JP3755018B2 - Sand-capping material and water-capping method - Google Patents

Sand-capping material and water-capping method Download PDF

Info

Publication number
JP3755018B2
JP3755018B2 JP2003271243A JP2003271243A JP3755018B2 JP 3755018 B2 JP3755018 B2 JP 3755018B2 JP 2003271243 A JP2003271243 A JP 2003271243A JP 2003271243 A JP2003271243 A JP 2003271243A JP 3755018 B2 JP3755018 B2 JP 3755018B2
Authority
JP
Japan
Prior art keywords
sand
fluidized bed
water
bed ash
bottom mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003271243A
Other languages
Japanese (ja)
Other versions
JP2005030074A (en
Inventor
澄川  健
和俊 樋野
哲志 中間
靖英 古川
聰 斎藤
慎一郎 安藤
良三 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Chugoku Electric Power Co Inc
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
Takenaka Corp
Chugoku Electric Power Co Inc
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Chugoku Electric Power Co Inc, Takenaka Civil Engineering and Construction Co Ltd filed Critical Takenaka Corp
Priority to JP2003271243A priority Critical patent/JP3755018B2/en
Publication of JP2005030074A publication Critical patent/JP2005030074A/en
Application granted granted Critical
Publication of JP3755018B2 publication Critical patent/JP3755018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Underground Or Underwater Handling Of Building Materials (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、湖底や海底に蓄積した汚泥(底泥)の表面を覆い、底泥からのリンや窒素などの栄養塩の溶出を抑制し、富栄養化した湖沼、内海等の閉鎖性水域の底質を浄化する覆砂材、及び覆砂方法に関する。   The present invention covers the surface of sludge (bottom mud) accumulated on the bottom of the lake and the sea, suppresses the elution of nutrient salts such as phosphorus and nitrogen from the bottom mud, and provides eutrophication to closed waters such as lakes and inland seas. The present invention relates to a sand-capping material for purifying bottom sediment and a sand-capping method.

湖沼、内湾等の閉鎖性水域では、外部から流入したリンや窒素といった栄養塩類により富栄養化したり、あるいは流入した汚染物質が閉鎖性水域の湖底や海底に蓄積し、これらから有害物質が溶出したりすることにより、赤潮や青潮を引き起こし、水産資源や水辺の環境に大きな被害が生じていた。   In closed water areas such as lakes and inner bays, eutrophication is caused by nutrient salts such as phosphorus and nitrogen flowing in from the outside, or contaminated pollutants accumulate on the lake and sea bottom of closed water areas, and harmful substances are eluted from these. As a result, red tides and blue tides were caused, causing serious damage to marine resources and the waterfront environment.

そこで、下水道網の整備や河川水の処理技術の改善等により外部からの流入負荷を低減したり、閉鎖性水域における底層水域の貧酸素層へ曝気を行ったり、表層水と底層水とを強制的に混合して水が停滞することを防止する方策に加え、湖底や海底に蓄積した汚泥(底泥)の表面を砂等で覆い、底泥からのリンや窒素などの栄養塩の溶出を抑制する覆砂が行われてきた。   Therefore, reducing the inflow load from the outside by improving the sewer network and river water treatment technology, aeration to the anoxic layer of the bottom water area in the closed water area, forcing the surface water and bottom water In addition to measures to prevent water stagnation by mixing, the surface of sludge (bottom mud) accumulated on the bottom of the lake and the sea is covered with sand, etc., and elution of nutrients such as phosphorus and nitrogen from the bottom mud Suppressing sand covering has been done.

また砂に代え、火力発電所から発生する石炭灰を用いた底質の浄化方法として、次のような発明が知られている。   Further, the following invention is known as a method for purifying sediment using coal ash generated from a thermal power plant instead of sand.

(1)石炭灰に水熱化学処理を施して得られる人工ゼオライトを海域の底質泥土層の上部面に敷設し、人工ゼオライトに栄養塩を吸着させて水中への栄養塩の溶出を防止する発明。(例えば特許文献1参照。)。   (1) Artificial zeolite obtained by hydrothermal chemical treatment of coal ash is laid on the upper surface of the sedimentary mud layer in the sea area and adsorbs nutrient salts to the artificial zeolite to prevent the elution of nutrient salts into water invention. (For example, refer to Patent Document 1).

(2)富栄養化成分を含む底質の表層を砂で覆い、さらにゼオライト、水砕スラグ及びクリストバライトの中から選ばれた少なくとも1種の吸着性無機物質で砂を覆い、底質より富栄養化成分が水中へ放出されるのを抑制するとともに、ゼオライト等によりそれら富栄養化成分を吸着させるようにした発明。(例えば特許文献2参照。)。   (2) Cover the bottom surface of the sediment containing the eutrophication component with sand, and further cover the sand with at least one adsorbable inorganic substance selected from zeolite, granulated slag, and cristobalite. An invention that suppresses the release of nutrient components into water and adsorbs these eutrophication components with zeolite or the like. (For example, refer to Patent Document 2).

一方、脱硫効果のある石灰石を流動媒体とする石炭焚き流動床式火力発電は、燃焼と同時に硫黄酸化物が除去でき、また窒素酸化物の発生が少なく、環境負荷が小さい発電方法である。かかる流動床式火力発電によって生ずる流動床灰に水あるいは海水を加えて混練し、これをロールプレス機等により粒状に加圧成形して人工骨材を製造する発明が知られている。(例えば特許文献3参照。)。   On the other hand, coal-fired fluidized bed thermal power generation using limestone having a desulfurization effect as a fluid medium is a power generation method that can remove sulfur oxides simultaneously with combustion, generates less nitrogen oxides, and has a low environmental load. There is known an invention in which artificial aggregate is manufactured by adding water or seawater to kneaded fluidized bed ash generated by such fluidized bed type thermal power generation and kneading it into a granule with a roll press or the like. (For example, refer to Patent Document 3).

特開2001−29951号公報。Japanese Patent Laid-Open No. 2001-29951.

特許第2716271号公報。Japanese Patent No. 2716271.

特開2000−169204号公報。JP 2000-169204 A.

従来覆砂には海砂や山砂などの天然砂を用いるが、近年良質な覆砂用の砂が枯渇し、入手が困難になってきている。また敷設した覆砂が海流等によって流失され層の厚みが薄くなったり、砂の栄養塩類の溶出抑止機能が劣化して、底泥からリンや窒素等栄養塩類が再溶出するなどの問題が顕在化した。   Conventionally, natural sand such as sea sand and mountain sand has been used as the covering sand, but in recent years, high-quality covering sand has been depleted and it has become difficult to obtain. In addition, problems such as the erosion of sand covered by the ocean current, etc., resulting in thinning of the layer thickness, deterioration of the function of inhibiting the dissolution of nutrients in the sand, and the re-elution of nutrients such as phosphorus and nitrogen from the bottom mud are apparent. Turned into.

また天然砂を用いた覆砂材は、窒素やCODについては施工5〜6年後においても覆砂直後の80〜90%の削減効果を維持するが、リンについては覆砂直後から溶出が見られ、除去機能が充分でないとの報告がなされている。   Moreover, the sand-capping material using natural sand maintains an 80-90% reduction effect immediately after sand-covering for nitrogen and COD even after 5 to 6 years of construction, but phosphorus is eluted immediately after sand-covering. It has been reported that the removal function is not sufficient.

また、特開2001−29951号公報に記載の発明は、人工ゼオライトを得るために手間とコストがかかり、また石炭灰自体が自硬性を有していないため、敷設にあたり通水性を有する袋内に収納したり、土とともに積層したり、バインダーを混入して板状等に加工しなければならなかった。   In addition, the invention described in Japanese Patent Application Laid-Open No. 2001-29951 requires labor and cost to obtain an artificial zeolite, and the coal ash itself does not have self-hardness, so that it is placed in a bag having water permeability when laying. It had to be stored, laminated with soil, mixed with a binder, and processed into a plate shape.

特許第2716271号公報に記載の発明は、ゼオライト、クリストバライトを大量に使用するのでコストがかかるという問題があった。   The invention described in Japanese Patent No. 2716271 has a problem of high cost because it uses a large amount of zeolite and cristobalite.

本発明は、底泥からのリンの溶出を効果的に抑制でき、かつ低コストで耐久性が高い覆砂材、及びその覆砂方法を提供することを目的とする。   An object of this invention is to provide the sand-capping material which can suppress the elution of phosphorus from bottom mud effectively, and is low-cost and high in durability, and its sand-capping method.

そこで本発明者らは、石灰石を流動媒体とする石炭焚き流動床炉の燃焼灰(以下、これを流動床灰という。)がカルシウム分を多く含み、適量の水を加えて加圧することで粒状に形成できる自硬性を有し、またかかる石炭焚き流動床式火力発電所は環境負荷が小さく今後増加がみこまれ大量の流動床灰が発生するであろうことに着目し、流動床灰を粒状に形成し、かかる流動床灰粒状物を天然砂に代えて覆砂材として用いることとした。   Accordingly, the inventors of the present invention have combusted ash (hereinafter referred to as fluidized bed ash) in a coal-fired fluidized bed furnace using limestone as a fluid medium, which contains a large amount of calcium, and is pressurized by adding an appropriate amount of water. Focusing on the fact that this coal-fired fluidized bed thermal power plant will have a small environmental impact and will increase in the future and a large amount of fluidized bed ash will be generated. The fluidized bed ash granule was used as a sand covering material instead of natural sand.

