JP5168027B2 - Repair method for steel revetment structures - Google Patents

Repair method for steel revetment structures Download PDF

Info

Publication number
JP5168027B2
JP5168027B2 JP2008211579A JP2008211579A JP5168027B2 JP 5168027 B2 JP5168027 B2 JP 5168027B2 JP 2008211579 A JP2008211579 A JP 2008211579A JP 2008211579 A JP2008211579 A JP 2008211579A JP 5168027 B2 JP5168027 B2 JP 5168027B2
Authority
JP
Japan
Prior art keywords
slag
steel
water
revetment
sheet pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008211579A
Other languages
Japanese (ja)
Other versions
JP2008303708A (en
JP2008303708A5 (en
Inventor
操 鈴木
久美 新井
達人 高橋
久宏 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008211579A priority Critical patent/JP5168027B2/en
Publication of JP2008303708A publication Critical patent/JP2008303708A/en
Publication of JP2008303708A5 publication Critical patent/JP2008303708A5/ja
Application granted granted Critical
Publication of JP5168027B2 publication Critical patent/JP5168027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Description

本発明は、埋立て地等の護岸や岸壁あるいは防波堤(これら、護岸、岸壁及び防波堤を総称して本明細書においては単に「護岸」という。)について、鋼管杭や鋼矢板などの鋼製護岸構造物を強度的に修復すると共に生態系の修復も可能とする鋼製護岸構造物の修復方法に関する。   The present invention relates to a steel revetment such as a steel pipe pile or a steel sheet pile for a revetment, a quay or a breakwater such as a landfill (these revetments, a quay and a breakwater are collectively referred to as “revetment” in the present specification). The present invention relates to a method for repairing a steel revetment structure that can repair a structure in a strong manner and can also restore an ecosystem.

自然の磯場のように良好な環境の海では藻類、稚子魚、甲殻類、貝等の多様な生物が生息している。このような多様な生物がプランクトンを摂餌し、これが死滅すると、細菌に分解され、海底に堆積する。海底に堆積したものは底生生物によって摂餌され、底生生物も大型の動物に摂餌されて系外に運び出される。
このように多様性が維持された環境では、物質の循環が滞りなく行われており、水質も良好な状態にある。海域環境浄化とは、多様な生物による滞りのない物質循環という観点を基本にして行われる。
A variety of creatures such as algae, juvenile fish, crustaceans, and shellfish inhabit the sea in a favorable environment like a natural place. These diverse organisms feed on plankton, and when they die, they are broken down into bacteria and deposited on the ocean floor. Those deposited on the sea floor are fed by benthic organisms, and benthic organisms are also fed by large animals and carried out of the system.
In such an environment where diversity is maintained, the circulation of substances is performed without delay, and the water quality is also good. Sea area environmental purification is performed based on the viewpoint of material circulation without delay by various organisms.

しかしながら、従来の護岸では魚介類の隠れ場所や貝や藻類の付着し易い凹凸が全く存在していない垂直壁状のものであった。そのため、光がとどき、光合成のおきる水深には着生基盤である海底がなく、植物連鎖にとって必要な海藻や水生生物が生息できる環境ではなく、上記の海域環境浄化ができず、海洋汚染が進んでいた。
このため、近年においては、鋼矢板護岸の緑化を目的として、垂直壁面緑化用ポーラスコンクリートブロックを、地中に打ち込まれた鋼矢板壁面に密着して取付けることによって該鋼矢板壁面上で植物の育成を可能とする鋼矢板護岸構造が提案されている(特許文献1参照)。
However, the conventional revetment has a vertical wall shape where there is no hiding place for seafood and unevenness to which shellfish and algae easily adhere. Therefore, there is no ocean floor that is the epiphysical base in the depth of light where photosynthesis takes place, and it is not an environment where the seaweed and aquatic organisms necessary for the plant chain can live. It was out.
Therefore, in recent years, for the purpose of greening the steel sheet pile revetment, planting of the vertical wall greening porous concrete block on the steel sheet pile wall surface by attaching it closely to the steel sheet pile wall surface that has been driven into the ground A steel sheet pile revetment structure has been proposed (see Patent Document 1).

また、鋼矢板や鋼管杭などの鋼材を用いた鋼製護岸構造物は、建設後長時間にわたって海洋環境下におかれると鋼材の腐食が進行して、その機能が十分に発揮できない状況になっている。特に、飛沫帯から干満帯での腐食が著しく進行し、鋼材断面が減少して、極端な場合には穴があくこともある。
このような、腐食による断面性能の低下した鋼矢板護岸に対する修復方法として、広幅パネル状の鋼矢板を継ぎ手を嵌合させながら打設して補強部材としての直線状の鋼矢板壁を構築し、この鋼矢板壁と既設の鋼矢板とのあいだの空間にコンクリートを充填するものが提案されている(特許文献2参照)。
特開2001−295242号公報 特開2003−74038号公報
In addition, steel revetment structures using steel materials such as steel sheet piles and steel pipe piles will not be able to perform their functions sufficiently if they are left in the marine environment for a long time after construction and the corrosion of the steel materials will proceed. ing. In particular, corrosion from the splash zone to the tidal zone progresses remarkably, the steel material cross section decreases, and in extreme cases, there may be holes.
As a repair method for steel sheet pile revetment with reduced cross-sectional performance due to corrosion, a straight steel sheet pile wall as a reinforcing member is constructed by placing a wide sheet steel sheet pile while fitting the joints, The thing which fills the space between this steel sheet pile wall and the existing steel sheet pile is proposed (refer patent document 2).
JP 2001-295242 A JP 2003-74038 A

まず、鋼矢板護岸の腐食による強度低下を修復する特許文献2の場合には、既設の鋼矢板の水との接触面に新たな広幅パネル状の鋼矢板を打設するものであり、水生生物の生息に適した生物相域を形成して生態系を回復させるという考えはない。   First, in the case of Patent Document 2 in which strength reduction due to corrosion of a steel sheet pile revetment is repaired, a new wide panel steel sheet pile is placed on the contact surface of the existing steel sheet pile with water. There is no idea to restore the ecosystem by forming a biosphere suitable for the habitat.

