JP2019063732A - Metal trapping material for recovering valuable metals, method for producing the same and method for recovering valuable metals - Google Patents

Metal trapping material for recovering valuable metals, method for producing the same and method for recovering valuable metals Download PDF

Info

Publication number
JP2019063732A
JP2019063732A JP2017191987A JP2017191987A JP2019063732A JP 2019063732 A JP2019063732 A JP 2019063732A JP 2017191987 A JP2017191987 A JP 2017191987A JP 2017191987 A JP2017191987 A JP 2017191987A JP 2019063732 A JP2019063732 A JP 2019063732A
Authority
JP
Japan
Prior art keywords
metal
water
valuable
carbon
collection material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017191987A
Other languages
Japanese (ja)
Other versions
JP6960817B2 (en
Inventor
山田 勝弘
Katsuhiro Yamada
勝弘 山田
健一 藤野
Kenichi Fujino
健一 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2017191987A priority Critical patent/JP6960817B2/en
Publication of JP2019063732A publication Critical patent/JP2019063732A/en
Application granted granted Critical
Publication of JP6960817B2 publication Critical patent/JP6960817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a metal trapping material that can easily and inexpensively recover and use valuable metal elements from water containing a large amount of valuable metals such as submarine hydrothermal deposits, etc. as resources.SOLUTION: In a metal trapping material, metal particles 1 are granulated and sintered together with a precursor of a solid carbonaceous matter 2 so that the metal particles 1 and the solid carbonaceous matter 2 are integrated. The metal particles 1 contained in 100 parts by weight of the metal trapping material are in a range of 5 to 90 parts by weight, and the metal forming the metal particles 1 is preferably selected from, for example, aluminum, iron and copper. The solid carbonaceous matter 2 may be any solid, conductive carbon which can form a local cell in water in contact with metal, and a precursor of the solid carbonaceous matter 2 may be a substance which is carbonized by sintering at 600°C or higher in a non-oxidizing atmosphere.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、熱水鉱床の噴出水や温泉、鉱泉などに溶け込んでいる銅やコバルトなどの有価金属を金属体として高濃度で回収することを可能とする金属捕集材、その製造方法及び有価金属回収方法に関する。   The present invention relates to, for example, a metal capturing material capable of recovering, as a metal body, valuable metals such as copper and cobalt dissolved in a spout water of a hydrothermal deposit, a hot spring, a spring, etc. And a method of recovering valuable metals.

我が国は資源小国として金属をはじめとする工業資源のほとんどを海外からの輸入に頼っている。しかし、陸域の11倍の領海や排他的経済水域(EEZ)には、海底熱水鉱床やコバルトリッチ・マンガンクラストなどの鉱物資源が豊富に存在していることが知られている。   As a small resource country, Japan relies on imports from abroad for most of industrial resources including metals. However, it is known that mineral resources such as a seafloor hydrothermal deposit and cobalt-rich / manganese crust are abundantly present in 11 times territorial waters and exclusive economic zones (EEZ) of land areas.

コバルトリッチ・マンガンクラストは、深海底に見られるマンガン団塊と同様の成因と化学組成を持ち、海山や海台などの露岩地帯を被覆するように産出するものである。これは、海水中に溶けていたマンガン、鉄、コバルト、ニッケル、銅、白金、希土類元素、リンなどが、非常にゆっくりした速度(百万年に2〜7mm程度)で沈殿してできたものと考えられている。   Cobalt-rich manganese crusts have the same origin and chemical composition as manganese nodules found on the deep-sea floor and are produced to cover open rock areas such as seamounts and plateaus. It is made of manganese, iron, cobalt, nickel, copper, platinum, rare earth elements, phosphorus, etc. that were dissolved in seawater and precipitated at a very slow speed (about 2 to 7 mm in 1,000,000 years) It is believed that.

一方、海底熱水鉱床は、チムニーとも呼ばれる噴出口から海底面に噴出する火山性の高温(250〜300℃)の熱水により形成される。海底熱水鉱床は、鉄、亜鉛、銅、コバルト、鉛、金、銀などの有価金属を多量に含み、コバルトリッチ・マンガンクラストよりも形成速度が早いため、将来的に利用可能な資源として有望視されている。   On the other hand, the submarine hydrothermal deposit is formed by high temperature (250 to 300 ° C.) hydrothermal water that is ejected from the spout, which is also called a chimney, to the seabed surface. The submarine hydrothermal deposit contains a large amount of valuable metals such as iron, zinc, copper, cobalt, lead, gold, silver and so on, and has a faster formation rate than cobalt-rich manganese crust, so it is promising as a resource available in the future It is viewed.

海底熱水鉱床からの資源採掘方法としては、例えば、化学反応やイオン交換樹脂、ゼオライトなどの吸着剤を使用する手法が検討されているものの、有価金属を捕集するための捕集材を海中に漂わせる必要があり、係留装置やその捕集装置が必要であり、コスト的にも問題が多いのが現状である。   As a resource mining method from the seafloor hydrothermal deposit, for example, although a method using an adsorbent such as a chemical reaction, an ion exchange resin, or a zeolite has been considered, the collecting material for collecting valuable metals is underwater. In the current situation, there is a need for a mooring device and its collection device, and there are many problems in cost as well.

特許文献1には、排水等に含まれる有害物質を除去するために、水溶性コーティング剤でコーティングされた金属粒子、炭粒子及びバインダーを含有する水処理用炭−金属複合体が提案されている。この特許文献1に記載される排水処理材料を、有価金属の回収に転用することも考えられるが、特許文献1の材料は、重金属を水酸化アルミニウムと共沈させることにより排水中から除去するものであるため、生成した水酸化アルミニウムフロックを回収せねばならず、大きな困難を伴う。また、回収物を金属資源として利用するためには、脱水や分離、濃縮等のさまざまな後処理が必要であるため、コスト面でも不利な方法である。   Patent Document 1 proposes a carbon-metal complex for water treatment containing metal particles coated with a water-soluble coating agent, carbon particles, and a binder in order to remove harmful substances contained in waste water and the like. . Although it is conceivable to divert the waste water treatment material described in Patent Document 1 to recovery of valuable metals, the material of Patent Document 1 removes heavy metals from waste water by coprecipitation with aluminum hydroxide. As a result, the aluminum hydroxide floc formed must be recovered, with great difficulty. In addition, in order to use the recovered material as a metal resource, various post-treatments such as dehydration, separation, concentration and the like are required, which is a cost disadvantage.

特開2011−25160号公報JP, 2011-25160, A

従って、本発明の目的は、海底熱水鉱床などの有価金属を多く含む水中から有価金属元素を容易に、かつ低コストで資源として回収し、利用することができる金属捕集材を提供することである。   Therefore, an object of the present invention is to provide a metal collecting material capable of easily and inexpensively recovering valuable metal elements as resources from water containing a large amount of valuable metals such as a seafloor hydrothermal deposit or the like. It is.

上記課題を解決するため、本発明の金属捕集材は、炭素よりも電位が低い金属からなる金属粒子と、炭素質物とを含有する焼結体である金属捕集材であって、
前記金属捕集材100重量部あたりの金属含有量が5〜90重量部の範囲内であり、
前記金属粒子よりも電位の高い有価金属元素が溶解している水中から、局部電池作用により前記焼結体の表面に前記有価金属元素を金属体として析出させて回収するものである。
In order to solve the above-mentioned subject, the metal collection material of the present invention is a metal collection material which is a sintered compact containing metal particles which consist of a metal whose electric potential is lower than carbon, and a carbonaceous material,
The metal content per 100 parts by weight of the metal collecting material is in the range of 5 to 90 parts by weight,
From the water in which the valuable metal element having a potential higher than that of the metal particles is dissolved, the valuable metal element is precipitated as a metal on the surface of the sintered body by a local cell action and recovered.

本発明の金属捕集材は、前記金属粒子を構成する金属が、アルミニウム及び鉄から選ばれる1種以上であってもよい。   In the metal collection material of the present invention, the metal constituting the metal particles may be at least one selected from aluminum and iron.

本発明の金属捕集材は、前記炭素質物が、石油系および石炭系の重質油から得られるピッチを前駆体とする炭素質物であってもよい。   In the metal-trapping material of the present invention, the carbonaceous material may be a carbonaceous material having a pitch obtained from petroleum-based and coal-based heavy oils as a precursor.

