JP4736449B2 - Construction method of shallow ground - Google Patents

Construction method of shallow ground Download PDF

Info

Publication number
JP4736449B2
JP4736449B2 JP2005024855A JP2005024855A JP4736449B2 JP 4736449 B2 JP4736449 B2 JP 4736449B2 JP 2005024855 A JP2005024855 A JP 2005024855A JP 2005024855 A JP2005024855 A JP 2005024855A JP 4736449 B2 JP4736449 B2 JP 4736449B2
Authority
JP
Japan
Prior art keywords
slag
layer
mass
steelmaking slag
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005024855A
Other languages
Japanese (ja)
Other versions
JP2006214085A (en
Inventor
康人 宮田
達人 高橋
久美 新井
操 鈴木
典男 磯尾
哲始 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005024855A priority Critical patent/JP4736449B2/en
Publication of JP2006214085A publication Critical patent/JP2006214085A/en
Application granted granted Critical
Publication of JP4736449B2 publication Critical patent/JP4736449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins

Description

本発明は、沿岸海域等での浅場や干潟の造成方法に関する。   The present invention relates to a method for constructing shallow areas and tidal flats in coastal waters and the like.

一般に、浅場とは主に海岸に面した水深10〜15m以浅の周年冠水している浅海域のことであり、また、干潟とは潮汐により冠水・干出を繰り返す泥砂質の海岸のことである。
浅場は、海草類(アマモなどのような維管束を持つ海中植物)や海藻類(ホンダワラやコンブなどのような維管束を持たない海中植物)の生育場、魚介類や底生生物の棲息場や餌場となる水域であり、また、それらの生物の活動を通じて海水や底質の浄化が行われる場所でもある。また同様に、干潟も各種の海藻類や魚介類・底生生物などの生育・棲息場であり、特に最近では干潟による海水の高い浄化作用が注目されている。したがって、沿岸海域の環境保全や海藻・魚介類などの有用水産資源の確保という観点から、浅場や干潟の存在は非常に重要なものであると言える。
In general, a shallow area is a shallow sea area that is inundated with an annual depth of 10 to 15 m or less, and a tidal flat is a muddy sandy coast that repeatedly floods and drains due to tides. .
Shallow ground is a habitat for seaweeds (aquatic plants with vascular bundles such as sea bream) and seaweeds (aquatic plants without vascular bundles such as hondawala and kombu), habitats for seafood and benthic organisms, It is a water area that serves as a feeding area, and is a place where the purification of seawater and sediment is performed through the activities of these organisms. Similarly, tidal flats are also a place of growth and habitat for various seaweeds, seafood and benthic organisms, and recently, the high purification action of seawater by tidal flats has attracted attention. Therefore, it can be said that the existence of shallow areas and tidal flats is very important from the viewpoint of environmental conservation in coastal waters and securing useful marine resources such as seaweed and seafood.

しかし、近年、埋め立てや港湾の整備、底質のヘドロ化、海砂の流失等によって沿岸海域における多くの浅場や干潟が失われてきた。このため最近では、新たに浅場や干潟を造成する試みが各地で行われるようになりつつある。また、内海や湾内では、特に夏季に比較的水深の深いところで海水の貧酸素化が進行する場合があり、この貧酸素水塊が浅海に移動して、そこに棲息するアサリなどの底生生物の斃死を招くという問題がある。このような問題に対して、海水の貧酸素化が進行する水域に浅場を造成(水底の嵩上げ)する試みもなされている。
従来行われている浅場や干潟の造成では、造成すべき水域に他の場所で採取した天然砂や自然石を投入する方法が採られている。しかし、このように造成用の資材として天然資源(天然砂、自然石)を用いることは、その採取場所での新たな自然破壊を伴うことになるため好ましくない。
However, in recent years, many shallow areas and tidal flats in coastal waters have been lost due to land reclamation, port development, sludge formation of sediments, sea sand loss, etc. For this reason, attempts to create new shallows and tidal flats have recently been made in various places. In addition, in the inland seas and bays, seawater may become hypoxic, especially in the summer, at relatively deep water depths, and benthic organisms such as clams that migrate to the shallow water and inhabit there. There is a problem that causes drowning. In response to such a problem, attempts have been made to create a shallow field (raise the bottom of the water) in a water area where seawater is poorly oxygenated.
In the conventional construction of shallow tidelands and tidal flats, a method is adopted in which natural sand or natural stones collected at other locations are put into the water area to be created. However, it is not preferable to use natural resources (natural sand, natural stone) as a material for creation in this way, because it involves new natural destruction at the collection site.

一方、港湾の航路維持や河川整備等の目的で、各地の港湾や河川で浚渫が行われているが、河川から流入する砂泥の増大や船舶の大型化に対応した浚渫の必要性から浚渫土の発生量が年々増大しており、その処分場の確保が困難となりつつある。
このような背景から、浚渫土を浅場や干潟の造成用資材として用いる試みがなされている。この造成法は、浅場や干潟を造成すべき水域を囲むように造成材流出防止用の潜堤を自然石などで構築し、この潜堤の内側に浚渫土を投入して中詰層を形成し、この中詰層の上に海砂を覆砂するものであり、中詰材として大量の浚渫土を用いることができるとともに、造成用の海砂の使用量も削減できるという利点がある(非特許文献1)。
「CDIT 2003 No.10」(財団法人 沿岸開発技術研究センター機関誌)p.18−19
On the other hand, dredging is carried out at ports and rivers in various places for the purpose of port maintenance and river maintenance. The amount of soil generated is increasing year by year, making it difficult to secure a disposal site.
Against this background, attempts have been made to use dredged soil as a material for creating shallow fields and tidal flats. In this construction method, a submerged dike is constructed with natural stone to surround the shallow water and the tidal flat, and a paddy layer is formed inside the submerged dike. However, the sea sand is covered on the filling layer, and there is an advantage that a large amount of dredged soil can be used as the filling material and the amount of sea sand used for creation can be reduced ( Non-patent document 1).
“CDIT 2003 No.10” (Journal of Coastal Development Technology Research Center) p.18-19

しかし、浚渫土を用いた上記造成法では、浮泥などの割合が極めて少ない品質の良い浚渫土を利用した場合はともかく、港湾や河川などの浚渫で発生する浮泥分の多い浚渫土を中詰材として用いた場合、台風などにより大きな波浪が押し寄せた際に造成資材(覆砂材、中詰材)が周辺に流出したり、中詰材である浚渫土が覆砂層から露出してしまい、好環境の浅場や干潟を維持できなくなるという問題がある。さらに、潜堤用や覆砂用として大量の自然石や天然砂を用いるため、その調達先の問題もある。また、中詰材である浚渫土がヘドロを多く含むような場合には中詰材から硫化水素が発生して、これが周辺に流出してしまうという問題もある。
したがって本発明の目的は、浚渫土を用いた浅場や干潟の造成において、造成資材の流出などの問題を生じることがなく、また硫化水素の発生や流出が適切に防止され、長期間にわたって生物の生育・棲息に好適な環境が維持される浅場や干潟を造成することができる方法を提供することにある。
However, in the above-mentioned preparation method using dredged soil, regardless of the use of high-quality dredged soil with a very small proportion of mud, medium dredged mud generated in dredging such as harbors and rivers When used as a filling material, when large waves are pushed by a typhoon or the like, the construction material (sand cover material, medium filling material) flows out to the surrounding area, or the dredged soil that is the filling material is exposed from the sand covering layer. There is a problem that it is impossible to maintain a shallow environment and a tidal flat. Furthermore, since a large amount of natural stone and natural sand are used for submerged dikes and sand cover, there is a problem of the procurement source. In addition, when the clay that is the filling material contains a lot of sludge, there is also a problem that hydrogen sulfide is generated from the filling material and flows out to the periphery.
Therefore, the object of the present invention is to prevent problems such as outflow of construction materials in the creation of shallow fields and tidal flats using dredged soil, and the generation and outflow of hydrogen sulfide can be appropriately prevented, and the organisms can be An object of the present invention is to provide a method capable of creating a shallow place and a tidal flat where a suitable environment for growth and habitat is maintained.

上記課題を解決するための本発明の特徴は以下のとおりである。
[1]浅場又は/及び干潟を造成すべき水域を囲むように造成材流出防止用の潜堤を構築し、該潜堤の内側に浚渫土を投入して中詰層を形成し、該中詰層の上に下記(A)〜(D)のうちのいずれかの覆砂層を設ける浅場等の造成方法であり、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤を製鋼スラグにより構築するとともに、潜堤上部を、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成し、潜堤下部を、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成することを特徴とする浅場等の造成方法。
The features of the present invention for solving the above-described problems are as follows.
[1] Build a submerged dike to prevent outflow of construction material so as to surround shallow waters and / or water areas where tidal flats should be constructed, and fill the inside of the submerged dike to form a filling layer, It is a construction method such as a shallow place where a sand-covering layer of any of the following (A) to (D) is provided on the packed layer ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged dike is constructed of steel slag, and the upper part of the submerged dike is 5 mass% or more with a particle size of more than 80 mm, 10 mass% or more with a particle size of more than 50 mm, and a particle size with a ratio of more than 30 mm of 45 mass% or more. Constructed by steelmaking slag having distribution, the lower part of the submerged dike is 85 mass% or more with a particle size of 30 mm or less, 10 mass% or more with a particle size of 10 mm or less, 3 mass% or more with a particle size of 5 mm or less, and 1 mm particle size A construction method for shallow fields or the like, characterized by comprising steelmaking slag having a particle size distribution of 1 mass% or more in the following ratio .

[2]浅場又は/及び干潟を造成すべき水域を囲むように造成材流出防止用の潜堤を構築し、該潜堤の内側に浚渫土と高炉水砕スラグを順次投入して、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い高炉水砕スラグ層とからなる中詰層を形成し、該中詰層の上に下記(A)〜(D)のうちのいずれかの覆砂層を設ける浅場等の造成方法であり、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤を製鋼スラグにより構築するとともに、潜堤上部を、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成し、潜堤下部を、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成することを特徴とする浅場等の造成方法。
[2] Build a submerged dike to prevent the outflow of construction materials so as to surround the shallow water or / and the water area where the tidal flat should be built, and put dredged soil and granulated blast furnace slag sequentially inside the submerged dike. And a blast furnace granulated slag layer that is interposed between each of the clay layers and has a layer thickness smaller than the thickness of the clay layer. It is a construction method such as a shallow place where a sand covering layer of any one of A) to (D) is provided ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged dike is constructed of steel slag, and the upper part of the submerged dike is 5 mass% or more with a particle size of more than 80 mm, 10 mass% or more with a particle size of more than 50 mm, and a particle size with a ratio of more than 30 mm of 45 mass% or more. Constructed by steelmaking slag having distribution, the lower part of the submerged dike is 85 mass% or more with a particle size of 30 mm or less, 10 mass% or more with a particle size of 10 mm or less, 3 mass% or more with a particle size of 5 mm or less, and 1 mm particle size A construction method for shallow fields or the like, characterized by comprising steelmaking slag having a particle size distribution of 1 mass% or more in the following ratio .

[3]上記[1]又は[2]の造成方法において、覆砂層を構成する製鋼スラグは、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有するとともに、平均粒径が150mm以下であることを特徴とする浅場等の造成方法。
[4]上記[1]〜[3]のいずれかの造成方法において、潜堤の内側に、浚渫土とともにその固化材を投入することを特徴とする浅場等の造成方法。
[5]上記[4]の造成方法において、固化材と浚渫土とを層状に敷設して中詰層を形成することを特徴とする浅場等の造成方法。
[6]上記[4]又は[5]の造成方法において、固化材が製鋼スラグからなることを特徴とする浅場等の造成方法。
[7]上記[1]〜[6]のいずれかの造成方法において、覆砂層の上に海藻着生基盤又は/及び漁礁を設置することを特徴とする浅場等の造成方法。
[3] In the production method of [1] or [2] above, the steelmaking slag constituting the sand-capping layer has a ratio of the particle size exceeding 80 mm of 5 mass% or more, the ratio of the particle size exceeding 50 mm is 10 mass% or more, and the particle size is 30 mm. A method for creating a shallow place or the like, wherein the super proportion has a particle size distribution of 45 mass% or more and the average particle size is 150 mm or less.
[4] In the construction method according to any one of [1] to [3], a construction method for a shallow place or the like, wherein the solidified material is poured into the submerged dike along with the clay.
[5] A construction method for a shallow place or the like according to the construction method of [4], wherein a solidified layer and a clay are laid in layers to form a filling layer.
[6] A method for creating a shallow place or the like according to [4] or [5], wherein the solidification material is made of steel slag.
[7] A method for creating a shallow place or the like, wherein in the creation method according to any one of [1] to [6] , a seaweed settlement base and / or a fishing reef is installed on the sand-capped layer.

[8]上記[7]の造成方法において、海藻着生基盤又は/及び漁礁が、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上であることを特徴とする浅場等の造成方法。 [8] In the creation method of [7 ] above, the seaweed settlement base and / or the fishing reef is a block of slag generated in the steel manufacturing process, a solidified carbonate block using slag generated in the steel manufacturing process as a main raw material, steel A construction method for a shallow place or the like, characterized in that it is at least one selected from hydrated and cured bodies blocks mainly made of slag generated in the production process.

[9]人工的に造成された浅場、干潟、又は浅場と干潟とが連続した水浜であって、浅場又は/及び干潟の造成水域を囲むように構築された造成材流出防止用の潜堤と、該潜堤の内側に浚渫土により形成される中詰層と、該中詰層の上に設けられる下記(A)〜(D)のうちのいずれかの覆砂層とを有し、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤が製鋼スラグからなるとともに、潜堤上部が、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成され、潜堤下部が、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成されることを特徴とする造成構造物。
[9] An artificially constructed shallow beach, tidal flat, or a beach where the shallow ground and the tidal flat are continuous, and the submerged dike for preventing the outflow of the constructed material constructed to surround the shallow water and / or the tidal flat. And a padding layer formed of dredged soil inside the submerged dam, and a sand-covering layer of any one of the following (A) to (D) provided on the padding layer ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged levee is made of steel slag, and the upper part of the submerged levee is a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. The lower part of the submerged dike is 85 mass% or more, the ratio of 10 mm or less is 10 mass%, the ratio of 5 mm or less is 3 mass%, and the particle diameter is 1 mm or less. A formed structure comprising a steelmaking slag having a particle size distribution of 1 mass% or more .

[10]人工的に造成された浅場、干潟、又は浅場と干潟とが連続した水浜であって、浅場又は/及び干潟の造成水域を囲むように構築された造成材流出防止用の潜堤と、該潜堤の内側に浚渫土及び高炉水砕スラグにより形成される中詰層であって、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い高炉水砕スラグ層とからなる中詰層と、該中詰層の上に設けられる下記(A)〜(D)のうちのいずれかの覆砂層とを有し、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤が製鋼スラグからなるとともに、潜堤上部が、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成され、潜堤下部が、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成されることを特徴とする造成構造物。
[10] An artificially constructed shallow beach, tidal flat, or a beach where the shallow and the tidal flat are continuous, and the submerged dike for preventing the outflow of the constructed material constructed to surround the shallow water and / or the tidal flat. And a filling layer formed of clay and blast furnace granulated slag inside the submerged dike, and is interposed between the multiple clay layers and each clay layer, and the layer thickness of the clay layer A filling layer composed of a granulated blast furnace slag layer thinner than the thickness, and a sand-covering layer of any one of the following (A) to (D) provided on the filling layer ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged levee is made of steel slag, and the upper part of the submerged levee is a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. The lower part of the submerged dike is 85 mass% or more, the ratio of 10 mm or less is 10 mass%, the ratio of 5 mm or less is 3 mass%, and the particle diameter is 1 mm or less. A formed structure comprising a steelmaking slag having a particle size distribution of 1 mass% or more .

[11]上記[9]又は[10]の造成構造物において、覆砂層を構成する製鋼スラグは、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有するとともに、平均粒径が150mm以下であることを特徴とする造成構造物。
[12]上記[9]〜[11]のいずれかの造成構造物において、中詰層が浚渫土の固化材を含むことを特徴とする造成構造物。
[13]上記[12]の造成構造物において、固化材と浚渫土とが層状に敷設されることを特徴とする造成構造物。
[14]上記[12]又は[13]の造成構造物において、固化材が製鋼スラグからなることを特徴とする造成構造物。
[15]上記[9][14]のいずれかの造成構造物において、覆砂層の上に海藻着生基盤又は/及び漁礁が設置されたことを特徴とする造成構造物。
[11] In the structured structure according to [9] or [10], the steelmaking slag constituting the sand-covering layer has a particle size of more than 80 mm in a proportion of 5 mass% or more, and a particle size of more than 50 mm in a proportion of 10 mass% or more. A structured structure characterized by having a particle size distribution in which the proportion of more than 30 mm is 45 mass% or more and the average particle size is 150 mm or less.
[12] The formation structure according to any one of the above [9] to [11], wherein the filling layer includes a solidified material of clay.
[13] The created structure according to [12], wherein the solidified material and the clay are laid in layers.
[14] The formed structure according to the above [12] or [13], wherein the solidified material is made of steel slag.
[15] A structured structure according to any one of the above [9] to [14] , wherein a seaweed settlement base or / and a fishing reef are installed on the sand cover layer.

[16]上記[15]の造成構造物において、海藻着生基盤又は/及び漁礁が、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上であることを特徴とする造成構造物。 [16] In the structured structure according to [15 ] above, the seaweed settlement base and / or the fishing reef are block slag generated in the steel production process, a carbonate solid block using slag generated in the steel production process as a main raw material, A structured structure characterized in that it is at least one selected from a hydrated hardened body block made mainly of slag generated in a steel manufacturing process.

ここで、浅場及び干潟とは先に述べたような水域・水浜(本発明では、湖沼・内海・河口などの水域・水浜を含む)を指すが、本発明法において造成されるのは、浅場、干潟、又は浅場と干潟とが連続した水浜である。また、本発明で行う造成とは、水深のある水域に新たに浅場又は/及び干潟を造成する場合だけでなく、水深や場所としては浅場又は/及び干潟に該当するが、ヘドロの堆積などの原因で生物の生育・棲息環境が損なわれ若しくは失われているような水域や水浜を、生物の生育・棲息環境が良好な本来的な浅場又は/及び干潟に修復する場合も含まれる。   Here, shallow fields and tidal flats refer to the water areas and water beaches (including water areas and water beaches such as lakes, inland seas, and estuaries in the present invention) as described above. A shallow beach, a tidal flat, or a continuous beach. In addition, the creation in the present invention is not only a case where a shallow field or / and a tidal flat is newly created in a deep water area, but the water depth and / or place corresponds to a shallow field or / and a tidal flat. This includes the restoration of water areas and beaches where the growth and habitat environment of living organisms are damaged or lost due to the cause to natural shallow areas and / or tidal flats where the growth and habitat environment of living organisms are good.

請求項1及び請求項の発明によれば、浚渫土で構成される中詰層の上に、その重し・蓋として機能する鉄鋼製造プロセスで発生したスラグによる覆砂層を設けることにより、浚渫土による中詰層を安定化させ、浚渫土の露出や流失を効果的に抑えることができる。しかも、覆砂層は少なくとも最上層が製鋼スラグからなるか若しく製鋼スラグを含むものであり、製鋼スラグは高炉水砕スラグなどに較べて粒度の大きいものが得られやすいため、波浪などに対する安定性が高い覆砂層とすることができる。さらに、製鋼スラグは硫化水素の発生抑制作用や硫化水素の固定作用が大きいため、中詰層での硫化水素の発生や中詰層からの硫化水素の溶出を効果的に抑制することができる。また、請求項2及び請求項10の発明によれば、中詰層がより安定化した浅場等を造成することができる。
また、特に請求項及び請求項16の発明によれば、天然資源を用いることなく100%リサイクル材(鉄鋼スラグ+浚渫土)で浅場等を造成することができ、リサイクル材の有効利用、施工の低コスト化、天然資源の利用による環境破壊の防止などの面からも極めて有利である。
According to the inventions of claim 1 and claim 9 , by providing a sand-covering layer made of slag generated in the steel manufacturing process that functions as a weight / lid on the filling layer composed of clay, It stabilizes the padding layer with soil and can effectively suppress dredged soil exposure and runoff. Moreover, the sand-capping layer is at least the uppermost layer made of steelmaking slag or contains steelmaking slag, and steelmaking slag is more likely to have a larger particle size than blast furnace granulated slag, etc. Can be a high sand cover layer. Furthermore, since the steelmaking slag has a large effect of suppressing the generation of hydrogen sulfide and the effect of fixing hydrogen sulfide, it is possible to effectively suppress the generation of hydrogen sulfide in the middle packed layer and the elution of hydrogen sulfide from the middle packed layer. Moreover, according to the invention of Claim 2 and Claim 10 , the shallow field etc. in which the filling layer was stabilized more can be created.
In particular, according to the inventions of claim 8 and claim 16 , it is possible to create a shallow place etc. with 100% recycled material (steel slag + clay) without using natural resources. It is extremely advantageous from the viewpoints of cost reduction and prevention of environmental destruction due to the use of natural resources.

以下、本発明法の実施形態を浅場の造成を例に説明する。
図1及び図2は、本発明による浅場の造成方法の一実施形態を示すもので、図1は造成された浅場の模式縦断面、図2は同じく平面図である。
一般に、新規の浅場を造成する場所(水域)としては、海岸に面した比較的水深の大きい水域(例えば、水深15m以上)であるが、これに限られるものではなく、また、必ずしも海岸に面した水域でなくてもよい。造成される浅場の規模は任意であるが、一般的には1辺が100m〜数千m程度の規模が想定される。
本発明法で造成される浅場(造成構造物)は、基本的な構成要素として、造成材流出防止用の潜堤1と、この潜堤1内に形成される中詰層2と、この中詰層2の上に設けられる覆砂層3と有し、さらに好ましくは覆砂層3に設置される海藻着生基盤4(及び/又は漁礁)を有する。
Hereinafter, an embodiment of the method of the present invention will be described by taking the creation of shallow fields as an example.
1 and 2 show an embodiment of a method for creating a shallow field according to the present invention. FIG. 1 is a schematic longitudinal section of the created shallow field, and FIG. 2 is a plan view of the same.
In general, a place (water area) for creating a new shallow ground is a water area with a relatively large depth facing the coast (for example, a depth of 15 m or more), but is not limited to this, and is not necessarily limited to the coast. It does not have to be a water area. The scale of the shallow ground to be created is arbitrary, but generally a scale of about 100 m to several thousand m on one side is assumed.
The shallow ground (structured structure) created by the method of the present invention includes, as basic components, a submerged dike 1 for preventing the outflow of the generated material, a filling layer 2 formed in the submerged dike 1, It has a sand cover layer 3 provided on the padding layer 2, and more preferably has a seaweed settlement base 4 (and / or fishing reef) installed on the sand cover layer 3.

本発明による浅場の造成では、まず、浅場を造成すべき水域を囲むように(すなわち、浅場造成水域の外縁に沿うように)、造成材流出防止用の潜堤1を構築する。本実施形態では、図2に示すように海岸に面した水域に平面略四角形状の浅場を造成するために、潜堤1は海岸線の部分を除く3辺で構成されている。なお、この潜堤1の配置形態は浅場を造成すべき水域の形状(海岸線、海底形状など)によって決まるので、本実施形態に限定されるものではなく、また、海岸に面していない水域に浅場を造成する場合には、浅場を造成すべき水域全体を囲むような閉じた形態のものであってもよい。   In the creation of the shallow field according to the present invention, first, the submerged dike 1 for preventing the outflow of the generated material is constructed so as to surround the water area in which the shallow field is to be created (that is, along the outer edge of the shallow field creation water area). In the present embodiment, as shown in FIG. 2, the submerged dam 1 is composed of three sides excluding the coastline portion in order to create a shallow field having a substantially rectangular shape in the water area facing the coast. The arrangement form of the submerged dike 1 is determined by the shape of the water area (shoreline, seafloor shape, etc.) where the shallow ground is to be created, and is not limited to this embodiment. In the case of creating a shallow place, it may be in a closed form so as to surround the entire water area where the shallow place is to be created.

潜堤1を構築する資材や構築方法は任意であり、例えば、打設コンクリートによる潜堤、自然石、コンクリートブロック、後述するような特定のブロック(例えば、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックなど)などを積み上げた潜堤でもよいが、本実施形態では堅牢な潜堤をコンクリートや天然資源(自然石など)を用いることなく安価に構築するという観点から、鉄鋼製造プロセスで発生したスラグにより潜堤1を構築してある。スラグにより潜堤1を構築するには、通常、本実施形態のように捨石式傾斜堤とする。   Materials and construction methods for constructing the submerged dike 1 are arbitrary. For example, a submerged dike made of cast concrete, natural stone, concrete block, a specific block as described later (for example, slag generated in the steel manufacturing process is used as a main raw material. However, in this embodiment, a solid submerged dike can be used for concrete or natural resources (such as hydrated hardened block made mainly of slag generated in the steel manufacturing process). The submerged dam 1 is constructed from slag generated in the steel manufacturing process from the viewpoint of constructing inexpensively without using natural stone or the like. In order to construct the submerged dam 1 by slag, it is usually a rubble-type inclined levee as in this embodiment.

鉄鋼製造プロセスで発生するスラグには種々のものがあるが、潜堤用資材として利用できるスラグとしては、高炉で発生する高炉徐冷スラグ(但し、この高炉徐冷スラグは水中でSが溶出しないようにするため、十分にエージング処理したものが好ましい)、溶銑予備処理、転炉脱炭精錬、鋳造、電気炉精錬などの工程で発生する製鋼スラグ(脱燐スラグ・脱硫スラグ・脱珪スラグなどの溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグなど)、鉱石還元スラグなどが挙げられ、これらの2種以上を用いてもよい。   There are various types of slag generated in the steel manufacturing process, but as slag that can be used as materials for submerged dike, blast furnace chilled slag generated in a blast furnace (however, this blast furnace chilled slag does not elute S in water. Steel slag (dephosphorization slag, desulfurization slag, desiliconization slag, etc.) generated in processes such as hot metal pretreatment, converter decarburization refining, casting, electric furnace refining, etc. Hot metal pretreatment slag, decarburization slag, cast slag, electric furnace slag, etc.), ore reduction slag, etc., and two or more of these may be used.

また、これらのスラグ中でも特に製鋼スラグが好ましく、そのなかでも特に脱炭スラグ(転炉スラグ)、脱燐スラグが好適である。製鋼スラグ(特に、脱炭スラグ、脱燐スラグ)は塊状のものが得られやすく且つ比重も大きいため、これを所定の高さに積み上げることにより堅牢な潜堤を構築することができ、また、以下に述べるように製鋼スラグは水質浄化作用にも優れているため、水中の環境改善にも寄与できるという利点がある。また、製鋼スラグは、溶融したスラグを固化させ、これを機械的に破砕して得られるものであるため、ゴツゴツした不定形の形状を有している。このため同じ粒径の自然石に比べて積み上げた際の内部摩擦角が大きく、潜堤幅を小さくして比較的切り立った構造の潜堤を構築することが可能である。   Among these slags, steel slag is particularly preferable, and among these, decarburization slag (converter slag) and dephosphorization slag are particularly suitable. Steelmaking slag (especially decarburized slag, dephosphorized slag) is easily obtained in a lump and has a large specific gravity, so that a solid submerged dike can be constructed by stacking this to a predetermined height, As described below, steelmaking slag is excellent in water purification, and therefore has the advantage of being able to contribute to environmental improvement in water. Steelmaking slag is obtained by solidifying molten slag and mechanically crushing it, and thus has a rugged, irregular shape. For this reason, the internal friction angle when piled up is larger than that of natural stones of the same particle size, and it is possible to construct a submerged dike with a relatively steep structure by reducing the submerged dike width.

製鋼スラグは、各種スラグのなかでも特に高い水質浄化作用を有している。すなわち、製鋼スラグは、(1)スラグに含まれるCaOによって水中の燐が吸着・固定され、水の富栄養化が抑制される、(2)同じくCaOが水中に溶出することによって水中のpHが高められ、硫化水素を発生させる硫酸還元菌の活動が抑制される、(3)スラグに含まれるCaO、Feによって水中の硫化水素が固定される、(4)上記(2),(3)の理由により、スラグ粒子間の間隙水は硫化水素が少なく溶存酸素の多い状態となるためスラグ間隙に生物が着生し、この生物による窒素や燐の固定、有機物の分解、酸素の供給等による水質浄化作用が得られる、などの作用が高度に得られる特徴がある。 Steelmaking slag has a particularly high water purification effect among various slags. That is, in steelmaking slag, (1) Phosphorus in water is adsorbed and fixed by CaO contained in slag, and eutrophication of water is suppressed. (3) Hydrogen sulfide in water is fixed by CaO and Fe 2 O 3 contained in the slag, (4) The above (2), ( For the reason of 3), the interstitial water between slag particles is in a state where there is little hydrogen sulfide and much dissolved oxygen, so that organisms settle in the slag gaps, nitrogen and phosphorus fixation by this organism, decomposition of organic matter, supply of oxygen There is a feature that an action such as a water purification action by a high degree can be obtained.

また、上記のような水質浄化作用は、粒径が比較的大きい製鋼スラグの方が長期間持続しやすいので好ましい。これは、製鋼スラグの粒径があまり小さいと、スラグの上に沈降堆積する浮泥(ヘドロ)がスラグ層の表面全体を覆ってしまい、上述したような水質浄化作用やスラグ間隙での生物棲息環境が失われてしまうためである。一方、製鋼スラグはアルカリ刺激による潜在水硬性を有するため、粒径が比較的小さいものは水中で固化(スラグ粒子どうしが結合する)しやすい性質がある。   Further, the water purification action as described above is preferable because steelmaking slag having a relatively large particle size is likely to last for a long period of time. This is because if the steelmaking slag particle size is too small, the sludge deposited on the slag covers the entire surface of the slag layer, and the above-mentioned water purification action and biological habitat in the slag gap This is because the environment is lost. On the other hand, since steelmaking slag has latent hydraulic properties due to alkali stimulation, those having a relatively small particle size tend to solidify in water (slag particles are bonded together).

以上のような製鋼スラグの特性からして、製鋼スラグで潜堤1を構築する場合には、潜堤下部を比較的粒径が小さい製鋼スラグ或いは比較的粒径が小さいスラグ粒子が相当程度含まれる粒度分布を有する製鋼スラグで構成し、潜堤上部を比較的粒径の大きい製鋼スラグ或いは比較的粒径が大きいスラグ粒子が多く含まれる粒度分布を有する製鋼スラグで構成することが好ましい。このような構造とすることにより、潜堤下部については水硬性を利用して製鋼スラグを固化させることで強固な構造を確保でき、また、潜堤上部については、沈降してきた浮泥が粒径の大きいスラグ粒子間の間隙中に入り込むようにし、このスラグ間隙中で生物分解させることにより、スラグが浮泥により覆われることを防止することができる。また、潜堤上部を粒径の大きいスラグで構成することにより、波浪に対する安定性や付着した海藻による浮力に対する安定性なども確保することができるので、スラグの流出やこれに伴う潜堤の破損・崩壊も防止することができる。   Considering the characteristics of steelmaking slag as described above, when the submerged dike 1 is constructed with steelmaking slag, the lower part of the submerged dike contains a considerable amount of steelmaking slag with a relatively small particle size or slag particles with a relatively small particle size. Preferably, the upper part of the submerged dike is made of steelmaking slag having a relatively large particle size or steelmaking slag having a particle size distribution containing a lot of slag particles having a relatively large particle size. By adopting such a structure, it is possible to secure a strong structure by solidifying the steelmaking slag using hydraulic properties at the bottom of the submerged dike. It is possible to prevent the slag from being covered with floating mud by allowing it to enter into the gaps between the large slag particles and biodegrading in the slag gaps. Also, by constructing the upper part of the submerged dike with slag with a large particle size, it is possible to ensure stability against waves and buoyancy due to attached seaweed, so slag outflow and damage to the submerged dike accompanying this・ Can also prevent collapse.

具体的には、潜堤上部については、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成することが好ましい。ここで、上記粒径80mm超の割合、粒径50mm超の割合、粒径30mm超の割合とは、それぞれ、JIS Z 8801に規定する呼び寸法が75mmの網ふるい(粒径80mm超の場合)、同じく呼び寸法が53mmの網ふるい(粒径50mm超の場合)、同じく呼び寸法が31.5mmの網ふるい(粒径30mm超の場合)を用いてふるい分けした際の“ふるい上”のスラグの割合を指す。このような粒度分布を有する製鋼スラグを用いることにより、沈降してきた浮泥のうちスラグ間隙中に入り込むものの割合が多くなり、その浮泥はスラグ間際中で生物分解されるので、製鋼スラグの水質浄化作用と生物棲息環境を長期間維持することが可能となる。なお、製鋼スラグの粒径が200mmを超えると、こんどは個々の塊状スラグの上に堆積する浮泥が増大し、スラグ表面に実質的な浮泥層が形成されてしまう恐れがあるので、スラグ粒径は200mm程度を上限(呼び寸法が200mmの網ふるいを用いてふるい分けした際の“ふるい下”のスラグ)とすることが好ましい。   Specifically, for the upper part of the submerged dike, a steelmaking slag having a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. It is preferable to comprise. Here, the ratio of the particle size of more than 80 mm, the ratio of the particle size of more than 50 mm, and the ratio of the particle size of more than 30 mm are respectively a sieve having a nominal size of 75 mm as defined in JIS Z 8801 (when the particle size exceeds 80 mm). Slag of “on top of sieve” when screened using a screen sieve with a nominal size of 53 mm (when the particle size is over 50 mm) and a screen screen with a nominal size of 31.5 mm (when the particle size is over 30 mm). Refers to the percentage. By using steelmaking slag having such a particle size distribution, the ratio of the settled floating mud that enters the slag gap increases, and the mud is biodegraded just before the slag. It is possible to maintain the purification action and the biohabitat environment for a long time. If the particle size of the steelmaking slag exceeds 200 mm, there is a risk that the floating mud that accumulates on each massive slag will increase and a substantial floating mud layer may be formed on the slag surface. The particle size is preferably about 200 mm as the upper limit (“slag under the sieve” when screened using a screen sieve having a nominal size of 200 mm).

一方、潜堤下部については、上述した観点から、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成することが好ましい。ここで、粒径30mm以下の割合、粒径10mm以下の割合、粒径5mm以下の割合、粒径1mm以下の割合とは、それぞれ、JIS Z 8801に規定する呼び寸法が31.5mmの網ふるい(粒径30mm以下の場合)、同じく呼び寸法が9.5mmの網ふるい(粒径10mm以下の場合)、同じく呼び寸法が4.75mmの網ふるい(粒径5mm以下の場合)、同じく呼び寸法が1.18mmの網ふるい(粒径1mm以下の場合)を用いてふるい分けした際の“ふるい下”のスラグの割合を指す。   On the other hand, for the lower part of the submerged dike, from the viewpoint described above, the ratio of the particle diameter of 30 mm or less is 85 mass% or more, the ratio of the particle diameter of 10 mm or less is 10 mass% or more, the ratio of the particle diameter of 5 mm or less is 3 mass% or more, and the particle diameter of 1 mm or less. It is preferable to constitute the steelmaking slag having a particle size distribution of 1 mass% or more. Here, the ratio of the particle diameter of 30 mm or less, the ratio of the particle diameter of 10 mm or less, the ratio of the particle diameter of 5 mm or less, and the ratio of the particle diameter of 1 mm or less are respectively a mesh sieve having a nominal size defined in JIS Z8801 of 31.5 mm. (When the particle size is 30 mm or less), the screen size is also 9.5 mm (when the particle size is 10 mm or less), the screen size is 4.75 mm (when the particle size is 5 mm or less), the same size Indicates the ratio of slag “under the screen” when screened using a 1.18 mm screen (when the particle size is 1 mm or less).

本実施形態では、潜堤1の上部10(例えば、潜堤全高の10〜30%程度の高さの上部)を粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグで構成し、それよりも下部11を粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成している。また、この潜堤下部11は、安定性を高めるため2段構造としてある。なお、この潜堤下部11の構造は、3段以上としてもよい。   In the present embodiment, the upper portion 10 of the submerged levee 1 (for example, the upper portion of the height of about 10 to 30% of the total height of the submerged levee) has a ratio of the particle size exceeding 80 mm of 5 mass% or more and the ratio of the particle size exceeding 50 mm is 10 mass%. As mentioned above, it comprises with the steelmaking slag which has a particle size distribution whose particle size exceeds 30 mm, and the ratio of the particle size 30 mm or less is 85 mass% or more, and the ratio of particle size 10 mm or less is 10 mass% or more. The steelmaking slag has a particle size distribution in which the ratio of the particle diameter of 5 mm or less is 3 mass% or more and the ratio of the particle diameter of 1 mm or less is 1 mass% or more. Further, the submerged dike lower part 11 has a two-stage structure in order to improve stability. The structure of the submerged dike lower part 11 may be three or more.

製鋼スラグの粒度調整は、溶融スラグを冷却固化後、重機などまたはクラッシングプラントにより適宜な大きさに破砕し、例えば所定の篩い目の篩を用いて整粒することにより行うことができる。また、粒径の大きい製鋼スラグを得る方法としては、冷却固化させる時に、溶融スラグをヤードなどに流して、その厚みを厚くするなどの方法を採ることができる。
また、製鋼スラグをはじめとする各種のスラグは、水和処理、炭酸化処理、エージング処理、水和硬化、炭酸化硬化などを経たものを用いてもよい。
The particle size adjustment of the steelmaking slag can be carried out by cooling and solidifying the molten slag, crushing it to an appropriate size with a heavy machine or a crushing plant, and sizing using, for example, a predetermined sieve mesh. Moreover, as a method of obtaining steelmaking slag with a large particle size, when cooling and solidifying, the method of flowing molten slag to a yard etc. and making the thickness thick can be taken.
In addition, various slags including steelmaking slag may be used after hydration treatment, carbonation treatment, aging treatment, hydration hardening, carbonation hardening and the like.

スラグを用いて構築される潜堤1の寸法は任意であるが、捨石式傾斜堤とする場合の構築物としての安定性、台風などの際の波浪に対する安定性などの面で、例えば、潜堤全高を8m〜20m程度とする場合に底端幅20m〜40m、天端幅1m〜4m程度とすることが好ましい。
また、潜堤1の天端高さの水深は、一般に覆砂層3の最高水深部の水深は、海藻や海草が光合成により生育可能な5〜7m以内で設定されるので、少なくともこの覆砂層3の流出を防止できるような高さに設定される。また、潜堤1の天端高さは、貧酸素水塊の浸入を防止するために覆砂層3の流出を防止の観点よりも高め(小さい水深)に設定してもよい。
潜堤1をスラグで構築するには、例えば、ガット船から構築場所にスラグを投入すればよい。
The size of the submerged dike 1 constructed using slag is arbitrary, but in terms of stability as a structure in the case of a rubble-type inclined dike, stability against waves during a typhoon, etc. When the total height is about 8 m to 20 m, it is preferable that the bottom end width is 20 m to 40 m and the top end width is about 1 m to 4 m.
Moreover, since the water depth at the top of the submerged levee 1 is generally set within 5 to 7 m at which the seaweed or seagrass can grow by photosynthesis, the water depth at the highest water depth of the sand cover layer 3 is at least the sand cover layer 3. The height is set so as to prevent the outflow. Further, the height of the crest 1 of the submerged dike 1 may be set higher (smaller water depth) than the viewpoint of preventing the sand covering layer 3 from flowing out in order to prevent the entry of the poor oxygen water mass.
In order to construct the submerged dam 1 with slag, for example, slag may be thrown into the construction site from a gut ship.

以上のように潜堤1を構築した後、その内側に中詰材として浚渫土を投入して中詰層2を形成する。この中詰層2は、潜堤内側の水深の大部分を埋めるために形成されるものであり、規模や海底面の水深にもよるが、通常、最上層に形成される覆砂層3に比べて遥かに厚い層である。一般に中詰層2は、造成用資材で埋める必要がある潜堤内側の水深の80%以上の厚さを占める。
浚渫土は、事前に乾燥処理(例えば、天日乾燥など)や脱水処理(薬剤を添加して凝集させた後に脱水・減容化する方法)を施したものであってもよい。
After constructing the submerged dike 1 as described above, the clay layer 2 is formed by putting clay as an intermediate filler inside. This filling layer 2 is formed to fill most of the water depth inside the submerged dike, and usually depends on the scale and depth of the sea bottom, but usually compared to the sand-covered layer 3 formed on the top layer. A much thicker layer. In general, the filling layer 2 occupies a thickness of 80% or more of the water depth inside the submerged dike that needs to be filled with the building material.
The clay may be subjected to a drying process (for example, sun drying) or a dehydration process (a method of dehydrating and reducing the volume after adding a chemical to agglomerate).

また、中詰層2を形成するに当たっては、潜堤内側に浚渫土ととともにその固化材を投入してもよい。この固化材としては、水硬性を有するものであれば特に種類を問わないが、例えば、セメント、石灰、製鋼スラグなどの鉄鋼製造プロセスで発生したスラグ、コンクリート廃材などが挙げられ、これらの1種以上を用いることができる。また、この固化材とともに、改質剤、気泡剤、発泡ビーズなどの添加剤を用いてもよい。
このように浚渫土ととともにその固化材を投入して中詰層2を形成することにより、浚渫土の強度が固化材によって高められるため中詰層をより安定化させ、浚渫土の露出や流失をより確実に防止することができる。
Moreover, when forming the filling layer 2, you may throw the solidification material into a submerged dike with a clay. The solidifying material is not particularly limited as long as it has hydraulic properties, and examples thereof include slag generated in steel manufacturing processes such as cement, lime, and steelmaking slag, concrete waste, and the like. The above can be used. Moreover, you may use additives, such as a modifier, a foam agent, and a foam bead, with this solidification material.
In this way, by adding the solidified material together with the clay and forming the filling layer 2, the strength of the clay is enhanced by the solidifying material, so that the filling layer is further stabilized, and the clay is exposed and washed away. Can be prevented more reliably.

固化材として用いるスラグとしては、高炉で発生する高炉徐冷スラグ(但し、この高炉徐冷スラグは水中で硫化物が溶出しないようにするため、十分にエージング処理したものが好ましい)、溶銑予備処理、転炉脱炭精錬、鋳造、電気炉精錬などの工程で発生する製鋼スラグ(脱燐スラグ・脱硫スラグ・脱珪スラグなどの溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグなど)、鉱石還元スラグなどが挙げられ、これらの2種以上を用いてもよい。また、これらのスラグ中でも特に製鋼スラグが好ましく、そのなかでも特に脱炭スラグ(転炉スラグ)、脱燐スラグが好適である。また、十分な効果を得るためには、スラグは粉粒状のものを用いることが好ましい。
浚渫土ととともに固化材を投入する場合、一般には浚渫土に固化材を混合した上で潜堤1内側に投入する。固化材を浚渫土に混合する方法としては、事前に混合処理設備などを用いて混合する方法、潜堤内への投入時に混合する方法など、任意である。また、固化材の浚渫土に対する混合率は、中詰層2の所望の強度に応じて適宜選択すればよい。
As slag used as a solidification material, blast furnace slow cooling slag generated in a blast furnace (however, this blast furnace slow cooling slag is preferably sufficiently aged in order to prevent the elution of sulfides in water), hot metal preliminary treatment Steelmaking slag generated in processes such as converter decarburization refining, casting, electric furnace refining (hot metal pretreatment slag such as dephosphorization slag, desulfurization slag, desiliconization slag, decarburization slag, casting slag, electric furnace slag, etc.) Ore reduction slag and the like, and two or more of these may be used. Among these slags, steel slag is particularly preferable, and among these, decarburization slag (converter slag) and dephosphorization slag are particularly suitable. In order to obtain a sufficient effect, it is preferable to use a slag having a granular shape.
When the solidifying material is added together with the dredged soil, the solidified material is generally mixed with the dredged soil and then poured into the submerged dam 1. The method of mixing the solidified material with the clay is optional, such as a method of mixing using a mixing processing facility or the like in advance, and a method of mixing at the time of charging into the submerged dike. Moreover, what is necessary is just to select suitably the mixing rate with respect to the clay of the solidification material according to the desired intensity | strength of the filling layer 2. FIG.

また、他の形態としては、固化材と浚渫土とを層状に敷設して中詰層2を形成してもよい。すなわち、潜堤1の内側に浚渫土と固化材を順次投入して、複層の浚渫土層とこの各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い固化材層とからなる中詰層2を形成する。このような中詰層2の構造によれば、複層の浚渫土層間に介在する固化材層が、これに接する浚渫土層の少なくとも一部の強度を向上させることになる。そして、このように強度が向上した層部分と、最上層の覆砂層3とによって中詰層全体が拘束されることになり、これにより中詰層2の流動化を効果的に抑制することができる。中詰層2内に形成する固化材層は1層又は2層以上の任意の層数とすることができるが、中詰層2をより安定的に拘束するには、2層以上、好ましくは3層以上設けることが好ましい。   As another form, the filling layer 2 may be formed by laying the solidified material and the clay in layers. That is, the clay and the solidifying material are sequentially added to the inside of the submerged dike 1, and a multilayered clay layer and a solidified material layer that is interposed between the clay layers and whose layer thickness is thinner than the layer thickness of the clay layer. The filling layer 2 is formed. According to such a structure of the filling layer 2, the solidified material layer interposed between the multiple clay layers improves the strength of at least a part of the clay layer in contact therewith. And the whole filling layer will be restrained by the layer part which the intensity | strength improved in this way, and the uppermost sand-covering layer 3, Thereby, the fluidization of the filling layer 2 can be suppressed effectively. it can. The solidifying material layer formed in the filling layer 2 can be one layer or any number of layers of two or more, but in order to restrain the filling layer 2 more stably, two or more layers, preferably It is preferable to provide three or more layers.

また、固化材層を設ける場合の浚渫土層と固化材層の層厚も任意であるが、固化材層は比較的層厚が小さくても十分機能することから、大量の浚渫土を中詰材として利用するという本発明の趣旨からして、固化材層の層厚は浚渫土層の層厚よりも薄くする。一般的には、浚渫土層を1〜5m、固化材層を10cm〜1m程度の厚さにすればよい。
潜堤内側に浚渫土ととともにその固化材を投入する場合の代表的な形態としては、(1)固化材を混合した浚渫土を投入して中詰層2の少なくとも一部を形成する形態、(2)浚渫土と固化材を順次投入して、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い固化材層とにより中詰層2の少なくとも一部を形成する形態、とがあるが、その変形例として、例えば以下のような種々の形態を採ることができる。
In addition, the thickness of the kneaded material layer and the solidified material layer when the solidified material layer is provided is arbitrary, but the solidified material layer functions sufficiently even if the layer thickness is relatively small. For the purpose of the present invention to use as a material, the layer thickness of the solidified material layer is made thinner than the layer thickness of the clay layer. Generally, the clay layer may be 1 to 5 m thick and the solidified material layer may be about 10 cm to 1 m thick.
A typical form in which the solidification material is put together with the clay inside the submerged dike is as follows: (1) A form in which the clay mixed with the solidification material is thrown to form at least a part of the filling layer 2; (2) The clay and the solidifying material are sequentially added, and the filling layer is composed of a multilayered clay layer and a solidified material layer interposed between the clay layers and having a layer thickness smaller than the thickness of the clay layer. There are forms that form at least a part of 2. However, as modifications, for example, the following various forms can be adopted.

(a) 下層が固化材を混合しない浚渫土の層、上層が固化材を混合した浚渫土の層からなる中詰層2
(b) 下層が固化材を混合した浚渫土の層、上層が固化材を混合しない浚渫土の層からなる中詰層2
(c) 下層が固化材と浚渫土とを積層させた層(上記(2)の形態の層)、上層が固化材を混合した浚渫土の層からなる中詰層2
(d) 下層が固化材を混合した浚渫土の層、上層が固化材と浚渫土とを積層させた層(上記(2)の形態の層)からなる中詰層2
(e) 固化材を混合した浚渫土による複数の層からなり、各層で固化材の混合率が異なる中詰層2
(f) 固化材を混合した浚渫土による複数の層と、これら各層間に介在した固化材層からなる中詰層2
(a) Filling layer 2 consisting of a clay layer in which the lower layer is not mixed with a solidifying material, and an upper layer consisting of a clay layer in which the solidifying material is mixed
(b) Filling layer 2 consisting of a clay layer in which the lower layer is mixed with a solidifying material and an upper layer consisting of a clay layer in which the solidifying material is not mixed
(c) Filling layer 2 in which the lower layer is a layer in which a solidified material and clay are laminated (layer in the form of (2) above), and the upper layer is a layer of clay in which the solidified material is mixed.
(d) Filling layer 2 consisting of a clay layer in which the lower layer is mixed with a solidifying material, and an upper layer in which the solidified material and the clay are laminated (layer in the form (2) above)
(e) Filling layer 2 consisting of multiple layers of clay mixed with solidifying material, each layer having different mixing ratio of solidifying material
(f) Filling layer 2 comprising a plurality of layers made of clay mixed with a solidifying material, and a solidifying material layer interposed between these layers.

次に、本発明では上記中詰層2の上に、鉄鋼製造プロセスで発生したスラグ(以下、便宜上「鉄鋼スラグ」という)からなり且つ少なくとも最上層が製鋼スラグを必須とする、下記(A)〜(D)のうちのいずれかの覆砂層3を設ける。図1及び図2の実施形態は、下記(A)又は(B)の覆砂層3を設けたものである。
(A) 製鋼スラグによる覆砂層
(B) 製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による覆砂層
(C) 製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼スラグによる下層とからなる覆砂層
(D) 製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による上層と、製鋼スラグ以外の鉄鋼スラグによる下層とからなる覆砂層
Next, in the present invention, the middle layer 2 is composed of slag generated in the steel manufacturing process (hereinafter referred to as “steel slag” for convenience), and at least the uppermost layer requires steelmaking slag as follows (A) The sand covering layer 3 of any one of (D) is provided. The embodiment shown in FIGS. 1 and 2 is provided with the sand covering layer 3 of the following (A) or (B).
(A) Sand cover layer made of steelmaking slag
(B) Sand-clad layer with a mixture of steelmaking slag and steel slag other than steelmaking slag
(C) Sand cover layer consisting of an upper layer made of steel slag and a lower layer made of steel slag other than steel slag
(D) Sand-covering layer consisting of an upper layer made of a mixture of steelmaking slag and steel slag other than steelmaking slag, and a lower layer made of steel slag other than steelmaking slag

このように中詰層2の上に、その重し・蓋として機能する鉄鋼スラグの覆砂層3を設けることにより、浚渫土による中詰層2を安定化させ、浚渫土の露出や流失を効果的に抑えることができ、安定した造成構造物が得られる。また、製鋼スラグは高炉水砕スラグなどに較べて粒度の大きいものが得られやすいため、波浪などに対する安定性が高い覆砂層とすることができ、さらに、製鋼スラグは硫化水素の発生抑制作用や硫化水素の固定作用が大きいため、中詰層での硫化水素の発生や中詰層からの硫化水素の溶出を効果的に抑制することができる。したがって、このような効果を確実に得るには、上記(A)の形態、すなわち覆砂層3の全体を製鋼スラグで形成することが特に好ましい。
製鋼スラグとしては、溶銑予備処理、転炉脱炭精錬、鋳造、電気炉精錬などの工程で発生する各種スラグ(脱燐スラグ・脱硫スラグ・脱珪スラグなどの溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグなど)があり、これらの2種以上を用いてもよい。また、これらの製鋼スラグ中でも特に脱炭スラグ(転炉スラグ)、脱燐スラグなどが好適である。
In this way, by providing the steel slag covering layer 3 of steel slag that functions as a weight / lid on the filling layer 2, the filling layer 2 is stabilized by dredging, and the dredged soil is exposed and washed away. Therefore, a stable structure can be obtained. In addition, steelmaking slag can easily be obtained with a larger particle size than blast furnace granulated slag, so it can be a sand-clad layer with high stability against waves, etc. Since the fixing action of hydrogen sulfide is large, the generation of hydrogen sulfide in the filling layer and the elution of hydrogen sulfide from the filling layer can be effectively suppressed. Therefore, in order to reliably obtain such an effect, it is particularly preferable to form the above-described form (A), that is, to form the entire sand-covering layer 3 with steelmaking slag.
Steelmaking slag includes various types of slag generated in the hot metal pretreatment, converter decarburization refining, casting, electric furnace refining, etc. (hot metal pretreatment slag such as dephosphorization slag, desulfurization slag, desiliconization slag, decarburization slag, Casting slag, electric furnace slag, etc.), and two or more of these may be used. Of these steelmaking slags, decarburization slag (converter slag), dephosphorization slag and the like are particularly suitable.

先に述べたように製鋼スラグは、溶融したスラグを固化させ、これを機械的に破砕して得られるものであるため、高炉水砕スラグなどに較べて粒度の大きいものが得られやすい。波浪に対する十分な安定性を得るためには、覆砂層に使用する製鋼スラグは、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有することが好ましい。ここで、上記粒径80mm超の割合、粒径50mm超の割合、粒径30mm超の割合とは、それぞれ、JIS Z 8801に規定する呼び寸法が75mmの網ふるい(粒径80mm超の場合)、同じく呼び寸法が53mmの網ふるい(粒径50mm超の場合)、同じく呼び寸法が31.5mmの網ふるい(粒径30mm超の場合)を用いてふるい分けした際の“ふるい上”のスラグの割合を指す。
なお、製鋼スラグの粒度調整の方法は、先に潜堤に使用する製鋼スラグに関して述べたとおりである。
As described above, steelmaking slag is obtained by solidifying molten slag and mechanically crushing the slag. Therefore, a steel slag having a larger particle size than blast furnace granulated slag is easily obtained. In order to obtain sufficient stability against waves, the steelmaking slag used for the sand-capping layer has a ratio of the particle size exceeding 80 mm at 5 mass% or more, the particle size exceeding 50 mm at 10 mass% or more, and the particle size exceeding 30 mm. It is preferable to have a particle size distribution of 45 mass% or more. Here, the ratio of the particle size of more than 80 mm, the ratio of the particle size of more than 50 mm, and the ratio of the particle size of more than 30 mm are respectively a sieve having a nominal size of 75 mm as defined in JIS Z 8801 (when the particle size exceeds 80 mm). Slag of “on top of sieve” when screened using a screen sieve with a nominal size of 53 mm (when the particle size is over 50 mm) and a screen screen with a nominal size of 31.5 mm (when the particle size is over 30 mm). Refers to the percentage.
The method of adjusting the particle size of the steelmaking slag is as described above for the steelmaking slag used for the submerged dike.

このような粒度分布を有する製鋼スラグを用いることにより、製鋼スラグを海藻類などの着生基盤とすることができるとともに、波浪に対する安定性や付着した海藻類による浮力に対する安定性が特に高くなり、覆砂層の流出をより効果的に防止することができる。また、沈降してきた浮泥のうちスラグ間隙中に入り込むものの割合が多くなり、その浮泥はスラグ間際中で生物分解されるので、製鋼スラグの水質浄化作用と生物棲息環境を長期間維持することが可能となる。なお、製鋼スラグの平均粒径が150mmを超えると、こんどは個々の塊状スラグの上に堆積する浮泥が増大し、スラグ表面に実質的な浮泥層が形成されてしまう恐れがあるので、製鋼スラグの平均粒径は150mm程度を上限とすることが好ましい。   By using the steelmaking slag having such a particle size distribution, the steelmaking slag can be used as an agglomeration base such as seaweeds, and stability against waves and buoyancy due to attached seaweeds is particularly high. The outflow of the sand covering layer can be prevented more effectively. In addition, the proportion of the settled sludge that enters the slag gap increases, and the sludge is biodegraded in the immediate vicinity of the slag, so the water purification and biohabiting environment of steelmaking slag must be maintained for a long time. Is possible. In addition, when the average particle diameter of the steelmaking slag exceeds 150 mm, the floating mud that accumulates on the individual massive slag increases, and a substantial floating mud layer may be formed on the slag surface. The average particle diameter of the steelmaking slag is preferably about 150 mm.

覆砂層3を上記(B)形態、すなわち製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物により形成する場合、使用する製鋼スラグ以外の鉄鋼スラグとしては、例えば、高炉水砕スラグ、高炉徐冷スラグ(但し、この高炉徐冷スラグは水中で硫化物が溶出しないようにするため、十分にエージング処理したものが好ましい)、鉱石還元スラグなどが挙げられ、これらの2種以上を用いてもよい。
また、これらのなかでも高炉水砕スラグが特に好ましい。高炉水砕スラグは、高炉スラグを水砕化処理して固化させたスラグであり、その粒径は海砂よりも大きく(通常、D50が1.0〜2.0mm程度の粒度)、また真比重も海砂に較べてやや大きい。さらに、高炉水砕スラグの形態上の大きな特徴として、スラグ粒子が角張った形状をしていることが挙げられ、この形状のために内部摩擦角が大きく且つせん断抵抗性が高いという物理的な特性を有している。このような物理的な性質を有する高炉水砕スラグを覆砂層3に含ませた場合、波浪に対する高い安定性が得られる、敷設後に圧密沈下を生じにくい、覆砂層上に後述する海藻着生基盤や漁礁などの重量物を設置しても、これら重量物の埋没が生じにくい、などの効果が期待できる。
In the case of forming the sand-capping layer 3 with the above-mentioned form (B), that is, a mixture of steel slag and steel slag other than steel slag, as the steel slag other than steel slag to be used, for example, blast furnace granulated slag, blast furnace slow-cooled slag (However, this blast furnace slow-cooled slag is preferably sufficiently aged in order to prevent the sulfide from eluting in water), ore-reducing slag, and two or more of these may be used.
Of these, blast furnace granulated slag is particularly preferable. Granulated blast furnace slag is slag obtained by granulating and solidifying blast furnace slag, and its particle size is larger than that of sea sand (usually D 50 is a particle size of about 1.0 to 2.0 mm). True specific gravity is slightly larger than sea sand. Furthermore, a major feature of the blast furnace granulated slag is that the slag particles have an angular shape, and because of this shape, the physical characteristics of a large internal friction angle and high shear resistance. have. When blast furnace granulated slag having such physical properties is included in the sand-covered layer 3, high stability against waves is obtained, and it is difficult to cause consolidation settlement after laying. Even if heavy objects such as fishing reefs are installed, it is expected that such heavy objects will not be buried.

上記高炉水砕スラグは、生成ままのもの、地鉄(鉄分)除去したもの、軽破砕などの破砕処理したもの、地鉄除去の前又は後に軽破砕などの破砕処理したもの、炭酸化処理により表面に炭酸皮膜を形成したもの、などのいずれを用いてもよい。
上記(B)の形態の覆砂層における製鋼スラグと製鋼スラグ以外の鉄鋼スラグ(例えば、高炉水砕スラグ)との割合は特に限定されないが、上述した製鋼スラグの特性を十分に確保するという観点から、製鋼スラグ(X)と製鋼スラグ以外の鉄鋼スラグ(Y)の割合は、体積比X/Y(但し、混合前の体積比)で1以上、好ましくは2以上とすることが適当である。
The above granulated blast furnace slag is as-produced, removed from the ground iron (iron content), crushed by light crushing, etc., crushed by light crushing before or after removal of the ground iron, by carbonation treatment Any of those having a carbonic acid film formed on the surface may be used.
The ratio of the steelmaking slag and the steel slag other than the steelmaking slag (for example, blast furnace granulated slag) in the sand-covering layer of the form (B) is not particularly limited, but from the viewpoint of sufficiently ensuring the characteristics of the steelmaking slag described above. The ratio of the steel slag (X) and the steel slag (Y) other than the steel slag is 1 or more, preferably 2 or more in the volume ratio X / Y (however, the volume ratio before mixing).

図3は、先に挙げた(C)又は(D)の覆砂層3を設けた場合の一実施形態を示すもので、造成された浅場の模式断面図であり、覆砂層3は、製鋼スラグ又は製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による上層3aと、製鋼スラグ以外の鉄鋼スラグによる下層3bとから構成されている。
上層3aにおける製鋼スラグによる作用効果、好ましいスラグ粒度、使用できる製鋼スラグの種類、製鋼スラグ以外の鉄鋼スラグの種類、製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの体積比X/Yなどは、先に述べた図1及び図2の実施形態における覆砂層と同様である。
FIG. 3 shows one embodiment in the case of providing the sand-carrying layer 3 of (C) or (D) mentioned above, and is a schematic cross-sectional view of a created shallow field. Or it is comprised from the upper layer 3a by the mixture of steel slag and steel slag other than steel slag, and the lower layer 3b by steel slag other than steel slag.
The effects of steelmaking slag in the upper layer 3a, preferred slag particle size, types of steelmaking slag that can be used, types of steel slag other than steelmaking slag, volume ratio X / Y between steelmaking slag and steel slag other than steelmaking slag, etc. It is the same as the sand covering layer in the embodiment of FIGS. 1 and 2 described.

また、下層3を構成する製鋼スラグ以外の鉄鋼スラグとしては、例えば、高炉水砕スラグ、高炉徐冷スラグ(但し、この高炉徐冷スラグは水中で硫化物が溶出しないようにするため、十分にエージング処理したものが好ましい)、鉱石還元スラグなどが挙げられ、これらの2種以上を用いてもよい。
また、これらのなかでも高炉水砕スラグが特に好ましい。先に述べたように高炉水砕スラグは、内部摩擦角が大きく且つせん断抵抗性が高いという物理的な特性を有しているため、下層3を高炉水砕スラグで構成することにより、製鋼スラグを必須とする上層3aの沈み込みが抑えられる、海藻着生基盤や漁礁などの重量物を設置しても、これら重量物の埋没が生じにくい、などの効果が期待できる。また、上層3aと下層3bの層厚比は、上層3a/下層3b=3/7〜7/3程度が好ましい。
覆砂層3の厚さは特に制限はなく、上述した覆砂材の機能からして浚渫土(中詰層2)の厚さに応じて適宜選択すればよいが、通常30cm以上、より望ましくは70cm以上が好ましい。
覆砂層3は、海藻や海草の生育に必要な光量が確保される水深帯であることが好ましく、通常、最深部で水深5〜7m程度とすることが好ましい。
なお、覆砂層3を構成する各種スラグは、水和処理、炭酸化処理、エージング処理、水和硬化、炭酸化硬化などを経たものを用いてもよい。
In addition, as steel slag other than the steelmaking slag constituting the lower layer 3, for example, blast furnace granulated slag, blast furnace slow-cooled slag (however, this blast furnace slow-cooled slag is sufficient to prevent sulfide from eluting in water. An aging treatment is preferable), ore reduction slag, etc., and two or more of these may be used.
Of these, blast furnace granulated slag is particularly preferable. As mentioned above, blast furnace granulated slag has physical properties such as a large internal friction angle and high shear resistance. Therefore, by forming the lower layer 3 with blast furnace granulated slag, It can be expected that even if heavy objects such as a seaweed settlement base and a fishing reef are installed, the burial of these heavy objects is less likely to occur. The layer thickness ratio between the upper layer 3a and the lower layer 3b is preferably about upper layer 3a / lower layer 3b = 3/7 to 7/3.
The thickness of the sand-covering layer 3 is not particularly limited, and may be appropriately selected according to the thickness of the clay (filled layer 2) from the above-described function of the sand-covering material, but is usually 30 cm or more, more preferably 70 cm or more is preferable.
The sand-covering layer 3 is preferably a deep water zone in which the amount of light necessary for the growth of seaweed and seaweed is secured, and it is usually preferable that the water depth is about 5 to 7 m at the deepest part.
In addition, you may use the various slag which comprises the sand-covering layer 3 what passed through the hydration process, the carbonation process, the aging process, hydration hardening, carbonation hardening.

本発明法により潜堤1の内側に中詰材(浚渫土など)や覆砂材(スラグなど)を投入・敷設するには、例えば、トレミー管を船から水底まで延ばし、このトレミー管を通じて材料を投入する方法、ガット船周りに汚濁防止膜を設置した上で、ガット船から直接材料を投入する方法等を採ることができる。
さらに、前記覆砂層3の上に海藻着生基盤4(又は/及び漁礁)を設置し、海藻類や魚介類の成育・棲息環境を整えることが好ましい。この海藻着生基盤や漁礁は、自然石、ブロック(例えば、コンクリートブロック)、鋼製構造体などの任意のもので構成することができるが、特に、上述したような鉄鋼製造プロセスで発生した塊状スラグ、鉄鋼製造プロセスで発生したスラグ(鉄鋼スラグ)を主原料とする炭酸固化体ブロック、或いは同じく鉄鋼スラグを主原料とする水和硬化体ブロックなどを用いるのが好ましい。また、その中でも特に鉄鋼スラグを主原料とする炭酸固化体ブロックが好ましく、本実施形態ではこのブロックを配置している。
In order to insert and lay medium filling material (such as dredged material) and sand covering material (such as slag) inside the submerged dike 1 according to the method of the present invention, for example, the treme tube is extended from the ship to the bottom of the water, and the material is passed through the treme tube. And a method of directly introducing materials from the gut ship after installing a pollution prevention film around the gut ship.
Furthermore, it is preferable to install a seaweed settlement base 4 (or / and a fishing reef) on the sand-clad layer 3 to prepare a growth and habitat environment for seaweeds and seafood. The seaweed settlement base and fishing reef can be composed of natural stones, blocks (for example, concrete blocks), steel structures, etc., but in particular, the lump formed in the steel manufacturing process as described above. It is preferable to use a slag, a carbonate solid body block using slag (steel slag) generated in the steel manufacturing process as a main raw material, or a hydrated hardened body block using steel slag as a main raw material. Of these, a solidified carbonate block using steel slag as a main raw material is particularly preferable, and this block is arranged in this embodiment.

鉄鋼製造プロセスで発生した塊状スラグについては、潜堤1に関して説明したようなスラグを用いることができる。
また、主原料である鉄鋼スラグを炭酸固化させて得られた炭酸固化体ブロックとしては、例えば特許第3175694号で提案されている、鉄鋼スラグを主原料とする粉粒状原料を炭酸化反応で生成させたCaCO(場合によっては、さらにMgCO)を主たるバインダーとして固結させ、塊状化させたものを用いることができる。また、鉄鋼スラグとしては、先に挙げたような各種スラグ、すなわち高炉で発生する高炉水砕スラグや高炉徐冷スラグ、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を用いることができる。
For the massive slag generated in the steel manufacturing process, the slag as described for the submerged dam 1 can be used.
Moreover, as the carbonate solid body block obtained by carbonizing the steel slag which is the main raw material, for example, the powdery raw material which uses steel slag as the main raw material proposed by the patent 3175694 is produced | generated by carbonation reaction. CaCO 3 (optionally further MgCO 3) obtained by can be used as the so consolidated as a main binder, were agglomerated. Steel slag includes various types of slag as mentioned above, that is, granulated blast furnace slag and blast furnace slow-cooled slag generated in the blast furnace, decarburized slag, dephosphorization generated in processes such as pretreatment, converter and casting. Steelmaking slag such as slag, desulfurization slag, desiliconization slag, cast slag, ore reduction slag, electric furnace slag, and the like can be used.

このような鉄鋼スラグを炭酸固化させて得られた炭酸固化体ブロック(石材)は、(1)スラグ中に含まれるCaO(またはCaOから生成したCa(OH))の大部分がCaCOに変化するため、CaOによる海水のpH上昇を防止できる、(2)スラグに適量の鉄分(特に、金属鉄、含金属鉄材)が含まれることにより、この鉄分が海水中に溶出することで海水中に栄養塩として鉄分が補給され、これが海藻類の育成に有効に作用する、(3)スラグを炭酸固化して得られたブロックは全体(表面及び内部)がポーラスな性状を有しており、このため石材表面に海藻類が付着し易く、しかも石材内部もポーラス状であるため、石材中に含まれている海藻類の成育促進に有効な成分(例えば、ケイ酸塩イオンや鉄分)が海水中に溶出しやすい、などにより海藻の着生基盤や漁礁として有効に機能する。 The carbonate solid block (stone) obtained by carbonizing such steel slag is (1) most of CaO contained in the slag (or Ca (OH) 2 generated from CaO) into CaCO 3 . Because it changes, the pH of seawater can be prevented from rising due to CaO. (2) The slag contains an appropriate amount of iron (especially metallic iron, metal-containing iron), and this iron is eluted in the seawater. As a nutrient salt, iron is replenished, and this effectively works for the growth of seaweeds. (3) The block obtained by carbonizing slag has a porous property as a whole (surface and inside). For this reason, seaweeds are easy to adhere to the stone surface, and the inside of the stone is also porous, so components that are effective in promoting the growth of seaweed contained in the stone (for example, silicate ions and iron) are seawater. It is easy to elute in By effectively functions as aerial base and reef seaweed.

また、鉄鋼スラグを主原料とする水和硬化ブロックは、鉄鋼スラグを主原料(骨材及び/又は結合材)として含む原料を水和硬化させて得られるものであり、鉄鋼スラグとしては、先に挙げたような各種スラグ、すなわち高炉で発生する高炉水砕スラグや高炉徐冷スラグ、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を用いることができる。水和硬化によるブロックの製造では、原料を水と混練後、型枠に入れ、通常1〜4週間養生することによってブロックが製造される。
なお、ブロックに用いる結合材としては、上述した高炉水砕スラグの微粉末などの他にシリカ含有物質(例えば、粘土、フライアッシュ、ケイ砂、シリカゲル、シリカシューム)、セメント、消石灰、NaOHなどを適宜組み合わせて使用することもできる。
Moreover, the hydration hardening block which uses steel slag as a main raw material is obtained by hydrating and hardening a raw material containing steel slag as a main raw material (aggregate and / or binder). Slag, blast furnace granulated slag generated in blast furnace, blast furnace slow-cooled slag, decarburized slag, dephosphorized slag, desulfurized slag, desiliconized slag generated in processes such as pretreatment, converter, casting, etc. Steelmaking slag such as cast slag, ore reduction slag, electric furnace slag, and the like can be used. In the production of a block by hydration curing, the raw material is kneaded with water, then placed in a mold and usually cured for 1 to 4 weeks to produce the block.
In addition to the above-mentioned fine powder of granulated blast furnace slag, as a binder used for the block, silica-containing substances (for example, clay, fly ash, silica sand, silica gel, silica scum), cement, slaked lime, NaOH, etc. are appropriately used. It can also be used in combination.

ブロックを覆砂層3上に設置する場合には、個々のブロックを覆砂層3上に設置してもよいし、複数のブロックを積み上げ或いは組み付けてもよい。特に、ブロックに漁礁としての機能を持たせる場合には、複数のブロックを積み上げ或いは組み付けることにより、複数のブロック間に魚介類が棲息できるような空間部を形成することが好ましい。
また、塊状スラグや自然石を設置する場合には、例えばそれらを山状に積み上げたり、或いは金網籠など入れて設置するなど、任意の設置形態を採ることができる。
本実施形態では、複数の炭酸固化体ブロックを潜堤1寄りの覆砂層3上に適当な間隔(例えば1m以上の間隔)で配置してある。
When installing a block on the sand covering layer 3, each block may be installed on the sand covering layer 3, and a plurality of blocks may be stacked or assembled. In particular, when a block has a function as a fishing reef, it is preferable to form a space part where a plurality of blocks can be stacked or assembled so that seafood can live between the plurality of blocks.
Moreover, when installing block slag and a natural stone, it can take arbitrary installation forms, for example, pile them up in a mountain shape, or put and install them, such as a wire netting.
In this embodiment, a plurality of carbonate solidified blocks are arranged on the sand covering layer 3 near the submerged dam 1 at an appropriate interval (for example, an interval of 1 m or more).

図4は、本発明による浅場の造成方法の他の実施形態を示すもので、造成された浅場の模式縦断面である。
この実施形態では、中詰層2(浚渫土)を特に安定化させるために、潜堤1の内側に浚渫土と高炉水砕スラグを順次投入して、複層の浚渫土層20とこの各浚渫土層20間に介在し且つ層厚が浚渫土層20の層厚よりも薄い高炉水砕スラグ層21とからなる中詰層2を形成し、この中詰層2の上に、先に挙げた(A)又は(B)の覆砂層3を設けたものである。
FIG. 4 shows another embodiment of the shallow field creation method according to the present invention, and is a schematic longitudinal section of the created shallow field.
In this embodiment, in order to particularly stabilize the filling layer 2 (the clay), the clay and the granulated blast furnace slag are sequentially placed inside the submerged dike 1 to form a multilayered clay layer 20 and each of these layers. A filling layer 2 is formed which comprises a blast furnace granulated slag layer 21 interposed between the clay layers 20 and having a layer thickness smaller than the thickness of the clay layer 20. (A) or (B) mentioned above is provided.

このような本実施形態の中詰層2の構造によれば、複層の浚渫土層20間に介在する高炉水砕スラグ層21が各々の下層にある浚渫土層20の重し・蓋の機能を果たすとともに、最上層にある鉄鋼スラグの覆砂層3と中詰層2内の高炉水砕スラグ層21とによって中詰層全体が拘束されることになり、これにより中詰層2の流動化を効果的に抑制することができる。
中詰層2内に形成する高炉水砕スラグ層21は1層又は2層以上の任意の層数とすることができるが、中詰層2をより安定的に拘束するには、2層以上、好ましくは3層以上設けることが好ましい。
According to such a structure of the filling layer 2 of this embodiment, the granulated blast furnace slag layer 21 interposed between the multiple layers 20 of the clay layer 20 is overlapped and covered with the clay layer 20 in each lower layer. In addition to fulfilling the function, the entire filling layer is constrained by the steel slag covering sand layer 3 in the uppermost layer and the blast furnace granulated slag layer 21 in the filling layer 2, whereby the filling layer 2 flows. Can be effectively suppressed.
The granulated blast furnace slag layer 21 formed in the filling layer 2 can be one layer or any number of layers, but two or more layers can be used to more stably restrain the filling layer 2. Preferably, three or more layers are provided.

また、浚渫土層20と高炉水砕スラグ層21の層厚も任意であるが、高炉水砕スラグ層21は比較的層厚が小さくても十分機能することから、大量の浚渫土を中詰材として利用するという本発明の趣旨からして、高炉水砕スラグ層21の層厚は浚渫土層20の層厚よりも薄くする。一般的には、浚渫土層20を1〜5m、高炉水砕スラグ層21を10〜50cm程度の厚さにすればよい。
本実施形態のその他の構成及び好ましい条件は、図1及び図2の実施形態と同様である。したがって、上記浚渫土層20の少なくとも一部を、浚渫土ととともにその固化材を投入して形成してもよい。この固化材の種類や投入形態などは図1及び図2の実施形態で述べたものと同様である。すなわち、浚渫土ととともにその固化材を投入する場合の代表的な形態としては、(1)固化材を混合した浚渫土を投入して浚渫土層20の少なくとも一部を形成する形態、(2)浚渫土と固化材を順次投入して、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い固化材層とにより浚渫土層20の少なくとも一部を形成する形態、とがあるが、その変形例として、例えば以下のような種々の形態を採ることができる。
The layer thickness of the dredged soil layer 20 and the blast furnace granulated slag layer 21 is also arbitrary, but the blast furnace granulated slag layer 21 functions sufficiently even if the layer thickness is relatively small. For the purpose of the present invention to be used as a material, the thickness of the granulated blast furnace slag layer 21 is made thinner than that of the clay layer 20. Generally, the clay layer 20 may have a thickness of about 1 to 5 m and the blast furnace granulated slag layer 21 may have a thickness of about 10 to 50 cm.
Other configurations and preferable conditions of this embodiment are the same as those of the embodiment of FIGS. Therefore, at least a part of the clay layer 20 may be formed by adding the solidification material together with the clay. The kind of the solidifying material and the charging form are the same as those described in the embodiment of FIGS. That is, as a typical form when the solidification material is added together with the clay, (1) a form in which the clay mixed with the solidification material is charged to form at least a part of the clay layer 20, (2 ) The clay and the solidifying material are sequentially added, and the clay layer 20 is formed by a multilayered clay layer and a solidified material layer interposed between the clay layers and having a layer thickness smaller than that of the clay layer. There are forms that form at least a part, but as modifications thereof, for example, the following various forms can be adopted.

(a) 中詰層2の下層側に固化材を混合しない浚渫土層20を有し、同上層側に固化材を混合した浚渫土層20を有する形態
(b) 中詰層2の下層側に固化材を混合した浚渫土層20を有し、同上層側に固化材を混合しない浚渫土層20を有する形態
(c) 中詰層2の下層側に固化材と浚渫土とを積層させた浚渫土層20(上記(2)の形態の浚渫土層)を有し、同上層側に固化材を混合した浚渫土層20を有する形態
(d) 中詰層2の下層側に固化材を混合した浚渫土層20を有し、同上層側に固化材と浚渫土とを積層させた浚渫土層20(上記(2)の形態の浚渫土層)を有する形態
(e) 固化材を混合した複数の浚渫土層20を有し、各層で固化材の混合率が異なる形態
(f) 固化材を混合した浚渫土層と固化材層とを積層させた浚渫土層20を有する形態
(a) A form having a clay layer 20 not mixed with a solidifying material on the lower layer side of the filling layer 2 and a clay layer 20 mixed with a solidifying material on the upper layer side
(b) Form having the clay layer 20 mixed with the solidifying material on the lower layer side of the filling layer 2 and the clay layer 20 not mixing the solidifying material on the upper layer side
(c) It has the clay layer 20 (the clay layer of the form of said (2)) which laminated | stacked the solidification material and the clay on the lower layer side of the filling layer 2, and mixed the solidification material on the same upper layer side. Form having the clay layer 20
(d) A clay layer 20 in which a solidification material is mixed on the lower layer side of the filling layer 2 and a solidification layer 20 in which the solidification material and the clay are laminated on the upper layer side (in the form of (2) above) Forms with (soil layer)
(e) A form having a plurality of clay layers 20 mixed with a solidifying material, each layer having a different mixing ratio of the solidifying material
(f) Form having a clay layer 20 in which a clay layer mixed with a solidifying material and a solidifying material layer are laminated

また、この図4の実施形態においても、上述したような製鋼スラグ又は製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物からなる覆砂層3(先に挙げた(A)又は(B)の形態の覆砂層)に替えて、図3に示すような、製鋼スラグ又は製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による上層3aと、製鋼スラグ以外の鉄鋼スラグによる下層3bとからなる覆砂層3(先に挙げた(C)又は(D)の形態の覆砂層)を設けてもよい。この場合に使用するスラグや好ましい造成条件は、先に述べた図3の実施形態の覆砂層と同様である。   Also in the embodiment of FIG. 4, the sand-covering sand layer 3 (in the form of (A) or (B) mentioned above) made of steel-making slag as described above or a mixture of steel-making slag and steel slag other than steel-making slag. In place of the sand-covering layer), as shown in FIG. 3, the sand-covering layer 3 (see FIG. 3) is composed of an upper layer 3a made of steel slag or a mixture of steel slag and steel slag other than steel slag, and a lower layer 3b made of steel slag other than steel slag. You may provide the sand-covering layer of the form of (C) or (D) mentioned above. The slag used in this case and preferable formation conditions are the same as those of the sand covering layer of the embodiment of FIG. 3 described above.

本発明法による浅場の造成において、上述した各実施形態のように潜堤1を製鋼スラグで構築し、且つ覆砂層3上に設置する海藻着生基盤4(又は漁礁)として、塊状スラグ、スラグを主原料とする炭酸固化体ブロック、スラグを主原料とする水和硬化体ブロックの1種以上、好ましくはスラグを主原料とする炭酸固化体ブロックを用いることにより、天然資源を用いることなく100%リサイクル材(鉄鋼スラグ+浚渫土)で浅場を造成することができ、リサイクル材の有効利用、施工の低コスト化、天然資源の利用による環境破壊の防止などの面からも極めて有利である。   In the creation of a shallow field according to the method of the present invention, as in the above-described embodiments, the submerged levee 1 is constructed of steel slag, and the seaweed settlement base 4 (or fishing reef) installed on the sand cover layer 3 is a massive slag, slag By using one or more of the carbonate solidified block made of slag as a main raw material, and the hydrated cured block made of slag as a main raw material, preferably a carbonate solidified block made mainly of slag without using natural resources. % Recycle material (steel slag + dredged soil) can be used to create a shallow field, which is extremely advantageous from the standpoints of effective use of recycle material, cost reduction of construction, and prevention of environmental destruction due to the use of natural resources.

ここで、本発明の造成法において造成用資材として100%リサイクル材(鉄鋼スラグ+浚渫土)を用いたとすると、例えば、水深15〜20mの水域に約100m×100m(1ha)の広さの浅場を造成する場合の概算では、潜堤用として製鋼スラグを約100,000t、中詰用として浚渫土を約100,000m、覆砂用として製鋼スラグ又は製鋼スラグ+その他鉄鋼スラグを約25,000t、海藻着生基盤用としてスラグの炭酸固化体ブロック(1〜5t/個)を100〜200個程度用いることになり、多量のリサイクル資源を利用して優れた造成構造物を作り出すことができるという面で非常に有用である。 Here, assuming that 100% recycled material (steel slag + clay) is used as the building material in the building method of the present invention, for example, a shallow area of about 100 m × 100 m (1 ha) in a water area with a water depth of 15 to 20 m. As a rough estimate, about 100,000 tons of steelmaking slag for submerged dike, about 100,000 m 3 of dredged soil for filling, and about 25,000 of steelmaking slag or steelmaking slag + other steel slag for covering sand 000 tons, about 100 to 200 slag carbonate solid blocks (1 to 5 t / piece) are used for the seaweed agglomeration base, and an excellent structure can be created using a large amount of recycled resources. This is very useful.

また、浅場の造成の一環として、覆砂層3や海藻着生基盤4にアマモなどの海草類や、ワカメ、アラメ、カジメ、ホンダワラなどの海藻類を移植してもよい。
以上のようにして造成された浅場は、多様な生物が生育・棲息する場となり、また、アサリやワカメなどの有用水産資源の生産場としても利用できるようになる。
本発明による造成の対象は、上記実施形態で説明したような浅場だけでなく、干潟や、浅場と干潟とが連続した水浜でもよい。また、造成の対象は、海域・海浜だけでなく、湖沼・内海・河口などの水域・水浜を含む。
また、造成の対象となる水域としては、例えば、海岸に面した急深の水域で水産的に未利用な水域、水深は浅場並であるが底質がヘドロ化して水産的に未利用な水域、夏季に貧酸素状態が進行しやすい水域、再生・修復が必要な現存する浅場や干潟などが挙げられるが、これらに限定されるものではない。
As part of the creation of the shallow ground, seaweeds such as sea bream and seaweeds such as seaweed, arame, kajime and hondawala may be transplanted to the sand-covering layer 3 and the seaweed settlement base 4.
The shallow ground created as described above becomes a place where various organisms grow and inhabit, and can also be used as a production place for useful marine resources such as clams and seaweed.
The object of creation according to the present invention is not limited to the shallow ground as described in the above embodiment, but may be a tidal flat or a water beach where the shallow ground and the tidal flat are continuous. In addition, the target of creation includes not only sea areas and beaches, but also water areas and beaches such as lakes, inland seas, and estuaries.
In addition, examples of water areas to be constructed include water areas that are not used for fisheries in the deep water areas facing the coast, and water areas that are not used for fisheries due to sludge bottom sediments that are shallow in depth. These include, but are not limited to, waters where hypoxia is likely to progress during the summer, and existing shallow and tidal flats that need to be regenerated and restored.

また、本発明法により造成された浅場等(造成構造物)は、以下のような構成を有するものである。
(1) 人工的に造成された浅場、干潟、又は浅場と干潟とが連続した水浜であって、浅場又は/及び干潟の造成水域を囲むように構築された造成材流出防止用の潜堤と、該潜堤の内側に浚渫土により形成される中詰層と、該中詰層の上に設けられる下記(A)〜(D)のうちのいずれかの覆砂層とを有する造成構造物。
(A) 製鋼スラグによる覆砂層
(B) 製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による覆砂層
(C) 製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼スラグによる下層とからなる覆砂層
(D) 製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による上層と、製鋼スラグ以外の鉄鋼スラグによる下層とからなる覆砂層
Moreover, the shallow ground (created structure) created by the method of the present invention has the following configuration.
(1) An artificially constructed shallow beach, tidal flat, or a beach where the shallow ground and the tidal flat are continuous, and a submerged dike to prevent outflow of the constructed material constructed so as to surround the shallow water and / or the tidal flat. A built-up layer formed of dredged clay inside the submerged dam, and a sand-covered layer of any one of the following (A) to (D) provided on the filled layer .
(A) Sand cover layer made of steelmaking slag
(B) Sand-clad layer with a mixture of steelmaking slag and steel slag other than steelmaking slag
(C) Sand cover layer consisting of an upper layer made of steel slag and a lower layer made of steel slag other than steel slag
(D) Sand-covering layer consisting of an upper layer made of a mixture of steelmaking slag and steel slag other than steelmaking slag, and a lower layer made of steel slag other than steelmaking slag

(2) 人工的に造成された浅場、干潟、又は浅場と干潟とが連続した水浜であって、浅場又は/及び干潟の造成水域を囲むように構築された造成材流出防止用の潜堤と、該潜堤の内側に浚渫土及び高炉水砕スラグにより形成される中詰層であって、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い高炉水砕スラグ層とからなる中詰層と、該中詰層の上に設けられる下記(A)〜(D)のうちのいずれかの覆砂層とを有する造成構造物。
(A) 製鋼スラグによる覆砂層
(B) 製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による覆砂層
(C) 製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼スラグによる下層とからなる覆砂層
(D) 製鋼スラグと製鋼スラグ以外の鉄鋼スラグとの混合物による上層と、製鋼スラグ以外の鉄鋼スラグによる下層とからなる覆砂層
(2) An artificially constructed shallow beach, tidal flat, or a beach where the shallow ground and the tidal flat are continuous, and a submerged dike for preventing outflow of the constructed material constructed so as to surround the shallow water and / or the tidal flat. And a filling layer formed of clay and blast furnace granulated slag inside the submerged dike, and is interposed between the multiple clay layers and each clay layer, and the layer thickness of the clay layer An engineered structure having a filling layer composed of a blast furnace granulated slag layer thinner than a thickness, and a sand-covering layer of any one of the following (A) to (D) provided on the filling layer.
(A) Sand cover layer made of steelmaking slag
(B) Sand-clad layer with a mixture of steelmaking slag and steel slag other than steelmaking slag
(C) Sand cover layer consisting of an upper layer made of steel slag and a lower layer made of steel slag other than steel slag
(D) Sand-covering layer consisting of an upper layer made of a mixture of steelmaking slag and steel slag other than steelmaking slag, and a lower layer made of steel slag other than steelmaking slag

(3) 上記(1)又は(2)において、中詰層が浚渫土の固化材を含む造成構造物。
(4) 上記(1)〜(3)のいずれかにおいて、潜堤が鉄鋼製造プロセスで発生したスラグからなる造成構造物。
(5) 上記(4)において、スラグが製鋼スラグである造成構造物。
(6) 上記(5)において、潜堤上部が、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成された造成構造物。
(3) The constructed structure according to (1) or (2), wherein the filling layer includes a solidified material of clay.
(4) In any one of the above (1) to (3), the submerged dike is a structured structure made of slag generated in the steel manufacturing process.
(5) The structured structure according to (4), wherein the slag is steel slag.
(6) In the above (5), the upper part of the submerged dike has a particle size distribution in which the ratio of the particle diameter exceeding 80 mm is 5 mass% or more, the ratio of the particle diameter exceeding 50 mm is 10 mass% or more, and the ratio of the particle diameter exceeding 30 mm is 45 mass% or more. A built structure composed of steelmaking slag.

(7) 上記(6)において、潜堤下部が、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成された造成構造物。
(8) 上記(1)〜(7)のいずれかにおいて、覆砂層の上に海藻着生基盤又は/及び漁礁を設置した造成構造物。
(9) 上記(8)において、海藻着生基盤又は/及び漁礁が、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上である造成構造物。
(10) 上記(9)において、海藻着生基盤又は/及び漁礁が、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロックである造成構造物。
(7) In the above (6), the lower part of the submerged dike is 85 mass% or more with a particle size of 30 mm or less, 10 mass% or more with a particle size of 10 mm or less, 3 mass% or more with a particle size of 5 mm or less, and 1 mm particle size. A formed structure composed of steelmaking slag having a particle size distribution with the following ratio of 1 mass% or more.
(8) The constructed structure according to any one of (1) to (7), wherein a seaweed settlement base and / or a fishing reef is installed on the sand-covering layer.
(9) In (8) above, the seaweed settlement base and / or fishing reef is a block of slag generated in the steel manufacturing process, a carbonate solid block made mainly of slag generated in the steel manufacturing process, and a steel manufacturing process. A built-up structure that is at least one selected from hydrated and cured blocks made mainly from the generated slag.
(10) The constructed structure according to (9), wherein the seaweed settlement base and / or fishing reef is a carbonate solidified block made mainly of slag generated in the steel manufacturing process.

本発明法による浅場の造成方法の一実施形態を示すもので、造成された浅場の模式断面図1 shows an embodiment of a method for creating a shallow field according to the present invention, and is a schematic cross-sectional view of the created shallow field. 図1の実施形態において造成された浅場の平面図FIG. 1 is a plan view of a shallow field created in the embodiment of FIG. 本発明法による浅場の造成方法の他の実施形態を示すもので、造成された浅場の模式断面図Another embodiment of the shallow field creation method according to the present invention is shown, and a schematic sectional view of the shallow field created is shown. 本発明法による浅場の造成方法の他の実施形態を示すもので、造成された浅場の模式断面図Another embodiment of the shallow field creation method according to the present invention is shown, and a schematic sectional view of the shallow field created is shown.

符号の説明Explanation of symbols

1 潜堤
2 中詰層
3,3a,3b 覆砂層
4 海藻着生基盤
10 潜堤上部
11 潜堤下部
20 浚渫土層
21 高炉水砕スラグ層
DESCRIPTION OF SYMBOLS 1 Submerged dike 2 Filled layer 3, 3a, 3b Sand cover layer 4 Seaweed settlement base 10 Upper submerged 11 Lower submerged 20 Soil layer 21 Blast granulated slag layer

Claims (16)

浅場又は/及び干潟を造成すべき水域を囲むように造成材流出防止用の潜堤を構築し、該潜堤の内側に浚渫土を投入して中詰層を形成し、該中詰層の上に下記(A)〜(D)のうちのいずれかの覆砂層を設ける浅場等の造成方法であり、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤を製鋼スラグにより構築するとともに、潜堤上部を、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成し、潜堤下部を、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成することを特徴とする浅場等の造成方法。
Build a submerged dike to prevent outflow of construction material so as to surround the water area where the shallow area or / and the tidal flat should be constructed, and fill the inside of the submerged dike to form a middle layer, It is a creation method such as a shallow place where a sand-covering layer of any of the following (A) to (D) is provided ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged dike is constructed of steel slag, and the upper part of the submerged dike is 5 mass% or more with a particle size of more than 80 mm, 10 mass% or more with a particle size of more than 50 mm, and a particle size with a ratio of more than 30 mm of 45 mass% or more. Constructed by steelmaking slag having distribution, the lower part of the submerged dike is 85 mass% or more with a particle size of 30 mm or less, 10 mass% or more with a particle size of 10 mm or less, 3 mass% or more with a particle size of 5 mm or less, and 1 mm particle size A construction method for shallow fields or the like, characterized by comprising steelmaking slag having a particle size distribution of 1 mass% or more in the following ratio .
浅場又は/及び干潟を造成すべき水域を囲むように造成材流出防止用の潜堤を構築し、該潜堤の内側に浚渫土と高炉水砕スラグを順次投入して、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い高炉水砕スラグ層とからなる中詰層を形成し、該中詰層の上に下記(A)〜(D)のうちのいずれかの覆砂層を設ける浅場等の造成方法であり、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤を製鋼スラグにより構築するとともに、潜堤上部を、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成し、潜堤下部を、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成することを特徴とする浅場等の造成方法。
A submerged dike is constructed to prevent the outflow of construction material so as to surround the water area where the shallow area and / or tidal flat should be constructed, and dredged soil and blast furnace granulated slag are sequentially placed inside the submerged dike, so that multiple layers of dredged soil A filling layer comprising a layer and a blast furnace granulated slag layer interposed between each clay layer and having a layer thickness smaller than the layer thickness of the clay layer, and the following (A) to (A) to (D) is a creation method such as a shallow place to provide a sand covering layer of any one of ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged dike is constructed of steel slag, and the upper part of the submerged dike is 5 mass% or more with a particle size of more than 80 mm, 10 mass% or more with a particle size of more than 50 mm, and a particle size with a ratio of more than 30 mm of 45 mass% or more. Constructed by steelmaking slag having distribution, the lower part of the submerged dike is 85 mass% or more with a particle size of 30 mm or less, 10 mass% or more with a particle size of 10 mm or less, 3 mass% or more with a particle size of 5 mm or less, and 1 mm particle size A construction method for shallow fields or the like, characterized by comprising steelmaking slag having a particle size distribution of 1 mass% or more in the following ratio .
覆砂層を構成する製鋼スラグは、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有するとともに、平均粒径が150mm以下であることを特徴とする請求項1又は2に記載の浅場等の造成方法。The steelmaking slag constituting the sand-capping layer has a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. The method for creating a shallow place or the like according to claim 1 or 2, wherein the diameter is 150 mm or less. 潜堤の内側に、浚渫土とともにその固化材を投入することを特徴とする請求項1〜3のいずれかに記載の浅場等の造成方法。 The method for creating a shallow place or the like according to any one of claims 1 to 3, wherein the solidifying material is poured into the submerged dike along with the clay. 固化材と浚渫土とを層状に敷設して中詰層を形成することを特徴とする請求項4に記載の浅場等の造成方法。The method for creating a shallow place or the like according to claim 4, wherein the solidified layer and the clay are laid in layers to form a filling layer. 固化材が製鋼スラグからなることを特徴とする請求項4又は5に記載の浅場等の造成方法。The method for creating a shallow place or the like according to claim 4 or 5, wherein the solidified material is made of steel slag. 覆砂層の上に海藻着生基盤又は/及び漁礁を設置することを特徴とする請求項1〜のいずれかに記載の浅場等の造成方法。 The method for creating a shallow place or the like according to any one of claims 1 to 6 , wherein a seaweed settlement base or / and a fishing reef are installed on the sand-capping layer. 海藻着生基盤又は/及び漁礁が、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上であることを特徴とする請求項に記載の浅場等の造成方法。 The seaweed settlement base and / or fishing reefs are massive slag generated in the steel production process, carbonated solid blocks made mainly from slag produced in the steel production process, and water mainly made from slag produced in the steel production process. The method for creating a shallow place or the like according to claim 7 , wherein the method is at least one selected from a Japanese cured body block. 人工的に造成された浅場、干潟、又は浅場と干潟とが連続した水浜であって、
浅場又は/及び干潟の造成水域を囲むように構築された造成材流出防止用の潜堤と、該潜堤の内側に浚渫土により形成される中詰層と、該中詰層の上に設けられる下記(A)〜(D)のうちのいずれかの覆砂層とを有し、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤が製鋼スラグからなるとともに、潜堤上部が、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成され、潜堤下部が、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成されることを特徴とする造成構造物。
An artificially constructed shallow beach, tidal flat, or a beach with continuous shallow and flat tidal flats,
A submerged dike for preventing outflow of construction material constructed so as to surround the shallow water and / or tidal flats, a filling layer formed of dredged soil inside the submerged dike, and provided on the filling layer And has a sand covering layer of any one of the following (A) to (D) ,
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged levee is made of steel slag, and the upper part of the submerged levee is a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. The lower part of the submerged dike is 85 mass% or more, the ratio of 10 mm or less is 10 mass%, the ratio of 5 mm or less is 3 mass%, and the particle diameter is 1 mm or less. A formed structure comprising a steelmaking slag having a particle size distribution of 1 mass% or more .
人工的に造成された浅場、干潟、又は浅場と干潟とが連続した水浜であって、
浅場又は/及び干潟の造成水域を囲むように構築された造成材流出防止用の潜堤と、該潜堤の内側に浚渫土及び高炉水砕スラグにより形成される中詰層であって、複層の浚渫土層と該各浚渫土層間に介在し且つ層厚が浚渫土層の層厚よりも薄い高炉水砕スラグ層とからなる中詰層と、該中詰層の上に設けられる下記(A)〜(D)のうちのいずれかの覆砂層とを有し、
(A)製鋼スラグによる覆砂層
(B)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による覆砂層
(C)製鋼スラグによる上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
(D)製鋼スラグと製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグとの混合物による上層と、製鋼スラグ以外の鉄鋼製造プロセスで発生したスラグによる下層とからなる覆砂層
前記潜堤が製鋼スラグからなるとともに、潜堤上部が、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有する製鋼スラグにより構成され、潜堤下部が、粒径30mm以下の割合が85mass%以上、粒径10mm以下の割合が10mass%以上、粒径5mm以下の割合が3mass%以上、粒径1mm以下の割合が1mass%以上の粒度分布を有する製鋼スラグにより構成されることを特徴とする造成構造物。
An artificially constructed shallow beach, tidal flat, or a beach with continuous shallow and flat tidal flats,
A submerged dike for preventing outflow of construction material constructed so as to surround the shallow water and / or tidal flats, and a filling layer formed by dredged soil and blast furnace granulated slag inside the submerged dike. A filling layer comprising a clay layer of each layer and a blast furnace granulated slag layer interposed between the clay layers and having a layer thickness smaller than the layer thickness of the clay layer, and the following provided on the filling layer (a) and a one of covering sand of ~ (D),
(A) Sand cover layer by steelmaking slag (B) Sand cover layer by mixture of steelmaking slag and slag generated in steel manufacturing processes other than steelmaking slag (C) Upper layer by steelmaking slag and steelmaking processes other than steelmaking slag Sand cover layer consisting of lower layer by slag (D) Sand cover layer consisting of upper layer by mixture of steelmaking slag and slag generated in steel manufacturing process other than steelmaking slag and lower layer by slag generated in steel manufacturing process other than steelmaking slag
The submerged levee is made of steel slag, and the upper part of the submerged levee is a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. The lower part of the submerged dike is 85 mass% or more, the ratio of 10 mm or less is 10 mass%, the ratio of 5 mm or less is 3 mass%, and the particle diameter is 1 mm or less. A formed structure comprising a steelmaking slag having a particle size distribution of 1 mass% or more .
覆砂層を構成する製鋼スラグは、粒径80mm超の割合が5mass%以上、粒径50mm超の割合が10mass%以上、粒径30mm超の割合が45mass%以上の粒度分布を有するとともに、平均粒径が150mm以下であることを特徴とする請求項9又は10に記載の造成構造物。The steelmaking slag constituting the sand-capping layer has a particle size distribution in which the ratio of the particle diameter of more than 80 mm is 5 mass% or more, the ratio of the particle diameter of more than 50 mm is 10 mass% or more, and the ratio of the particle diameter of more than 30 mm is 45 mass% or more. The constructed structure according to claim 9 or 10, wherein the diameter is 150 mm or less. 中詰層が浚渫土の固化材を含むことを特徴とする請求項9〜11のいずれかに記載の造成構造物。 The structure according to any one of claims 9 to 11 , wherein the filling layer includes a solidified material of clay. 固化材と浚渫土とが層状に敷設されることを特徴とする請求項12に記載の造成構造物。The constructed structure according to claim 12, wherein the solidifying material and the clay are laid in layers. 固化材が製鋼スラグからなることを特徴とする請求項12又は13に記載の造成構造物。The structure according to claim 12 or 13, wherein the solidifying material is made of steel slag. 覆砂層の上に海藻着生基盤又は/及び漁礁が設置されたことを特徴とする請求項14のいずれかに記載の造成構造物。 The constructed structure according to any one of claims 9 to 14 , wherein a seaweed settlement base or / and a fishing reef are installed on the sand-covering layer. 海藻着生基盤又は/及び漁礁が、鉄鋼製造プロセスで発生した塊状のスラグ、鉄鋼製造プロセスで発生したスラグを主原料とする炭酸固化体ブロック、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体ブロックの中から選ばれる1種以上であることを特徴とする請求項15に記載の造成構造物。 The seaweed settlement base and / or fishing reefs are massive slag generated in the steel production process, carbonated solid blocks made mainly from slag produced in the steel production process, and water mainly made from slag produced in the steel production process. The structured structure according to claim 15 , wherein the structure is at least one selected from a Japanese cured body block.
JP2005024855A 2005-02-01 2005-02-01 Construction method of shallow ground Active JP4736449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024855A JP4736449B2 (en) 2005-02-01 2005-02-01 Construction method of shallow ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005024855A JP4736449B2 (en) 2005-02-01 2005-02-01 Construction method of shallow ground

Publications (2)

Publication Number Publication Date
JP2006214085A JP2006214085A (en) 2006-08-17
JP4736449B2 true JP4736449B2 (en) 2011-07-27

Family

ID=36977534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024855A Active JP4736449B2 (en) 2005-02-01 2005-02-01 Construction method of shallow ground

Country Status (1)

Country Link
JP (1) JP4736449B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010116602A1 (en) * 2009-03-30 2010-10-14 新日本製鐵株式会社 Method for backfilling subaqueous borrow pit
JP5400680B2 (en) * 2010-03-29 2014-01-29 Jfeスチール株式会社 Artificial shallow or tidal flat
JP5573692B2 (en) * 2011-01-18 2014-08-20 新日鐵住金株式会社 Treatment method of depression
JP5979999B2 (en) * 2012-06-18 2016-08-31 五洋建設株式会社 Artificial tidal flat structure and repair method of artificial tidal flat
JP5904053B2 (en) * 2012-08-15 2016-04-13 Jfeスチール株式会社 Radiation shielding structure and embankment
JP6287973B2 (en) * 2015-06-29 2018-03-07 Jfeスチール株式会社 Underwater structure and its construction method
JP6786203B2 (en) * 2015-09-10 2020-11-18 五洋建設株式会社 Submarine construction material and submarine structure using this material
JP6829758B2 (en) * 2019-12-26 2021-02-10 五洋建設株式会社 Submarine construction material and submarine structure using this material
JP6903297B1 (en) * 2020-07-03 2021-07-14 Jfeスチール株式会社 How to backfill the Fukahori depression

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286711A (en) * 2001-03-21 2003-10-10 Jfe Steel Kk Method for improving environment of bottom of water

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933443A (en) * 1972-07-26 1974-03-27
JPS565032A (en) * 1979-06-27 1981-01-20 Kei Ai Do Yuugen Utilization of steel making slag to artificial shore
JPH0631668Y2 (en) * 1989-07-22 1994-08-22 スタンレー電気株式会社 Neo wedge valve mounting board
JPH0692647B2 (en) * 1989-10-13 1994-11-16 東亜建設工業株式会社 Underwater landfill method
JPH0765304B2 (en) * 1989-12-14 1995-07-19 千代田化工建設株式会社 Tidal flat creation method
JPH08311842A (en) * 1995-05-17 1996-11-26 Shimizu Corp Breakwater
JP3460591B2 (en) * 1998-09-04 2003-10-27 Jfeスチール株式会社 Sediment / seawater purification materials and purification methods
JP2000139268A (en) * 1998-11-08 2000-05-23 Nkk Corp Seaweed bed growth promotion-type fishbank
JP2001059213A (en) * 1999-08-20 2001-03-06 Saeki Kensetsu Kogyo Co Ltd Method and device for dumping hardening treatment soil
JP2003293345A (en) * 2002-03-29 2003-10-15 Nippon Steel Corp Earthwork material using steel slag, and method for using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286711A (en) * 2001-03-21 2003-10-10 Jfe Steel Kk Method for improving environment of bottom of water

Also Published As

Publication number Publication date
JP2006214085A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4736449B2 (en) Construction method of shallow ground
JP4736443B2 (en) Construction method of shallow ground
JP4736444B2 (en) Construction method of shallow ground
JP5070667B2 (en) Underwater environment improvement method
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP4736448B2 (en) Construction method of shallow ground
JP2007063923A (en) Sand cover structure and sand cover method for water bottom
JP2000139268A (en) Seaweed bed growth promotion-type fishbank
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP4872275B2 (en) Covering sand at the bottom of the water
JP3968898B2 (en) Artificial stone mainly composed of slag and method for producing the same
JP2009002155A (en) Structure arranged on revetment and revetment structure
JP2001252694A (en) Underwater structure and bottom material/water quality cleaning method
WO2009058011A1 (en) Method for preparing a structure in a body of water
JP3755018B2 (en) Sand-capping material and water-capping method
JP2003253642A (en) Installation method for underwater structure and block for underwater structure
JP4013368B2 (en) Stone material for submergence and method for producing the same
JP5168027B2 (en) Repair method for steel revetment structures
JP4997687B2 (en) How to improve water environment
EP1018298B1 (en) Stone material for submerging into water, method of production thereof, and method of forming submarine forest
JP2003286711A (en) Method for improving environment of bottom of water
JP2004000104A (en) Method for improving underwater or environmental water shore
JP4433831B2 (en) Ecosystem-constructed underwater structures
JP4225220B2 (en) Box structure, revetment structure installed on the revetment
JP2003158946A (en) Method for improving underwater or waterside environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250