他方、上記の特許文献1に示されたものは、鋼矢板の水との接触面に緑化用のポーラスコンクリートブロックを設置するものであり、鋼矢板の垂直面に植栽が可能となるという点では生物相域の形成に対して一定の効果が期待できる。
しかしながら、特許文献においてはポーラスコンクリートブロックを取り付けているが、コンクリートを水中に設置するとコンクリートから溶出するCaが周囲の水のpHを上昇させ、アルカリ性を高め、却って水中生物(動植物、微生物)の棲息・生育環境に悪影響を与えるという問題がある。
On the other hand, what was shown in said patent document 1 installs the porous concrete block for greening in the contact surface with the water of a steel sheet pile, and the point that it becomes possible to plant on the vertical surface of a steel sheet pile Then we can expect a certain effect on the formation of biota.
However, in Patent Document 1 , a porous concrete block is attached. However, when concrete is placed in water, Ca eluted from the concrete raises the pH of the surrounding water and increases alkalinity. There is a problem of adversely affecting the habitat / growth environment.

また、コンクリートの場合にはその表面が平滑面であるため、穴の部分以外では植物などの定着力が弱く、仮に生物(植物、動物)が付着したとしても、生物が一度に脱落してしまう可能性がある。このように生物が一度に海底に落ちると、貧酸素水塊に満たされた海底でヘドロ化してしまうという問題もある。
このように、特許文献のものでは却って水中生物の棲息・生育環境に悪影響を与える可能性もあり、衰退した沿岸海域での生態系を回復させる十分な成果を挙げることは期待できない。
さらに、特許文献のものは、そもそも、鋼矢板護岸の緑化目的であることから鋼矢板に貼設するものはポーラスなコンクリートであり、腐食によって強度低下した鋼矢板護岸の強度回復を達成することはできない。
In the case of concrete, since the surface is smooth, the fixing power of plants and the like is weak except in the hole portion, and even if organisms (plants, animals) adhere, organisms fall out at once. there is a possibility. When organisms fall to the seabed at this time, there is also a problem that they become sludge on the seabed filled with anoxic water masses.
As described above, Patent Document 1 may adversely affect the habitat and growth environment of aquatic organisms, and it cannot be expected to achieve sufficient results to restore the ecosystem in the degraded coastal waters.
Furthermore, since the thing of patent document 1 is the greening purpose of a steel sheet pile revetment in the first place, what is stuck to a steel sheet pile is porous concrete, and achieves the strength recovery of the steel sheet pile revetment whose strength has been reduced by corrosion. I can't.

以上のように、特許文献2の鋼製護岸構造物の修復方法では、コンクリートで強度補強が行われるだけであり、生態系の回復を図ることはできない。
他方、特許文献1に記載の緑化目的の鋼矢板護岸では、緑化を図ることは可能であるが、コンクリートを用いていることから、生物親和性が低く生態系の回復を図るということまでは期待できない。
As described above, in the method for repairing a steel revetment structure disclosed in Patent Document 2, only strength reinforcement is performed with concrete, and it is not possible to restore the ecosystem.
On the other hand, in the steel sheet pile revetment for greening described in Patent Document 1, it is possible to plan greening, but since concrete is used, it is expected that the biocompatibility is low and the ecosystem will be restored. Can not.

本発明はかかる課題を解決するためになされたものであり、鋼材を用いた鋼製護岸構造物の強度的な補強、補修が可能であると共に、生物親和性が高く海洋生物の生育・生息に好適で、天然の沿岸岩礁部と同等又はそれ以上の水生生物を定着させることができ、衰退した沿岸海域での生態系の回復を図ることができる鋼製護岸構造物の修復方法を提供することを目的としている。   The present invention has been made to solve such a problem, and can reinforce and repair a steel revetment structure using a steel material, and has high biocompatibility for the growth and inhabiting of marine organisms. To provide a method for repairing a steel revetment structure that is suitable, can establish aquatic organisms equivalent to or more than natural coastal reefs, and can restore ecosystems in degraded coastal waters. It is an object.

(1)本発明に係る鋼製護岸構造物の修復方法は、護岸を構成する鋼製護岸構造物を補修する方法であって、鋼製護岸構造物の水との接触面に定着部材を設置する工程と、型枠を設置して該型枠に骨材としての製鋼スラグ、結合材、混和材、水を練混ぜたものを水中打設する工程とを備え、前記型枠は鉄鋼スラグを原料とする粉粒状原料を炭酸化反応で生成させたCaCO をバインダーとして固結させたパネル状の炭酸固化体で形成していることを特徴とするものである。 (1) A method for repairing a steel revetment structure according to the present invention is a method for repairing a steel revetment structure that constitutes a revetment, and a fixing member is installed on the surface of the steel revetment structure that contacts water. And a step of placing the formwork and placing the steelwork slag as an aggregate in the formwork , a binder, an admixture, and water mixed in water, and the formwork is made of steel slag. it forms a CaCO 3 that the powdery raw material was produced in the carbonation reaction as a raw material in the allowed panel-like carbonated solid consolidation as a binder and is characterized in.

(2)また、上記(1)に記載のものにおいて、前記型枠は、設置状態で海側になる面側に凹凸形状を設けていることを特徴とするものである。
(2) Further, in the above-described (1), the mold is provided with an uneven shape on the surface side that becomes the sea side in the installed state .

本発明の鋼製護岸構造物の修復方法によれば、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体が、海藻着生基盤、漁礁、栄養塩供給(溶出)源等として有効に機能し、これらの機能によって、珪藻類や海藻類の増殖、動物プランクトンの増殖、魚介類の餌場・隠れ家・産卵場として好適な環境の出現、魚介類の増殖、といった一連の事象が直接的又は連鎖的に実現され、その結果、天然の沿岸岩礁部と同等又はそれ以上の生態系を構築することができる。
また、腐食した鋼矢板等の構成護岸構造物の強度補強ができるという効果を奏することができる。
さらに、鉄鋼スラグを主原料とする炭酸固化体を型枠として用いているので、生態系回復機能を発揮することができ、かつ水和硬化体の固化後に型枠を取り外す必要がなく、工事の工程を省略して工期を短縮できるという効果もある。
According to the method for repairing a steel revetment structure according to the present invention, a hydrated hardened body mainly made of slag generated in a steel manufacturing process is effective as a seaweed settlement base, a fishing reef, a nutrient supply (elution) source, etc. Through these functions, a series of events such as the growth of diatoms and seaweeds, the growth of zooplankton, the emergence of a suitable environment for seafood feeds, hideouts, and spawning grounds, and the growth of seafood are directly performed. Or as a result, it is possible to build an ecosystem that is equal to or better than natural coastal reefs.
Moreover, there exists an effect that strength reinforcement of structural revetment structures, such as a corroded steel sheet pile, can be performed.
Furthermore, because the carbonic acid solidified material that uses steel slag as the main raw material is used as the mold, it is possible to demonstrate the ecological recovery function, and it is not necessary to remove the mold after the hydrated hardened material has solidified. There is also an effect that the construction period can be shortened by omitting the steps.

[実施の形態1]
図1は本発明の一実施形態を示すものであり、鋼製護岸の一例として鋼矢板護岸の修復後の構造の説明図である。まず、図1に基づいて修復後の構造について説明し、その後で修復方法について説明する。
本実施の形態における修復の対象となる既設の鋼矢板護岸は、海底1に立設された既設の鋼矢板3、その上部に設けられた上部構造のコーピング5から構成されている。なお、コーピング5の海側の端面5aの位置が護岸法線となるが、通常、鋼矢板3は護岸法線よりも陸側に入り込んで設置される。
このような、既設の鋼矢板護岸に対して、本実施の形態においては、鋼矢板3の水との接触面に、鉄鋼製造プロセスで発生したスラグを主原料とする水和硬化体7を打設したものである。また、水和硬化体7の下端部には海側に突出する棚部9を設けたものである。
以下、各構成を詳細に説明する。
[Embodiment 1]
FIG. 1 shows an embodiment of the present invention, and is an explanatory diagram of a structure after repair of a steel sheet pile revetment as an example of a steel revetment. First, the repaired structure will be described with reference to FIG. 1, and then the repair method will be described.
The existing steel sheet pile revetment to be repaired in the present embodiment is composed of an existing steel sheet pile 3 standing on the seabed 1 and an upper structure coping 5 provided above the steel sheet pile 3. In addition, although the position of the end surface 5a on the sea side of the coping 5 is the revetment normal, the steel sheet pile 3 is usually installed on the land side of the revetment normal.
In this embodiment, against such an existing steel sheet pile revetment, a hydrated hardened body 7 mainly made of slag generated in the steel manufacturing process is applied to the contact surface of the steel sheet pile 3 with water. It is set. Moreover, the shelf 9 which protrudes in the sea side is provided in the lower end part of the hydration hardening body 7. FIG.
Hereinafter, each configuration will be described in detail.

<構成の説明>
1.水和硬化体
(a)水和硬化体の打設範囲
水和硬化体7は、既設鋼矢板3の強度補強機能と生態系回復機能の2つの機能を併せ持った機能部材である。したがって、水和硬化体7を打設する範囲は、これら2の機能を発揮できる範囲とする必要がある。つまり、鋼矢板3の補強という観点からは既設鋼矢板3において腐食が進み修復の必要な箇所であり、主には、飛沫帯から干満帯となる。
また、生態系の回復という観点からは、そこに棲み付いた植物が光合成をするためには光が必要なことから少なくとも太陽光の届く水深までの範囲であることが好ましい。したがって、水和硬化体7の打設範囲としては、少なくとも太陽光の届く水深までの範囲とし、この範囲以外で強度修復が必要な場合には、その範囲を含むのが好ましい。
<Description of configuration>
1. Hydrated cured body
(a) Placing range of hydrated hardened body The hydrated hardened body 7 is a functional member that has both the strength reinforcing function and the ecosystem recovery function of the existing steel sheet pile 3. Therefore, the range in which the hydrated cured body 7 is placed needs to be a range in which these two functions can be exhibited. That is, from the viewpoint of reinforcing the steel sheet pile 3, the existing steel sheet pile 3 is a portion where corrosion has progressed and needs to be repaired, and mainly from the splash zone to the tidal zone.
Further, from the viewpoint of ecosystem recovery, it is preferable that the plant that has settled there needs light in order to carry out photosynthesis, so that it is at least in the range where the sunlight reaches. Therefore, the placement range of the hydrated cured body 7 is at least a range up to the depth of water where the sunlight reaches, and if strength repair is required outside this range, the range is preferably included.

(b) 水和硬化体の組成
水和硬化体7は、鉄鋼製造プロセスで発生したスラグを主原料とするものであり、鉄鋼スラグを主原料(骨材及び/又は結合材)として含む原料を水和硬化させて得られるものである。鉄鋼スラグとしては、先に挙げたような各種スラグ、すなわち高炉で発生する高炉水砕スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を用いることができる。水和硬化体(ブロック)は、原料を水と混練後、型枠に入れ、通常1〜4週間養生することによって製造される。
なお、水和硬化体7に用いる結合材としては、上述した高炉水砕スラグの微粉末などの他にシリカ含有物質(例えば、粘土、フライアッシュ、ケイ砂、シリカゲル、シリカシューム)、セメント、消石灰、NaOHなどを適宜組み合わせて使用することもできる。
(b) Composition of hydrated hardened body Hydrated hardened body 7 is mainly composed of slag generated in the steel manufacturing process, and includes a raw material containing steel slag as a main raw material (aggregate and / or binder). It is obtained by hydration curing. As steel slag, various slags as mentioned above, that is, blast furnace granulated slag generated in blast furnace, dephosphorization slag, desulfurization slag, desiliconization slag, steelmaking slag such as cast slag, ore reduction slag, electric furnace slag, etc. Can be used. The hydrated cured product (block) is produced by kneading the raw material with water, placing it in a mold, and curing it usually for 1 to 4 weeks.
In addition to the fine powder of blast furnace granulated slag as described above, the binder used for the hydrated cured body 7 is a silica-containing substance (for example, clay, fly ash, silica sand, silica gel, silica scum), cement, slaked lime, NaOH or the like can be used in appropriate combination.

なお、水和硬化体の表面には、例えば図2に示すように、凸部11を設けたり、凸部11の中に凹部11aを設けたりすることが好ましい。   In addition, it is preferable to provide the convex part 11 in the surface of a hydration hardening body, for example, as shown in FIG.