高強度の流動床灰粒状物を製造する方法としては、例えば特願2002−249515号公報記載の「流動床灰を原料とする人工骨材の製造方法」があり、流動床灰を水や海水と混合し、これを混練した後ロールプレス機にて加圧し、粒状に形成する。   As a method for producing a high-strength fluidized bed ash granule, there is, for example, “a method for producing an artificial aggregate using fluidized bed ash as a raw material” described in Japanese Patent Application No. 2002-249515. And kneaded, and then pressed by a roll press to form a granule.

更に流動床灰粒状物に、例えば、室温20℃以上、湿度95%以上の恒温養生室で所定期間養生するなど、適切な養生を行い、強度を高くし、吸水膨張や海水中の物質との反応による破壊や泥化を防止することができる。尚、流動床灰粒状物の製造方法は上記方法に限るものではない。   Furthermore, the fluidized bed ash granule is appropriately cured by, for example, curing in a constant temperature curing room having a room temperature of 20 ° C. or higher and a humidity of 95% or higher for a predetermined period of time to increase the strength, the water absorption expansion and the substance in the seawater. It can prevent destruction and mudification by reaction. In addition, the manufacturing method of a fluidized bed ash granular material is not restricted to the said method.

かかる覆砂材、及び水底の覆砂方法によれば、次のような効果が得られる。   According to the sand-capping material and the method for sand-covering the bottom of the water, the following effects can be obtained.

(1)流動床灰粒状物に含まれるカルシウムがリンと反応して水酸化アパタイトを生成するため、底泥からのリンを固定化し水中への溶出を抑止できる。   (1) Since calcium contained in fluidized bed ash particulates reacts with phosphorus to produce hydroxide apatite, phosphorus from the bottom mud can be fixed to prevent elution into water.

(2)水酸化アパタイトの生成、あるいは水中の二酸化炭素と流動床灰粒状物に含まれるカルシウムとの反応でCaCOが生成されるため、流動床灰粒状物同士が連結され、水流による覆砂材の移動、流失を防止できる。 (2) Since CaCO 3 is generated by the formation of hydroxide apatite or the reaction between carbon dioxide in water and calcium contained in the fluidized bed ash particulates, fluidized bed ash particulates are connected to each other, and the sand is covered by water flow. It can prevent the movement and loss of materials.

(3)流動床灰粒状物は、海水中での炭酸化作用により表面に生成されたCaCOに覆われて中性となるため、海藻の着床基盤となる。 (3) Since the fluidized bed ash particulate matter becomes neutral by being covered with CaCO 3 generated on the surface by the carbonation action in seawater, it becomes a bedrock base for seaweed.

(4)流動床灰粒状物の粒径を3mm以上、30mm以下としたので、良好な取扱い性や充分な遮蔽効果が得られ、また従来の覆砂材と同等の酸化還元電位の高い状態を覆砂層内に形成でき、リン、窒素といった栄養塩の溶出防止や、硫化水素、メタンなどによる水質汚濁を防止できる。   (4) Since the particle size of the fluidized bed ash granule is 3 mm or more and 30 mm or less, good handleability and sufficient shielding effect can be obtained, and a state with a high oxidation-reduction potential equivalent to that of the conventional sand-capping material is obtained. It can be formed in the sand-capping layer, preventing the elution of nutrient salts such as phosphorus and nitrogen, and water pollution caused by hydrogen sulfide and methane.

(5)流動床灰粒状物を破砕した後、流動床灰粒状物の粒径を2mm以上、20mm以下に粒度調整したので、従来用いていた天然砂と同等の富酸素状態を覆砂層内に形成でき、かつ良好な取扱い性や充分な底泥の閉塞性が得られる。   (5) Since the particle size of the fluidized bed ash granule was adjusted to 2 mm or more and 20 mm or less after crushing the fluidized bed ash granule, an oxygen-rich state equivalent to the conventional natural sand was used in the covered sand layer. It can be formed, and good handleability and sufficient bottom mud blockage can be obtained.

(6)流動床式火力発電所から排出される流動床灰を有効な資源として活用することができ、廃棄物を減少させることができる。   (6) Fluidized bed ash discharged from a fluidized bed thermal power plant can be used as an effective resource, and waste can be reduced.

本発明にかかる覆砂材、及び水底の覆砂方法によれば、次のような効果が得られる。   According to the sand-capping material and the method for sand-covering a water bottom according to the present invention, the following effects can be obtained.

請求項1に記載の発明によれば、石灰石を流動媒体とする石炭焚き流動床炉の燃焼灰に水あるいは海水を加えて混練し、混練した燃焼灰に圧力を加え粒状に形成した粒状体を覆砂材としたので、通常の覆砂として底泥の覆うことができ、しかも多く含まれるカルシウムがリンと反応して水酸化アパタイトを生成することにより、底泥からのリンの溶出を効果的に抑制することができる。CaCOが生成されて流動床灰粒状物どうしが連結するため、従来の覆砂で問題となる海流等による覆砂材自体の移動、流出を防止できる。表面にCaCOが生成されると中性化するので、海藻が生育する海底を形成できる。 According to the first aspect of the present invention, the granular material formed into granules by adding water or seawater to the combustion ash of the coal-fired fluidized bed furnace using limestone as a fluid medium and kneading, and applying pressure to the kneaded combustion ash. Since it is made of sand-capping material, it can cover the bottom mud as normal sand-capping material, and the calcium contained in a large amount reacts with phosphorus to produce hydroxide apatite, so that the phosphorus can be effectively eluted from the bottom mud. Can be suppressed. Since CaCO 3 is generated and the fluidized bed ash particulates are connected to each other, it is possible to prevent movement and outflow of the sand-capping material itself due to a sea current or the like, which is a problem with conventional sand-capping. When CaCO 3 is generated on the surface, it is neutralized, so that a seabed on which seaweed grows can be formed.

請求項2に記載の発明によれば、請求項1に記載の覆砂材の粒径を3〜30mmとしたので、かかる粒径とすることにより、流動床灰粒状物の形成が容易で、効果的な覆砂が実現できる。尚、粒径が3mm以下では製造しにくく、30mm以上では流動床灰粒状物の取り扱い性や覆砂した際の閉塞性が充分に得られない。   According to invention of Claim 2, since the particle size of the sand covering material of Claim 1 was 3-30 mm, formation of a fluid bed ash granular material is easy by setting it as this particle size, Effective sand covering can be realized. In addition, when the particle size is 3 mm or less, it is difficult to produce, and when it is 30 mm or more, the handleability of the fluidized bed ash particulate matter and the blockage when sanding is not sufficiently obtained.

請求項3に記載の発明によれば、請求項1に記載の覆砂材を破砕し、流動床灰粒状物の粒径を2〜20mmとしたの、従来用いていた天然砂と同等の富酸素状態を覆砂層内に形成でき、リン、窒素といった栄養塩の溶出を防止でき、また硫化水素やメタンなどによる水質汚濁を防止でき、かつ良好な取り扱い性や充分な閉塞性が得られる。   According to the invention described in claim 3, the sand-carrying material described in claim 1 is crushed, and the particle size of the fluidized bed ash granule is set to 2 to 20 mm. An oxygen state can be formed in the sand cover layer, and the elution of nutrient salts such as phosphorus and nitrogen can be prevented, water pollution by hydrogen sulfide, methane, etc. can be prevented, and good handleability and sufficient blockage can be obtained.

請求項4に記載の発明によれば、請求項1〜3のいずれか1項に記載の覆砂材を底泥上層に堆積させることとしたので、カルシウムを多く含む覆砂材により覆砂するので、リンの底泥からの溶出を抑制し、しかも流動床灰粒状物どうしが結合して流失されにくく、長期間有効な覆砂方法を提供できる。またかかる方法によれば、覆砂層の表面が中性化されるため、海藻類が着床する海底にできる。   According to the invention described in claim 4, since the sand covering material according to any one of claims 1 to 3 is deposited on the bottom mud upper layer, sand is covered with a sand covering material containing a large amount of calcium. Therefore, the dissolution of phosphorus from the bottom mud is suppressed, and the fluidized bed ash particulates are not easily washed away and can provide an effective sand covering method for a long period of time. Moreover, according to this method, since the surface of the sand-capping layer is neutralized, it is possible to form a seabed on which seaweeds land.

本発明にかかる覆砂材、及び覆砂方法の一実施形態を、図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS An embodiment of a sand covering material and sand covering method according to the present invention will be described with reference to the drawings.

まず、覆砂材の製造方法について説明する。石灰石を流動媒体とする石炭焚き流動床炉の燃焼灰(流動床灰)に、これを粒度調整することなく水、あるいは海水、若しくは水と海水を混合したものを適量加えて練り混ぜる。加える水又は海水の粉体重量比(粉体としては、流動床灰にセメントを混入する場合にはセメントを含む。)は、流動床灰100重量部に対して、12〜20%程度である。重量比がこれより少なくても、また多くても成形性に支障が生じる。   First, the manufacturing method of a sand covering material is demonstrated. A suitable amount of water, seawater, or a mixture of water and seawater is added to and mixed with the combustion ash (fluidized bed ash) of a coal-fired fluidized bed furnace using limestone as a fluid medium without adjusting the particle size. The powder weight ratio of water or seawater to be added (as a powder, when cement is mixed with fluidized bed ash, the cement is included) is about 12 to 20% with respect to 100 parts by weight of fluidized bed ash. . If the weight ratio is less than this or more than this, the moldability is hindered.

流動床灰と水等は、モルタルミキサー等の混合装置を用いて均一に練り混ぜを行う。練り混ぜが終了したら、流動床灰をロールプレス機にて加圧し粒状に形成する。ロールプレス機は、加圧力が線荷重で50〜70kN/cm程度であり、ロール部にセグメントと称する所定の型枠を設置して行う。流動床灰は、直径が3〜30mmの粒状体に形成する。粒径が3mm以下では製造しにくく、30mm以上では流動床灰粒状物の取扱いが不便になり、また覆砂層内に間隙が多くなり底泥の流出を充分に抑止できなくなる問題がある。尚ロールプレス機は、型枠を取り替えることにより成形体の形状を任意に変更でき、流動床灰粒状物は球形に限るものではない。   The fluidized bed ash and water are kneaded uniformly using a mixing device such as a mortar mixer. When the kneading is completed, the fluidized bed ash is pressed with a roll press to form a granular shape. The roll press machine has a pressing force of about 50 to 70 kN / cm as a linear load, and is performed by installing a predetermined form called a segment in the roll part. The fluidized bed ash is formed into granules having a diameter of 3 to 30 mm. If the particle size is 3 mm or less, it is difficult to produce, and if it is 30 mm or more, the handling of fluidized bed ash particulate matter becomes inconvenient, and there are problems that the gap in the sand-capping layer increases and the outflow of bottom mud cannot be sufficiently suppressed. The roll press machine can arbitrarily change the shape of the formed body by replacing the formwork, and the fluidized bed ash granule is not limited to a spherical shape.

流動床灰粒状物の強度が充分でない場合には、所定値まで強度を上昇させるため高温養生室(例えば30℃〜60℃、湿度95%以上)で4日程度養生を行う。尚、養生は必要に応じて適宜行い、養生期間も4日に限るものではない。   When the strength of the fluidized bed ash granule is not sufficient, curing is performed for about 4 days in a high temperature curing room (for example, 30 ° C. to 60 ° C., humidity of 95% or more) in order to increase the strength to a predetermined value. The curing is performed as necessary, and the curing period is not limited to 4 days.

形成された流動床灰粒状物は、湖、あるいは内海などの底泥上に所定の厚みに敷設する。流動床灰粒状物の敷設は、水面から直接投入するより水中に投入したガイド管等を介して水底に敷設する方が、流動床灰粒状物が落下途中で水中に拡散したり、着底時の底泥の舞い上がりを防ぐ意味から好ましい。覆砂層の厚みは、30〜100cm程度とする。尚、層の厚みはこれに限るものではなく、底泥の深さ、汚れの程度、流水量等に応じて適宜調整する。   The formed fluidized bed ash granule is laid at a predetermined thickness on the bottom mud such as a lake or an inland sea. When laying fluidized bed ash particulates, it is more likely that the fluidized bed ash particulates will spread into the water during the fall or be settled down when it is laid on the bottom of the water via a guide pipe that is poured into the water rather than directly from the water surface. It is preferable in terms of preventing the bottom mud from rising. The thickness of the sand covering layer is about 30 to 100 cm. Note that the thickness of the layer is not limited to this, and is appropriately adjusted according to the depth of the bottom mud, the degree of dirt, the amount of running water, and the like.

また、流動床灰粒状物を破砕機等により破砕し、ふるいにかけ粒径を2〜20mmに調整してもよい。   In addition, the fluidized bed ash granule may be crushed by a crusher or the like and sieved to adjust the particle size to 2 to 20 mm.

流動床灰粒状物を覆砂材として水底に敷設した状態を図1に示す。図1に示すように、底泥4の表面上に覆砂材としての流動床灰粒状物1が所定の厚みで敷設されている。すると底泥4の上層の一部と流動床灰粒状物1は、下層の底泥4に比べて酸素を多く含んだ好気的な状態となり、酸化層5が底泥4の上層部に形成される。かかる流動床灰粒状物1により、次のような作用効果が得られる。   FIG. 1 shows a state where fluidized bed ash particulates are laid on the bottom of the water as sand-capping material. As shown in FIG. 1, a fluidized bed ash granule 1 as a sand covering material is laid with a predetermined thickness on the surface of the bottom mud 4. Then, a part of the upper layer of the bottom mud 4 and the fluidized bed ash granule 1 are in an aerobic state containing more oxygen than the bottom mud 4 of the lower layer, and an oxide layer 5 is formed in the upper layer of the bottom mud 4. Is done. The fluidized bed ash granule 1 provides the following operational effects.

敷設された流動床灰粒状物が底泥の上面を覆い、従来の砂を用いた覆砂と同様に物理的に底泥から栄養塩類が溶出するのを防止する。   The fluidized bed ash granule laid covers the upper surface of the bottom mud and prevents physical nutrients from eluting from the bottom mud in the same manner as conventional sand-covered sand.

