JP5665254B2 - Hydrated solidified body for submerged submergence - Google Patents

Hydrated solidified body for submerged submergence Download PDF

Info

Publication number
JP5665254B2
JP5665254B2 JP2007214159A JP2007214159A JP5665254B2 JP 5665254 B2 JP5665254 B2 JP 5665254B2 JP 2007214159 A JP2007214159 A JP 2007214159A JP 2007214159 A JP2007214159 A JP 2007214159A JP 5665254 B2 JP5665254 B2 JP 5665254B2
Authority
JP
Japan
Prior art keywords
compost
slag
hydrated
solidified body
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007214159A
Other languages
Japanese (ja)
Other versions
JP2009045006A (en
Inventor
小山田 久美
久美 小山田
清水 悟
悟 清水
久宏 松永
久宏 松永
長谷川 和広
和広 長谷川
悦郎 宇田川
悦郎 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Mineral Co Ltd
Original Assignee
JFE Steel Corp
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Mineral Co Ltd filed Critical JFE Steel Corp
Priority to JP2007214159A priority Critical patent/JP5665254B2/en
Publication of JP2009045006A publication Critical patent/JP2009045006A/en
Application granted granted Critical
Publication of JP5665254B2 publication Critical patent/JP5665254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)

Description

本発明は、粉粒状の製鋼スラグを主たる骨材とし、高炉スラグ微粉末を主たる結合材とする原料を水和硬化させた水和固化体であって、特に海藻の着生基盤として好適な水中沈設用水和固化体に関するものである。   The present invention is a hydrated solidified body obtained by hydrating and hardening a raw material mainly composed of granular steelmaking slag and blast furnace slag fine powder as a main binder, and is particularly suitable as a submerged base for seaweed. The present invention relates to a hydrated solidified body for sedimentation.

近年、沿岸海域における環境保全や水産資源の保護などの観点から、沿岸海域の海底に成育する海藻の保護・育成、所謂磯焼けの防止、磯焼けが生じている海域の藻場回復などが大きな課題となっており、これらを解決できる水中や水底の環境改善技術の開発が望まれている。特に、岩礁などのような海藻着生基盤の表面が石灰藻に覆われる所謂“磯焼け”状態となった海域は、魚介類の餌となる有用海藻(例えば、コンブ、ワカメ、アラメなど)が繁殖せず、その海域の漁業生産量が著しく低下するという問題があり、抜本的な対策が望まれている。   In recent years, from the viewpoints of environmental conservation and protection of marine resources in coastal sea areas, the protection and development of seaweed that grows on the sea floor in coastal sea areas, the prevention of so-called burning, and the recovery of seaweed beds in sea areas where burning has occurred. Development of technology for improving the environment of water and bottom that can solve these problems is desired. In particular, in the sea area where the surface of the seaweed settlement base such as reefs is covered with lime algae, the so-called “boiled” state is filled with useful seaweed (for example, kombu, wakame, arame, etc.) There is a problem that the fishery production in the sea area is remarkably reduced without breeding, and drastic measures are desired.

従来、海域での海藻の育成や磯焼け防止を目的として海藻の栄養成分(例えば、鉄イオンや窒素成分)を海域に供給するために、例えば、以下のような方法が提案されている。
(イ)特許文献1には、製鋼スラグなどのような二価鉄含有物質と腐植含有物質を充填した透水性の袋材を水域環境保全材料として用いる方法が示されている。この方法では、透水性の袋材から、二価鉄含有物質の二価鉄(鉄イオン)や、二価鉄含有物質の二価鉄と腐植含有物質のフルボ酸との結合で生成したフルボ酸鉄が水中に溶出し、海藻などの光合成生物に二価鉄を効率的に供給できるとしている。
(ロ)特許文献2には、鉄鋼スラグと、アンモニア化成する窒素化合物を含有する物質とからなる施肥材料が充填された透水性の袋材を水中に設置する方法が示されている。この方法では、鉄鋼スラグから二価鉄が溶出し、またこの二価鉄と窒素化合物から分解されたアンモニアとの間で錯体イオンが生成するので、海洋生物に必要な二価鉄を安定した状態で供給できるとしている。また、リン、窒素からなる有機系肥料分を溶出させることができるため、鉄系肥料分と有機系肥料分とをバランスよく海洋生物に供給できるとしている。
Conventionally, for example, the following methods have been proposed in order to supply seaweed nutrient components (for example, iron ions and nitrogen components) to the sea area for the purpose of growing seaweed and preventing burning of seaweed in the sea area.
(A) Patent Document 1 discloses a method in which a water-permeable bag material filled with a divalent iron-containing substance such as steelmaking slag and a humus-containing substance is used as a water environment protection material. In this method, divalent iron-containing material divalent iron (iron ions) or divalent iron-containing material divalent iron and humus-containing material fulvic acid formed from a water-permeable bag material. It is said that iron elutes in water and can efficiently supply divalent iron to photosynthetic organisms such as seaweed.
(B) Patent Document 2 discloses a method in which a water-permeable bag material filled with fertilizer material composed of steel slag and a substance containing a nitrogen compound that forms ammonia is placed in water. In this method, divalent iron is eluted from steel slag, and complex ions are formed between the divalent iron and ammonia decomposed from nitrogen compounds, so that the divalent iron required for marine organisms is stable. It can be supplied at. Moreover, since organic fertilizer consisting of phosphorus and nitrogen can be eluted, it is said that iron fertilizer and organic fertilizer can be supplied to marine organisms in a well-balanced manner.

(ハ)特許文献3には、最終製品の容積に対して20〜30容量%の有機鉄を含む農林水産廃棄物および腐植土層を含むコンクリート製の硬化性組成物を、農林水産廃棄物が発酵し、且つ前記硬化性組成物が硬化する条件で養生して得られた多孔質体(または連続気泡体)からなる人工礁が示されている。この人工礁は、農林水産廃棄物の発酵時に発生するガスが多孔質体の構造を形成できるので、有機鉄分などの養分を安定的に水中に供給できるとしている。
(ニ)特許文献4には、粉粒状の溶銑予備処理スラグと高炉スラグ微粉末の混合物を水で混練して硬化させた硬化体に、藻の成育を促進する物質(例えば、硫酸鉄、フライアッシュなど)からなる表面層を形成した藻場形成ブロックが示されている。
(C) In Patent Document 3, agricultural, forestry and fisheries waste containing 20 to 30% by volume of organic iron and concrete curable composition containing a humus soil layer with respect to the volume of the final product, An artificial reef composed of a porous body (or an open cell body) obtained by fermentation under the conditions that the curable composition is cured is shown. In this artificial reef, gas generated during fermentation of agricultural, forestry and fishery wastes can form a porous structure, so that nutrients such as organic iron can be stably supplied into water.
(D) Patent Document 4 discloses a substance that promotes the growth of algae (for example, iron sulfate, fly, etc.) on a hardened body obtained by kneading a mixture of granular hot metal pretreatment slag and blast furnace slag fine powder with water and hardening it. An algae bed forming block having a surface layer made of ash or the like is shown.

特開2006−212036号公報JP 2006-212036 A 特開2006−345738号公報JP 2006-345738 A 特開2001−061368号公報JP 2001-061368 A 特開2001−299129号公報JP 2001-299129 A

しかし、特許文献1,2の方法では、袋材はいずれ消失してしまうため海藻の着生基盤にはなり得ず、したがって、単に海藻の栄養分となる二価鉄などを水中に供給するだけの技術に過ぎない。この方法で藻場を形成するには、袋材から水中に溶出した二価鉄や他の養分が海藻が生育できるような岩礁に流れて行き、海藻に十分利用されるようにそこに一定の濃度で留まる必要があるが、特許文献1,2にはそれを可能とするような手法は示されていない。
特許文献3の人工礁は、農林水産廃棄物と腐植土層を20〜30容量%も含み、しかも養生時に農林水産廃棄物の発酵で生じるガスにより多孔質体(または連続気泡体)となるため強度が非常に小さく(圧縮強度10〜20kg/cm)、このため水中に設置すると短期間のうちに崩壊してしまい、海藻の着生基盤にはなり得ない。
However, in the methods of Patent Documents 1 and 2, since the bag material will eventually disappear, it cannot serve as an agglomeration base of seaweed, and therefore, simply supply divalent iron or the like as nutrients for seaweed into the water. It's just technology. In order to form a seaweed bed by this method, divalent iron and other nutrients eluted into the water from the bag material flow to the reef where seaweed can grow, and there is a certain amount so that it can be fully utilized for seaweed. Although it is necessary to stay at the concentration, Patent Documents 1 and 2 do not show a technique that makes this possible.
The artificial reef of Patent Document 3 contains 20 to 30% by volume of agricultural, forestry and fishery waste and humus soil layer, and becomes porous (or open-celled) due to gas generated by fermentation of agricultural, forestry and fishery waste during curing. The strength is very small (compressive strength: 10 to 20 kg / cm 2 ). For this reason, when it is installed in water, it collapses within a short period of time, and cannot become a habitat for seaweed.

特許文献4の藻場形成ブロックは、表面層を構成する「藻の生育を促進する物質」として硫酸鉄などの無機物質が例示されている。この表面層の物質は、表面に凹凸を付与し、藻の着生を促進するものであるが、栄養源としての作用を有していない可能性もある。
したがって本発明の目的は、海藻の着生性が高く且つ長期間にわたって安定的に海藻着生基盤として機能することができ、しかも海藻に効率的に栄養分を安定供給することができる水中沈設用水和固化体を提供することにある。
In the algae formation block of Patent Document 4, an inorganic substance such as iron sulfate is exemplified as a “substance that promotes the growth of algae” that constitutes the surface layer. This surface layer material imparts irregularities to the surface and promotes the growth of algae, but may not have an action as a nutrient source.
Accordingly, an object of the present invention is to provide a hydrated solidification for submerged submergence, which has a high seaweed agglomeration function, can function stably as a seaweed settlement base for a long period of time, and can stably supply nutrients to seaweed efficiently. To provide a body.

本発明者らは、鉄鋼スラグを主原料とする水和固化体が、コンクリート製品に比べて表面水のpHが低く、且つ海藻の栄養分となる鉄分やSiを多く含有している点に着目し、このような水和固化体を海藻の着生基盤とするという観点から検討を進めた結果、水和固化体の原料の一部として堆肥などの窒素含有有機物を含有させることにより、(i)海藻の重要な栄養分である窒素分や鉄分(二価鉄)、Si、Pなどを安定的に溶出・供給することができる、(ii)固化体表面が海藻の着生に好適な環境となるため、海藻の着生性を高めることができる、(iii)このため溶出する上記栄養分を海藻に直接供給することができる、という海藻着生基盤として高い機能を発揮できることが判った。   The inventors of the present invention pay attention to the fact that the hydrated solid body made mainly of steel slag has a lower pH of surface water than concrete products and contains a large amount of iron and Si, which are nutrients for seaweed. As a result of studying from the viewpoint of using such a hydrated solidified body as an agglomeration base of seaweed, by including nitrogen-containing organic matter such as compost as part of the raw material of the hydrated solidified body, (i) Nitrogen, iron (divalent iron), Si, P, etc., which are important nutrients of seaweed, can be stably eluted and supplied. (Ii) The solidified body surface is a suitable environment for the growth of seaweed. Therefore, it has been found that a high function can be exerted as a seaweed settlement base that can enhance the agglutination property of seaweed, and (iii) that the above-mentioned nutrients to be eluted can be directly supplied to the seaweed.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]粉粒状の製鋼スラグを主たる骨材とし、高炉スラグ微粉末を主たる結合材とする原料を水と混練した後、水和硬化させた水和固化体であって、
原料の一部として窒素含有有機物である堆肥または/および堆肥用原料を含み、
水和固化体中での前記堆肥または/および堆肥用原料の含有量が、該堆肥または/および堆肥用原料以外の水和固化体成分100質量部に対して、含水比100%の堆肥または/および堆肥用原料として1〜12質量部であることを特徴とする海藻着生基盤用の水中沈設用水和固化体。
[2]上記[1]の水和固化体において、原料が、さらに、粉粒状の高炉水砕スラグ、フライアッシュ、アルカリ刺激材、混和剤の中から選ばれる1種以上を含むことを特徴とする海藻着生基盤用の水中沈設用水和固化体。
The present invention has been made on the basis of such findings and has the following gist.
[1] A hydrated solidified body obtained by kneading a raw material mainly composed of powdered steelmaking slag and using a blast furnace slag fine powder as a main binder with water, followed by hydration hardening,
Including compost that is nitrogen-containing organic matter and / or compost raw material as part of the raw material,
The compost and / or content of the compost material in the hydrated solidified body in the, with respect to the manure and / or hydrated solid material to 100 parts by weight of the component other than the compost raw materials, water content of 100% of the compost or / And 1-12 parts by mass as a composting raw material , a submerged submerged hydrated solidified body for a seaweed settlement base.
[2] The hydrated solid body according to [1] above, wherein the raw material further contains at least one selected from powdered granulated blast furnace granulated slag, fly ash, an alkali stimulant, and an admixture. A hydrated solidified body for submerged submerged seaweed.

[3]上記[1]または[2]の水和固化体において、堆肥または/および堆肥用原料が分解促進剤を含むことを特徴とする海藻着生基盤用の水中沈設用水和固化体。
[4]上記[1]〜[3]のいずれかの水和固化体において、平成3年8月23日環境庁告示46号に準拠した6時間振とう溶出試験による窒素溶出量が0.01mg/L以上であることを特徴とする海藻着生基盤用の水中沈設用水和固化体。
[3] A hydrated solidified body for submerged submergence for a seaweed settlement base, wherein the compost or / and composting raw material contains a decomposition accelerator in the hydrated solidified body of [1] or [2].
[4] In any one of the above [1] to [3], the amount of nitrogen dissolved by a 6-hour shaking dissolution test based on Environmental Agency Notification No. 46, August 23, 1991 is 0.01 mg. / L or more of hydrated solidified body for submerged in water for seaweed settlement base.

本発明の水中沈設用水和固化体は、海藻の着生性が高く且つ長期間にわたって安定的に海藻着生基盤として機能することができ、しかも海藻に効率的に窒素や鉄分、Si、Pなどの栄養分を安定供給することができ、特に、水和固化体に着生した海藻自体に直接それらの栄養分を供給することができる。このため海藻の着生基盤として非常に好適なものである。   The hydrated solidified body for submergence according to the present invention has high seaweed agglomeration and can stably function as a seaweed agglomeration base for a long period of time. Moreover, nitrogen, iron, Si, P, etc. Nutrients can be stably supplied, and in particular, the nutrients can be supplied directly to the seaweed that has grown on the hydrated solid body. For this reason, it is very suitable as a seaweed settlement base.

本発明の水中沈設用水和固化体は、粉粒状の製鋼スラグを主たる骨材とし、高炉スラグ微粉末を主たる結合材とする原料を水和硬化させた水和固化体であって、原料の一部として窒素含有有機物を含むものである。
粉粒状の製鋼スラグを主たる骨材とし、高炉スラグ微粉末を主たる結合材とする原料を水和硬化させた水和固化体(以下、「スラグ水和固化体」という場合がある)は、同じ水和固化体であるコンクリートに劣らない高い強度を有する一方で、コンクリートに較べて、水中での表面水のpHが低く(一般にコンクリートに較べて“1”程度低い)、また製鋼スラグは鉄分やSi(珪酸)、P(リン酸)を多く含んでいるため、鉄分やSi、Pの溶出性が高い。表面水のpHが低いことは海藻の着生に非常に有利であり、また、溶出する鉄分やSi、Pは海藻の栄養分となる。したがって、このスラグ水和固化体は、コンクリートに較べて海藻の着生基盤に適した基本性能を有している。しかし、スラグ水和固化体は海藻にとって重要な栄養分である窒素を供給することはできず、また、有効な鉄分の供給についも必ずしも十分ではなく、このため窒素分や鉄分などが不足して磯焼けを起こしている海域で海藻着生基盤(藻礁)として有効に機能させることはできない。
The hydrated solidified body for submerging according to the present invention is a hydrated solidified body obtained by hydrating and hardening a raw material mainly composed of granular steel-making slag and finely ground blast furnace slag as a binder. The part contains a nitrogen-containing organic substance.
The hydrated solidified product (hereinafter sometimes referred to as “slag hydrated solidified product”), which is made by hydrating and hardening the raw material with powdered steelmaking slag as the main aggregate and blast furnace slag fine powder as the main binder, is the same. While it has high strength that is not inferior to concrete, which is a hydrated solid, the pH of surface water in water is low (generally “1” lower than concrete), and steelmaking slag is made of iron or Since it contains a large amount of Si (silicic acid) and P (phosphoric acid), the elution of iron, Si, and P is high. The low pH of the surface water is very advantageous for the growth of seaweed, and the eluted iron, Si, and P are nutrients for seaweed. Therefore, this slag hydrated solid body has the basic performance suitable for the seaweed settlement base compared with concrete. However, slag hydrated solids cannot supply nitrogen, which is an important nutrient for seaweed, and are not always sufficient to supply effective iron, so there is a shortage of nitrogen and iron. It cannot function effectively as a seaweed settlement base (algae reef) in the sea area that is burning.

これに対して本発明の水和固化体は、原料の一部として含有する窒素含有有機物からアンモニアや硝酸態窒素の形で窒素分が分離し、これが海藻の栄養分として溶出・供給される。また、一般に製鋼スラグは海藻の栄養分となる二価鉄(FeOやFe)を相当量(3〜20質量%程度)含んでいるが、この二価鉄は容易に酸化し、海藻が摂取不能な三価鉄の形態になりやすい。ここで、スラグ水和固化体中に腐敗した窒素含有有機物(例えば、堆肥)が存在すると、これに含まれるフルボ酸やアンモニアがスラグ中の二価鉄と結合して安定なフルボ酸鉄や錯イオンを形成し、海藻が容易に吸収可能な形態で二価鉄を溶出させることができる。
また、本発明の水和固化体は、周囲の水中に窒素、Si、P、鉄分などの栄養分が供給されるだけでなく、水和固化体に着生した海藻自体に直接それらの栄養分を供給できる点に大きな利点がある。
On the other hand, in the hydrated solid form of the present invention, the nitrogen content is separated from the nitrogen-containing organic material contained as a part of the raw material in the form of ammonia or nitrate nitrogen, and this is eluted and supplied as a seaweed nutrient. In general, steelmaking slag contains a considerable amount (about 3 to 20% by mass) of divalent iron (FeO or Fe 3 O 4 ), which is a nutrient of seaweed. It tends to be in the form of trivalent iron that cannot be taken. Here, when there is a spoiled nitrogen-containing organic substance (for example, compost) in the slag hydrated solidified body, the fulvic acid and ammonia contained in the slag are combined with the divalent iron in the slag to stabilize the stable fulvic acid iron and complex. Ions are formed, and divalent iron can be eluted in a form that can be easily absorbed by seaweed.
Moreover, the hydrated solidified product of the present invention not only supplies nutrients such as nitrogen, Si, P, and iron to the surrounding water, but also supplies these nutrients directly to the seaweed itself that has grown on the hydrated solidified product. There is a big advantage in what you can do.

さらに、本発明の水和固化体は、水中で海藻の着生基盤として長期間機能することができる十分な強度を有するとともに、以下のような作用効果を有している。
(a)水和固化体に含まれる窒素含有有機物から有機酸が溶出すること、水和固化体表面の一部に窒素含有有機物が露出することでスラグ露出面が減少すること、などによると思われる理由で、窒素含有有機物を含まない水和固化体に較べて表面水のpHが低くなる。このため、窒素含有有機物を含まない水和固化体に較べて、固化体表面が海藻の着生・成育にとってより好ましい環境となる。
(b)窒素含有有機物が固化体表面に露出することにより、固化体表面に海藻の着生にとって好ましい微細な凹凸が付与される。
(c)固化体表面に近い窒素含有有機物からその分解成分が順次溶出していき、この窒素含有有機物の分解・溶出により生じた隙間(通路)を通じて、より内方の窒素含有有機物の分解成分が溶出する。このため、長期間にわたって窒素分などを安定的に溶出・供給することができる。
Furthermore, the hydrated solidified body of the present invention has sufficient strength that can function as a seaweed settlement base in water for a long period of time, and has the following effects.
(A) The organic acid is eluted from the nitrogen-containing organic substance contained in the hydrated solidified body, and the exposed surface of the slag is reduced by exposing the nitrogen-containing organic substance to a part of the surface of the hydrated solidified body. For this reason, the pH of the surface water is lower than that of the hydrated solid body containing no nitrogen-containing organic matter. For this reason, compared with the hydrated solid body which does not contain a nitrogen-containing organic substance, the solidified body surface becomes a more preferable environment for the growth and growth of seaweed.
(B) When the nitrogen-containing organic substance is exposed on the surface of the solidified body, fine irregularities preferable for the formation of seaweed are provided on the surface of the solidified body.
(C) The decomposed components of the nitrogen-containing organic matter close to the solidified body surface are eluted sequentially, and the inner components of the nitrogen-containing organic matter are decomposed through gaps (passages) created by the decomposition and elution of the nitrogen-containing organic matter. Elute. For this reason, nitrogen can be stably eluted and supplied over a long period of time.

さらに、窒素含有有機物としては、生物性廃棄物を利用できるため、廃棄物の有効利用の面でも好ましい。
ここで、本発明の水和固化体が着生基盤となる海藻とは、自然界では岩礁に付着器と呼ばれる部分で付着して成育・繁殖する岩礁性水中植物である。例えば、コンブ、ワカメ、カジメ、アラメ、ホンダワラなどが挙げられ、コンブ、ワカメは食品などに用いられ、またカジメやアラメ、ホンダワラは海中林という藻場を形成し、この藻場は沿岸海域における魚介類の産卵場や成育場として非常に重要な役割を果たす。
Furthermore, since biological waste can be used as the nitrogen-containing organic matter, it is also preferable in terms of effective use of waste.
Here, the seaweed on which the hydrated solidified body of the present invention is based is a reef-like underwater plant that grows and propagates by attaching to a reef at a portion called an attachment device in nature. For example, kombu, wakame, kajime, arame, hondawara, etc. are used. It plays a very important role as a spawning ground and a breeding ground.

本発明において、水和固化体の原料の一部となる窒素含有有機物は、アンモニアや硝酸態窒素の形で窒素分を分離させ、これを海藻の栄養分として溶出・供給するために配合されものであるため、分解したもの(分解中のものも含む)または分解可能なものである。この窒素含有有機物は、植物性有機物、動物性有機物のいずれでもよいが、特に植物性有機物の堆肥または/および堆肥用原料が好ましい。この堆肥は、一般に、植物性食品廃棄物、落ち葉、草、わら、藻類、木材チップ、おが屑、抜根、剪定枝などの植物性有機物を腐敗させたものである。また、堆肥用原料とは、堆肥化する前のこれら材料であり、このような堆肥用原料を用いる場合には、分解促進剤を同時に配合することが好ましい。この分解促進剤としては、例えば、耐塩性のある酸生成菌などのような堆肥用原料の分解を促進させる微生物が好適である。以上のような植物性有機物は基本的に難分解性であるため、窒素分などの栄養分を長期にわたって安定的に供給することができる(緩効性)。   In the present invention, the nitrogen-containing organic substance that is a part of the raw material of the hydrated solidified body is blended to separate nitrogen in the form of ammonia or nitrate nitrogen, and to elute and supply this as nutrients for seaweed. Therefore, it can be decomposed (including those being decomposed) or decomposable. The nitrogen-containing organic material may be either a plant organic material or an animal organic material, but a plant organic material compost or / and a raw material for compost is particularly preferable. This compost is generally made by decaying plant organic matter such as vegetable food waste, fallen leaves, grass, straw, algae, wood chips, sawdust, rooting, pruned branches. Moreover, the raw material for composting is these materials before composting, and when using such a raw material for composting, it is preferable to mix | blend a decomposition accelerator simultaneously. As the decomposition accelerator, for example, a microorganism that promotes the decomposition of composting raw materials such as salt-resistant acid-producing bacteria is preferable. Since the above plant organic substances are basically hardly degradable, nutrients such as nitrogen can be stably supplied over a long period of time (slow effect).

水和固化体中での窒素含有有機物の含有量は、窒素含有有機物以外の水和固化体成分100質量部に対して、含水比100%の窒素含有有機物として1〜12質量部とすることが好ましい。窒素含有有機物の含有量が1質量部未満では、窒素分の供給が十分でなく、一方、12質量部を超えると水和固化体の強度が低下する。
本発明の水和固化体は、海藻の栄養分となる窒素の供給源として高い機能を発揮するために、平成3年8月23日環境庁告示46号に準拠した6時間振とう溶出試験による窒素溶出量が0.01mg/L以上であることが好ましい。窒素溶出量が0.01mg/L以上であると、後述するようにクロロフィル付着量や珪藻付着量の改善が認められる。
The content of the nitrogen-containing organic substance in the hydrated solid body is 1 to 12 parts by mass as a nitrogen-containing organic substance having a water content of 100% with respect to 100 parts by mass of the hydrated solid body component other than the nitrogen-containing organic substance. preferable. When the content of the nitrogen-containing organic substance is less than 1 part by mass, the supply of nitrogen content is not sufficient. On the other hand, when the content exceeds 12 parts by mass, the strength of the hydrated solid body decreases.
The hydrated and solidified product of the present invention exhibits a high function as a source of nitrogen serving as a nutrient for seaweeds. Therefore, nitrogen by a 6-hour shaking dissolution test based on the Environmental Agency Notification No. 46, August 23, 1991 The elution amount is preferably 0.01 mg / L or more. When the nitrogen elution amount is 0.01 mg / L or more, an improvement in the chlorophyll adhesion amount and the diatom adhesion amount is recognized as described later.

次に、上記窒素含有有機物を除く水和固化体の原料について説明する。
スラグ水和固化体の主たる骨材である粉粒状の製鋼スラグの種類に特別な制限はない。
製鋼スラグとしては、転炉脱炭スラグ、溶銑予備処理スラグ(例えば、脱燐スラグ、脱硫スラグ、脱珪スラグ)、電気炉スラグ、二次精錬スラグ、造塊スラグなどが挙げられ、これらの2種以上を用いてもよい。また、これらスラグに炭酸化処理などの各種処理を施したものを用いてもよい。
但し、一般に製鋼スラグはfree−CaOが多く、さらに、転炉脱炭精錬では精錬剤の一部としてMgO(転炉の内張り耐火物を保護するためのドロマイトやマグネシアクリンカ)を使用するため、転炉脱炭スラグは、free−CaOだけでなくfree−MgO相も多い。このため製鋼スラグとして転炉脱炭スラグを用いた場合、free−CaOに較べて常温での水和反応が遅いfree−MgOが、水和固化体の硬化後に水和膨張する恐れがあり、水和固化体に割れが生じたり、崩壊するなどの問題を生じやすい。このため、転炉脱炭スラグを用いる場合にはfree−MgO濃度が十分に低いものを用いることが好ましい。具体的には、free−MgO濃度を測定することは困難であるので、free−MgO濃度との相関の強いMgO濃度が8.5質量%以下のものを用いることが好ましい。
Next, the raw material of the hydrated solid body excluding the nitrogen-containing organic substance will be described.
There is no special restriction on the type of granular steelmaking slag, which is the main aggregate of the slag hydrated solid.
Steelmaking slag includes converter decarburization slag, hot metal pretreatment slag (eg, dephosphorization slag, desulfurization slag, desiliconization slag), electric furnace slag, secondary refining slag, ingot slag, etc. More than one species may be used. Moreover, you may use what performed various treatments, such as carbonation treatment, to these slags.
However, steelmaking slag is generally free-CaO, and converter decarburization refining uses MgO (dolomite and magnesia clinker for protecting converter lining refractories) as part of the refining agent. Furnace decarburization slag has many free-MgO phases as well as free-CaO. For this reason, when converter decarburization slag is used as steelmaking slag, free-MgO, which has a slower hydration reaction at room temperature than free-CaO, may hydrate and expand after hardening of the hydrated solidified body. Problems such as cracking or disintegration of the solidified body are likely to occur. For this reason, when using converter decarburization slag, it is preferable to use the one having a sufficiently low free-MgO concentration. Specifically, since it is difficult to measure the free-MgO concentration, it is preferable to use a MgO concentration having a strong correlation with the free-MgO concentration of 8.5% by mass or less.

一方、溶銑予備処理スラグはfree−MgO相が少なく、転炉脱炭スラグのような水和膨張による割れなどが生じるおそれはないので、製鋼スラグとしては、脱燐スラグ、脱硫スラグ、脱珪スラグなどの溶銑予備処理スラグ(これらの1種または2種以上)を用いることが好ましい。
水和固化体になった後に製鋼スラグが膨張することを防止する一つの方法として、製鋼スラグを事前にエージング処理して安定化させるのが有効である。エージングには、製鋼スラグを露天にさらす自然エージングや、製鋼スラグを高温蒸気と接触させる蒸気エージングがある。一般に、自然エージングを6ヶ月以上、或いは蒸気エージングを実施することにより、スラグ水和固化体に適用可能な粉化率の基準を満たすようにすることができる。
製鋼スラグは、スラグ粒子の粒径が大きいほど、内部にfree−CaOやfree−MgOの粒を含む可能性が高くなる。また、それらのエージングによる反応も遅くなり、スラグ水和固化体の膨張安定性にとって問題が生じる可能性が高くなる。このため使用する製鋼スラグは、粒径25mm以下のものが好ましい。
また、スラグ水和固化体の主たる結合材である高炉スラグ微粉末は、JIS A6206:1997に適合したもの使用することが好ましい。
On the other hand, hot metal pretreatment slag has few free-MgO phases and there is no risk of cracking due to hydration expansion like converter decarburization slag. Steelmaking slag is dephosphorized slag, desulfurized slag, desiliconized slag. It is preferable to use hot metal pretreatment slag such as one or more of these.
As one method for preventing the steelmaking slag from expanding after becoming a hydrated solidified body, it is effective to stabilize the steelmaking slag by aging in advance. Aging includes natural aging in which steelmaking slag is exposed to the open air and steam aging in which steelmaking slag is brought into contact with high-temperature steam. In general, by performing natural aging for 6 months or more, or by performing steam aging, it is possible to satisfy the standard of the powdering rate applicable to the slag hydrated solidified body.
The steelmaking slag has a higher possibility of containing free-CaO and free-MgO grains therein as the particle diameter of the slag particles is larger. In addition, the reaction due to aging thereof is also slowed, and there is a high possibility that a problem will arise for the expansion stability of the slag hydrated solidified product. For this reason, the steelmaking slag used preferably has a particle size of 25 mm or less.
Moreover, it is preferable to use the blast furnace slag fine powder which is a main binder of the slag hydrated solidified material in conformity with JIS A6206: 1997.

原料には、さらに必要に応じて、粉粒状の高炉水砕スラグ、フライアッシュ、アルカリ刺激材、混和剤などの中から選ばれる1種以上を配合することができる。
前記粉粒状の高炉水砕スラグは、基本的には骨材の一部として配合されるが、弱い水硬性を有しているので、水和固化体中にあっては、アルカリ刺激材によりアルカリ刺激を受けて固化し、強度にも寄与する。高炉水砕スラグとしては、JIS A6206:1997「コンクリート用高炉スラグ微粉末」の原料に用いるもの、またはJIS A5011−1:2003「コンクリート用スラグ骨材−第1部:高炉スラグ骨材」に適合したものが好ましい。
前記フライアッシュは、水和固化体の他の材料と比べるとSiOの含有量が多く、形状が球形に近いという特徴がある。このフライアッシュはポゾラン物質として働き、長期材齢での強度向上に役立つとともに、スラグ水和固化体全体としてのアルカリ性を低減させ、水和固化体を水に浸したときに溶出するアルカリ物質の量を低減させる働きもある。フライアッシュとしては、JIS A6201:1999に適合したものが好ましい。
If necessary, the raw material may further contain one or more selected from powdered granulated blast furnace granulated slag, fly ash, alkali stimulant, admixture and the like.
The granulated blast furnace granulated slag is basically blended as a part of the aggregate, but has a weak hydraulic property. It solidifies upon stimulation and contributes to strength. Granulated blast furnace slag conforms to JIS A6206: 1997 "Blast furnace slag fine powder for concrete" or JIS A5011-1: 2003 "Concrete slag aggregate-Part 1: Blast furnace slag aggregate" Is preferred.
The fly ash has a feature that the content of SiO 2 is large and the shape is close to a sphere compared with other materials of the hydrated solid body. This fly ash acts as a pozzolanic substance, helps to improve the strength at long-term ages, reduces the alkalinity of the slag hydrated solid body as a whole, and the amount of alkaline substance eluted when the hydrated solidified body is immersed in water It also works to reduce As the fly ash, those conforming to JIS A6201: 1999 are preferable.

前記アルカリ刺激材としては、例えば、消石灰やセメントなどのCa系のものを用いことができる。高炉スラグ微粉末は潜在水硬性を有し、アルカリ刺激によって硬化が促進される。このためアルカリ刺激材を添加することで、より安定的に高い強度を得ることができる。
前記混和剤は、練混ぜ水の調節、空気量の調節にはコンクリート用の混和剤が有効である。混和剤として用いるAE剤、減水剤、AE減水剤、および高性能AE減水剤は、JIS A6204:2000に混合したものが好ましい。
As the alkali stimulating material, for example, Ca-based materials such as slaked lime and cement can be used. The ground granulated blast furnace slag has latent hydraulic properties, and curing is accelerated by alkali stimulation. For this reason, high intensity | strength can be obtained more stably by adding an alkali stimulating material.
As the admixture, concrete admixture is effective for adjusting the mixing water and adjusting the amount of air. The AE agent, water reducing agent, AE water reducing agent, and high performance AE water reducing agent used as the admixture are preferably those mixed in JIS A6204: 2000.

適正な品質(特に高い強度)の水和固化体を得るためには、窒素含有有機物を除く原料含有量は、以下のようにすることが好ましい。
まず、基本成分については、窒素含有有機物を除いた割合で製鋼スラグを60〜85質量%、高炉スラグ微粉末を5〜15質量%とすることが好ましい。また、製鋼スラグと高炉スラグ微粉末に対して、高炉水砕スラグ、フライアッシュ、アルカリ刺激材、混和剤などの1種以上を加える場合には、これらの合計量を10質量%以下とすることが好ましい。
本発明の水和固化体は、以上述べたような原料を水と混練し、その混練物を型枠に流し込み或いはヤード打ち込みし、硬化した後、一定期間に養生し、製品とする。型枠を用いる場合には、硬化後に脱型し、ヤード打ち込みの場合には、硬化後に重機などを用いて適当な大きさに破砕する。養生方法は任意であるが、水中養生が特に効率的である。ヤード打ち込みする場合でも、定期的に散水することによって十分な湿潤養生となり、水中養生の80%以上の強度を得ることが可能である。
本発明の水和固化体を型枠を用いて製造する場合、コンクリート製品と同様に形状は任意である。また、ヤード打ち込みして硬化させた後、重機にて破砕する場合には不定形状となる。
In order to obtain a hydrated solid body having an appropriate quality (particularly high strength), the raw material content excluding the nitrogen-containing organic substance is preferably as follows.
First, about a basic component, it is preferable to make 60-85 mass% of steelmaking slag, and 5-15 mass% of blast furnace slag fine powder in the ratio except a nitrogen-containing organic substance. Moreover, when adding 1 or more types, such as blast furnace granulated slag, fly ash, an alkali stimulant, and an admixture, with respect to steelmaking slag and blast furnace slag fine powder, the total amount shall be 10 mass% or less. Is preferred.
The hydrated solidified product of the present invention is obtained by kneading raw materials as described above with water, pouring the kneaded product into a mold or casting it in a yard, curing, and curing for a certain period of time to obtain a product. In the case of using a mold, the mold is removed after curing, and in the case of yard driving, the mold is crushed to an appropriate size using a heavy machine after curing. The curing method is arbitrary, but underwater curing is particularly efficient. Even in the case of driving in the yard, it is possible to obtain sufficient wet curing by regularly spraying water, and it is possible to obtain strength of 80% or more of the underwater curing.
When manufacturing the hydrated solid body of this invention using a formwork, a shape is arbitrary like a concrete product. In addition, when it is hardened by yard driving, it becomes an indefinite shape when it is crushed by a heavy machine.

以下に示すような本発明例1,2と比較例1の水和固化体を製造した。
・本発明例1
基本となる成分(原料)の配合は、製鋼スラグ(粒径25mm以下の脱燐スラグ):76.9質量%、高炉スラグ微粉末:11.7質量%、フライアッシュ:2.6質量%、普通ポルトランドセメント:1.9質量%、混和剤:0.5質量%(対粉体比)とした。さらに、これら堆肥以外の配合成分の合計100質量部に対して、含水比100%の堆肥を2.5質量部添加し、水:6.9質量%で混練した。これを型枠(φ100mm×200mm)に充填して1日間の湿潤箱養生で硬化させ、脱枠した後、20℃の水中にて6日間または27日間養生し、本発明例1の水和固化体を得た。材齢28日における水和固化体の強度は15N/mmであった。
The hydrated solid bodies of Invention Examples 1 and 2 and Comparative Example 1 as shown below were produced.
-Invention Example 1
The basic components (raw materials) are composed of steel slag (dephosphorization slag having a particle size of 25 mm or less): 76.9% by mass, blast furnace slag fine powder: 11.7% by mass, fly ash: 2.6% by mass, Ordinary Portland cement: 1.9% by mass, admixture: 0.5% by mass (to powder ratio). Furthermore, 2.5 parts by mass of compost having a water content ratio of 100% was added to 100 parts by mass of the blending components other than these composts, and kneaded with water: 6.9% by mass. This is filled in a mold (φ100 mm × 200 mm), cured by wet box curing for 1 day, de-framed, and then cured in water at 20 ° C. for 6 days or 27 days to solidify the hydrated solid of Example 1 of the present invention. Got the body. The strength of the hydrated solid body at the age of 28 days was 15 N / mm 2 .

・本発明例2
基本となる成分(原料)の配合は、製鋼スラグ(粒径25mm以下の脱燐スラグ):75.6質量%、高炉スラグ微粉末:11.5質量%、フライアッシュ:2.5質量%、普通ポルトランドセメント:1.9質量%、混和剤:0.5質量%(対粉体比)とした。さらに、これら堆肥以外の配合成分の合計100質量部に対して、含水比100%の堆肥を10質量部添加し、水:8.5質量%で混練した。これを型枠(φ100mm×200mm)に充填して1日間の湿潤箱養生で硬化させ、脱枠した後、20℃の水中にて6日間または27日間養生し、本発明例2の水和固化体を得た。材齢28日における水和固化体の強度は10N/mmであった。
・比較例1
原料の配合は、製鋼スラグ(粒径25mm以下の脱燐スラグ):76.9質量%、高炉スラグ微粉末:11.7質量%、フライアッシュ:2.6質量%、普通ポルトランドセメント:1.9質量%、混和剤:0.5質量%(対粉体比)とし、水:6.9質量%で混練した。これを型枠(φ100mm×200mm)に充填して1日間の湿潤箱養生で硬化させ、脱枠した後、20℃の水中にて6日間または27日間養生し、比較例1の水和固化体を得た。材齢28日における水和固化体の強度は25N/mmであった。
-Invention Example 2
The basic component (raw material) is composed of steelmaking slag (dephosphorization slag having a particle size of 25 mm or less): 75.6% by mass, blast furnace slag fine powder: 11.5% by mass, fly ash: 2.5% by mass, Ordinary Portland cement: 1.9% by mass, admixture: 0.5% by mass (to powder ratio). Furthermore, 10 parts by mass of compost having a water content ratio of 100% was added to 100 parts by mass of the blending components other than the compost, and the mixture was kneaded with water: 8.5% by mass. This is filled in a mold (φ100 mm × 200 mm), cured by wet box curing for 1 day, de-framed, and then cured in water at 20 ° C. for 6 days or 27 days, and hydrated and solidified in Example 2 of the present invention. Got the body. The strength of the hydrated solid body at the age of 28 days was 10 N / mm 2 .
Comparative example 1
The raw materials were blended into steel slag (dephosphorized slag having a particle size of 25 mm or less): 76.9% by mass, blast furnace slag fine powder: 11.7% by mass, fly ash: 2.6% by mass, ordinary Portland cement: 1. The mixture was 9% by mass, admixture: 0.5% by mass (powder to powder ratio), and water: 6.9% by mass. This was filled in a mold (φ100 mm × 200 mm), cured by wet box curing for 1 day, de-framed, and then cured in water at 20 ° C. for 6 days or 27 days. Got. The strength of the hydrated solid body at the age of 28 days was 25 N / mm 2 .

[試験例1]
本発明例1,2と比較例1の水和固化体(7日間養生材、28日間養生材)について、平成3年8月23日環境庁告示46号に準拠した6時間振とう溶出試験(6時間・200rpm振とう後の溶出量の測定)によりSiとNの溶出量を測定した。その結果を図1(a),(b)に示す。これによれば、N溶出量は、28日間養生した本発明例1(堆肥配合量:2.5質量部)で0.014mg/Lであり、必要な溶出量が得られている。また、本発明例2(堆肥配合量:10質量部)ではさらに多くのN溶出量が得られている。一方、比較例1ではNの溶出はなかった。また、Siの溶出量は、本発明例1,2と比較例1はほぼ同程度であった。
[Test Example 1]
The hydrated solidified product of Examples 1 and 2 of the present invention and Comparative Example 1 (7-day curing material, 28-day curing material), a 6-hour shaking dissolution test based on Environmental Agency Notification No. 46 on August 23, 1991 ( The elution amount of Si and N was measured by measuring the elution amount after shaking at 200 rpm for 6 hours. The results are shown in FIGS. 1 (a) and (b). According to this, N elution amount is 0.014 mg / L in the present invention example 1 (compost compounding amount: 2.5 parts by mass) cured for 28 days, and the necessary elution amount is obtained. Further, in the present invention example 2 (compost compounding amount: 10 parts by mass), a larger amount of N elution is obtained. On the other hand, in Comparative Example 1, there was no elution of N. Further, the elution amounts of Si were almost the same in the inventive examples 1 and 2 and the comparative example 1.

[試験例2]
本発明例1,2と比較例1の水和固化体(28日養生材)から採取した試料を用い、試料表面のpH測定を行った。この測定では、pH指示薬(フェノールフタルレイン)添加寒天に試料を置き、24時間後に指示色の濃度を観察することでpHを測定した。その結果、堆肥配合量が多いほどpHは低下する傾向にあった。
[試験例3]
本発明例1,2および比較例1の水和固化体(28日間養生材)を実海域(港湾内の水深0.5mに吊り下げ、表面に付着したクロロフィル量および珪藻量を調べた。また、水和固化体以外に、花崗岩ブロックを比較例2として用いた。その結果を図2および図3に示す。これによれば本発明例の水和固化体は、比較例2の花崗岩ブロックや堆肥を含まない比較例1の水和固化体に較べて、クロロフィル付着量と珪藻付着量が大幅に増大している。
[Test Example 2]
Using samples collected from the hydrated solid bodies (28-day curing material) of Invention Examples 1 and 2 and Comparative Example 1, the pH of the sample surface was measured. In this measurement, a sample was placed on an agar supplemented with a pH indicator (phenolphthalein), and the pH was measured by observing the concentration of the indicator color after 24 hours. As a result, there was a tendency for the pH to decrease as the compost compounding amount increased.
[Test Example 3]
The hydrated solid bodies of the present invention examples 1 and 2 and comparative example 1 (cured for 28 days) were suspended in a real sea area (water depth 0.5 m in the harbor), and the amount of chlorophyll and diatom adhering to the surface were examined. In addition to the hydrated solidified body, a granite block was used as Comparative Example 2. The results are shown in Fig. 2 and Fig. 3. According to this, the hydrated solidified body of the present invention example is a granite block of Comparative Example 2. Compared with the hydrated solid body of Comparative Example 1 that does not contain compost, the chlorophyll adhesion amount and the diatom adhesion amount are greatly increased.

平成3年8月23日環境庁告示46号に準拠した6時間振とう溶出試験により、実施例の各供試体からのSi、Nの溶出量を測定した結果を示すグラフThe graph which shows the result of having measured the elution amount of Si and N from each specimen of an Example by the 6-hour shaking elution test based on Environment Agency Notification 46 of August 23, 1991 実施例の各供試体を実海域に沈設し、各供試体表面のクロロフィル付着量を調べた結果を示すグラフThe graph which shows the result of having sunk each specimen of an example in the actual sea area, and having investigated the amount of chlorophyll adhesion on the surface of each specimen 実施例の各供試体を実海域に沈設し、各供試体表面の珪藻付着量を調べた結果を示すグラフThe graph which shows the result of having sunk each specimen of an Example in a real sea area, and investigated the amount of diatom adhesion on the surface of each specimen

Claims (4)

粉粒状の製鋼スラグを主たる骨材とし、高炉スラグ微粉末を主たる結合材とする原料を水と混練した後、水和硬化させた水和固化体であって、
原料の一部として窒素含有有機物である堆肥または/および堆肥用原料を含み、
水和固化体中での前記堆肥または/および堆肥用原料の含有量が、該堆肥または/および堆肥用原料以外の水和固化体成分100質量部に対して、含水比100%の堆肥または/および堆肥用原料として1〜12質量部であることを特徴とする海藻着生基盤用の水中沈設用水和固化体。
It is a hydrated solidified product obtained by kneading a raw material with powdered steelmaking slag as the main aggregate and blast furnace slag fine powder as the main binder with water, followed by hydration hardening,
Including compost that is nitrogen-containing organic matter and / or compost raw material as part of the raw material,
The compost and / or content of the compost material in the hydrated solidified body in the, with respect to the manure and / or hydrated solid material to 100 parts by weight of the component other than the compost raw materials, water content of 100% of the compost or / And 1-12 parts by mass as a composting raw material , a submerged submerged hydrated solidified body for a seaweed settlement base.
原料が、さらに、粉粒状の高炉水砕スラグ、フライアッシュ、アルカリ刺激材、混和剤の中から選ばれる1種以上を含むことを特徴とする請求項1に記載の海藻着生基盤用の水中沈設用水和固化体。   The raw material further contains at least one member selected from powdered granulated blast furnace granulated slag, fly ash, an alkali stimulant, and an admixture. Hydrated solidified body for settling. 堆肥または/および堆肥用原料が分解促進剤を含むことを特徴とする請求項1または2に記載の海藻着生基盤用の水中沈設用水和固化体。 The hydrated solidified body for submerging underwater for a seaweed settlement base according to claim 1 or 2, wherein the compost or / and compost raw material contains a decomposition accelerator. 平成3年8月23日環境庁告示46号に準拠した6時間振とう溶出試験による窒素溶出量が0.01mg/L以上であることを特徴とする請求項1〜3のいずれか1項に記載の海藻着生基盤用の水中沈設用水和固化体。   The nitrogen elution amount by a 6-hour shaking elution test based on Environmental Agency Notification No. 46 on August 23, 1991 is 0.01 mg / L or more, according to any one of claims 1 to 3 The hydrated solidified body for submerging in the seaweed settlement base described.
JP2007214159A 2007-08-20 2007-08-20 Hydrated solidified body for submerged submergence Expired - Fee Related JP5665254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214159A JP5665254B2 (en) 2007-08-20 2007-08-20 Hydrated solidified body for submerged submergence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214159A JP5665254B2 (en) 2007-08-20 2007-08-20 Hydrated solidified body for submerged submergence

Publications (2)

Publication Number Publication Date
JP2009045006A JP2009045006A (en) 2009-03-05
JP5665254B2 true JP5665254B2 (en) 2015-02-04

Family

ID=40497831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214159A Expired - Fee Related JP5665254B2 (en) 2007-08-20 2007-08-20 Hydrated solidified body for submerged submergence

Country Status (1)

Country Link
JP (1) JP5665254B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104362A (en) * 2008-10-02 2010-05-13 Komiya Kensetsu:Kk Hardened material for creating seaweed bed
JP5208979B2 (en) * 2010-02-01 2013-06-12 西松建設株式会社 Seaweed nutrient supply apparatus and seaweed nutrient supply method
JP4729120B1 (en) * 2010-02-15 2011-07-20 Jfeミネラル株式会社 Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP5180328B2 (en) * 2011-01-24 2013-04-10 Jfeミネラル株式会社 Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP5667520B2 (en) * 2011-06-07 2015-02-12 新日鐵住金株式会社 Method for producing a mixture of fermented fish meal and surface-modified steelmaking slag, and method for creating a seaweed bed
JP2015006979A (en) * 2013-05-31 2015-01-15 正 阿川 Mixture of natural humic
JP6571335B2 (en) * 2015-01-15 2019-09-04 太平洋セメント株式会社 Supply method of aquaculture materials
JP6597055B2 (en) * 2015-08-26 2019-10-30 日本製鉄株式会社 Method for growing brown algae and method for producing hydrated solid with brown algae
JP6851601B2 (en) * 2018-03-07 2021-03-31 株式会社アベゼン Iron supply container
JP7395651B1 (en) * 2022-05-23 2023-12-11 北海道電力株式会社 Algae reef and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551015B2 (en) * 1972-02-15 1980-01-11
WO2001019180A1 (en) * 1999-09-13 2001-03-22 Nihon Data Service Inc. Seaweed field forming material and its block
JP2003000092A (en) * 2001-06-21 2003-01-07 Occ Corp Method for producing humic acid feeder, humic acid feed device to be used underwater and method for setting humic acid feeder
JP2005013016A (en) * 2003-06-23 2005-01-20 Toyo Syst Plant:Kk Seaweed-bed culture material
JP4489043B2 (en) * 2003-07-02 2010-06-23 西松建設株式会社 Water area environmental conservation material and water area environmental conservation method
JP2005117901A (en) * 2003-08-29 2005-05-12 Daio Kensetsu Kk Method for creating seaweed bed using log for seaweed bed base
JP2006025629A (en) * 2004-07-13 2006-02-02 Sato Kensetsu Kk Concrete block for seaweed bed
JP4367773B2 (en) * 2004-07-20 2009-11-18 岡部株式会社 How to create seaweed beds
JP2006081457A (en) * 2004-09-16 2006-03-30 Misawa Kogyo Kk Environmental protection material for water area
JP3123522U (en) * 2006-05-08 2006-07-20 株式会社エコアッシュ Seaweed block

Also Published As

Publication number Publication date
JP2009045006A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5665254B2 (en) Hydrated solidified body for submerged submergence
JP4616087B2 (en) Fertilizing material and fertilizing method
JP4729120B1 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
US20070272609A1 (en) Reuse of waste materials via manure additive
JP4403095B2 (en) Water environment conservation materials and methods of use
JP3169581U (en) Hardened product for seaweed formation
CA3098901A1 (en) Plant growth matrix
JP2005272510A (en) Soil solidification agent, method for solidifying soil, and solidified product of soil
JP2007330254A (en) Environmental preservation material for water area, environmental preservation system for water area and method for preserving water area environment
KR19990073569A (en) method for manufacturing compost by using sewage sluge
JP5180328B2 (en) Iron ion supply material, manufacturing method thereof, and iron ion supply method
CN111268954A (en) Oyster attaching base of lightweight concrete and preparation method thereof
JP7107514B1 (en) Mortar composition and hardened body
RU2410337C2 (en) Method for wastewater silt and slurring briquetting
JP5114840B2 (en) Underwater fauna and flora and marine ranch using the same
JP6891844B2 (en) Phosphorus supply materials for water bodies and their manufacturing methods
JP4012962B2 (en) Fertilizer for improving marine resource growth environment and manufacturing method thereof
JP5921022B2 (en) Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same
JP2000140874A (en) Porous stone for purifying water quality and water quality purifying method
RU2653083C1 (en) Method of processing bird droppings into organo-mineral fertilizers (options)
JP4736391B2 (en) Treatment method of organic sludge
KR920004711B1 (en) Use of calcium sulphate to improve the fermentation of organic fertilizers
KR20000076032A (en) Stone material for submerging into water, method of production thereof, and method of forming submarine forest
JP7364350B2 (en) Sediment improvement method
KR100725452B1 (en) Composition of material treating Sludge and excretion, and Method for preparing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees