact boundary portion between the iron material 1 and the carbon material 2 is increased, and thus the elution efficiency of metal ions is increased. An effect is obtained that metal ions can be eluted over a long period of time.

また、イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属として鉄(Fe)を用いることにより、二価鉄イオン(Fe2+)が溶出される。
すなわち、鉄(Fe)と炭素(C)の接触部分を無数に形成維持したり、密着部を無限に形成したFe/Cの混合混在物を液中に存置すると、Fe−Cの接触部(密着部)において、水(媒体)を介してFeとCの電気陰性度差による局部電位差の電池が生まれ、Fe側からC側へFeの電子eが流れてFeはeを失って、酸化すると、Fe2+となって媒体の水中へ溶出する。
そして水中に溶出したこの二価鉄イオン(Fe2+)の一部は、水中に溶存する化学物質で栄養塩類その他と結合して鉄の複合塩類を作る。例えば栄養塩類のリン酸や硝酸及びに酸化炭素が溶けてできる炭酸及びその他塩類は鉄の化合物塩類を作り、溶存化学物質を減容し沈殿して水中底質の微生物及び植物の肥料、養分として供給することができる。
一方、結合しなかったFe2+(水溶性のまま)は、水中の動物、植物や植物プランクトンなどの生き物の必須ミネラルとして吸収される。これにより、食物連鎖など生物循環を活性化する効果が得られる。
なお、鉄も炭素も地球自然を構成する主な物質であるので安全性にも優れる。
Further, by using iron (Fe) as the first metal having a higher ionization tendency and / or lower electronegativity, divalent iron ions (Fe 2+ ) are eluted.
That is, when an infinite number of contact portions of iron (Fe) and carbon (C) are formed and maintained, or a mixed mixture of Fe / C having infinite contact portions is placed in the liquid, the contact portion of Fe-C ( In the contact portion), a battery having a local potential difference due to an electronegativity difference between Fe and C is born through water (medium), and an electron e of Fe flows from the Fe side to the C side, and Fe loses e , When oxidized, it becomes Fe 2+ and elutes into the medium water.
A part of the divalent iron ions (Fe 2+ ) eluted in water is a chemical substance dissolved in water and combines with nutrients and others to form iron complex salts. For example, nutrients such as phosphoric acid and nitric acid, and carbonic acid and other salts formed by dissolving carbon oxide in iron make iron compound salts, reduce dissolved chemicals, precipitate, and subsidize microorganisms and plant fertilizers and nutrients in water. Can be supplied.
On the other hand, Fe 2+ (which remains water-soluble) that has not been bound is absorbed as an essential mineral of creatures such as animals in water, plants, and phytoplankton. Thereby, the effect which activates biological circulation, such as a food chain, is acquired.
Since iron and carbon are the main substances constituting earth nature, they are also excellent in safety.

また、塊状又は粒状に砕いた状態の物3が通水性を有する収容容器に収容されることにより、川底や海底などに散在させる以外に、浮きに吊したり、杭状の中空収容容器内に収容して定置網、養殖用海苔網などの漁業用網や養殖イカダを定置固定し、波浪と潮流などから網やイカダを守る杭あるいは錘として使用することができるようになるなど、使用用途を広げることができる。
また、収容容器に収容することにより、流れの早い場所での移動を防止することができる。
In addition to being scattered in the riverbed, the seabed, etc., the bulky or granular crushed object 3 is housed in a water-permeable container, so that it can be suspended in a float or in a pile-shaped hollow container It can be used as a pile or weight that can be housed and fixed for fishing nets such as stationary nets, aquaculture laver nets and cultured squid, and can be used as a pile or weight to protect the net and squid from waves and tides. be able to.
Moreover, the movement in the place where a flow is early can be prevented by accommodating in a storage container.

以上本実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。   Although the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and design changes and the like within a scope not departing from the gist of the present invention are included in the present invention.

例えば、実施例では、塊状又は粒状に砕いた状態の物3が通水性を有する収容容器に収容するようにしたが、塊状又は粒状に砕いた状態の物3をそのまま川底や海底に散在させたり、あるいは腐植土を混在させるようにしてもよい。   For example, in the embodiment, the bulky or granular crushed object 3 is accommodated in a water-permeable container, but the massive or granular crushed object 3 is scattered as it is on the riverbed or the seabed. Alternatively, humus soil may be mixed.

また、収容容器内にゼオライト、珪藻土及び植物を炭化した木炭、竹炭、もみ殻炭その他ポーラス物体を混合混在させることにより、水中の不純物を吸着させるという付加価値が得られる。   Further, by mixing and mixing charcoal, bamboo charcoal, rice husk charcoal, and other porous objects obtained by carbonizing zeolite, diatomaceous earth and plants in the container, an added value of adsorbing impurities in water can be obtained.