流動床灰粒状物に含まれるカルシウムが底泥中のリンと反応し、水酸化アパタイトを生成するので、底泥のリンを不溶化させて水中へ溶解するのを防止する。カルシウムとリンとの反応式を次に示す。   Calcium contained in the fluidized bed ash granule reacts with phosphorus in the bottom mud to produce hydroxide apatite, so that phosphorus in the bottom mud is insolubilized and prevented from dissolving in water. The reaction formula between calcium and phosphorus is shown below.

3HPO 2−+5Ca2++4OH=Ca(OH)(PO+3H
上記反応式で示した水酸化アパタイトの生成、あるいは水中の二酸化炭素と流動床粒状物に含まれるカルシウムとの反応でCaCOが生成されることにより、流動床灰粒状物同士が化学的に連結して海流等による移動、流失が防止できる。
3HPO 4 2− + 5Ca 2+ + 4OH = Ca 5 (OH) (PO 4 ) 3 + 3H 2 O
Fluidized bed ash granules are chemically linked by the formation of hydroxide apatite shown in the above reaction formula or the reaction of carbon dioxide in water with calcium contained in the fluidized bed granules to generate CaCO 3. Therefore, movement and loss due to ocean currents can be prevented.

流動床灰粒状物は、海水中での炭酸化作用により表面にCaCOが生成され(CaO+CO→CaCO)、これにより表面が中性となり海藻が着床する海底にすることができる。 The fluidized bed ash granule can generate CaCO 3 on the surface by the carbonation action in seawater (CaO + CO 2 → CaCO 3 ), and thereby the surface becomes neutral and the seabed on which seaweed can be deposited can be obtained.

覆砂層内に酸化還元電位の高い層を形成してリン、窒素といった栄養塩の溶出を防止でき、また硫化水素やメタンなどによる水質汚濁を防止できる。   A layer with a high oxidation-reduction potential can be formed in the sand-capping layer to prevent elution of nutrient salts such as phosphorus and nitrogen, and water pollution due to hydrogen sulfide, methane, etc. can be prevented.

形成された流動床灰粒状物を破砕し、粒径を2〜20mmとするなど、粒度を適宜調整して覆砂することにより、従来用いられてきた天然砂の場合と同等の酸素を多く含んだ好気的な層を形成することや底泥上面を遮蔽するなど天然砂を用いた場合に近似した覆砂の効果が得られる。   By crushing the formed fluidized bed ash granule and adjusting the particle size to cover the sand, for example, by adjusting the particle size to 2 to 20 mm, it contains much oxygen equivalent to that of natural sand that has been used conventionally. The effect of sand covering similar to the case of using natural sand such as forming an aerobic layer or shielding the upper surface of the bottom mud can be obtained.

発電所から発生した流動床灰を廃棄せず、有効な資源として活用することができる。流動床灰粒状物を覆砂材として用いたときのpH値は、水質汚濁に係る環境基準値である5.0以上、かつ9.0以下(海域において)を満たし、また標準砂を覆砂に用いた場合よりも濁度は小さく、流動床灰粒状物を敷設したことによる水質の汚濁はほとんどないものとみなせる。   Fluidized bed ash generated from the power plant can be used as an effective resource without being discarded. The pH value when fluidized bed ash particulates are used as sand-capping material satisfies the environmental standard value for water pollution of 5.0 or more and 9.0 or less (in the sea area), and covers standard sand. The turbidity is smaller than that used in the above, and it can be considered that there is almost no water pollution due to the laying of fluidized bed ash granules.

次に、流動床灰粒状物を用いた覆砂の実験例について説明する。   Next, an experimental example of sand covering using fluidized bed ash particulates will be described.

実験には、石灰石を流動媒体とする石炭焚き流動床炉の燃焼灰(流動床灰)に15重量%の水を加えて混練し、混練後ロールプレス機により載荷圧50N/mmで加圧成形し、得られた流動床灰粒状物(以下、粒状物とする。)を9.6mmの篩でふるい、9.6mm未満の粒径に粒度調整した覆砂材を用いた。比較例として豊浦標準砂を用いた。また底泥には東京湾で採取した海底泥を用い、海水には市販されている人工海水を用いた。 In the experiment, 15% by weight of water was added to and mixed with combustion ash (fluidized bed ash) of a coal-fired fluidized bed furnace using limestone as a fluid medium, and after kneading, it was pressurized at a loading pressure of 50 N / mm 2 with a roll press. The fluidized bed ash granule obtained by molding (hereinafter referred to as granule) was sieved with a 9.6 mm sieve, and a sand-clad material whose particle size was adjusted to a particle size of less than 9.6 mm was used. As a comparative example, Toyoura standard sand was used. For the bottom mud, seabed mud collected in Tokyo Bay was used, and commercially available artificial seawater was used for the seawater.