2.棚部
棚部9は、図1、図2に示すように、コーピング5の海側の端面5aよりも海側に出っ張らないように設置されている。このようにすることで、護岸法線の内側の工事となり護岸法線を変更しないので、煩雑な手続を経ることなく工事ができる。
棚部9は水和硬化体7に付着した生物、例えば貝などが死滅して落下したときにこれを受け止めて、死骸が海底に堆積するのを防止する機能を有する。
棚部9を形成する材料は問わず、例えばコンクリート、鋼材、あるいは水和硬化体であってもよい。
2. As shown in FIGS. 1 and 2, the shelf 9 is installed so as not to protrude from the sea-side end face 5 a of the coping 5 to the sea. By doing in this way, since it becomes the construction inside a seawall normal and it does not change a seawall normal, construction can be performed without going through complicated procedures.
The shelf 9 has a function of catching a living organism, for example, a shellfish, attached to the hydrated cured body 7 when it has died and falling, and preventing the dead body from accumulating on the seabed.
The material for forming the shelf 9 is not limited, and may be concrete, steel, or a hydrated cured body, for example.

なお、棚部9は、図2に示すように、有底枠体状にして枠内に高炉水砕スラグを敷き詰めた高炉水砕スラグ層13を形成するのが好ましい。
高炉水砕スラグは鉄鋼スラグの一種である高炉水砕スラグを水砕化処理して固化させた粉粒状のスラグであり、その粒径は海砂よりも大きく(通常、D50が、1.0〜2.0mm程度の粒径)、また真比重も海砂に較べてやや大きい。さらに、高炉水砕スラグは、その製造上の理由から多孔質組織のガラス質であり、且つスラグ粒子が角張った形状(表面に多数の尖った部分を有する形状)を有している。
In addition, as shown in FIG. 2, it is preferable that the shelf part 9 forms a bottomed frame body and forms a blast furnace granulated slag layer 13 in which blast furnace granulated slag is spread in the frame.
Granulated blast furnace slag is a slag blast furnace slag of water砕化treatment to particulate which solidified which is a kind of steel slag, the particle size is greater than the sea sand (typically, D 50 is, 1.0 The particle size is about 2.0mm), and the true specific gravity is slightly larger than sea sand. Furthermore, granulated blast furnace slag is vitreous with a porous structure for reasons of its production, and has a shape in which slag particles are angular (a shape having a number of sharp portions on the surface).

高炉水砕スラグとしては、生成ままのもの、地鉄(鉄分)除去したもの、軽破砕などの破砕処理したもの、地鉄除去の前又は後に軽破砕などの破砕処理したもの、炭酸化処理により表面に炭酸皮膜を形成したもの、などのいずれを用いてもよい。高炉水砕スラグは鉄鋼製造プロセスで大量に発生するものであるため、安価に且つ大量に入手することができる材料である。
高炉水砕スラグ層13の厚さは特に制限はないが、通常10cm以上、より望ましくは30cm以上が好ましい。
As granulated blast furnace slag, as-produced, ground iron (iron) removed, crushed such as lightly crushed, crushed such as lightly crushed before or after removal of ground iron, by carbonation treatment Any of those having a carbonic acid film formed on the surface may be used. Since granulated blast furnace slag is generated in large quantities in the steel manufacturing process, it is a material that can be obtained in large quantities at low cost.
The thickness of the granulated blast furnace slag layer 13 is not particularly limited, but is usually 10 cm or more, and more preferably 30 cm or more.

なお、高炉水砕スラグ層13は、高炉水砕スラグに代えて製鋼スラグ、または、これらスラグの細粒と天然砂などとの混合物を用いて砂粒状のスラグを含む砂粒体からなる砂粒層としてもよい。砂粒状のスラグとしては、砂粒状の高炉水砕スラグ、溶銑予備処理スラグ、転炉スラグ、電気炉スラグ、あるいはこれらスラグの水和硬化体を砂粒状に粉砕したもの、炭酸固化体を砂粒状に粉砕したもの、あるいはこれらの砂粒状スラグを天然の砂、浚渫土と混合したもの、があげられる。
粒度の範囲としては0.01mmから80mmの間にあることが好ましい。
The blast furnace granulated slag layer 13 is a sand granule made of a sand granule containing sand granular slag using steelmaking slag instead of blast furnace granulated slag, or a mixture of fine slag and natural sand. Also good. Sand granulated slag includes sand granulated blast furnace granulated slag, hot metal pretreatment slag, converter slag, electric furnace slag, or a hydrated hardened body of these slags into sand granules, and carbonated solidified bodies are sand granulated. Or those obtained by mixing these sand granular slags with natural sand or clay.
The range of particle size is preferably between 0.01 mm and 80 mm.

<作用>
上記のような、修復された鋼矢板護岸おいては、水和硬化体7がコンクリートと同様に材齢28日で一般の異形ブロックの設計基準強度である18Nmm以上の圧縮強度を有するので、腐食によって強度不足となった鋼矢板の強度回復が図れる。
また、水和硬化体7からは珪酸や鉄分などの栄養塩が海中に溶出する。このため水深の浅い領域では珪藻類などの植物プランクトンが増殖し、その結果、植物プランクトンを捕食する動物プランクトンの増殖→動物プランクトンを捕食する小魚などの小型魚介類の増大→小型魚介類を捕食する大型魚類の増大、という食物連鎖による生態系が出来上がる。また、海藻類が生育に利用できる光の届く範囲(水深5〜7m以浅)の水和硬化体7は好適な海藻養生基盤となって海藻類が養生・繁茂し、この海藻類が魚介類の餌場や産卵場所となり、水産資源のさらなる増殖をもたらす。また、補強目的のみで設置した光が届かない場所の水和硬化体は、栄養塩供給源となる。また、凸部11や凹部11aを形成した場合には、魚礁(魚介類の隠れ場所)として機能する。
<Action>
In the repaired steel sheet pile revetment as described above, the hydrated hardened body 7 has a compressive strength of 18 N / mm 2 or more, which is the design standard strength of a general deformed block at the age of 28 days, like concrete. Therefore, it is possible to recover the strength of the steel sheet pile that has become insufficient in strength due to corrosion.
In addition, nutrient salts such as silicic acid and iron are eluted from the hydrated cured body 7 into the sea. For this reason, phytoplankton such as diatoms proliferate in shallow regions, and as a result, growth of zooplankton that prey on phytoplankton → increase of small seafood such as small fish that prey on zooplankton → prey on small seafood An ecosystem based on the food chain of increasing the number of large fish to be produced is completed. In addition, the hydrated and cured body 7 in a light reachable range (5 to 7 m or less shallow water) that can be used for the growth of seaweeds is a suitable seaweed curing base, and the seaweeds are cured and prospered. It becomes a feeding ground and a spawning ground and brings about further growth of marine resources. Moreover, the hydrated cured body in a place where the light that is installed only for the purpose of reinforcement does not reach becomes a nutrient supply source. Moreover, when the convex part 11 and the recessed part 11a are formed, it functions as a fish reef (seafood hiding place).

また、棚部9に高炉水砕スラグ層13を形成した場合には、これがゴカイ等のベントスに好適に生息場所を提供する。すなわち、上述したように高炉水砕スラグは多孔質組織のガラス質であり、且つスラグ粒子が角張った形状を有しているため、高炉水砕スラグ層13はスラグ間隙が大きく、通水性に優れている。このためスラグ間隙の水が入れ替わり易く、この間隙での溶存酸素濃度が十分に確保される。
また、ガラス質のスラグ粒子から微量のCa分が長時間にわたってゆっくりと溶出することで間隙水中のpHが8.5程度に維持され、これにより硫酸還元菌による硫化水素の発生が長時間にわたり効果的に抑制される。
以上の点から、高炉水砕スラグ層13はゴカイ等のベントスにとって好適な生息場所となる。
したがって、水和硬化体7で生育・生息する海洋生物の排泄物、死骸、老廃物などが棚部9に沈設しても、高炉水砕スラグ層13に生息するベントスがこれを捕食・分解し、水底に有機物が堆積することが適切に抑えられる。また、高炉水砕スラグは多孔質であるため、有機物を分解する微生物が付着しやすく、このため高炉水砕スラグ層13は微生物による有機物の分解能にも優れている。
Moreover, when the blast furnace granulated slag layer 13 is formed in the shelf 9, this provides a suitable habitat for bentos such as sandworms. That is, as described above, the granulated blast furnace slag is vitreous with a porous structure, and the slag particles have an angular shape, so the blast furnace granulated slag layer 13 has a large slag gap and excellent water permeability. ing. For this reason, the water in the slag gap is easily replaced, and the dissolved oxygen concentration in this gap is sufficiently secured.
In addition, a small amount of Ca is slowly eluted from the glassy slag particles over a long period of time, so that the pH in the pore water is maintained at about 8.5, which effectively prevents the generation of hydrogen sulfide by sulfate-reducing bacteria over a long period of time. It is suppressed.
From the above points, the blast furnace granulated slag layer 13 is a suitable habitat for benthos such as sandworms.
Therefore, even if the excrement, carcasses, wastes, etc. of marine organisms that grow and inhabit in the hydrated cured body 7 are set on the shelf 9, bentos that inhabit the blast furnace granulated slag layer 13 prey and decompose it. It is possible to appropriately suppress the accumulation of organic substances on the bottom of the water. In addition, since the granulated blast furnace slag is porous, microorganisms that decompose organic substances are likely to adhere to the blast furnace granulated slag layer. Therefore, the granulated blast furnace slag layer 13 is excellent in the resolution of organic substances by microorganisms.

なお、本実施の形態の水和硬化体7及び高炉水砕スラグは100%がリサイクル資材であり、また、セメントを使用しないので、原料製造時のCOの発生を抑制し、天然骨材採取による環境破壊も抑制できるという効果も奏する。 In addition, 100% of the hydrated hardened body 7 and blast furnace granulated slag of this embodiment is recycled material, and since no cement is used, generation of CO 2 during raw material production is suppressed, and natural aggregates are collected. There is also an effect that the environmental destruction caused by can be suppressed.

<修復方法>
図3は本実施の形態における鋼製護岸構造物の修復方法の説明図であり、図3(a)は図1に示した修復後の護岸構造の一部を破砕して示し、図3(b)は図3(a)の矢視A−A断面図である。以下、上記のように構成される修復護岸の修復方法について図3に基づいて説明する。
鋼矢板3における修復を要する箇所、あるいは強度的な修復が必要なくても、海面から光が届く範囲に、定着材としてのスタットジベル15を設置する。なお、このとき、図3に示すように、鉄筋16を配筋してもよい。
スタットジベル15の設置完了後、水和硬化体7を打設する範囲に型枠を設置する。このとき、型枠に図2に示すような凸部11や凹部11bを形成するための凹凸を設けておくことが好ましい。
型枠の設置が終わると、骨材としての製鋼スラグ、結合材としての高炉スラグ微粉末、混和材としてのフライアッシュ・高炉水砕スラグ、水を練混ぜたものを、前記型枠に水中打設する。
型枠に打設した水和硬化体7が固化したら型枠を取り外す。
<Repair method>
FIG. 3 is an explanatory view of a method for repairing a steel revetment structure according to the present embodiment. FIG. 3 (a) shows a part of the revetment structure after repair shown in FIG. FIG. 3B is a cross-sectional view taken along the line AA in FIG. Hereinafter, the repair method of the repair revetment comprised as mentioned above is demonstrated based on FIG.
Even if the steel sheet pile 3 needs to be repaired or no strong repair is required, a stud gibber 15 as a fixing material is installed in a range where light can reach from the sea surface. At this time, reinforcing bars 16 may be arranged as shown in FIG.
After the installation of the stat gibel 15 is completed, the mold is installed in the range where the hydrated cured body 7 is to be placed. At this time, it is preferable to provide unevenness for forming the convex part 11 and the concave part 11b as shown in FIG.
After the installation of the formwork, steelmaking slag as aggregate, blast furnace slag fine powder as binder, fly ash / blast furnace granulated slag as admixture, and water kneaded into the above formwork Set up.
When the hydrated cured body 7 cast on the mold is solidified, the mold is removed.

なお、棚部9は、水和硬化体7の構築前、又は同時、又は構築後に設置する。棚部9の設置は、その使用する材料に合った公知の構築方法を採用すればよい。例えば、コンクリート、水和硬化体で形成する場合は、上記の水和硬化体7と同様の方法によればよいし、鋼材で形成する場合にはボルト接合等で設置すればよい。
棚部9の形成後には高炉水砕スラグを上述した必要な厚みまで敷き詰める。
Note that the shelf 9 is installed before or simultaneously with or after the hydrated cured body 7 is constructed. For the installation of the shelf 9, a known construction method suitable for the material to be used may be adopted. For example, when formed with concrete or a hydrated hardened body, the method may be the same as that of the above-mentioned hydrated hardened body 7, and when formed with a steel material, it may be installed by bolting or the like.
After the shelf 9 is formed, the ground granulated blast furnace slag is spread to the necessary thickness described above.

[実施の形態2]
本実施の形態は、実施の形態1における水和硬化体7の打設のための型枠を、鉄鋼スラグを主原料とするパネル状の炭酸固化体で形成したものである。
鉄鋼スラグを主原料とする炭酸固化体としては、例えば特許第3175694号で提案されている、鉄鋼スラグを主原料とする粉粒状原料を炭酸化反応で生成させたCaCO(場合によっては、さらにMgCO)を主たるバインダーとして固結させ、パネル状にしたものを用いることができる。また、鉄鋼スラグとしては、高炉で発生する高炉水砕スラグや高炉徐冷スラグ、予備処理、転炉、鋳造等の工程で発生する脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、鋳造スラグ等の製鋼スラグ、鉱石還元スラグ、電気炉スラグ等を用いることができる。
[Embodiment 2]
In the present embodiment, the form for placing the hydrated cured body 7 in the first embodiment is formed of a panel-like carbonate solidified body using steel slag as a main raw material.
Examples of the carbonate solidified body using steel slag as a main raw material include CaCO 3 (which is proposed in Patent No. 3175694), which is produced by carbonation reaction of a granular raw material mainly made of steel slag. A panel formed by solidifying MgCO 3 ) as a main binder can be used. Also, as steel slag, blast furnace granulated slag and blast furnace slow cooling slag generated in blast furnace, decarburization slag, dephosphorization slag, desulfurization slag, desiliconization slag, casting generated in the process of pretreatment, converter, casting, etc. Steelmaking slag such as slag, ore reduction slag, electric furnace slag, and the like can be used.

このような鉄鋼スラグを主原料とする炭酸固化体は、特に、スラグ中に含まれるCaO(又はCaOから生成したCa(OH))の大部分がCaCOに変化するため、CaOによる海水のpH上昇を防止でき、また、全体(表面及び内部)がポーラスな性状を有しているため表面に海藻類が付着し易く、しかも海藻類の生育促進に有効な成分(珪酸や鉄分など)が海水中に溶出しやすいことから、海藻着生基盤として特に有効に機能する。
したがって、本実施の形態のように、鉄鋼スラグを主原料とする炭酸固化体を型枠として用いる場合には、海側の表面に凹凸を設けなくても生態系回復機能を発揮することができる。
もっとも、パネル状に形成する際に設置状態で海側になる面には図2に示すような凹凸形状を設けておくことは好ましい。これによって、より生態系回復機能をより発揮できる。
In particular, the carbonic acid solidified body using such steel slag as the main raw material changes most of CaO (or Ca (OH) 2 generated from CaO) contained in the slag into CaCO 3 . pH can be prevented, and the entire surface (inside and inside) has a porous property, which makes it easy for seaweeds to adhere to the surface, and ingredients that are effective in promoting the growth of seaweeds (silicic acid, iron, etc.) Since it is easy to elute in seawater, it functions particularly effectively as a seaweed settlement base.
Therefore, as in the present embodiment, when a carbonate solid body using steel slag as a main raw material is used as a formwork, an ecosystem recovery function can be exhibited without providing irregularities on the seaside surface. .
However, it is preferable to provide a concavo-convex shape as shown in FIG. 2 on the surface facing the sea in the installed state when forming a panel. As a result, the ecosystem recovery function can be further exhibited.

なお、本実施の形態のように、水和硬化体7の打設のための型枠を、鉄鋼スラグを主原料とするパネル状の炭酸固化体で形成することにより、水和硬化体7の固化後に型枠を取り外す必要がなくなり、工事の工程を省略して工期を短縮できるという効果もある。   In addition, like this Embodiment, the formwork for placement of the hydrated cured body 7 is formed of a panel-like carbonate solidified body using steel slag as a main raw material. There is no need to remove the mold after solidification, and the construction process can be shortened by shortening the construction period.

[実施の形態3]
本実施の形態は、図4に示すように、水和硬化体7の表面に鉄鋼スラグを主原料とする塊状の炭酸固化体17を張りつけたものである。
なお、炭酸固化体17は、実施の形態1において打設した水和硬化体7が固まって型枠を外したあとに、例えば水中ボンドのような接着剤によって水和硬化体7に貼り付ければよい。
塊状の炭酸固化体17を貼り付けることにより、前述した炭酸固化体の海藻類が付着し易く、しかも海藻類の生育促進に有効な成分(珪酸や鉄分など)が海水中に溶出しやすいという特徴により、水和硬化体7の表面が海藻着生基盤としてさらに有効に機能し、生態系回復機能をより効果的に発揮できる。
[Embodiment 3]
In the present embodiment, as shown in FIG. 4, a massive carbonate solidified body 17 made of steel slag as a main raw material is attached to the surface of the hydrated cured body 7.
The carbonate solidified body 17 can be attached to the hydrated cured body 7 with an adhesive such as an underwater bond after the hydrated cured body 7 placed in the first embodiment is solidified and the mold is removed. Good.
By sticking the lump-shaped carbonate solidified body 17, the seaweed of the above-mentioned carbonate solidified body is easy to adhere, and components (silicic acid, iron, etc.) effective for promoting the growth of seaweed are easily eluted into seawater. Thus, the surface of the hydrated cured body 7 functions more effectively as a seaweed settlement base, and the ecosystem recovery function can be more effectively exhibited.

塊状の炭酸固化体に代わるものとして、少なくとも外表面に炭酸カルシウム被覆層を有する塊状のCa含有水和硬化体を用いてもよい。
Ca含有水和硬化体とは、基体となるCa含有水和硬化体の少なくとも外表面に炭酸カルシウム被覆層を形成したものである。
Ca含有水和硬化体の表面に炭酸カルシウム被覆層が形成されていることにより、基体からのCaの溶出とこれに伴う海水(特に基体表面の境界層の海水)のpH上昇が抑えられ、基体表面の海水層を遊走子や卵の着生や生育に好適な環境とすることができ、塊状の炭酸固化体を用いた場合と同等の効果を期待できる。
As an alternative to the bulk carbonate solidified body, a bulk Ca-containing hydrated cured body having a calcium carbonate coating layer on at least the outer surface may be used.
The Ca-containing hydrated cured product is obtained by forming a calcium carbonate coating layer on at least the outer surface of the Ca-containing hydrated cured product serving as a base.
Since the calcium carbonate coating layer is formed on the surface of the Ca-containing hydrated cured body, the dissolution of Ca from the substrate and the accompanying increase in pH of seawater (especially the seawater in the boundary layer on the substrate surface) can be suppressed. The seawater layer on the surface can be made into an environment suitable for the growth and growth of zoospores and eggs, and the same effect as in the case of using a massive carbonate solidified body can be expected.

以下、少なくとも外表面に炭酸カルシウム被覆層を有する塊状のCa含有水和硬化体の構成を詳細に説明する。
本実施の形態のCa含有水和硬化体とは、前述のように、基体となるCa含有水和硬化体の少なくとも外表面に炭酸カルシウム被覆層を形成したものである。ここにいう基体となるCa水和硬化体とは、Caを含有する結合材(セメントなど)、骨材(細骨材及び/又は粗骨材)、水、必要に応じて配合される混和材等を混練し、水和硬化させたもの、或は結合材程度から骨材程度までの広い粒径分布を有するCa含有材、水、必要に応じて配合される混和材等を混練し、水和硬化させたものである。最も一般的な基体となるCa水和硬化体はセメントコンクリートであるが、これに限定されるものではなく、例えば、FSコンクリート、エコセメントコンクリート、石炭灰水和硬化体(例えば、フライアッシュセメントコンクリート)や、鉄鋼製造プロセスで発生するスラグを主原料とする水和硬化体(例えば、溶銑予備処理スラグ、高炉スラグ微粉末、消石灰などを配合した水和硬化体)、など、任意のCa含有水和硬化体を対象とすることができる。
また、セメントコンクリートには、ポルトランドセメント、高炉セメントなど任意のセメントを用いたコンクリートが含まれる。
Hereinafter, the structure of the massive Ca-containing hydrated cured body having a calcium carbonate coating layer on at least the outer surface will be described in detail.
As described above, the Ca-containing hydrated cured product of the present embodiment is obtained by forming a calcium carbonate coating layer on at least the outer surface of the Ca-containing hydrated cured product serving as a base. The Ca hydrated cured body as the base here is a Ca-containing binder (such as cement), aggregate (fine aggregate and / or coarse aggregate), water, and an admixture blended as necessary. Or the like, or a hydrated and hardened Ca-containing material having a wide particle size distribution from the binder level to the aggregate level, water, an admixture blended as necessary, and the like. It is a Japanese-cured product. The most commonly used Ca hydrated hardened body is cement concrete, but is not limited thereto. For example, FS concrete, eco cement concrete, coal ash hydrated hardened body (for example, fly ash cement concrete). ) And hydrated hardened bodies mainly made of slag generated in the steel manufacturing process (for example, hydrated hardened bodies blended with hot metal pretreated slag, blast furnace slag fine powder, slaked lime, etc.) Japanese cured products can be targeted.
The cement concrete includes concrete using any cement such as Portland cement and blast furnace cement.

基体となるCa水和硬化体の外表面に炭酸カルシウムの被覆層を形成させる方法は任意であるが、通常は基体となるCa水和硬化体を炭酸ガスと接触させる炭酸化処理で形成させる。
基体となるCa水和硬化体の外表面の炭酸化処理を効率的に行うには、基体となるCa水和硬化体の表面に水(表面付着水)が存在することが事実上不可欠であり、このため基体となるCa水和硬化体の少なくとも外表面に水を付着させ又は少なくとも表層に水を含浸させることが必要である。すなわち、炭酸化処理における基体となるCa水和硬化体表層に含まれる未炭酸化CaとCOとの反応機構は、水和硬化体表面に存在する水(表面付着水)にCOが溶解するとともに、水和硬化体側からはCaイオンが溶出し、この水に溶解・溶出したCOとCaイオンとが反応(炭酸化反応)することにより、水和硬化体表面にCaCOが析出するものであると考えられる。
したがって、上記機構による炭酸化を生じさせるには、水和硬化体表面に水(表面付着水)が存在することが必要となる。
基体となるCa水和硬化体に水を付着させ又は水を含浸させる方法は任意であり、例えば、水和硬化体を水中に浸漬する方法、水和硬化体に散水する方法、などの方法を採ることができる。
A method of forming a coating layer of calcium carbonate on the outer surface of the Ca hydrated cured body serving as the substrate is arbitrary, but usually, the Ca hydrated cured body serving as the substrate is formed by carbonation treatment in contact with carbon dioxide gas.
In order to efficiently perform the carbonation treatment of the outer surface of the Ca hydrated cured body serving as the substrate, it is practically essential that water (surface adhering water) exists on the surface of the Ca hydrated cured body serving as the substrate. For this reason, it is necessary to attach water to at least the outer surface of the Ca hydrated cured body serving as the substrate, or to impregnate at least the surface with water. That is, the reaction mechanism between uncarbonated Ca and CO 2 contained in the surface layer of Ca hydrated cured body that becomes the base in carbonation treatment is that CO 2 is dissolved in water (surface adhering water) present on the surface of the hydrated cured body. At the same time, Ca ions are eluted from the hydrated cured body side, and when CO 2 dissolved and eluted in water reacts with the Ca ions (carbonation reaction), CaCO 3 is precipitated on the surface of the hydrated cured body. It is thought to be a thing.
Therefore, in order to cause carbonation by the above mechanism, it is necessary that water (surface-attached water) exists on the surface of the hydrated cured body.
The method of adhering water to or impregnating water with the Ca hydrated cured body serving as the substrate is arbitrary. For example, a method of immersing the hydrated cured body in water, a method of watering the hydrated cured body, or the like. Can be taken.

また、炭酸化処理の具体的方法は任意であるが、例えば、上記のように水を付着させ又は水を含浸させた基体となるCa水和硬化体を密閉容器(気密性を保つことができる容器)内に置き、この密閉容器内に炭酸ガス又は炭酸ガス含有ガス(以下、便宜上これらを総称して「炭酸ガス」という。)を供給することで炭酸化処理を行う。   The specific method of the carbonation treatment is arbitrary. For example, the Ca hydrated cured body serving as a substrate to which water is attached or impregnated as described above is sealed in a sealed container (airtightness can be maintained. The carbonation process is performed by supplying carbon dioxide gas or carbon dioxide-containing gas (hereinafter collectively referred to as “carbon dioxide gas” for convenience) into the sealed container.

なお、上記の実施の形態においては、既設の鋼矢板護岸の修復する場合について説明したが、本発明はこれに限られるものではなく、新規に鋼矢板護岸を構築する場合にも適用できることは言うまでもない。この場合は、重防食被覆や電気防食などの防食対策が不要あるいは低減することが可能であり、コスト面での効果も期待される。   In addition, in said embodiment, although the case where the existing steel sheet pile revetment was restored was demonstrated, it cannot be overemphasized that this invention is not restricted to this, It can apply also when constructing a steel sheet pile revetment newly. Yes. In this case, anti-corrosion measures such as heavy anti-corrosion coating and electro-corrosion protection can be eliminated or reduced, and a cost effect can be expected.

本発明の一実施の形態に係る鋼矢板護岸の説明図である。It is explanatory drawing of the steel sheet pile revetment which concerns on one embodiment of this invention. 図1の一部を詳細に説明する詳細説明図である。FIG. 2 is a detailed explanatory diagram illustrating a part of FIG. 1 in detail. 本発明の一実施の形態に係る鋼矢板護岸の修復方法の説明図である。It is explanatory drawing of the repair method of the steel sheet pile revetment which concerns on one embodiment of this invention. 本発明の他の実施の形態の説明図である。It is explanatory drawing of other embodiment of this invention.

符号の説明Explanation of symbols

1 海底
3 鋼矢板
7 水和硬化体7
9 棚部
11 凸部
1 Seabed 3 Steel sheet pile 7 Hydration hardened body 7
9 Shelf 11 Convex

Claims (2)

護岸を構成する鋼製護岸構造物を補修する方法であって、鋼製護岸構造物の水との接触面に定着部材を設置する工程と、型枠を設置して該型枠に骨材としての製鋼スラグ、結合材、混和材、水を練混ぜたものを水中打設する工程とを備え、前記型枠は鉄鋼スラグを原料とする粉粒状原料を炭酸化反応で生成させたCaCO をバインダーとして固結させたパネル状の炭酸固化体で形成していることを特徴とする鋼製護岸構造物の修復方法。 A method of repairing a steel revetment structure that constitutes a revetment, the step of installing a fixing member on the surface of the steel revetment structure in contact with water, and the installation of a formwork as an aggregate on the formwork steelmaking slag, binder, admixtures, water and a step of water hitting set those kneading, and the CaCO 3 the formwork that generated by the carbonation reaction of particulate material to the iron and steel slag as raw material A method for repairing a steel revetment structure, characterized in that it is formed of a panel-like carbonated solidified body as a binder . 前記型枠は、設置状態で海側になる面側に凹凸形状を設けていることを特徴とする請求項1記載の鋼製護岸構造物の修復方法。
The method for repairing a steel revetment structure according to claim 1, wherein the formwork is provided with a concavo-convex shape on a surface side that becomes the sea side in an installed state.
JP2008211579A 2008-08-20 2008-08-20 Repair method for steel revetment structures Expired - Lifetime JP5168027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211579A JP5168027B2 (en) 2008-08-20 2008-08-20 Repair method for steel revetment structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211579A JP5168027B2 (en) 2008-08-20 2008-08-20 Repair method for steel revetment structures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004066235A Division JP4614676B2 (en) 2004-03-09 2004-03-09 Steel revetment structure

Publications (3)

Publication Number Publication Date
JP2008303708A JP2008303708A (en) 2008-12-18
JP2008303708A5 JP2008303708A5 (en) 2009-02-26
JP5168027B2 true JP5168027B2 (en) 2013-03-21

Family

ID=40232664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211579A Expired - Lifetime JP5168027B2 (en) 2008-08-20 2008-08-20 Repair method for steel revetment structures

Country Status (1)

Country Link
JP (1) JP5168027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876301B2 (en) * 2012-01-25 2016-03-02 株式会社日本総合研究所 Water structure
JP6965493B2 (en) * 2019-10-24 2021-11-10 五洋建設株式会社 Wave-proof structure of pile support structure and its construction method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129325A (en) * 1983-12-16 1985-07-10 Yoshikawa Kaiji Kogyo Kk Method of puring concrete in underwater form
JPS61137915A (en) * 1984-12-10 1986-06-25 Nippon Steel Corp Anticorrosive reinforcement for steel sheet pile wall
JPH0754371A (en) * 1993-08-12 1995-02-28 Yoshikawa Kaiji Kogyo Kk Method of fitting and temporary-fitting concrete placing form to steel structure revetment wall
JP3175694B2 (en) * 1997-05-08 2001-06-11 日本鋼管株式会社 Submerged stone and method of manufacturing the same
JP2001207429A (en) * 2000-01-25 2001-08-03 Shimizu Corp Symbiosis revetment and recycling construction method to symbiosis revetment
JP2001322862A (en) * 2000-05-09 2001-11-20 Kawasaki Steel Corp Block for water supply structure

Also Published As

Publication number Publication date
JP2008303708A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
KR100430331B1 (en) Method of reducing discharged carbon dioxide
JP4736449B2 (en) Construction method of shallow ground
JP2010275155A (en) Concrete composition, concrete structure and block for fish reef or spawning reef
JP5070667B2 (en) Underwater environment improvement method
JP5168027B2 (en) Repair method for steel revetment structures
JP4924577B2 (en) Seawall structure
JP4736444B2 (en) Construction method of shallow ground
KR101772692B1 (en) Method for preparing of artificial ground reef
JP6776080B2 (en) Bottom sediment improvement material and bottom sediment improvement method
JP2004035366A (en) Concrete formed body and block
JP4614676B2 (en) Steel revetment structure
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP5569682B2 (en) Fish reef / alga reef block using coal ash as raw material and method for forming fish reef / alga reef
JP2004313818A (en) Bottom sediment covering material
JP4225220B2 (en) Box structure, revetment structure installed on the revetment
JP2000143304A (en) Artificial stone made from slag as principal raw material and production of the same stone
JP2002176877A (en) Block to be installed under water
JP2002114556A (en) Functional cement hardened body
JP4433831B2 (en) Ecosystem-constructed underwater structures
JP2006214084A (en) Method for developing shallows and the like
KR100482378B1 (en) Manufacturing methods of multi-functional environment block for kelp forest regeneration using recycled aggregate and by-product
JP2004000104A (en) Method for improving underwater or environmental water shore
JP4013368B2 (en) Stone material for submergence and method for producing the same
JP5346157B2 (en) Dissolved silicate replenishment block
JP4012962B2 (en) Fertilizer for improving marine resource growth environment and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5168027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term