1 鉄材
2 炭素材
3 塊状又は粒状に砕いた状態の物
1 Iron material 2 Carbon material 3 Things in the state of being crushed into a lump or granule

Claims (2)

イオン化傾向又は/及び電気陰性度の異なる2種類の異種金属を互いに密着させると共に該2種類の異種金属の接触境界部分が水と接触する状態で露出形成されている構成とすることにより水中において該接触境界部分で局部電池が形成されてイオン化傾向の大きい又は/及び電気陰性度の低い方の金属が酸化する際に水中に金属イオンを溶出させて水に所定の機能を付加する水質及び環境改善具であって、
前記イオン化傾向の大きい又は/及び電気陰性度の低い方の第1金属である酸化した鉄材とイオン化傾向の小さい又は/及び電気陰性度の高い方の第2金属として還元材である炭素材とを混合して還元炉で還元鉄を製造する工程において還元途中の炭素分がある程度残留している段階で還元工程を中止して得られた還元鉄を、塊状又は粒状に砕いた状態の物であることを特徴とする水質及び環境改善具。
を特徴とする水質及び環境改善具。
Two kinds of different metals having different ionization tendencies and / or electronegativity are brought into close contact with each other, and a contact boundary portion between the two kinds of different metals is exposed and formed in contact with water. Water quality and environmental improvement by adding a specific function to water by eluting metal ions when a local battery is formed at the contact boundary and a metal having a higher ionization tendency and / or a metal having a lower electronegativity oxidizes. Tools,
An oxidized iron material which is the first metal having a higher ionization tendency or / and a lower electronegativity and a carbon material which is a reducing material as the second metal having a lower ionization tendency or / and a higher electronegativity In the process of mixing and producing reduced iron in a reduction furnace, the reduced iron obtained by stopping the reduction process at a stage where carbon during the reduction remains to some extent, is a product in a state of being crushed in a lump or granular form A water quality and environment improvement tool characterized by that.
Water quality and environmental improvement tool characterized by.
請求項1に記載の水質及び環境改善具において、
前記塊状又は粒状に砕いた状態のものが通水性を有する収容容器に収容されていることを特徴とする水質及び環境改善具。
In the water quality and environment improvement tool of Claim 1,
A water quality and environmental improvement tool characterized in that the crushed or granular crushed material is accommodated in a water permeable container.
JP2011223576A 2011-10-11 2011-10-11 Tool for improving water quality and environment Pending JP2013081901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011223576A JP2013081901A (en) 2011-10-11 2011-10-11 Tool for improving water quality and environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223576A JP2013081901A (en) 2011-10-11 2011-10-11 Tool for improving water quality and environment

Publications (1)

Publication Number Publication Date
JP2013081901A true JP2013081901A (en) 2013-05-09

Family

ID=48527679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223576A Pending JP2013081901A (en) 2011-10-11 2011-10-11 Tool for improving water quality and environment

Country Status (1)

Country Link
JP (1) JP2013081901A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194739A1 (en) * 2014-06-20 2015-12-23 우진건설주식회사 Waste water treatment method using micro-electrolysis reaction, and micro-electrolysis material thereof
JP2018164871A (en) * 2017-03-28 2018-10-25 新日鉄住金化学株式会社 Water-quality improving material
JP2019063732A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Metal trapping material for recovering valuable metals, method for producing the same and method for recovering valuable metals
JP2019171377A (en) * 2018-03-28 2019-10-10 日鉄ケミカル&マテリアル株式会社 Water quality improving material and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194739A1 (en) * 2014-06-20 2015-12-23 우진건설주식회사 Waste water treatment method using micro-electrolysis reaction, and micro-electrolysis material thereof
JP2018164871A (en) * 2017-03-28 2018-10-25 新日鉄住金化学株式会社 Water-quality improving material
JP2019063732A (en) * 2017-09-29 2019-04-25 日鉄ケミカル&マテリアル株式会社 Metal trapping material for recovering valuable metals, method for producing the same and method for recovering valuable metals
JP2019171377A (en) * 2018-03-28 2019-10-10 日鉄ケミカル&マテリアル株式会社 Water quality improving material and method for producing the same
JP7376244B2 (en) 2018-03-28 2023-11-08 日鉄ケミカル&マテリアル株式会社 Water quality improvement material and its manufacturing method

Similar Documents

Publication Publication Date Title
Liu et al. Wastewater treatment using filamentous algae–a review
Yadav et al. Removal of chromium and nickel from aqueous solution in constructed wetland: mass balance, adsorption–desorption and FTIR study
JP4489043B2 (en) Water area environmental conservation material and water area environmental conservation method
Short et al. The seagrass filter: purification of estuarine and coastal waters
Kibuye et al. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part II-mechanical and biological control methods
JP3829140B2 (en) How to repair salmon burn
JP2007268511A (en) Iron ion eluting body
JP2013081901A (en) Tool for improving water quality and environment
JP2014198635A (en) Fertilizer
Gürel Applications of the biosorption process for nickel removal from aqueous solutions–A review
JP2010242075A (en) Iron chelate generator and method for using the same
Malla et al. Effect of short-term sewage irrigation on chemical build up in soils and vegetables
JP6173001B2 (en) Iron supply material and iron supply method
Tozzi et al. Agronomic performance and food safety of strawberry cultivated on a remediated sediment
JP2013102743A (en) Artificial material for supplying minerals for preserving aquatic environment and method for preserving aquatic environment
Abdallh et al. Saline-sodic soil reclamation with stabilized sewage sludge and recycled wastewater.
Liu et al. Fate and transport of copper applied in channel catfish ponds
El-Halag et al. Impact of some environmental condition on water quality and some heavy metals in water from Bardawil Lake
JP2013141657A (en) Tool for improving water quality
JP5305047B2 (en) Solid organic matter decomposition type liquid fertilizer supply device and solid organic matter decomposition type liquid fertilizer supply method
JP6851601B2 (en) Iron supply container
Ren et al. Pb Removal Using Mixed Substrates in a Constructed Laboratory-Scale Unvegetated Vertical Subsurface-Flow Wetland.
JP5884631B2 (en) Water environment container
Herman et al. Pemanfaatan Tanah Vulkanik dalam Sistem Multiple Soil Layering (MSL) Terhadap Pemurnian Air Irigasi Terpolusi
Sreenivasulu et al. Physico-chemical characteristics of freshwater Ramanna tank (cheruvu), Nellore district, India