本発明の金属捕集材は、前記炭素質物が、黒鉛、ニードルコークス、ピッチコークスから選ばれる1種以上の粉砕物をさらに含有するものであってもよい。   In the metal-trapping material of the present invention, the carbonaceous material may further contain one or more pulverized materials selected from graphite, needle coke, and pitch coke.

本発明の金属捕集材は、前記焼結体が、常磁性を有する物質をさらに含有するものであってもよい。   In the metal collection material of the present invention, the sintered body may further contain a substance having paramagnetism.

本発明の金属捕集材の製造方法は、上記いずれかの金属捕集材を製造する方法であって、
炭素よりも電位の低い金属からなる金属粒子と炭素質の前駆体とを混合し、造粒して造粒物を得る工程、
及び、
前記造粒物を600℃以上の温度により還元雰囲気下で焼結させて焼結体を得る工程、
を含むことを特徴とする。
The method for producing a metal collection material of the present invention is a method for producing any of the metal collection materials described above,
Mixing a metal particle composed of a metal having a potential lower than that of carbon and a carbonaceous precursor and granulating to obtain a granulated product;
as well as,
Sintering the granulated material at a temperature of 600 ° C. or higher under a reducing atmosphere to obtain a sintered body,
It is characterized by including.

本発明の有価金属回収方法は、水中の有価金属を回収する方法であって、上記いずれかの金属捕集材を、熱水鉱床から噴出する熱水、温泉又は鉱泉水から選ばれる水に接触させることによって、当該水中に溶解している有価金属元素を金属体として捕集する工程を含むことを特徴とする。   The method for recovering valuable metals according to the present invention is a method for recovering valuable metals in water, wherein any one of the above metal trapping agents is contacted with water selected from hot water, hot spring or spring water spouted from a hot water deposit. And collecting the valuable metal element dissolved in the water as a metal body.

本発明の金属捕集材は、炭素よりも電位の低い金属の粒子が炭素質物と複合化されているので、これを水に接触させることにより、局部電池作用によって、複合化した金属よりも電位の高い水中の有価金属(例えば、コバルト、亜鉛、銅、貴金属など)を金属捕集材の表面に金属体として析出させて、回収・資源化することができる。
従って、本発明の金属捕集材は炭素と金属からなる簡単で安価な材料でありながら、水中の有価金属を水酸化物の状態ではなく高濃度な金属体として低コストで回収することができ、資源としての利用も容易である。なお、本発明において、「電位」とは、例えば飽和硫酸銅電極や飽和塩化銀電極などを基準電極(参照電極)とした場合の炭素や各種金属と基準電極との電位差を示す腐食電位(自然電位)を意味する。
In the metal capturing material of the present invention, since metal particles having a potential lower than that of carbon are complexed with a carbonaceous material, by bringing this into contact with water, the electric potential is higher than that of a complexed metal by local cell action. Valuable metals (for example, cobalt, zinc, copper, precious metals, etc.) in water having a high water content can be deposited as a metal body on the surface of the metal collection material to recover and recycle.
Therefore, although the metal collection material of the present invention is a simple and inexpensive material consisting of carbon and metal, valuable metals in water can be recovered at low cost as a high concentration metal body instead of a hydroxide state. It is easy to use as a resource. In the present invention, “potential” refers to, for example, a corrosion potential (naturally occurring potential difference between carbon and various metals and a reference electrode when a saturated copper sulfate electrode or a saturated silver chloride electrode is used as a reference electrode). Means potential).

本発明の第一の実施の形態に係る金属捕集材の外観構成を示す模式図である。It is a schematic diagram which shows the external appearance structure of the metal collection material which concerns on 1st embodiment of this invention. 本発明の第一の実施の形態に係る別の金属捕集材の外観構成を示す模式図である。It is a schematic diagram which shows the external appearance structure of another metal collection material which concerns on 1st embodiment of this invention. 本発明の第二の実施の形態に係る金属捕集材の外観構成を示す模式図である。It is a schematic diagram which shows the external appearance structure of the metal collection material which concerns on 2nd embodiment of this invention. 本発明の第二の実施の形態に係る別の金属捕集材の外観構成を示す模式図である。It is a schematic diagram which shows the external appearance structure of another metal collection material which concerns on 2nd embodiment of this invention.

本発明の金属捕集材は、炭素よりも電位の低い金属粒子と炭素質物の焼結体である。金属捕集材は、金属粒子と炭素との接触部位で生じる局部電池効果を利用することにより、水中に溶解している亜鉛、コバルト、銅などの有価金属元素を金属捕集材の表面に金属体として析出させ、高濃度で回収するものである。このため、金属粒子が焼結されて炭素質物と一体化しており、局部電池を形成可能であれば、金属捕集材の形態は特に限定されるものではないが、好適な状態として下記の<形態1>、<形態2>の2種類を例示することができる。   The metal collection material of the present invention is a sintered body of metal particles and carbonaceous material having a potential lower than that of carbon. The metal collection material uses the local battery effect generated at the contact site between metal particles and carbon to deposit valuable metal elements such as zinc, cobalt and copper dissolved in water on the surface of the metal collection material. It is deposited as a body and recovered in high concentration. For this reason, the metal particles are sintered to be integrated with the carbonaceous material, and the form of the metal collection material is not particularly limited as long as it can form a local battery, but the form below is preferred as a preferred state. Two types of form 1> and <form 2> can be illustrated.

<形態1>
本発明の金属捕集材の第一の形態としては、図1又は図2に示す形態例を挙げることができる。
図1は、金属粒子1が、熱処理によって固体炭素質2となる前駆体とともに造粒・焼結されて、金属粒子1と固体炭素質2とが一体化された形態例を示すものである。
また、図2は、金属粒子1が、固体炭素質2の前駆体及び炭素骨材3とともに造粒・焼結されて、金属粒子1と固体炭素質2と炭素骨材3とが一体化された形態例を示すものである。
図1に示す形態例では、固体炭素質2が炭素質物に該当し、図2に示す形態例では、固体炭素質2及び炭素骨材3が炭素質物に該当する。
本形態の金属捕集材は、図1、図2に示すように、金属粒子1と固体炭素質2が相互に結着してネットワークを形成することによって局部電池効果を発現するものであり、金属粒子1は材料全体に満遍なく存在する。
<Form 1>
As a first embodiment of the metal collection material of the present invention, the embodiment shown in FIG. 1 or 2 can be mentioned.
FIG. 1 shows an embodiment in which a metal particle 1 is granulated and sintered together with a precursor that becomes a solid carbonaceous matter 2 by heat treatment, and the metal particle 1 and the solid carbonaceous matter 2 are integrated.
Further, in FIG. 2, the metal particles 1 are granulated and sintered together with the precursor of the solid carbonaceous matter 2 and the carbon aggregate 3 so that the metal particles 1, the solid carbonaceous matter 2 and the carbon aggregate 3 are integrated. An example of the embodiment is shown.
In the embodiment shown in FIG. 1, the solid carbonaceous matter 2 corresponds to the carbonaceous matter, and in the embodiment shown in FIG. 2, the solid carbonaceous matter 2 and the carbon aggregate 3 correspond to the carbonaceous matter.
As shown in FIG. 1 and FIG. 2, the metal collection material of this embodiment exhibits a local cell effect by the metal particles 1 and the solid carbonaceous matter 2 being mutually bound to form a network, The metal particles 1 are present uniformly throughout the material.

<形態2>
本発明の金属捕集材の第二の形態としては、図3又は図4に示す形態例を挙げることができる。
図3は、金属粒子1が、固体炭素質2の前駆体とともに造粒・焼結されて、金属粒子1と塊状の固体炭素質2とが一体化されている形態例を示している。
また、図4は、金属粒子1が、固体炭素質2の前駆体及び炭素骨材3とともに造粒・焼結されて、金属粒子1と炭素骨材3の周囲にコーティングされた状態の固体炭素質2とともに一体化されたものである。図3及び図4に示す例では、固体炭素質2及び炭素骨材3が炭素質物に該当する。
<Form 2>
As a 2nd form of the metal collection material of this invention, the form example shown in FIG. 3 or FIG. 4 can be mentioned.
FIG. 3 shows an example of the embodiment in which the metal particles 1 are granulated and sintered together with the precursor of the solid carbonaceous matter 2 and the metal particles 1 and the massive solid carbonaceous matter 2 are integrated.
Further, FIG. 4 shows solid carbon in a state in which the metal particle 1 is granulated and sintered together with the precursor of the solid carbonaceous substance 2 and the carbon aggregate 3 and coated around the metal particle 1 and the carbon aggregate 3. It is integrated with quality 2. In the example shown in FIG. 3 and FIG. 4, the solid carbonaceous matter 2 and the carbon aggregate 3 correspond to the carbonaceous matter.