実験条件は、次のaからeに示すとおりである。
a.覆砂を行わず、底泥のみ10cmの深さとした。
b.豊浦標準砂を深さ10cmの底泥上に3cm覆砂した。
c.豊浦標準砂を深さ10cmの底泥上に6cm覆砂した。
d.粒状物を深さ10cmの底泥上に3cm覆砂した。
e.粒状物を深さ10cmの底泥上に6cm覆砂した。
Experimental conditions are as shown in the following a to e.
a. No sand covering was performed, and only the bottom mud was 10 cm deep.
b. Toyoura standard sand was covered with 3 cm of sand at a depth of 10 cm.
c. Toyoura standard sand was covered with 6 cm of sand at a depth of 10 cm.
d. The granular material was covered with 3 cm of sand at a depth of 10 cm.
e. The granular material was covered with 6 cm of sand at a depth of 10 cm.

実験は図2に示すように、2リットルのメスシリンダ2の底部から10cmの高さまで底泥4を投入し、その上に底泥4と混合しないように覆砂材6を上記b〜eの各条件の厚さとなるよう静かに敷設し、更に駒込ピペットを用いて底泥4を巻き上げないように人工海水8を注水した。   In the experiment, as shown in FIG. 2, the bottom mud 4 is introduced from the bottom of the 2 liter measuring cylinder 2 to a height of 10 cm, and the sand covering material 6 is placed on the above-mentioned b to e so as not to be mixed with the bottom mud 4. The artificial seawater 8 was poured using a Komagome pipette to prevent the bottom mud 4 from being rolled up.

人工海水8を注水した後、6時間静置し、覆砂材6の表面(aの場合は底泥表面)から5cmの位置で100ccの海水を採取(以下、サンプル水という)した。各サンプル水については、TP(リン含有量)、pH、TOC(有機物量)等の項目の値を測定した。更に、材齢7日、21日、30日、70日に同様に採水して、各項目について測定した。   After injecting the artificial seawater 8, it was allowed to stand for 6 hours, and 100 cc of seawater was collected at a position 5 cm from the surface of the sand-capping material 6 (the bottom mud surface in the case of a) (hereinafter referred to as sample water). About each sample water, the value of items, such as TP (phosphorus content), pH, and TOC (organic substance amount), was measured. Further, water was collected in the same manner on the 7th, 21st, 30th, and 70th days of the age, and each item was measured.

実験結果を図3〜図5に示す。この結果から次のことがわかる。   The experimental results are shown in FIGS. From this result, the following can be understood.

覆砂材6に流動床灰粒状物を用いた場合、図3に示す結果からリンの溶出(TP)が抑制されたことがわかる。pHに関しては図4に示すように、値が9以上には上昇せず、生物への影響は少ないと考えられる。TOC(有機物量)に関しては、図5に示すように標準砂を用いた場合より少ないことが確認された。   When fluidized bed ash particulates are used for the sand-capping material 6, it can be seen from the results shown in FIG. 3 that phosphorus elution (TP) is suppressed. Regarding pH, as shown in FIG. 4, the value does not increase to 9 or more, and it is considered that there is little influence on the organism. Regarding the TOC (amount of organic matter), it was confirmed that it was less than when standard sand was used as shown in FIG.

また、91日以上海水に浸漬した流動床灰粒状物には、CaCOの生成による相互の接着が観察され、また崩壊や、泥状化するような現象は観察されず、粒形が保たれていた。更に、表面全体に白化が見られ、炭酸カルシウムが形成されていることをX線回折分析により確認した。 In addition, fluidized bed ash granules immersed in seawater for 91 days or more are observed to adhere to each other due to the formation of CaCO 3 , and are not observed to be disintegrated or muddy, and the particle shape is maintained. It was. Further, whitening was observed on the entire surface, and it was confirmed by X-ray diffraction analysis that calcium carbonate was formed.

本発明にかかる覆砂状態の一実施形態を示す図である。It is a figure which shows one Embodiment of the sand covering state concerning this invention.

実験装置を示す図である。It is a figure which shows an experimental apparatus.

実験結果を示す図である。It is a figure which shows an experimental result.

実験結果を示す図である。It is a figure which shows an experimental result.

実験結果を示す図である。It is a figure which shows an experimental result.

符号の説明Explanation of symbols

1 ; 流動床灰粒状物
2 ; メスシリンダ
4 ; 底泥
5 ; 酸化層
6 ; 覆砂材
8 ; 人工海水
DESCRIPTION OF SYMBOLS 1; Fluidized bed ash granule 2; Measuring cylinder 4; Bottom mud 5; Oxidation layer 6; Sand-capping material 8;

Claims (4)

底泥の上面上に敷設して該底泥上面を覆う覆砂材であって、石灰石を流動媒体とする石炭焚き流動床炉の燃焼灰に水あるいは海水を加えて混練し、混練した前記燃焼灰に圧力を加え粒状に形成したことを特徴とする覆砂材。 A sand-capping material that is laid on the upper surface of the bottom mud and covers the upper surface of the bottom mud, wherein the combustion is carried out by adding water or seawater to the combustion ash of a coal-fired fluidized bed furnace using limestone as a fluid medium, and kneading. A sand-capping material characterized in that it is formed into a granular shape by applying pressure to ash. 粒径が3〜30mmである請求項1に記載の覆砂材。 The sand-capping material according to claim 1, wherein the particle size is 3 to 30 mm. 前記粒状に形成した燃焼灰を破砕し、粒径を2〜20mmとした請求項1に記載の覆砂材。 The sand-capping material according to claim 1, wherein the combustion ash formed into a granular shape is crushed to a particle size of 2 to 20 mm. 請求項1〜3のいずれか1項に記載の覆砂材を底泥上層に堆積させ、覆砂することを特徴とした水底の覆砂方法。 A sand-covering method for a water bottom, comprising depositing the sand-covering material according to any one of claims 1 to 3 on an upper layer of bottom mud and covering the sand.
JP2003271243A 2003-07-07 2003-07-07 Sand-capping material and water-capping method Expired - Fee Related JP3755018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271243A JP3755018B2 (en) 2003-07-07 2003-07-07 Sand-capping material and water-capping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271243A JP3755018B2 (en) 2003-07-07 2003-07-07 Sand-capping material and water-capping method

Publications (2)

Publication Number Publication Date
JP2005030074A JP2005030074A (en) 2005-02-03
JP3755018B2 true JP3755018B2 (en) 2006-03-15

Family

ID=34209183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271243A Expired - Fee Related JP3755018B2 (en) 2003-07-07 2003-07-07 Sand-capping material and water-capping method

Country Status (1)

Country Link
JP (1) JP3755018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797706A (en) * 2018-11-27 2019-05-24 水利部交通运输部国家能源局南京水利科学研究院 It is a kind of for improve operation reservoir greenhouse effects reduction of greenhouse gas discharge method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094817B2 (en) * 2009-11-09 2012-12-12 中国電力株式会社 How to control the growth of blue sea bream
JP2012223733A (en) * 2011-04-21 2012-11-15 Hiroshima Univ Method for improving ambient water quality
JP5928056B2 (en) * 2012-03-23 2016-06-01 Jfeスチール株式会社 Method for suppressing generation of methane-containing gas from bottom sediment of water
CN102776862B (en) * 2012-07-17 2015-07-29 上海海洋大学 A kind of bed mud active barrier system and method controlling sedimentary phosphate release
CN112062199A (en) * 2020-09-08 2020-12-11 中国科学院南京地理与湖泊研究所 Sediment-water interface nutritive salt targeted blocking method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797706A (en) * 2018-11-27 2019-05-24 水利部交通运输部国家能源局南京水利科学研究院 It is a kind of for improve operation reservoir greenhouse effects reduction of greenhouse gas discharge method
CN109797706B (en) * 2018-11-27 2020-11-20 水利部交通运输部国家能源局南京水利科学研究院 Greenhouse gas emission reduction method for improving greenhouse effect of operating reservoir

Also Published As

Publication number Publication date
JP2005030074A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
Kefeni et al. Acid mine drainage: Prevention, treatment options, and resource recovery: A review
JP4719316B2 (en) How to backfill the Ogikubo land
CA2555408A1 (en) Construction material based upon a sludge or sludged waste material
JP4736449B2 (en) Construction method of shallow ground
JP3755018B2 (en) Sand-capping material and water-capping method
JP3899385B2 (en) Method of improving mud and water quality in tidal river and seepage column used for this
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP5070667B2 (en) Underwater environment improvement method
JP4736443B2 (en) Construction method of shallow ground
JP4736444B2 (en) Construction method of shallow ground
JP4095562B2 (en) Water channel for removing nitrogen and phosphorus contained in waste water, and method for removing nitrogen and phosphorus contained in waste water
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JP2010234192A (en) Method of generating soil
JP2008121263A (en) Tideland soil improving method
JP3912682B2 (en) Methods for improving mud and water quality in tidal rivers
JP2004313818A (en) Bottom sediment covering material
WO2009058011A1 (en) Method for preparing a structure in a body of water
KR20050103241A (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP4736448B2 (en) Construction method of shallow ground
JP2011012202A (en) Method for treating sedimented soil at bottom of water
JP2004305971A (en) Method for purifying bottom sediment in closed water area by crushed shell material
JPH05131196A (en) Environmental purification structure
JP5627283B2 (en) Treatment method of seabed sediment
JP5168027B2 (en) Repair method for steel revetment structures
JP2007126838A (en) Construction method using covering sand

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

R150 Certificate of patent or registration of utility model

Ref document number: 3755018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees