JP7107514B1 - Mortar composition and hardened body - Google Patents

Mortar composition and hardened body Download PDF

Info

Publication number
JP7107514B1
JP7107514B1 JP2022502454A JP2022502454A JP7107514B1 JP 7107514 B1 JP7107514 B1 JP 7107514B1 JP 2022502454 A JP2022502454 A JP 2022502454A JP 2022502454 A JP2022502454 A JP 2022502454A JP 7107514 B1 JP7107514 B1 JP 7107514B1
Authority
JP
Japan
Prior art keywords
mass
fly ash
ferronickel slag
mortar composition
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022502454A
Other languages
Japanese (ja)
Other versions
JPWO2022137320A1 (en
Inventor
秀彰 野原
隆仁 及川
健一 渡辺
潤 西浦
和文 河原
健二 中本
美咲 立花
直也 清重
雄平 松原
紀美恵 衣笠
保 黒田
公 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTTORI CREATIVE RESEARCH INSTITUTE CO., LTD
Chugoku Electric Power Co Inc
Tottori University
Original Assignee
TOTTORI CREATIVE RESEARCH INSTITUTE CO., LTD
Chugoku Electric Power Co Inc
Tottori University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTTORI CREATIVE RESEARCH INSTITUTE CO., LTD, Chugoku Electric Power Co Inc, Tottori University filed Critical TOTTORI CREATIVE RESEARCH INSTITUTE CO., LTD
Publication of JPWO2022137320A1 publication Critical patent/JPWO2022137320A1/ja
Application granted granted Critical
Publication of JP7107514B1 publication Critical patent/JP7107514B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/70Artificial fishing banks or reefs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Artificial Fish Reefs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Cultivation Of Seaweed (AREA)

Abstract

フライアッシュとフェロニッケルスラグとを含む、藻場造成に適した材料を提供する。セメントと、フライアッシュと、細骨材と、フェロニッケルスラグと、水と、を含み、セメントとフライアッシュとの合計質量に対するフライアッシュの質量割合であるFA置換率は40質量%以上50質量%以下であり、細骨材とフェロニッケルスラグとの合計質量に対するフェロニッケルスラグの質量割合であるFNS置換率は60質量%以上90質量%以下である、モルタル組成物。To provide a material suitable for creating a seaweed bed, containing fly ash and ferronickel slag. Cement, fly ash, fine aggregate, ferronickel slag, and water are included, and the FA substitution rate, which is the mass ratio of fly ash to the total mass of cement and fly ash, is 40% by mass or more and 50% by mass. and an FNS substitution rate, which is the mass ratio of ferronickel slag to the total mass of fine aggregate and ferronickel slag, is 60% by mass or more and 90% by mass or less.

Description

本発明は、モルタル組成物及び硬化体に関する。 The present invention relates to a mortar composition and a cured product.

従来、沿岸部の海底に藻場を造成するためのブロック等を海に沈降させ、人工的に藻場を造成する技術が知られている。藻場の造成は、水産生物の生息等の場として水酸産業の観点から重要であり、また、藻場により溶存二酸化炭素や栄養塩が吸収されることから、環境維持の観点においても重要である。そこで、コンクリート材料などに肥料成分を含有させた藻場造成用ブロックに関する技術が提案されている(例えば、特許文献1参照)。 Conventionally, there is known a technique for artificially creating a seaweed bed by sinking blocks or the like in the sea for creating a seaweed bed on the seabed of a coastal area. The creation of seaweed beds is important from the standpoint of the water-based industry as a habitat for aquatic organisms. It is also important from the standpoint of environmental maintenance, as dissolved carbon dioxide and nutrients are absorbed by seaweed beds. be. Therefore, a technology related to a block for constructing a seaweed bed in which a fertilizer component is contained in a concrete material or the like has been proposed (see, for example, Patent Document 1).

国際公開第01/019180号WO 01/019180

ところで、コンクリートやモルタルの原料であるセメントや細骨材の一部を、産業廃棄物で代替する技術が知られている。セメントの代替原料としては、火力発電所で発生するフライアッシュが挙げられる。細骨材の代替原料としては、ステンレス鋼等の原料となるフェロニッケルを精錬する際に発生する、フェロニッケルスラグが挙げられる。上記のような産業廃棄物を藻場造成用ブロックの代替原料として用いることができれば、産業廃棄物リサイクルの観点からも好ましい。しかし、従来、藻場造成に適した上記産業廃棄物を用いた材料については従来検討されていないのが現状だった。 By the way, there is known a technique of substituting a part of cement and fine aggregate, which are raw materials of concrete and mortar, with industrial waste. Alternative materials for cement include fly ash generated at thermal power plants. As an alternative raw material for fine aggregate, ferronickel slag generated when refining ferronickel, which is a raw material for stainless steel and the like, can be mentioned. It is preferable from the viewpoint of industrial waste recycling if the above industrial waste can be used as an alternative raw material for blocks for constructing seaweed beds. However, conventionally, materials using the above-mentioned industrial waste suitable for creating seaweed beds have not been studied.

本発明は、上記に鑑みてなされたものであり、フライアッシュとフェロニッケルスラグとを含む、藻場造成に適した材料を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a material suitable for creating a seaweed bed, including fly ash and ferronickel slag.

(1) 本発明は、セメントと、フライアッシュと、細骨材と、フェロニッケルスラグと、水と、を含み、前記セメントと前記フライアッシュとの合計質量に対する前記フライアッシュの質量割合は40質量%以上50質量%以下であり、前記細骨材と前記フェロニッケルスラグとの合計質量に対する前記フェロニッケルスラグの質量割合は60質量%以上90質量%以下である、モルタル組成物に関する。 (1) The present invention includes cement, fly ash, fine aggregate, ferronickel slag, and water, and the mass ratio of the fly ash to the total mass of the cement and the fly ash is 40 mass. % or more and 50 mass % or less, and the mass ratio of the ferronickel slag to the total mass of the fine aggregate and the ferronickel slag is 60 mass % or more and 90 mass % or less.

(2) また、本発明は、(1)に記載のモルタル組成物を硬化させてなる硬化体に関する。 (2) The present invention also relates to a cured product obtained by curing the mortar composition described in (1).

(3) 藻場造成用材料として用いられる、(2)に記載の硬化体。 (3) The hardened body according to (2), which is used as a material for creating a seaweed bed.

本発明は、フライアッシュとフェロニッケルスラグとを含む、藻場造成に適した材料を提供できる。 INDUSTRIAL APPLICABILITY The present invention can provide materials suitable for creating seaweed beds, including fly ash and ferronickel slag.

以下、本発明の実施形態について説明する。本発明は以下の実施形態の記載に限定されない。 Embodiments of the present invention will be described below. The present invention is not limited to the description of the following embodiments.

<モルタル組成物>
本実施形態に係るモルタル組成物は、セメントと、フライアッシュと、細骨材と、フェロニッケルスラグと、を含み、これらの原料を水と混錬して得られる。本実施形態に係るモルタル組成物は、生物親和性が高く、藻場造成に適した硬化体を形成できる。
<Mortar composition>
The mortar composition according to the present embodiment contains cement, fly ash, fine aggregate, and ferronickel slag, and is obtained by kneading these raw materials with water. The mortar composition according to the present embodiment has high bioaffinity and can form a hardened body suitable for creating a seaweed bed.

(セメント)
セメントとしては、特に限定されず、例えば、普通、早強、超早強、低熱、中庸熱、耐硫酸塩性、白色等の各種ポルトランドセメントを使用できる。上記ポルトランドセメントとしては、特に限定されず市販品を使用できる。上記ポルトランドセメントは、1種を単独で用いてもよく、2種以上を任意の量で混合して用いてもよい。
(cement)
The cement is not particularly limited, and various Portland cements such as normal, high early strength, ultra high early strength, low heat, moderate heat, sulfate resistant, and white can be used. The Portland cement is not particularly limited, and commercially available products can be used. The Portland cement may be used singly, or two or more of them may be mixed in an arbitrary amount and used.

(フライアッシュ)
フライアッシュとしては、特に限定されず、例えば、石炭火力発電所等で石炭燃焼の際に発生する石炭灰のうち、集塵機により排ガス中から回収される微細な石炭灰を分級又は粉砕したものを用いることができる。フライアッシュの主成分は、二酸化ケイ素(SiO)、アルミナ(Al)等である。上記フライアッシュとしては、JIS A 6201:1999「コンクリート用フライアッシュ」で粒度やフロー値に基づき規定されるフライアッシュI種、II種、III種、IV種を用いることができる。上記フライアッシュは、1種を単独で用いてもよく、2種以上を任意の量で混合して用いてもよい。
(fly ash)
The fly ash is not particularly limited, and for example, among the coal ash generated during coal combustion at a coal-fired power plant, etc., fine coal ash recovered from exhaust gas by a dust collector is classified or pulverized. be able to. Main components of fly ash are silicon dioxide (SiO 2 ), alumina (Al 2 O 3 ), and the like. As the fly ash, fly ash types I, II, III, and IV defined based on particle size and flow value in JIS A 6201:1999 "Fly Ash for Concrete" can be used. One type of fly ash may be used alone, or two or more types may be mixed and used in an arbitrary amount.

フライアッシュの含有量(以下、「FA置換率」と記載する場合がある)は、セメントとフライアッシュとの合計質量に対する、フライアッシュの質量割合として示される。本実施形態に係るFA置換率は40質量%以上50質量%以下である。FA置換率を40質量%以上とすることで、後述するFNS置換率を増加させた場合であっても、モルタル組成物の含水率を一定以上とすることができる。FA置換率を50質量%以下とすることで、形成される硬化体の強度を一定以上、例えば18N/mm以上とすることができる。The content of fly ash (hereinafter sometimes referred to as "FA substitution rate") is indicated as the mass ratio of fly ash to the total mass of cement and fly ash. The FA substitution rate according to this embodiment is 40% by mass or more and 50% by mass or less. By setting the FA substitution rate to 40% by mass or more, the moisture content of the mortar composition can be kept at a certain level or higher even when the FNS substitution rate described later is increased. By setting the FA substitution rate to 50% by mass or less, the strength of the formed cured body can be set to a certain level or more, for example, 18 N/mm 2 or more.

(細骨材)
細骨材としては、特に限定されず、密度によって軽量骨材、普通骨材、重量骨材等に分類される、珪砂、川砂、陸砂、海砂、砕砂等の砂類から選択したものを好適に用いることができる。上記は、JIS規格品等の市販品を用いることができる。
(fine aggregate)
The fine aggregate is not particularly limited, and is selected from sands such as silica sand, river sand, land sand, sea sand, and crushed sand, which are classified into lightweight aggregate, ordinary aggregate, heavy aggregate, etc. according to density. It can be used preferably. Commercial products such as JIS standard products can be used for the above.

(フェロニッケルスラグ)
フェロニッケルスラグは、ニッケル鉱石等からステンレス鋼の原料となるフェロニッケルを精錬採取する際に発生するスラグである。フェロニッケルスラグは、細骨材の代替原料として用いることができる。フェロニッケルスラグの主成分は、二酸化ケイ素(SiO)、酸化マグネシウム(MgO)、酸化鉄(FeO、Fe)、酸化カルシウム(CaO)等である。上記フェロニッケルスラグとしては、特に限定されず、例えば、JIS A 5011-2「コンクリート用スラグ骨材第2部:フェロニッケルスラグ骨材」で粒度や種類により規定されるフェロニッケルスラグ細骨材を用いることができる。上記フェロニッケルスラグ細骨材は、1種を単独で用いてもよく、2種以上を任意の量で混合して用いてもよい。
(ferronickel slag)
Ferronickel slag is slag generated when ferronickel, which is used as a raw material for stainless steel, is refined and extracted from nickel ore or the like. Ferronickel slag can be used as an alternative raw material for fine aggregate. The main components of ferronickel slag are silicon dioxide (SiO 2 ), magnesium oxide (MgO), iron oxides (FeO, Fe 2 O 3 ), calcium oxide (CaO) and the like. The ferronickel slag is not particularly limited, and for example, ferronickel slag fine aggregate specified by particle size and type in JIS A 5011-2 "Slag aggregate for concrete Part 2: ferronickel slag aggregate". can be used. The above ferronickel slag fine aggregate may be used singly or as a mixture of two or more in an arbitrary amount.

フェロニッケルスラグの含有量(以下、「FNS置換率」と記載する場合がある)は、細骨材とフェロニッケルスラグとの合計質量に対する、フェロニッケルスラグの質量割合として示される。本実施形態に係るFNS置換率は60質量%以上90質量%以下である。上記FNS置換率を60質量%以上とすることで、形成される硬化体の藻場造成用に適した好ましい生物親和性が得られる。上記FNS置換率を90質量%以下とすることで、モルタル組成物の含水率を一定以上とすることができる。上記の観点から、FNS置換率は70質量%以上85質量%以下とすることが好ましい。 The content of ferronickel slag (hereinafter sometimes referred to as "FNS replacement rate") is indicated as the mass ratio of ferronickel slag to the total mass of fine aggregate and ferronickel slag. The FNS substitution rate according to this embodiment is 60% by mass or more and 90% by mass or less. By setting the FNS substitution rate to 60% by mass or more, the formed hardened body has favorable bioaffinity suitable for creating a seaweed bed. By setting the FNS substitution rate to 90% by mass or less, the water content of the mortar composition can be set to a certain level or more. From the above viewpoint, the FNS substitution rate is preferably 70% by mass or more and 85% by mass or less.

本実施形態に係るモルタル組成物において、従来は30質量%程度が上限とされているFA置換率は40質量%以上50質量%以下であり、同様に、50質量%程度が上限とされているFNS置換率は60質量%以上90質量%以下である。従来、FA置換率が30質量%を超える場合、硬化体の好ましい初期強度が得られなかった。しかし、本実施形態に係るモルタル組成物は、フェロニッケルスラグの含有量が従来品よりも多いことで、好ましい初期強度が得られる。また、従来、FNS置換率が50質量%を超える場合、フェロニッケルスラグはガラス質であるため水を保持し難く、モルタル組成物の好ましい含水率が得られなかった。しかし、本実施形態に係るモルタル組成物は、フライアッシュの含有率が従来品よりも多いことで、好ましいモルタル組成物の含水率が得られる。 In the mortar composition according to the present embodiment, the upper limit of the FA substitution rate, which was conventionally about 30% by mass, is 40% by mass or more and 50% by mass or less, and similarly, the upper limit is about 50% by mass. The FNS substitution rate is 60% by mass or more and 90% by mass or less. Conventionally, when the FA substitution rate exceeds 30% by mass, the desired initial strength of the cured body cannot be obtained. However, the mortar composition according to the present embodiment has a higher ferronickel slag content than the conventional product, so that a favorable initial strength can be obtained. Conventionally, when the FNS substitution rate exceeds 50% by mass, the ferronickel slag is vitreous and thus has difficulty in retaining water, and the preferred water content of the mortar composition has not been obtained. However, since the mortar composition according to the present embodiment has a fly ash content higher than that of the conventional product, a preferable water content of the mortar composition can be obtained.

(水)
本実施形態に係るモルタル組成物における水の含有量は、特に限定されず、モルタル組成物の流動性や凝結時間等を考慮して適宜決定できる。水の含有量は、例えばセメントの質量に対する水の質量割合を50~90質量%とすることができる。
(water)
The content of water in the mortar composition according to the present embodiment is not particularly limited, and can be appropriately determined in consideration of the fluidity and setting time of the mortar composition. The content of water can be, for example, 50 to 90% by mass of water relative to the mass of cement.

(その他の成分)
本実施形態に係るモルタル組成物には、上記以外の成分が含まれていてもよい。上記以外の成分としては、特に限定されず、例えば、減水剤、AE減水剤、空気連行剤(AE剤)、流動化剤、収縮低減剤、防錆剤、防水材、消泡剤、粉塵低減剤、顔料等、コンクリートに用いられる従来公知の成分が挙げられる。また、用途に応じて粗骨材を加えてコンクリートモルタルとしてもよい。粗骨材としてはコンクリートに用いられる従来公知のものを使用できる。
(other ingredients)
The mortar composition according to the present embodiment may contain components other than those described above. Components other than the above are not particularly limited, and examples include water reducing agents, AE water reducing agents, air entraining agents (AE agents), fluidizing agents, shrinkage reducing agents, rust inhibitors, waterproof materials, antifoaming agents, and dust reduction agents. Conventionally known components used in concrete, such as agents and pigments, can be used. Moreover, it is good also as a concrete mortar by adding a coarse aggregate according to a use. As the coarse aggregate, conventionally known aggregates used for concrete can be used.

<硬化体>
本実施形態に係るモルタル組成物を硬化させてなる硬化体は、好ましい生物親和性を有する。具体的には、例えば、海藻類であるアカモク、タマハハキモク、ジョロモク、ウミウチワ、ウスカワカニノテ、アミジグサ、ホンダワラ、ワカメ、アラメ等の生育に適している。上記の理由としては定かではないが、本実施形態に係る硬化体はCa、Fe等の無機成分の溶出量が従来の硬化体よりも多いことが明らかとなっており、該無機成分が海藻類の栄養源となることで、海藻類の生育が促進されるものと考えられる。このため、上記硬化体は海中に浸漬して用いる藻場造成用材料として特に適している。
<Hardened body>
A cured body obtained by curing the mortar composition according to the present embodiment has preferable biocompatibility. Specifically, it is suitable for growing, for example, seaweeds such as red moss, tamahahakimoku, joromoku, sea fans, mussels, sarcophagus, sargassum, wakame, and arame. Although the reason for the above is not clear, it has been clarified that the hardened body according to the present embodiment has a higher elution amount of inorganic components such as Ca and Fe than conventional hardened bodies, and the inorganic components are seaweeds. It is considered that the growth of seaweed is promoted by becoming a nutrient source for the seaweed. For this reason, the hardened body is particularly suitable as a seaweed bed building material that is used by being immersed in the sea.

硬化体における上記無機成分の溶出量は、例えば、環境庁告示14号に規定される金属等の検定方法に準じて測定することができる。本実施形態に係る硬化体は、上記検定方法により測定されるCa溶出量が20mg/L以上、Fe溶出量が0.04mg/L以上であることが好ましい。 The elution amount of the inorganic component in the cured product can be measured, for example, according to the test method for metals, etc. specified in Notification No. 14 of the Environment Agency. The hardened body according to the present embodiment preferably has a Ca elution amount of 20 mg/L or more and an Fe elution amount of 0.04 mg/L or more as measured by the above-described assay method.

本実施形態に係る硬化体の形状としては、特に限定されず、用途に適した形状とすることができる。例えば、藻場造成用ブロック、漁礁、消波ブロック、防波ブロック等の用途に適した形状とすることができる。具体的には、多面体形状、テトラポット形状、円筒形状、中空形状等とすることができる。 The shape of the cured body according to the present embodiment is not particularly limited, and may be a shape suitable for the application. For example, it can have a shape suitable for applications such as seaweed bed building blocks, fishing reefs, wave-dissipating blocks, and wave-breaking blocks. Specifically, it can have a polyhedral shape, a tetrapod shape, a cylindrical shape, a hollow shape, or the like.

<モルタル組成物の調製方法>
本実施形態に係るモルタル組成物は、各成分を水と混錬することで調製される。混錬する方法としては特に限定されず、例えば、水に各成分を全て加えて混錬する方法が挙げられる。混錬に用いる器具や装置も特に限定されず、例えば連続式ミキサやバッチ式ミキサ等のミキサ装置を用いることができる。
<Method for preparing mortar composition>
The mortar composition according to this embodiment is prepared by kneading each component with water. The method of kneading is not particularly limited, and for example, a method of adding all of the respective components to water and kneading them can be mentioned. There are no particular restrictions on the tools and equipment used for kneading, and for example, a mixer such as a continuous mixer or a batch mixer can be used.

<硬化体の製造方法>
本実施形態に係るモルタル組成物を用いて製造される硬化体の製造方法としては特に限定されず、型枠等を用いて任意の形状にモルタル組成物を成形した後、封緘養生、気中養生、蒸気養生、水中養生等、公知の方法及び条件で養生することで硬化体を製造できる。
<Method for producing hardened body>
The method for producing a hardened body produced using the mortar composition according to the present embodiment is not particularly limited, and after molding the mortar composition into an arbitrary shape using a mold or the like, sealing curing and air curing are performed. , steam curing, water curing, etc., by known methods and conditions to produce a hardened body.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and modifications and improvements within the scope of achieving the object of the present invention are included in the present invention.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these examples.

(実施例1、比較例1~3)
表1に示した配合量で各固体原料を混合し、水を加えて混錬することで、実施例1及び比較例1~3のモルタル組成物を得た。上記実施例及び比較例に係るモルタル組成物を10×10×5cmの直方体形状に成形し、硬化させることで、上記実施例及び比較例に係る硬化体を得た。
(Example 1, Comparative Examples 1 to 3)
The mortar compositions of Example 1 and Comparative Examples 1 to 3 were obtained by mixing the respective solid raw materials in the compounding amounts shown in Table 1, adding water, and kneading the mixture. The mortar compositions according to the above Examples and Comparative Examples were molded into rectangular parallelepiped shapes of 10×10×5 cm and cured to obtain cured bodies according to the above Examples and Comparative Examples.

Figure 0007107514000001
Figure 0007107514000001

[評価]
上記実施例及び比較例の硬化体を用い、以下の評価を行った。
[evaluation]
The following evaluations were performed using the cured products of the above Examples and Comparative Examples.

《無機成分溶出量測定》
実施例1及び比較例1の硬化体の無機成分溶出量を、環境庁告示14号に規定される金属等の検定方法に準じて測定した。具体的には、未粉砕状態で重量約500gの硬化体を用い、純水を溶媒として固液比1:2(重量体積比)となるようにして検液を調製した。試験方法は上記調製した検液を6時間振とうして0.45μmメンブレンフィルターでろ過を行った後、ICP分析により無機成分としてのSi、Mg、Ca、Feの溶出量(mg/L)を測定した。結果を表2に示す。
《Inorganic component elution measurement》
The amounts of inorganic components eluted from the cured bodies of Example 1 and Comparative Example 1 were measured according to the test method for metals, etc. specified in Notification No. 14 of the Environment Agency. Specifically, a test solution was prepared by using a hardened body weighing about 500 g in an unpulverized state and using pure water as a solvent so that the solid-liquid ratio was 1:2 (weight/volume ratio). The test method is to shake the test solution prepared above for 6 hours and filter it with a 0.45 μm membrane filter, and then measure the elution amount (mg / L) of Si, Mg, Ca, and Fe as inorganic components by ICP analysis. It was measured. Table 2 shows the results.

Figure 0007107514000002
Figure 0007107514000002

《海藻(アラメ)生育試験》
各実施例及び比較例の硬化体を各4個作成し、生育途中のアラメを硬化体上に設置して海水中における生育状況を比較した。アラメは葉の幅及び茎の太さがほぼ同一の大きさのものを選別して用いた。丈の長さについては、生長点が葉の根元部にあることから、上部をカットし6cmの初期丈長に合わせて用いた。試験設備は30cm×30cm×30cmのアクリル水槽を使用し、試験水は自然水温(温度調整なし)の海水をかけ流して使用した。光条件は自然状態で行い、光量計を用いて設置箇所による差異が無いことを確認した。また、所定の期間毎に水質調査を行い、PH(8.17~8.21)、水温(13.0~14.5℃)、塩分濃度(32.6~32.7%)、DO(9.03~9.33mg/L)測定を行い、測定期間内で大きな変化がないことを確認した。試験開始から67日後のアラメの丈長(cm)をスケールで測定した。結果を表3に示す。なお、表3中で丈長の記載が無い箇所は、アラメが枯れたサンプルや初期丈長である6cm以上に成長しなかったサンプルを意味する。
《Seaweed growth test》
Four hardened bodies were prepared for each of the examples and comparative examples, and arame in the middle of growth was placed on the hardened bodies to compare the growth conditions in seawater. The arame was selected and used when the width of the leaf and the thickness of the stem were almost the same. As for the length of the leaf, since the growing point is located at the base of the leaf, the upper part was cut and used according to the initial height of 6 cm. A 30 cm x 30 cm x 30 cm acrylic water tank was used as the test facility, and seawater at a natural water temperature (no temperature adjustment) was used as the test water. The lighting conditions were natural, and a photometer was used to confirm that there was no difference depending on the installation location. In addition, water quality surveys are conducted at regular intervals to determine pH (8.17-8.21), water temperature (13.0-14.5°C), salinity (32.6-32.7%), DO ( 9.03 to 9.33 mg/L) was measured, and it was confirmed that there was no significant change during the measurement period. The length (cm) of arame 67 days after the start of the test was measured with a scale. Table 3 shows the results. In Table 3, the portions where the height is not described refer to samples in which the arame withered or did not grow to the initial height of 6 cm or more.

Figure 0007107514000003
Figure 0007107514000003

表2に示す通り、実施例1に係る硬化体は、比較例1に係る硬化体と比較して各無機成分の溶出量が多い結果が確認された。 As shown in Table 2, it was confirmed that the cured body according to Example 1 had a larger amount of elution of each inorganic component than the cured body according to Comparative Example 1.

表3に示す通り、実施例1に係る硬化体は、各比較例に係る硬化体と比較して、アラメの成長量が大きく、生物親和性が高い結果が確認された。 As shown in Table 3, it was confirmed that the hardened body according to Example 1 had a large amount of arame growth and high bioaffinity as compared with the hardened body according to each comparative example.

Claims (3)

セメントと、フライアッシュと、細骨材と、フェロニッケルスラグと、水と、を含み、
前記セメントと前記フライアッシュとの合計質量に対する前記フライアッシュの質量割合は40質量%以上50質量%以下であり、
前記細骨材と前記フェロニッケルスラグとの合計質量に対する前記フェロニッケルスラグの質量割合は78質量%以上90質量%以下である、モルタル組成物。
including cement, fly ash, fine aggregate, ferronickel slag, and water;
The mass ratio of the fly ash to the total mass of the cement and the fly ash is 40% by mass or more and 50% by mass or less,
A mortar composition, wherein the mass ratio of the ferronickel slag to the total mass of the fine aggregate and the ferronickel slag is 78 % by mass or more and 90% by mass or less.
請求項1に記載のモルタル組成物を硬化させてなる硬化体。 A cured product obtained by curing the mortar composition according to claim 1 . 藻場造成用材料として用いられる、請求項2に記載の硬化体。 3. The hardened body according to claim 2, which is used as a material for creating a seaweed bed.
JP2022502454A 2020-12-22 2020-12-22 Mortar composition and hardened body Active JP7107514B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/047843 WO2022137320A1 (en) 2020-12-22 2020-12-22 Mortar composition and cured product

Publications (2)

Publication Number Publication Date
JPWO2022137320A1 JPWO2022137320A1 (en) 2022-06-30
JP7107514B1 true JP7107514B1 (en) 2022-07-27

Family

ID=82158558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022502454A Active JP7107514B1 (en) 2020-12-22 2020-12-22 Mortar composition and hardened body

Country Status (2)

Country Link
JP (1) JP7107514B1 (en)
WO (1) WO2022137320A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024051724A (en) * 2022-09-30 2024-04-11 電源開発株式会社 Concrete structure and manufacturing method of concrete structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952744A (en) * 1995-08-09 1997-02-25 Chichibu Onoda Cement Corp Mortar and concrete composition
JP2006315883A (en) * 2005-05-11 2006-11-24 Denki Kagaku Kogyo Kk Mortar composition
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
WO2019138879A1 (en) * 2018-01-10 2019-07-18 三井住友建設株式会社 Mortar and method for manufacturing same
WO2019142775A1 (en) * 2018-01-16 2019-07-25 デンカ株式会社 High strength grout composition and high strength grout mortar using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952744A (en) * 1995-08-09 1997-02-25 Chichibu Onoda Cement Corp Mortar and concrete composition
JP2006315883A (en) * 2005-05-11 2006-11-24 Denki Kagaku Kogyo Kk Mortar composition
JP2012144403A (en) * 2011-01-14 2012-08-02 Ohbayashi Corp High-strength mortar composition
WO2019138879A1 (en) * 2018-01-10 2019-07-18 三井住友建設株式会社 Mortar and method for manufacturing same
WO2019142775A1 (en) * 2018-01-16 2019-07-25 デンカ株式会社 High strength grout composition and high strength grout mortar using same

Also Published As

Publication number Publication date
WO2022137320A1 (en) 2022-06-30
JPWO2022137320A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
CN100506738C (en) Concrete composition containing ultra-fine carbonate rock powder and preparation method thereof
Munshi et al. Use of rice straw ash as pozzolanic material in cement mortar
KR101367790B1 (en) Echo-functional and low-alkali compositions for concrete forming
CN109455966B (en) Concrete admixture, preparation method thereof and concrete
Razali et al. Preliminary studies on calcinated chicken eggshells as fine aggregates replacement in conventional concrete
CN107117882B (en) A kind of reactive power concrete products and preparation method thereof
CN112299805A (en) Sand-free desulfurized gypsum self-leveling mortar and preparation method thereof
JP2006045048A (en) Solidified body of steel-making slag and method for producing the same
JP2008263928A (en) Dredged soil block for installing beach bedrock
JP2009045006A (en) Hydrated solidified body for underwater installation
CN110218054A (en) A kind of nano clay modified high performance concrete and the preparation method and application thereof
JP7107514B1 (en) Mortar composition and hardened body
Bhangale et al. Study of pond ash (btps) use as a fine aggregate in cement concrete-case study
CN107021698A (en) A kind of grinding coagulation soil and preparation method thereof
JP2003034562A (en) Hydraulic composition and hydrated hardened body
CN107445558A (en) Volcanic slag lightweight aggregate concrete
CN111268954A (en) Oyster attaching base of lightweight concrete and preparation method thereof
JP6316576B2 (en) Cement composition
JP2022152501A (en) Concrete containing attractant and concrete structure
JP5921022B2 (en) Phytoplankton, seaweed and / or seaweed breeding aggregate and cement composition cured body using the same
Ghannam The effect of partial replacement of cement by virgin oil shale powder and/or oil shale ash on properties of cement mortar (comparative study)
KR100482378B1 (en) Manufacturing methods of multi-functional environment block for kelp forest regeneration using recycled aggregate and by-product
JP2009078932A (en) Hydrated solidified body, method of manufacturing the same and marine structure
Olivia et al. The Effects of Using Ground Cockle Seashells as an Additive for Mortar in Peat Environment
JP7513544B2 (en) Cement-containing powder composition and hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220705

R150 Certificate of patent or registration of utility model

Ref document number: 7107514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150