本形態の金属捕集材は、図3、図4に示すように、金属粒子1が金属捕集材の表面に偏在しており、金属粒子1の表面の少なくとも一部が炭素質物から露出しているものである。なお、図4に示す形態例において、金属粒子1と炭素骨材3の接触は必須ではないものの、両者が接触していることが好ましい。   In the metal-trapping material of this embodiment, as shown in FIGS. 3 and 4, the metal particles 1 are unevenly distributed on the surface of the metal-trapping material, and at least a part of the surface of the metal particles 1 is exposed from the carbonaceous material It is In the embodiment shown in FIG. 4, although the contact between the metal particles 1 and the carbon aggregate 3 is not essential, it is preferable that the two be in contact with each other.

(金属粒子)
金属捕集材100重量部に含まれる金属粒子1は、5〜90重量部の範囲内であり、好ましくは25〜90重量部の範囲内、より好ましくは50〜90重量部の範囲内である。金属粒子1の割合が5重量部未満であると水と接触する金属粒子1の面積が少なく、発生する金属イオンが少ないため、有価金属の回収効率が低下する。一方、金属粒子1の割合が90重量部を超えると炭素質物が少なすぎ、電池形成部位が少なくなって、発生する金属イオンが少なくなることから好ましくない。
(Metal particles)
The metal particles 1 contained in 100 parts by weight of the metal collection material are in the range of 5 to 90 parts by weight, preferably in the range of 25 to 90 parts by weight, and more preferably in the range of 50 to 90 parts by weight . If the proportion of the metal particles 1 is less than 5 parts by weight, the area of the metal particles 1 in contact with water is small, and the amount of metal ions generated is small, so the recovery efficiency of valuable metals decreases. On the other hand, if the proportion of the metal particles 1 exceeds 90 parts by weight, it is not preferable because the amount of carbonaceous material is too small, the battery formation site is reduced, and the generated metal ions are reduced.

本発明の金属捕集材に使用される金属粒子1は、炭素よりも電位が低い金属からなるものであれば特に限定されず、捕集したい金属元素より電位の低いものを任意で使用することができる。ここで、電位とは飽和硫酸銅電極または飽和塩化銀電極を基準電極として測定される自然電位を指すが、目安として金属のイオン化傾向において銅以下の金属が好ましい。しかし、製造の際の安全性や水との反応性、環境への影響を考慮すると、金属粒子1を形成する金属としては、例えばアルミニウム、鉄、銅より選択されることが最も好ましい。金属粒子1の粒子形状は、特に限定されるものではなく、例えば球状でも不定形状であっても、あるいは繊維状であってもかまわない。金属粒子1の粒子径は、10μm〜5mmの範囲内が好ましく、100μm〜3mmの範囲内であることがより好ましい。   The metal particle 1 used for the metal collection material of the present invention is not particularly limited as long as it is made of a metal having a potential lower than that of carbon, and one having a potential lower than the metal element to be collected is optionally used. Can. Here, the potential refers to a natural potential measured using a saturated copper sulfate electrode or a saturated silver chloride electrode as a reference electrode, but as a standard, metals less than copper are preferable in terms of metal ionization tendency. However, in consideration of safety during production, reactivity with water, and environmental impact, the metal forming the metal particles 1 is most preferably selected from, for example, aluminum, iron, and copper. The particle shape of the metal particle 1 is not particularly limited, and may be, for example, spherical, indeterminate or fibrous. The particle diameter of the metal particles 1 is preferably in the range of 10 μm to 5 mm, and more preferably in the range of 100 μm to 3 mm.

金属粒子1は、単一の金属元素からなることが好ましいが、他の金属元素を含んでいてもかまわないし、例えば合金でもよく、また、後述するように焼結体とするために還元性雰囲気で焼成することから、原料の段階では酸化物などの化合物であってもかまわない。但し、金属原料として化合物を使用する場合は、硫酸塩や塩化物などは製造工程において腐食性ガスや有毒ガスが発生する危険性があるため、水酸化物や酸化物の形のものを使用することが好ましい。特に、金属粒子1の酸化物は製鉄スケールや加工時に発生する粉体や切りくずなどを用いることができるため、金属捕集材における材料コストを低減させることが可能であり、好ましく使用できる材料の一つである。   The metal particles 1 are preferably composed of a single metal element, but may contain other metal elements, and may be, for example, an alloy, or a reducing atmosphere to form a sintered body as described later. Since the firing is performed at the raw material stage, a compound such as an oxide may be used. However, in the case of using a compound as a metal source, sulfates and chlorides, etc. have a risk of generating corrosive gas and toxic gas in the manufacturing process, so use hydroxide or oxide form. Is preferred. In particular, since the oxide of the metal particles 1 can be used for iron-making scale or powder or chips generated at the time of processing, it is possible to reduce the material cost of the metal collection material, and a material that can be preferably used It is one.

(固体炭素質及びその前駆体)
固体炭素質2は、固体であって、金属と接触して水中で局部電池を形成可能な導電性炭素であればその由来は問わない。金属粒子1とともに焼結される固体炭素質2の前駆体は、非酸化性雰囲気下における600℃以上の焼成で炭素化する物質であれば制限はない。固体炭素質2の前駆体としては、例えば、でんぷん糊や水あめ、リグニンなどの天然有機物やエポキシ樹脂、フェノール樹脂などの有機合成樹脂なども使用することができるが、残炭率が50%以上と炭素収率が高く、かつ導電性の高い炭素となる石油系または石炭系より得られる重質油から製造されるピッチが前駆体として好ましい。特に軟化点が70℃以上のピッチは、粉末として使用することができるため、金属粒子1と混合して加熱することで造粒がしやすく、焼結後に固体炭素質2となる量も多いので前駆体として好ましい材料である。
(Solid carbon and its precursor)
The solid carbonaceous matter 2 is a solid, and any conductive carbon can be used as long as it is conductive carbon that can form a local battery in water in contact with a metal. The precursor of solid carbonaceous matter 2 to be sintered together with the metal particles 1 is not limited as long as it is a material which is carbonized by firing at 600 ° C. or higher in a non-oxidizing atmosphere. As the solid carbonaceous substance 2 precursor, for example, starch paste, starch syrup, natural organic matter such as lignin, epoxy resin, organic synthetic resin such as phenol resin, etc. can be used, but the residual carbon ratio is 50% or more It is preferable to use, as a precursor, a pitch produced from a heavy oil obtained from a petroleum-based or coal-based carbon that has high carbon yield and high conductivity carbon. In particular, since a pitch having a softening point of 70 ° C. or more can be used as a powder, it is easy to granulate by mixing it with the metal particles 1 and heating it, and a large amount of solid carbonaceous matter 2 is obtained after sintering. It is a preferable material as a precursor.

(炭素骨材)
本発明の金属捕集材は、表面積や見かけ比重の調整、局部電池効果の向上などを目的に、さらに任意で炭素骨材3を添加することも可能である。炭素骨材3としては、例えば、黒鉛やニードルコークス、ピッチコークスの粉砕物を用いることが好ましい。
(Carbon aggregate)
In the metal-trapping material of the present invention, it is also possible to optionally optionally add a carbon aggregate 3 for the purpose of adjusting the surface area and the apparent specific gravity, and improving the local battery effect. As the carbon aggregate 3, for example, it is preferable to use a pulverized material of graphite, needle coke, or pitch coke.

炭素骨材3を使用した金属捕集材は、例えば金属粒子1と炭素骨材3である黒鉛、ニードルコークス、ピッチコークスなどの粉砕物を固体炭素質2の前駆体であるピッチと混合して造粒した後、焼結させたものであったり、炭素骨材3である黒鉛、ニードルコークス、ピッチコークスなどの表面に、金属粒子1が固体炭素質2とともに焼結したものなどがあげられる。   The metal collection material using the carbon aggregate 3 is obtained by, for example, mixing metal particles 1 and carbon aggregate 3 such as graphite, needle coke, pitch coke and the like with a pitch which is a solid carbonaceous matter 2 precursor. After being granulated, they are sintered, or those obtained by sintering metal particles 1 together with solid carbonaceous matter 2 on the surface of carbon aggregate 3 such as graphite, needle coke, pitch coke and the like.

炭素骨材3として、黒鉛、ニードルコークス、ピッチコークスなどの粉砕物を使用する場合、その粒子径は10μm〜10mmの範囲内が好ましく、50μm〜5mmの範囲内であることがより好ましい。また、固体炭素質2の前駆体との配合比については、粉砕物100重量部に対して固体炭素質2の前駆体を3〜50重量部の範囲内が好ましく、5〜25重量部の範囲内がより好ましい。   When a pulverized material such as graphite, needle coke, pitch coke or the like is used as the carbon aggregate 3, the particle diameter thereof is preferably in the range of 10 μm to 10 mm, and more preferably in the range of 50 μm to 5 mm. Moreover, about the compounding ratio with the precursor of solid carbonaceous substance 2, the inside of the range of 3-50 weight part of solid carbonaceous substance 2 is preferable with respect to 100 weight part of ground materials, and the range of 5-25 weight part The inside is more preferable.

(任意成分)
さらに、本発明の金属捕集材は、その性能を妨げない範囲内で、見かけ比重の調整や副次効果を与えるために各種添加物を配合することもできる。添加物としては、例えば、シリカやアルミナ、煉瓦などのセラミックス類のほか、マグネタイトなどの磁性を示す物質の塊状物が例示されるが、磁性体の配合は有価金属を捕集した金属捕集材の磁気による回収を可能とすることから好ましいものである。
(Optional ingredient)
Furthermore, the metal collection material of this invention can also mix | blend various additives in order to give adjustment of an apparent specific gravity and a secondary effect within the range which does not prevent the performance. Examples of the additives include ceramics such as silica, alumina and bricks, and lumps of substances exhibiting magnetism such as magnetite, but the composition of the magnetic substance is a metal collector that has collected valuable metals. It is preferable because it enables the magnetic recovery of

(見かけ比重)
また、金属捕集材の見かけ比重は、例えば1.1以上が好ましく、1.2以上がより好ましい。見かけ比重が1.1以上であれば、海流などの流れによる影響を受けにくくなり、所望の位置に金属捕集材を撒布・設置することが容易になるとともに、回収時までに広範囲に拡散しにくくなるため好ましい。
(Apparent specific gravity)
In addition, the apparent specific gravity of the metal collection material is, for example, preferably 1.1 or more, and more preferably 1.2 or more. If the apparent specific gravity is 1.1 or more, it becomes less susceptible to the influence of the current such as the ocean current, and it becomes easy to spread and install the metal trapping material at the desired position, and it is diffused widely by the time of recovery. It is preferable because it becomes difficult.

<製造方法>
本実施の形態の金属捕集材は、炭素よりも電位の低い金属からなる金属粒子1が炭素と焼結されて一体化しており、局部電池を形成することができるのであれば、製造方法は特に限定されるものではない。
<Manufacturing method>
In the metal collection material of the present embodiment, if the metal particles 1 made of a metal having a lower potential than carbon are sintered with carbon and integrated, and a local battery can be formed, the manufacturing method is It is not particularly limited.

金属捕集材の好ましい製造方法は、以下の工程A〜工程Cを含むものである。
工程A:
金属粒子1と固体炭素質2の前駆体、必要に応じて炭素骨材3(さらに、必要に応じて水や有機溶剤、結着助剤を含んでもよい)を混合する工程。
工程B:
混合物中の金属粒子1と固体炭素質2の前駆体とを付着・造粒させて複合化する工程。
工程C:
工程Bで得た複合体を不活性または還元雰囲気において600℃以上の温度で焼成して焼結体とし、金属捕集材を得る工程。
The preferable manufacturing method of a metal collection material includes the following process A-the process C.
Process A:
A step of mixing the metal particle 1 and the solid carbonaceous matter 2 precursor, and optionally, the carbon aggregate 3 (in addition, it may contain water, an organic solvent, and a binding aid as required).
Process B:
Attaching and granulating the metal particles 1 in the mixture and the precursor of the solid carbonaceous matter 2 to form a complex.
Process C:
A step of firing the composite obtained in step B at a temperature of 600 ° C. or higher in an inert or reducing atmosphere to obtain a sintered body to obtain a metal collection material.

なお、工程Aにおいて、各原料の配合順序は、特に限定されず、金属粒子1と結着助剤などとの混合物をまず作成してから固体炭素質2の前駆体を配合してもよいし、すべての原料を一度に配合してもよい。他の添加物を配合する場合もまた同様である。   In addition, in the step A, the order of blending of the respective raw materials is not particularly limited, and a mixture of the metal particles 1 and the binding aid may be prepared first, and then the solid carbonaceous matter 2 precursor may be blended. , You may mix all the ingredients at once. The same applies to the case of blending other additives.

配合方法については、各種ブレンダーやミキサーなど一般的な混合機を使用することができる。   As a blending method, general mixers such as various blenders and mixers can be used.

また、工程Bで混合物を造粒する装置は、たとえば、ブリケットマシン、打錠機、押し出し機などのプレス成型機やパンペレタイザーなどを用いることが好ましい。
なお、混合物の造粒は造粒助剤の使用により常温でも行うことができるが、加熱されていることが好ましい。混合物を加熱して固体炭素質2の前駆体を軟化させて金属粒子1との複合体を形成させるためには、固体炭素質2の前駆体の軟化点または融点以上の温度を確保しておく必要がある。具体的には、工程Bで固体炭素質2の前駆体を、70℃〜300℃の範囲内の温度、好ましくは固体炭素質2の前駆体の軟化点または融点よりも30〜150℃の範囲内で高い温度に加熱することが好ましい。たとえば、固体炭素質2の前駆体が、軟化点が90℃のバインダーピッチの場合には、混合物を100℃に加熱したり、骨材の表面を200℃くらいに加熱しておくと接着性が高くなる。加熱温度が低すぎると、固体炭素質2の前駆体が軟化または溶融せず、接着性が低く、金属粒子1が欠落しやすい。加熱温度が高すぎると、固体炭素質2の前駆体がダマになってしまい、複合体の組成に大きなムラができてしまい好ましくない。
Further, as an apparatus for granulating the mixture in step B, it is preferable to use, for example, a briquette machine, a tableting machine, a press molding machine such as an extruder, a pan pelletizer, or the like.
In addition, although granulation of a mixture can be performed also at normal temperature by use of a granulation auxiliary agent, it is preferable that it is heated. In order to heat the mixture to soften the solid carbonaceous matter 2 precursor to form a complex with the metal particles 1, a temperature above the softening point or melting point of the solid carbonaceous matter 2 precursor is secured There is a need. Specifically, in step B, the solid carbonaceous 2 precursor is used at a temperature in the range of 70 ° C. to 300 ° C., preferably in the range of 30 to 150 ° C. than the softening point or melting point of the solid carbonaceous 2 precursor. It is preferred to heat to a high temperature within. For example, in the case where the precursor of solid carbonaceous matter 2 is a binder pitch having a softening point of 90 ° C., adhesion is obtained if the mixture is heated to 100 ° C. or the surface of the aggregate is heated to about 200 ° C. Get higher. If the heating temperature is too low, the solid carbonaceous matter 2 precursor does not soften or melt, the adhesion is low, and the metal particles 1 are likely to be missing. When the heating temperature is too high, the precursor of solid carbonaceous matter 2 becomes lumpy, and a large unevenness occurs in the composition of the composite, which is not preferable.

工程Bにおいては、生産性や作業性を向上させるために水や有機溶剤、造粒助剤を使用することもできる。造粒助剤はその粘着性により金属粒子1と固体炭素質2の前駆体の複合化を促進するものであって、常温で粘調であり、焼成時には600℃でほぼ完全に分解もしくは炭化する物質が好ましい。例えば、ゼラチンやデンプン糊、廃糖蜜、リグニンスルホン酸塩、コンニャク飛粉、アルギン酸ナトリウム、ポリビニルアルコール、デキストリン、エチルセルロース、カルボキシメチルセルロース、アクリル樹脂、エポキシ樹脂などが造粒助剤として好適であり、固体炭素質2の前駆体との重量配合比(固体炭素質2の前駆体:造粒助剤)が、99:1〜30:70の範囲となるように配合されて使用されることが好ましい。造粒助剤と固体炭素質2の前駆体を前記範囲内となるようにその配合比を調整することによって、金属粒子1と固体炭素質2の前駆体との焼結性や金属捕集材としての性能に悪影響を及ぼすことなく、金属捕集材の容易な製造を可能とすることができる。   In the step B, water, an organic solvent and a granulating aid can also be used to improve productivity and workability. The granulation aid promotes the complexation of the metal particle 1 and the precursor of the solid carbonaceous matter 2 by its adhesiveness, is viscous at normal temperature, and almost completely decomposes or carbonizes at 600 ° C. at the time of firing. Substances are preferred. For example, gelatin, starch paste, waste molasses, lignin sulfonate, konjac powder, sodium alginate, polyvinyl alcohol, dextrin, ethylcellulose, carboxymethylcellulose, acrylic resin, epoxy resin, etc. are suitable as granulation aids, and solid carbon It is preferable that the weight 2 blending ratio with the quality 2 precursor (solid carbon 2 precursor: granulation aid) be in the range of 99: 1 to 30:70 and used. Sinterability of metal particle 1 and precursor of solid carbonaceous matter 2 and metal trapping material by adjusting the blending ratio so that the granulation aid and the precursor of solid carbonaceous matter 2 fall within the above range It is possible to enable easy manufacture of the metal collection material without adversely affecting the performance as

工程Bで作成された複合体は、工程Aで水や有機溶剤を使用した場合は60℃以上で乾燥した後、工程Cで不活性又は還元雰囲気下において焼成される。なお、還元雰囲気とは窒素またはアルゴンなどの不活性雰囲気下、または低酸素雰囲気のような非酸化性雰囲気であってもよい。焼成には、例えば、リードハンマー炉、トップチャージ炉、シャトル炉、トンネル炉、ロータリーキルン、ローラーハースキルンあるいはマイクロウェーブ等の設備を用いることができるが、特にこれらに限定されるものではなく、連続式又はバッチ式のどちらであってもよい。焼成温度は固体炭素質2の前駆体が炭化する温度であれば特に制限はないが、少なくとも600℃以上であり、炭素と焼結させる金属粒子1の沸点以下であることが好ましい。特に有機バインダーとしてバインダーピッチを使用する場合は、ベンゾピレンなどの芳香族化合物が残留することが無いようにするため、焼成温度は700℃以上であることが好ましく、900℃以上がより好ましく、1000℃以上であることが更に好ましい。600℃以上の還元雰囲気下で焼成は固体炭素質2の前駆体を確実に炭化させることができるほか、金属粒子1表面に存在する酸化膜の還元も行うことができる。このため、焼成により得られた本発明の金属捕集材は、BODの増加や有害な化学物質および重金属の溶出などの環境負荷がなく、局部電池効果によって金属粒子1がイオン化して溶出する際の電子を利用して、水中に含まれる金属粒子1よりも電位が高い有価金属イオンを金属体として金属捕集材の表面に析出させることができる。   The composite prepared in step B is dried at 60 ° C. or higher when water or an organic solvent is used in step A, and then fired in step C under an inert or reducing atmosphere. Note that the reducing atmosphere may be a non-oxidizing atmosphere such as an inert atmosphere such as nitrogen or argon, or a low oxygen atmosphere. For example, equipment such as a lead hammer furnace, a top charge furnace, a shuttle furnace, a tunnel furnace, a rotary kiln, a roller hearth kiln or a microwave can be used for firing, but it is not particularly limited thereto and a continuous type Or it may be either of batch type. The firing temperature is not particularly limited as long as the precursor of solid carbonaceous matter 2 is carbonized, but is preferably at least 600 ° C. or more and preferably not more than the boiling point of metal particles 1 to be sintered with carbon. In particular, when a binder pitch is used as an organic binder, the firing temperature is preferably 700 ° C. or higher, more preferably 900 ° C. or higher, and 1000 ° C. in order to prevent residual aromatic compounds such as benzopyrene. It is more preferable that it is more than. Baking can certainly carbonize the precursor of solid carbonaceous matter 2 in a reducing atmosphere of 600 ° C. or higher, and can also reduce the oxide film present on the surface of the metal particle 1. For this reason, the metal collection material of the present invention obtained by firing has no environmental load such as increase of BOD or elution of harmful chemical substances and heavy metals, and when metal particles 1 are ionized and eluted by the local cell effect. Valuable metal ions having a potential higher than that of the metal particles 1 contained in water can be deposited on the surface of the metal collection material as a metal body by using the electrons of the above.

本発明の金属捕集材は、回収対象の有価金属が溶解している水であれば、例えば、工業廃水、鉱山廃水、温泉水、鉱泉水、海底熱水鉱床からの噴出水など幅広く適用することができる。これらのなかでも温泉水、鉱泉水、海底熱水鉱床の噴出水は有価金属を高濃度で含むので好ましく、特に海底熱水鉱床の噴出水は豊富に存在することから有価金属の回収対象として好ましい。
設置に関しては、例えば海底熱水鉱床の熱水噴出孔の近傍、温泉や鉱泉の湧出孔近辺やその流路にそのまま撒布したり、例えば網やカゴなどの保持部材に金属捕集材を収納したものを浸漬するなどして配置してもよい。
The metal collection material of the present invention is widely applied to industrial waste water, mine waste water, hot spring water, mineral water, spouted water from a seafloor hydrothermal deposit, for example, as long as it is water in which valuable metals to be recovered are dissolved. be able to. Among these, spouted water from hot spring water, mineral spring water, and submarine hydrothermal deposit is preferable because it contains valuable metals in high concentration, and in particular, spouted water from the submarine hydrothermal deposit is abundant and preferable as a recovery target of valuable metals. .
Regarding the installation, for example, it was distributed as it is in the vicinity of the hydrothermal vents of the submarine hydrothermal deposit, in the vicinity of the spout of hot spring or spa and its flow path, or the metal collecting material was stored in a holding member such as a net or basket. You may arrange by immersing things etc.

本発明の金属捕集材は、水中に溶解している有価金属イオンを、局部電池効果によるイオン交換によって、金属捕集材の表面に金属体として析出させるものである。このため、水酸化物とともに共沈させたり、水酸化物のフロックに捕集するものではないため、有価金属の回収は撒布や設置した金属捕集材を回収するだけでよく、回収後の脱水や濃縮作業も簡便となり全体的な回収コストを抑制することができる。   The metal collection material of the present invention is a material that causes valuable metal ions dissolved in water to be deposited as a metal body on the surface of the metal collection material by ion exchange due to the local battery effect. For this reason, it is not something which is coprecipitated with hydroxide or collected in flocs of hydroxide, so recovery of valuable metals only needs to recover spread and installed metal collection material, and dehydration after recovery And concentration operations are simplified, and overall recovery costs can be reduced.

さらに、本発明の金属捕集材は、造粒や成型に際して炭素を利用していることから、水中でも長期間安定であり、セメントなどの非導電性の物質は含まれていないため、金属捕集材からの有価金属回収効率も良好である。   Furthermore, since the metal-trapping material of the present invention utilizes carbon at the time of granulation and molding, it is stable in water for a long period of time, and it does not contain non-conductive substances such as cement. The valuable metal recovery efficiency from the collecting material is also good.

以下、実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれらの実施例の範囲に限定されるものではない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。   Hereinafter, the contents of the present invention will be specifically described based on examples, but the present invention is not limited to the scope of these examples. In the following examples, unless otherwise specified, various measurements and evaluations are as follows.

<見かけ比重>
電子比重計(EW−300SG、アズワン)を用いてアルキメデス法により測定した。
<Apparent specific gravity>
It measured by the Archimedes method using an electronic densimeter (EW-300SG, Asone).

<有価金属回収量>
有価金属イオンを含有する液体(30ml)に金属捕集材を一定期間浸漬させたあと、液体中の有価金属の濃度を測定する。また、一定期間浸漬した後に金属捕集材を取り出し、105℃で1昼夜乾燥する。それを粉砕後、付着回収した有価金属を硝酸に溶解し、誘導結合プラズマ発光分光分析装置(ICP)で分析して、有価金属の回収量を求めた。
<Valuable Metal Recovery>
After immersing the metal collection material in a liquid (30 ml) containing valuable metal ions for a fixed period, the concentration of valuable metal in the liquid is measured. After being immersed for a certain period, the metal collecting material is taken out and dried at 105 ° C. for one day. The pulverized valuable metals were dissolved in nitric acid and analyzed by inductively coupled plasma emission spectroscopy (ICP) to determine the amount of valuable metals recovered.

<原材料>
金属粉
・鉄粉(竹内工業株式会社製 鋳鉄粉 28メッシュアンダー品 炭素:2〜4重量%、Si:4重量%以下、Mn:0.5〜1.5重量%、P:0.03重量%以下、S:0.03重量%以下)
・アルミウム粉(関東化学株式会社製 粒子径:45μm)
固体炭素質の前駆体
・コールタールピッチ(新日鉄住金化学株式会社製 軟化点:85℃、固定炭素分:58重量%、50メッシュアンダー)
炭素骨材
・ピッチコークス粉(新日鉄住金化学株式会社製 200メッシュアンダー、50〜200メッシュ、6〜9メッシュ)
・ピッチコークス塊(新日鉄住金化学株式会社製 2〜5g)
造粒助剤
・でんぷん(沼田製粉株式会社 ライバインダー 主成分:でんぷん 約80% 嵩比重 約0.5)
<Raw materials>
Metal powder ・ Iron powder (made by Takeuchi Kogyo Co., Ltd. Cast iron powder 28 mesh under product Carbon: 2 to 4 wt%, Si: 4 wt% or less, Mn: 0.5 to 1.5 wt%, P: 0.03 wt % Or less, S: 0.03% by weight or less)
・ Aluminum powder (Kanto Chemical Co., Ltd., particle size: 45 μm)
Solid carbonaceous precursor-Coal tar pitch (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Softening point: 85 ° C, fixed carbon content: 58% by weight, 50 mesh under)
Carbon aggregate ・ Pitch coke powder (made by Nippon Steel & Sumikin Chemical Co., Ltd. 200 mesh under, 50-200 mesh, 6-9 mesh)
・ Pitch coke lump (2 to 5 g manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
Granulating aid ・ Starch (Numada Powder Co., Ltd. Rye binder Main component: about 80% starch bulk specific gravity about 0.5)

<金属捕集材(形態1)の作製>
所定量の原料(金属粉、固体炭素質の前駆体、炭素骨材、造粒助剤)を混合攪拌機で混合・混練した後、混合物をハンドプレスを使用して、10MPaの条件で、直径20mm、厚み2〜6mmの円盤状の造粒物を作製した。
作製した造粒物は、コークス粉が詰められた還元雰囲気焼成炉を用いて100℃/時間で昇温し、900℃で2時間焼成し、50℃以下になるまで炉内で自然放冷して焼結体を取り出した。
<Preparation of a metal collection material (form 1)>
After mixing and kneading predetermined amounts of raw materials (metal powder, solid carbonaceous precursor, carbon aggregate, granulation aid) with a mixing stirrer, using a hand press, the mixture has a diameter of 20 mm under the condition of 10 MPa. , 2 to 6 mm thick disc-like granules were produced.
The manufactured granulated product is heated at 100 ° C./hour using a reducing atmosphere baking furnace filled with coke powder, baked at 900 ° C. for 2 hours, and naturally cooled in the furnace until it becomes 50 ° C. or less The sintered body was taken out.

<金属捕集材(形態2)の作製>
所定量の原料(金属粉、固体炭素質の前駆体)を混合攪拌機で混合した後、混合物をパンペレタイザー(型式1237−S−3 株式会社吉田製作所)に投入した。また、予め空気雰囲気下において高温炉230℃で2時間熱処理した炭素骨材(ピッチコークス塊 大きさ1〜5cm)を混合物が投入されたパンペレタイザーに30rpmで回転させながら投入して、3分間回転して炭素骨材表面に金属粒子が付着した複合体を作製した。
作製した複合体は、コークス粉が詰められた還元雰囲気焼成炉を用いて100℃/時間で昇温し、900℃で2時間焼成し、50℃以下になるまで炉内で自然放冷して焼結体を取り出した。
<Preparation of a metal collection material (form 2)>
After mixing predetermined amounts of raw materials (metal powder, solid carbonaceous precursor) with a mixing stirrer, the mixture was introduced into a pan pelletizer (type 1237-S-3, Yoshida Seisakusho Co., Ltd.). In addition, carbon aggregate (pitch coke block size 1 to 5 cm) heat treated at 230 ° C for 2 hours in an air atmosphere in advance is introduced into the pan pelletizer charged with the mixture while rotating at 30 rpm, and rotated for 3 minutes. Then, a composite in which metal particles were attached to the surface of the carbon aggregate was produced.
The prepared composite is heated at a rate of 100 ° C./hour using a reducing atmosphere firing furnace filled with coke powder, fired at 900 ° C. for 2 hours, and naturally cooled in the furnace until it becomes 50 ° C. or less The sintered body was taken out.

[実施例1〜3]
金属粉としてアルミニウム粉、固体炭素質の前駆体としてのコールタールピッチ、炭素骨材としてのピッチコークス粉に造粒助剤としてでんぷん水溶液を使用して、形態1の金属捕集材を作製した。
作製した金属捕集材を、亜鉛、コバルト、銅をそれぞれ溶解した水溶液30mlをいれたサンプル瓶に浸漬し、常温常圧下で7日間放置した後、亜鉛、コバルト、銅の濃度を測定した。
表1に金属捕集材の金属含有量、炭素量、浸漬試験、見かけ比重及び有価金属回収量の結果について示す。
[Examples 1 to 3]
An aluminum powder as the metal powder, a coal tar pitch as a solid carbonaceous precursor, and a starch aqueous solution as a granulation aid for a pitch coke powder as a carbon aggregate were used to produce a metal collector of form 1.
The prepared metal collecting material was immersed in a sample bottle containing 30 ml of an aqueous solution in which each of zinc, cobalt and copper was dissolved, allowed to stand at normal temperature and pressure for 7 days, and then the concentrations of zinc, cobalt and copper were measured.
Table 1 shows the results of the metal content, carbon content, immersion test, apparent specific gravity and valuable metal recovery amount of the metal collection material.

[実施例4]
実施例1〜3と同様の原料を使用して、表1の実施例4に記載される形態2の金属捕集材を作製した。
作製した金属捕集材は、銅を溶解した水溶液30mlをいれたサンプル瓶に金属捕集材を浸漬し、常温常圧下で7日間放置した後、銅の濃度を測定した。
表1に金属捕集材の金属含有量、炭素量、浸漬試験、見かけ比重及び有価金属回収量の結果について示す。
Example 4
The metal trapping material of form 2 described in Example 4 of Table 1 was produced using the same raw materials as in Examples 1 to 3.
The prepared metal collecting material was immersed in a sample bottle containing 30 ml of an aqueous solution in which copper was dissolved, allowed to stand at normal temperature and normal pressure for 7 days, and then the concentration of copper was measured.
Table 1 shows the results of the metal content, carbon content, immersion test, apparent specific gravity and valuable metal recovery amount of the metal collection material.

[実施例5、6]
金属粉に鉄粉を使用した以外は実施例1〜3と同様にして、表1の実施例5〜6に記載される形態1の金属捕集材を作製した。
作製した金属捕集材は、亜鉛、コバルト、銅をそれぞれ溶解した水溶液30mlをいれたサンプル瓶に金属捕集材を浸漬し、常温常圧下で7日間放置した後、亜鉛、コバルト、銅の濃度を測定した。
表1に金属捕集材の金属含有量、炭素量、浸漬試験、見かけ比重及び有価金属回収量の結果について示す。
[Examples 5, 6]
Except having used iron powder for metal powder, it carried out similarly to Examples 1-3, and produced the metal collection material of the form 1 described in Examples 5-6 of Table 1.
The prepared metal collecting material is immersed in a sample bottle containing 30 ml of an aqueous solution in which each of zinc, cobalt and copper is dissolved, and left for 7 days under normal temperature and normal pressure, and then the concentration of zinc, cobalt and copper Was measured.
Table 1 shows the results of the metal content, carbon content, immersion test, apparent specific gravity and valuable metal recovery amount of the metal collection material.

[実施例7]
実施例5、6と同様の原料を使用して、表1の実施例7に記載される形態2の金属捕集材を作製した。
作製した金属捕集材は、銅を溶解した水溶液30mlをいれたサンプル瓶に金属捕集材を浸漬し、常温常圧下で7日間放置した後、銅の濃度を測定した。
表1に金属捕集材の金属含有量、炭素量、浸漬試験、見かけ比重及び有価金属回収量の結果について示す。
[Example 7]
Using the same raw materials as in Examples 5 and 6, a metal collection material of Form 2 described in Example 7 of Table 1 was produced.
The prepared metal collecting material was immersed in a sample bottle containing 30 ml of an aqueous solution in which copper was dissolved, allowed to stand at normal temperature and normal pressure for 7 days, and then the concentration of copper was measured.
Table 1 shows the results of the metal content, carbon content, immersion test, apparent specific gravity and valuable metal recovery amount of the metal collection material.

[実施例8]
実施例5、6と同様の原料を使用して、表1の実施例8に記載される形態1の金属捕集材を作製した。
作製した金属捕集材は、コバルトと銅を溶解した水溶液30mlを入れたサンプル瓶に金属捕集材を浸漬し、常温常圧かで7日間放置した後、コバルトと銅の濃度をそれぞれ測定した。
表1に金属捕集材の金属含有量、炭素量、浸漬試験、見かけ比重及び有価金属回収量の結果について示す。
[Example 8]
Using the same raw materials as in Examples 5 and 6, the metal collection material of Form 1 described in Example 8 in Table 1 was produced.
The metal trapping material was prepared by immersing the metal trapping material in a sample bottle containing 30 ml of an aqueous solution in which cobalt and copper were dissolved, and allowed to stand at normal temperature and pressure for 7 days, after which the concentrations of cobalt and copper were measured. .
Table 1 shows the results of the metal content, carbon content, immersion test, apparent specific gravity and valuable metal recovery amount of the metal collection material.

[実施例9]
金属粉として鉄粉とアルミニウム粉を1:1の重量比で配合物を使用したこと以外は実施例8と同様にして形態1の金属捕集材を作製した。
作製した金属捕集材は、銅を溶解した水溶液30mlをいれたサンプル瓶に金属捕集材を浸漬し、常温常圧下で7日間放置後、銅の濃度を測定した。
表1に金属捕集材の金属含有量、炭素量、浸漬試験、見かけ比重及び有価金属回収量の結果について示す。
[Example 9]
A metal capturing material of Form 1 was produced in the same manner as in Example 8 except that iron powder and aluminum powder were used as metal powder in a weight ratio of 1: 1.
The prepared metal collecting material was immersed in a sample bottle containing 30 ml of an aqueous solution in which copper was dissolved, and left for 7 days under normal temperature and normal pressure, and then the concentration of copper was measured.
Table 1 shows the results of the metal content, carbon content, immersion test, apparent specific gravity and valuable metal recovery amount of the metal collection material.

[実施例10〜12、14〜16]
実施例5、6と同様にして作製した形態1の金属捕集材をコバルトおよび銅がそれぞれ溶解した水溶液に浸漬し、常温常圧下で7日間ごとにコバルトおよび銅が溶解した水溶液を全量交換しながら浸漬試験を4週間の間行った。
表2に金属捕集材の金属含有量、炭素量、見かけ比重及び4週間の浸漬試験の結果を示す。
[Examples 10 to 12 and 14 to 16]
The metal-capturing material of form 1 prepared in the same manner as in Examples 5 and 6 is immersed in an aqueous solution in which cobalt and copper are dissolved, and the entire aqueous solution in which cobalt and copper are dissolved is exchanged every 7 days under normal temperature and pressure. The immersion test was conducted for 4 weeks.
Table 2 shows the metal content, carbon content, apparent specific gravity and the result of the 4-week immersion test of the metal collection material.

[実施例13、17]
実施例4と同様にして作製した形態2の金属捕集材をコバルトおよび銅が溶解した水溶液に浸漬し、常温常圧下で7日間ごとにコバルトおよび銅が溶解した水溶液を全量交換しながら浸漬試験を4週間の間行った。
表2に金属捕集材の金属含有量、炭素量、見かけ比重及び4週間の浸漬試験の結果を示す。
[Examples 13 and 17]
Immersion test was carried out while immersing the metal collection material of form 2 prepared in the same manner as in Example 4 in an aqueous solution in which cobalt and copper are dissolved, and exchanging the entire aqueous solution in which cobalt and copper were dissolved every 7 days under normal temperature and pressure. For 4 weeks.
Table 2 shows the metal content, carbon content, apparent specific gravity and the result of the 4-week immersion test of the metal collection material.

[実施例18]
実施例5、6と同様にして作製した形態1の金属捕集材をコバルトと銅が溶解した水溶液に浸漬し、常温常圧下で7日間ごとにコバルトおよび銅が溶解した水溶液を全量交換しながら浸漬試験を4週間の間行った。
表2に金属捕集材の金属含有量、炭素量、見かけ比重及び4週間の浸漬試験の結果を示す。
[Example 18]
The metal-capturing material of embodiment 1 produced in the same manner as in Examples 5 and 6 is immersed in an aqueous solution in which cobalt and copper are dissolved, and the entire aqueous solution in which cobalt and copper are dissolved is exchanged every 7 days under normal temperature and pressure. The immersion test was carried out for 4 weeks.
Table 2 shows the metal content, carbon content, apparent specific gravity and the result of the 4-week immersion test of the metal collection material.

[実施例19]
実施例9と同様にして作製した形態1の金属捕集材を銅が溶解した水溶液に浸漬し、常温常圧下で7日間ごとに水溶液を全量交換しながら4週間放置した。
表2に金属捕集材の金属含有量、炭素量、見かけ比重及び4週間の浸漬試験の結果を示す。
[Example 19]
The metal-trapped material of embodiment 1 produced in the same manner as in Example 9 was immersed in an aqueous solution in which copper was dissolved, and left for 4 weeks while exchanging the entire aqueous solution every 7 days under normal temperature and normal pressure.
Table 2 shows the metal content, carbon content, apparent specific gravity and the result of the 4-week immersion test of the metal collection material.

[比較例1〜6]
鉄粉または、アルミニウム粉1.00gを亜鉛、コバルト、銅をそれぞれ溶解した水溶液に浸漬し、常温常圧環境下において7日間放置した後、亜鉛、銅、コバルトの濃度を測定した。
また、7日間ごとに亜鉛、コバルト、銅が溶解した水溶液を全量交換しながら浸漬試験を4週間の間行った。
表3に金属含有量、炭素量、真比重及び4週間の浸漬試験の結果を示す。
Comparative Examples 1 to 6
After immersing iron powder or aluminum powder 1.00 g in an aqueous solution in which zinc, cobalt and copper were dissolved respectively, and left for 7 days in a normal temperature and pressure environment, the concentration of zinc, copper and cobalt was measured.
In addition, the immersion test was conducted for 4 weeks while exchanging all the aqueous solution in which zinc, cobalt and copper were dissolved every 7 days.
Table 3 shows the results of metal content, carbon content, true specific gravity, and 4-week immersion test.

Figure 2019063732
Figure 2019063732

Figure 2019063732
Figure 2019063732

Figure 2019063732
Figure 2019063732

表1〜2に示すように、金属粒子と炭素の焼結体である実施例1〜19の金属捕集材は、金属粉単独である比較例1〜6(表3を参照)に比べて、局部電池作用によって金属捕集材に使用されている金属よりも電位の高い有価金属を、水中から高効率で捕集することができる。
また、有価金属を水酸化物の沈殿に含ませることによる捕集が主体ではなく、金属捕集材に表面に金属体として析出させるので回収が容易であり、浸漬期間を長くしてより大量の有価金属を析出させて回収することも可能である。
このように、本発明の金属捕集材は、例えば、海底熱水鉱床から噴出する熱水や温泉や鉱泉、鉱山廃水などから、低コストで有価金属を回収する場合に好適な材料であることが確認された。
As shown in Tables 1-2, the metal collection material of Examples 1-19 which is a sintered compact of a metal particle and carbon is compared with comparative examples 1-6 (refer Table 3) which is metal powder independent. Valuable metals having a higher potential than metals used for metal trapping materials by local cell action can be collected from water with high efficiency.
In addition, since the collection of valuable metals is not mainly included in the precipitation of hydroxides, they are deposited as metal bodies on the surface of the metal collection material, so recovery is easy, and the immersion period is extended to increase the amount of It is also possible to precipitate and recover valuable metals.
Thus, the metal-trapping material of the present invention is a material suitable for recovering valuable metals at low cost, for example, from hot water, hot springs, mineral springs, mine wastewater, etc., which are ejected from a seafloor hydrothermal deposit. Was confirmed.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはない。   Although the embodiments of the present invention have been described in detail for the purpose of illustration, the present invention is not limited to the above embodiments.

1…金属粒子
2…固体炭素質
3…炭素骨材


1 ... metal particle 2 ... solid carbon 3 ... carbon aggregate


Claims (7)

炭素よりも電位が低い金属からなる金属粒子と、炭素質物とを含有する焼結体である金属捕集材であって、
前記金属捕集材100重量部あたりの金属含有量が5〜90重量部の範囲内であり、
前記金属粒子よりも電位の高い有価金属元素が溶解している水中から、局部電池作用により前記焼結体の表面に前記有価金属元素を金属体として析出させて回収することを特徴とする金属捕集材。
It is a metal collection material which is a sintered compact containing metal particles which consist of a metal whose electric potential is lower than carbon, and carbonaceous matter,
The metal content per 100 parts by weight of the metal collecting material is in the range of 5 to 90 parts by weight,
A metal trap characterized in that the valuable metal element is deposited as a metal body on the surface of the sintered body by the action of a local battery from water in which a valuable metal element having a higher potential than the metal particles is dissolved. Gathering material.
前記金属粒子を構成する金属が、アルミニウム及び鉄から選ばれる1種以上であることを特徴とする請求項1の金属捕集材。   The metal collecting material according to claim 1, wherein the metal constituting the metal particles is at least one selected from aluminum and iron. 前記炭素質物が、石油系および石炭系の重質油から得られるピッチを前駆体とする炭素質物である請求項1または2に記載の金属捕集材。   The metal trap according to claim 1 or 2, wherein the carbonaceous matter is a pitched precursor obtained from petroleum-based and coal-based heavy oils. 前記炭素質物が、黒鉛、ニードルコークス、ピッチコークスから選ばれる1種以上の粉砕物をさらに含有する請求項1から3のいずれか1項に記載の金属捕集材。   The metal trapping material according to any one of claims 1 to 3, wherein the carbonaceous material further contains at least one pulverized material selected from graphite, needle coke, and pitch coke. 前記焼結体が、常磁性を有する物質をさらに含有する請求項1から4のいずれか1項に記載の金属捕集材。   The metal collection material according to any one of claims 1 to 4, wherein the sintered body further contains a substance having paramagnetism. 請求項1から5のいずれか1項に記載の金属捕集材を製造する方法であって、
炭素よりも電位の低い金属からなる金属粒子と炭素質の前駆体とを混合し、造粒して造粒物を得る工程、
及び、
前記造粒物を600℃以上の温度により還元雰囲気下で焼結させて焼結体を得る工程、
を含むことを特徴とする金属捕集材の製造方法。
It is a method of manufacturing the metal collection material according to any one of claims 1 to 5,
Mixing a metal particle composed of a metal having a potential lower than that of carbon and a carbonaceous precursor and granulating to obtain a granulated product;
as well as,
Sintering the granulated material at a temperature of 600 ° C. or higher under a reducing atmosphere to obtain a sintered body,
A method of producing a metal collection material comprising:
水中の有価金属を回収する有価金属回収方法であって、
請求項1から5のいずれか1項に記載の金属捕集材を、熱水鉱床から噴出する熱水、温泉又は鉱泉水から選ばれる水に接触させることによって、当該水中に溶解している有価金属元素を金属体として捕集する工程を含むことを特徴とする有価金属回収方法。

A valuable metal recovery method for recovering valuable metals in water, comprising
The metal collection material according to any one of claims 1 to 5 is dissolved in the water by bringing the metal collection material into contact with water selected from hot water, hot spring or mineral water spouted from a hydrothermal deposit. A valuable metal recovery method comprising the step of collecting a metal element as a metal body.

JP2017191987A 2017-09-29 2017-09-29 Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method Active JP6960817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017191987A JP6960817B2 (en) 2017-09-29 2017-09-29 Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017191987A JP6960817B2 (en) 2017-09-29 2017-09-29 Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method

Publications (2)

Publication Number Publication Date
JP2019063732A true JP2019063732A (en) 2019-04-25
JP6960817B2 JP6960817B2 (en) 2021-11-05

Family

ID=66338731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017191987A Active JP6960817B2 (en) 2017-09-29 2017-09-29 Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method

Country Status (1)

Country Link
JP (1) JP6960817B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149803A1 (en) * 2000-04-24 2001-10-31 EVO Umwelt-Wasserreinigungstechnik GmbH Process for comprehensive decontamination of water
JP2003306835A (en) * 2002-04-17 2003-10-31 Showa Denko Kk Vapor-grown carbon fiber and method for producing the same
JP2005345449A (en) * 2004-06-07 2005-12-15 National Institute For Materials Science Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element
JP2006167564A (en) * 2004-12-15 2006-06-29 Kyushu Institute Of Technology Method for separating metal ion
JP2009011994A (en) * 2007-07-09 2009-01-22 Shin Etsu Chem Co Ltd Ceramic filter and its manufacturing method
CN102958833A (en) * 2010-08-25 2013-03-06 光州科学技术院 Method for preparing mesoporous carbon having iron oxide nanoparticles
JP2013058452A (en) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp Composite carbon material for nonaqueous secondary battery and method for manufacturing the same, negative electrode, and nonaqueous secondary battery
JP2013081901A (en) * 2011-10-11 2013-05-09 Mikio Sugimoto Tool for improving water quality and environment
JP2015214734A (en) * 2014-05-13 2015-12-03 丸祥電器株式会社 Spherical composite copper fine particle containing extra-fine carbon fiber and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1149803A1 (en) * 2000-04-24 2001-10-31 EVO Umwelt-Wasserreinigungstechnik GmbH Process for comprehensive decontamination of water
JP2003306835A (en) * 2002-04-17 2003-10-31 Showa Denko Kk Vapor-grown carbon fiber and method for producing the same
JP2005345449A (en) * 2004-06-07 2005-12-15 National Institute For Materials Science Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element
JP2006167564A (en) * 2004-12-15 2006-06-29 Kyushu Institute Of Technology Method for separating metal ion
JP2009011994A (en) * 2007-07-09 2009-01-22 Shin Etsu Chem Co Ltd Ceramic filter and its manufacturing method
CN102958833A (en) * 2010-08-25 2013-03-06 光州科学技术院 Method for preparing mesoporous carbon having iron oxide nanoparticles
JP2013058452A (en) * 2011-09-09 2013-03-28 Mitsubishi Chemicals Corp Composite carbon material for nonaqueous secondary battery and method for manufacturing the same, negative electrode, and nonaqueous secondary battery
JP2013081901A (en) * 2011-10-11 2013-05-09 Mikio Sugimoto Tool for improving water quality and environment
JP2015214734A (en) * 2014-05-13 2015-12-03 丸祥電器株式会社 Spherical composite copper fine particle containing extra-fine carbon fiber and manufacturing method therefor

Also Published As

Publication number Publication date
JP6960817B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
KR101970892B1 (en) Method of producing sulfide solid electrolyte
CN101837464B (en) Metal nickel powder and preparation method thereof
CN103290430B (en) Preparation method of anode steel claw protection ring for electrolytic aluminum
CN101817553B (en) Method for treating arsenic-containing smoke dust
Yao et al. Detoxification and recovery of spent carbon cathodes via NaOH–Na2CO3 binary molten salt roasting–water leaching: toward a circular economy for hazardous solid waste from aluminum electrolysis
CN105112671A (en) Harmless treatment method of electroplating sludge
CN105177295A (en) Comprehensive treatment method for red mud and copper slag
Tao et al. Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries
CN109411843A (en) A kind of regeneration method of waste and old lithium ion battery graphite electrode
CN105923658A (en) Material utilization method for electroplating sludge
CN106007423A (en) Electroplating sludge resource utilization method
CN104961201A (en) Preparation method of iron-carbon micro-electrolysis ceramsite filler for water treatment
Itam et al. Extraction of metal oxides from coal bottom ash by carbon reduction and chemical leaching
CN106636655A (en) Treatment method of electric furnace dust
KR101966065B1 (en) Manufacturing method of multi-mineral from industrial waste
CN110465410A (en) A kind of floatation process of Pb-Zn deposits
JP7376244B2 (en) Water quality improvement material and its manufacturing method
JP6944774B2 (en) Sintered body and its manufacturing method
JP6960817B2 (en) Metal collecting material for valuable metal recovery, its manufacturing method and valuable metal recovery method
CN111013526B (en) Antimony tailing based adsorption material and preparation method and application thereof
JP6981763B2 (en) Water quality improving material
JP2020054990A (en) Arsenic removal materials and methods for separation and extraction of arsenic
JP4999786B2 (en) Method for evaluating heavy metal insolubilization performance of magnesium oxide
Fang et al. Enhanced compressive strength of preheated limonite pellets with biomass-derived binders
CN1309848C (en) Pellelizing technology suitable for biological dump leaching and extracting metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R150 Certificate of patent or registration of utility model

Ref document number: 6960817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150