JP2011012202A - Method for treating sedimented soil at bottom of water - Google Patents

Method for treating sedimented soil at bottom of water Download PDF

Info

Publication number
JP2011012202A
JP2011012202A JP2009158582A JP2009158582A JP2011012202A JP 2011012202 A JP2011012202 A JP 2011012202A JP 2009158582 A JP2009158582 A JP 2009158582A JP 2009158582 A JP2009158582 A JP 2009158582A JP 2011012202 A JP2011012202 A JP 2011012202A
Authority
JP
Japan
Prior art keywords
paper sludge
granulated product
bottom sediment
soil
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158582A
Other languages
Japanese (ja)
Other versions
JP5596942B2 (en
Inventor
Kazuo Terasawa
一雄 寺澤
Kiyoshi Takigawa
清 滝川
Daizo Fukuoka
大造 福岡
Masahiro Aranishi
政浩 新西
Kaoru Hamada
薫 濱田
Takuo Inoue
拓郎 井上
Tatsuya Masuda
龍哉 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA KENSETSU KK
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
FUKUOKA KENSETSU KK
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA KENSETSU KK, Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical FUKUOKA KENSETSU KK
Priority to JP2009158582A priority Critical patent/JP5596942B2/en
Publication of JP2011012202A publication Critical patent/JP2011012202A/en
Application granted granted Critical
Publication of JP5596942B2 publication Critical patent/JP5596942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technique for efficiently produce a granulated product with high mechanical strength and good stability from sedimented soil at the bottom of the water.SOLUTION: The granulated product can be efficiently produced from sedimented soil at the bottom of the water by using, in combination, paper sludge-incinerated ash and a calcium-containing solidifying auxiliary. The granulated product thus produced has moderate mechanical strength and size and maintains the mechanical strength underwater, therefore can be suitably used in applications including developing artificial dry beaches, shore protections, and inhibiting soil outflows.

Description

本発明は、土壌改良技術、特に、水底の堆積土砂を固化して造粒する技術に関する。   The present invention relates to a soil improvement technique, and more particularly to a technique for solidifying and granulating sediment sediment on the bottom of water.

汚泥やヘドロなどの軟泥、流出しやすい土壌、軟弱な地盤の土壌などを固化して、土壌流出を抑制するため、従来から、各種の固化剤を軟泥や汚泥に添加して処理することが行われている。その際の固化剤としては、無機系の土壌に対してはセメント系固化剤、糞尿汚泥などの有機系の汚泥に対しては石灰系の固化剤が一般に用いられる。   In order to solidify sludge, sludge and other soft mud, soil that tends to flow out, and soil on soft ground to suppress soil outflow, various solidifying agents have been conventionally added to soft mud and sludge for treatment. It has been broken. As a solidifying agent at that time, a cement-based solidifying agent is generally used for inorganic soil, and a lime-based solidifying agent is generally used for organic sludge such as manure sludge.

しかし、セメント系固化剤は、セメントの水和硬化反応を利用して土壌を固化するものであり、セメントの硬化反応は有機物によって阻害されてしまう。そのため、水底から得られる浚渫土砂のような有機物を含有する処理対象に対してセメント系固化剤を用いることは有効でなく、十分な強度を有する固化物が得られない。また、石灰系固化剤は、固化処理後にアルカリが溶出する問題があり、環境保全の立場から、石灰系固化剤は、土壌の流出抑制や埋め立て、護岸などの用途に適するものではない。さらに、水底から得られる浚渫土砂は、海水などに由来する塩を多く含有し、水分含量が高いため、水底の堆積土砂に対しては一般的な土壌固化剤が有効でない場合も多い。   However, the cement-based solidifying agent solidifies the soil using the hydration hardening reaction of cement, and the hardening reaction of cement is inhibited by organic substances. Therefore, it is not effective to use a cement-based solidifying agent for a treatment target containing an organic substance such as dredged sand obtained from the bottom of the water, and a solidified product having sufficient strength cannot be obtained. Further, the lime-based solidifying agent has a problem that alkali is eluted after the solidification treatment, and from the viewpoint of environmental conservation, the lime-based solidifying agent is not suitable for uses such as soil outflow suppression, land reclamation, and revetment. Furthermore, dredged soil obtained from the bottom of the water contains a large amount of salt derived from seawater and has a high water content, and therefore, a general soil solidifying agent is often not effective for sediment at the bottom of the water.

そこで、水底の堆積土砂に適した固化技術を開発すべく、種々の検討が行われており、例えば、以下の技術が報告されている。すなわち、特許文献1〜6には、ポリビニルアルコールを用いて浚渫土砂を固化する技術が記載されている。また、特許文献7には、硫酸第1鉄を用いて海底質汚泥を固化する技術が記載されている。さらに、特許文献8には、浚渫土砂から魚礁ブロックを製造する技術が記載されている。   Therefore, various studies have been conducted to develop a solidification technique suitable for sediments on the bottom of the water. For example, the following techniques have been reported. That is, Patent Documents 1 to 6 describe a technique for solidifying dredged sand using polyvinyl alcohol. Patent Document 7 describes a technique for solidifying seabed sludge using ferrous sulfate. Furthermore, Patent Document 8 describes a technique for manufacturing a fish reef block from dredged soil.

特開2008−253163号公報JP 2008-253163 A 特開2007−167790号公報JP 2007-167790 A 特開2007−007587号公報JP 2007-007587 A 特開2006−325514号公報JP 2006-325514 A 特開2006−325515号公報JP 2006-325515 A 特開2005−131595号公報JP 2005-131595 A 特開2005−334730号公報JP 2005-334730 A 特開2008−182898号公報JP 2008-182898 A

しかし、水底堆積土の固化に関する従来の技術は、特殊な処理や高価な処理剤が必要であったり、大量の処理剤を使用するため、技術的または経済的に実用的とはいえず、より優れた水底堆積土の処理方法を開発することが強く望まれていた。   However, the conventional technology related to the solidification of the bottom sediment is not technically or economically practical because it requires special treatment or expensive treatment agent, or uses a large amount of treatment agent. It was highly desired to develop an excellent method for treating bottom sediments.

そこで、本発明の課題は、水分含量の高い水底堆積土から簡便かつ経済的に造粒物を得る技術を提供することである。   Then, the subject of this invention is providing the technique which obtains a granulated material simply and economically from the bottom sediment with high moisture content.

本発明者は、上記課題を解決すべく鋭意研究し、ペーパースラッジの焼却灰とカルシウムを含む固化助剤とを併用することによって水底堆積土を効率的に固化して造粒物が得られることを見出し、本発明を完成させるに至った。   The present inventor has eagerly studied to solve the above-mentioned problems, and by using incinerated ash of paper sludge and a solidification aid containing calcium together, the bottom sediment can be effectively solidified to obtain a granulated product. As a result, the present invention has been completed.

1つの態様において本発明は、土壌改良剤であり、特に、ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを含んでなる水底堆積土用固化剤である。また別の態様において本発明は、造粒物の製造方法であり、特に、水底堆積土とペーパースラッジ焼却灰などから造粒物を製造する方法に関する。さらに別の態様において本発明は、土壌改良方法であり、特に、水底堆積土からペーパースラッジ焼却灰などを用いて製造した造粒物によって土砂流出の抑制や土壌の改良を行う方法に関する。   In one embodiment, the present invention is a soil conditioner, in particular, a bottom sediment soil solidifying agent comprising paper sludge incineration ash and a solidification aid containing calcium. In another aspect, the present invention relates to a method for producing a granulated product, and more particularly to a method for producing a granulated product from bottom sediment and paper sludge incineration ash. In yet another aspect, the present invention relates to a soil improvement method, and more particularly, to a method for suppressing sediment discharge and improving soil by using a granulated product produced from paper bottom sediment using paper sludge incineration ash or the like.

本発明は、以下に限定されるものでないが、下記の発明を包含する。
(1) ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを含んでなる水底堆積土用固化剤。
(2) ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを水底堆積土に添加して造粒することを含む、水底堆積土から造粒物を製造する方法。
(3) ペーパースラッジ焼却灰が、CaO換算でカルシウムを20重量%以上含んでなる、(2)に記載の方法。
(4)カルシウムを含む固化助剤が、生石灰、硫酸カルシウムおよび水酸化カルシウムからなる群より選択される1つ以上である、(2)または(3)に記載の方法。
(5) カルシウムを含む固化助剤の添加量が、水底堆積土とペーパースラッジ焼却灰の合計重量に対して3〜15重量%である、(2)〜(4)のいずれか1項に記載の方法。
(6) ペーパースラッジ焼却灰の添加量が、水底堆積土の固形分重量に対して100〜400重量%である、(2)〜(5)のいずれか1項に記載の方法。
(7) 造粒物が、2mm以上の直径を有する粒子を40重量%以上含む、(2)〜(6)のいずれか1項に記載の方法。
(8) (2)〜(7)のいずれか1項に記載の方法によって得られた造粒物を水中に投入することを含む、土壌改良方法。
Although this invention is not limited to the following, the following invention is included.
(1) A solidifying agent for bottom sediment, comprising paper sludge incinerated ash and a solidification aid containing calcium.
(2) A method for producing a granulated material from bottom sediment, including adding paper sludge incinerated ash and a solidification aid containing calcium to the bottom sediment.
(3) The method according to (2), wherein the paper sludge incineration ash comprises 20% by weight or more of calcium in terms of CaO.
(4) The method according to (2) or (3), wherein the solidification aid containing calcium is one or more selected from the group consisting of quicklime, calcium sulfate, and calcium hydroxide.
(5) The addition amount of the solidification aid containing calcium is 3 to 15% by weight with respect to the total weight of the bottom sediment and the paper sludge incineration ash, according to any one of (2) to (4) the method of.
(6) The method according to any one of (2) to (5), wherein the added amount of the paper sludge incineration ash is 100 to 400% by weight with respect to the solid weight of the bottom sediment.
(7) The method according to any one of (2) to (6), wherein the granulated product contains 40% by weight or more of particles having a diameter of 2 mm or more.
(8) A soil improvement method comprising introducing the granulated product obtained by the method according to any one of (2) to (7) into water.

本発明によれば、水底堆積土から効率的に造粒物を得ることができる。また、本発明の造粒物はある程度の強度を備えており、また、水中で強度が高くなる特性を有するため、埋め立てや護岸、人工干潟の造成などに好適に使用することができ、土砂流出の抑制など、環境保全にも有用である。さらに本発明は、水底堆積土やペーパースラッジの焼却灰といった廃棄物を利用して造粒物を得るため、コスト的に極めて優れており、廃棄物削減という観点からも有利である。   According to the present invention, a granulated material can be efficiently obtained from bottom sediment. In addition, the granulated product of the present invention has a certain level of strength, and since it has the property of increasing strength in water, it can be suitably used for land reclamation, revetment, creation of artificial tidal flats, etc. It is also useful for environmental conservation, such as suppression of environmental problems. Furthermore, since the present invention obtains a granulated material using waste such as bottom sediment and incineration ash of paper sludge, it is extremely superior in cost and advantageous from the viewpoint of waste reduction.

図1は、実施例1で用いた浚渫土砂のX線回折チャートである。1 is an X-ray diffraction chart of dredged sand used in Example 1. FIG. 図2は、実施例1で用いたペーパースラッジ焼却灰のX線回折チャートである。FIG. 2 is an X-ray diffraction chart of the paper sludge incineration ash used in Example 1. 図3は、実施例1で得られた造粒物のX線回折チャートである。FIG. 3 is an X-ray diffraction chart of the granulated product obtained in Example 1.

1つの態様において本発明は、ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを含んでなる水底堆積土用固化剤に関する。また別の態様において本発明は、ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを水底堆積土に添加して造粒することを含む、水底堆積土から造粒物を製造する方法に関する。本発明では、ペーパースラッジの焼却灰と、カルシウムを含む固化助剤とを併用することによって、軟泥である水底堆積土から適度な強度を有する造粒物を得ることができる。   In one aspect, the present invention relates to a submerged sediment soil solidifying agent comprising paper sludge incineration ash and a solidification aid containing calcium. In another aspect, the present invention relates to a method for producing a granulated product from bottom sediment, which comprises adding paper sludge incinerated ash and calcium-containing solidification aid to the bottom sediment and granulating it. In this invention, the granulated material which has moderate intensity | strength can be obtained from the bottom sediment soil which is soft mud by using the incineration ash of paper sludge and the solidification adjuvant containing calcium together.

水底堆積土
本発明は水底堆積土の造粒技術に関し、本発明において水底堆積土とは、海や湖、河川などの水底に堆積している土砂のことを指す。本発明の技術は、水底などの現場でそのまま施工して水底堆積土を造粒してもよく、また、水底から浚渫した土砂に本発明を適用して造粒してもよい。本発明の水底堆積土は、湖や河川などの淡水環境における堆積土でもよく、海や港湾などの海水環境における海底堆積土であってもよい。本発明で用いる浚渫土砂とは、航路浚渫やヘドロ浄化などのために水底から浚渫される土砂をいう。一般に、浚渫土砂は、環境保全のために湖沼や湾内のヘドロを取り除く際や、航路に堆積した土砂を取り除く際に得られ、浸食された海岸などへ運搬されて、臨海部の埋め立てや護岸工事などに利用されることもある。
Water bottom sediment present invention relates to granulation technique Subaqueous soil, the water bottom sediment in the present invention refers to the sediment deposited on the bottom of the water such as sea or lakes, rivers. The technique of the present invention may be applied as it is at the site such as the bottom of the water to granulate the bottom sediment, or may be granulated by applying the present invention to the soil dredged from the bottom of the water. The bottom sediment in the present invention may be a sediment in a freshwater environment such as a lake or a river, or a bottom sediment in a seawater environment such as a sea or a harbor. The dredged material used in the present invention refers to the material that is dredged from the bottom of the water for the purpose of channel dredging and sludge purification. In general, dredged soil is obtained when removing sludge in lakes and bays for environmental conservation, or when removing sediment accumulated in the channel, and transported to eroded beaches, etc. for land reclamation and revetment work in coastal areas. It may be used for such purposes.

本発明において水底堆積土は、軟泥状態、脱水後のケーキ状態等どのような状態でも使用できる。好ましい態様において、ペーパースラッジ焼却灰を用いて処理する際の水底堆積土の水分含量は10〜65重量%であり、より好ましくは30〜60重量%である。このような水分含量の水底堆積土であれば、水底堆積土の濃度が高いため効率的に固化物を得ることができ、また、適度な流動性を有するため輸送や造粒処理に好適である。   In the present invention, the bottom sediment can be used in any state such as a soft mud state or a cake state after dewatering. In a preferred embodiment, the water content of the bottom sediment when treated with paper sludge incineration ash is 10 to 65% by weight, more preferably 30 to 60% by weight. If it is a bottom sediment with such a water content, the concentration of the bottom sediment is high, so that a solidified product can be obtained efficiently, and since it has an appropriate fluidity, it is suitable for transportation and granulation treatment. .

本発明の水底堆積土として浚渫土砂を用いる場合、公知の浚渫方法によって水底から得ることができ、例えば、グラブ浚渫やポンプ浚渫などによって浚渫土砂を得ることができる。ここで、グラブ浚渫とは、浚渫船などから吊されたグラブで水底の土砂を堀りあげることであり、小規模の浚渫に一般的に利用される。ポンプ浚渫とは、ポンプを用いて水底の土砂を堀りあげることをいい、連続的に土砂を吸引できることから、底泥を広く薄く浚渫でき(薄層浚渫)、大規模で均一な浚渫が可能である。本発明において、浚渫土砂を得るための浚渫方法は特に制限されず、例えば、水底のヘドロを浚渫する場合、ヘドロの堆積高は数十cm程度であるため、ヘドロが舞い上がることを抑制しつつ、ヘドロ層を薄層浚渫するような方法を選択すればよい。   When dredged soil is used as the bottom sediment in the present invention, it can be obtained from the bottom by a known dredging method. For example, dredged sand can be obtained by a grab dredge or a pump dredge. Here, the grab dredging is to dig up the bottom sediment with a grab suspended from a dredger or the like, and is generally used for small dredging. Pump dredging is the use of a pump to dig up the sediment at the bottom of the water. Since the sediment can be continuously sucked in, the mud can be dredged widely and thinly (thin layer dredging), enabling large-scale and uniform dredging. It is. In the present invention, the dredging method for obtaining dredged soil is not particularly limited, for example, when dredging sludge on the bottom of the water, while the accumulation height of sludge is about several tens of cm, while suppressing sludge soaring, A method for thinning the sludge layer may be selected.

ペーパースラッジ焼却灰
本発明はペーパースラッジの焼却灰を用いる。本発明においてペーパースラッジ(PS:Paper Sludge)とは、製紙工程から回収される廃棄物をいい、例えば、古紙再生工程(DIP製造工程)、パルプ製造工程、紙製造工程などから発生するものを含む。したがって、ペーパースラッジは、パルプ繊維、填料や顔料に由来する無機物(カオリン、タルク、炭酸カルシウム等)、インキやインク、接着剤などを含んで構成される。焼却灰の原料となるペーパースラッジとしては、カルシウム含量などの観点から、古紙再生工程から発生するペーパースラッジが特に好ましい。一般にペーパースラッジは、製紙工場などから大量に排出されるため、ペーパースラッジ焼却灰は入手が容易である。そのため、本発明の水底堆積土用固化剤は、廃棄物削減、入手容易性、経済性などの観点から特に有利である。
Paper sludge incineration ash The present invention uses paper sludge incineration ash. In the present invention, paper sludge (PS) refers to waste recovered from the papermaking process, and includes, for example, waste generated from a used paper recycling process (DIP manufacturing process), a pulp manufacturing process, a paper manufacturing process, and the like. . Accordingly, the paper sludge is configured to include pulp fibers, inorganic substances derived from fillers and pigments (kaolin, talc, calcium carbonate, etc.), inks, inks, adhesives, and the like. The paper sludge that is the raw material for the incinerated ash is particularly preferably paper sludge generated from the used paper recycling process from the viewpoint of calcium content and the like. In general, paper sludge is discharged in large quantities from a paper mill or the like, and paper sludge incineration ash is easily available. Therefore, the water bottom sedimentation solidifying agent of the present invention is particularly advantageous from the viewpoints of waste reduction, availability, economy, and the like.

本発明で用いるペーパースラッジ焼却灰(PS灰)とは、ペーパースラッジを燃焼させて得られる焼却残渣であり、炭酸カルシウム、硅砂、タルク、カオリンなどに由来する無機物を主成分とする。本発明のペーパースラッジ焼却灰は、ペーパースラッジの焼却残渣であれば、集塵機などで捕捉されるフライアッシュ(飛灰)や炉底灰が含まれていてもよい。ペーパースラッジの焼却は、例えば、700〜1500℃程度の温度で行うことができる。また、公知の焼却設備を用いてペーパースラッジを焼却することができ、具体的には流動床焼却炉などを挙げることができる。   The paper sludge incineration ash (PS ash) used in the present invention is an incineration residue obtained by burning paper sludge, and contains an inorganic substance derived from calcium carbonate, cinnabar, talc, kaolin and the like as a main component. The paper sludge incineration ash of the present invention may contain fly ash (fly ash) or furnace bottom ash captured by a dust collector or the like as long as it is an incineration residue of paper sludge. Paper sludge can be incinerated at a temperature of about 700 to 1500 ° C., for example. Moreover, paper sludge can be incinerated using a well-known incinerator, Specifically, a fluidized bed incinerator etc. can be mentioned.

一般に、紙には、炭酸カルシウムなどのカルシウム分が顔料や填料として添加されるため、ペーパースラッジを原料とする焼却灰は、塵芥の焼却灰や高炉スラグと比較して、カルシウム含量が高いという特徴を有する。本発明の好ましい態様において、本発明のペーパースラッジ焼却灰は、元素分析した場合、CaO換算でCaOの比率が20重量%以上であることが好ましく、30重量%以上であることがより好ましい。また、CaOの比率の上限は特に限定されないが、60重量%以下であることが一般的である。さらに、本発明のペーパースラッジ焼却灰は、アルミニウム分に対するカルシウム分の比率も比較的高く、AlとCaOの比率が1:0.5〜1:3程度であることが好ましく、1:1〜1:2.5程度であることがより好ましい。 In general, since calcium such as calcium carbonate is added to paper as a pigment or filler, incineration ash made from paper sludge has a high calcium content compared to incineration ash from trash and blast furnace slag. Have In a preferred embodiment of the present invention, when the paper sludge incinerated ash of the present invention is subjected to elemental analysis, the CaO ratio in terms of CaO is preferably 20% by weight or more, and more preferably 30% by weight or more. The upper limit of the CaO ratio is not particularly limited, but is generally 60% by weight or less. Further, the paper sludge incineration ash of the present invention also has a relatively high ratio of calcium to aluminum, and the ratio of Al 2 O 3 and CaO is preferably about 1: 0.5 to 1: 3. More preferably, it is about 1 to 1: 2.5.

本発明におけるペーパースラッジ焼却灰は、水底堆積土のような高含水軟泥に添加されると、土砂中の水分と水和反応し、エトリンガイト(3CaO・Al・3CaSO・32HO)やケイ酸カルシウム水和物などを生成しながら、水底堆積土を凝集・固化させるものと考えられる。本発明のペーパースラッジ焼却灰を用いると水底堆積土から適度な強度を有する造粒物が得られる理由の詳細は明らかでないが、本発明のペーパースラッジ焼却灰に含まれるアルミニウムやカルシウムが水底堆積土中の水分と反応して自硬するのに適しているためだと考えられる。 Paper sludge incineration ash in the present invention, when added to high water ooze like water bottom sediment, and water and the hydration reaction in soil, ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) It is thought that the bottom sediments are agglomerated and solidified while producing hydrates and calcium silicate hydrates. Although the details of the reason why a granulated product having an appropriate strength can be obtained from the bottom sediment when using the paper sludge incineration ash of the present invention are not clear, aluminum and calcium contained in the paper sludge incineration ash of the present invention is the bottom sediment. It is thought that it is because it is suitable for self-hardening by reacting with the moisture in it.

本発明においてペーパースラッジ焼却灰の添加量は、特に制限されないが、好ましい態様において、水底堆積土よりも多くのペーパースラッジ焼却灰を使用し、例えば、水底堆積土の固形分重量に対して100〜400重量%のペーパースラッジ焼却灰を添加することが好ましい。すなわち、水底堆積土に対してペーパースラッジ焼却灰を多く配合すると、造粒物の強度が高くなり、長期的に安定な造粒物を得ることができる。   In the present invention, the amount of the paper sludge incinerated ash added is not particularly limited, but in a preferred embodiment, more paper sludge incinerated ash is used than the bottom sediment, for example, 100 to 100% of the solid weight of the bottom sediment. It is preferable to add 400% by weight of paper sludge incineration ash. That is, when a large amount of paper sludge incineration ash is blended with the bottom sediment, the strength of the granulated product is increased, and a stable granulated product can be obtained in the long term.

固化助剤
また本発明は、水底堆積土から造粒物を得るために、ペーパースラッジ焼却灰とともに、カルシウムを含む固化助剤を併用する。このような固化助剤を併用することによって、軟泥である水底堆積土から、高強度かつ長期的に安定な粒状の造粒物を得ることができる。本発明で用いる固化助剤は、カルシウムを含むものであればよく、例えば、生石灰、硫酸カルシウム、水酸化カルシウム、モンモリロナイトなどのカルシウムを含む天然鉱物などを好適に使用することができ、生石灰、硫酸カルシウム、水酸化カルシウムをより好適に使用することができ、生石灰を特に好適に使用ことができる。また、固化助剤は、ペーパースラッジ焼却灰と一緒に水底堆積土に添加してもよく、また、ペーパースラッジ焼却灰とは独立して水底堆積土に添加してもよい。
The solidification aid or the present invention uses a solidification aid containing calcium together with the paper sludge incineration ash in order to obtain a granulated product from the bottom sediment. By using such a solidification aid in combination, a granulated product having a high strength and a long-term stability can be obtained from the bottom sediment, which is soft mud. The solidification aid used in the present invention only needs to contain calcium. For example, natural minerals containing calcium such as quick lime, calcium sulfate, calcium hydroxide, and montmorillonite can be suitably used. Calcium and calcium hydroxide can be used more preferably, and quicklime can be used particularly preferably. Further, the solidification aid may be added to the bottom sediment with the paper sludge incineration ash, or may be added to the bottom sediment without being separated from the paper sludge incineration ash.

固化助剤の添加量は、水底堆積土とペーパースラッジ焼却灰の合計重量に対して2〜20重量%であることが好ましく、3〜15重量%であることがより好ましい。このような範囲であれば、強度が高く、ある程度の粒子径を有する造粒物を効率よく製造することができる。   The addition amount of the solidification aid is preferably 2 to 20% by weight and more preferably 3 to 15% by weight with respect to the total weight of the bottom sediment and the paper sludge incineration ash. Within such a range, a granulated product having high strength and a certain particle size can be efficiently produced.

本発明においては、水底堆積土に対して、ペーパースラッジ焼却灰と、カルシウムを含む固化助剤とを添加して造粒物を製造するが、水底堆積土と添加剤とが十分に混合されれば、添加の態様は特に制限されない。   In the present invention, a paper sludge incineration ash and a solidification aid containing calcium are added to the bottom sediment, and a granulated product is produced. However, the bottom sediment and the additive are sufficiently mixed. For example, the mode of addition is not particularly limited.

造粒物
本発明によって得られる造粒物とは、粒状であればその形状は限定されない。造粒物の粒径とは、直径を意味するが、長径、短径のある場合はその平均を指し、レーザー回折、顕微鏡観察等により決定することができる。本発明の造粒物は、2mm以上の直径を有する粒子を40重量%以上含むことが好ましい。このような造粒物は、ある程度の大きさを有するため、例えば海中で使用しても波にさらわれにくく、自然環境における土壌流出を抑制できるため、特に有用である。また、本発明の造粒物は、平均粒子径が1mm以上であることが好ましく、2mm以上であることがより好ましい。なお、造粒物の粒子径は、例えば、固化剤の添加量や造粒時間などによって適宜調整することができ、また、振動式や回転式などのふるい分け法などによって一定の粒子径を有する造粒物を得てもよい。
Granulated product The shape of the granulated product obtained by the present invention is not limited as long as it is granular. The particle size of the granulated product means a diameter, but when there is a major axis or a minor axis, it indicates the average and can be determined by laser diffraction, microscopic observation or the like. The granulated product of the present invention preferably contains 40% by weight or more of particles having a diameter of 2 mm or more. Such a granulated product is particularly useful because it has a certain size and is not easily exposed to waves even when used in the sea, for example, and can suppress soil runoff in the natural environment. The granulated product of the present invention preferably has an average particle diameter of 1 mm or more, more preferably 2 mm or more. The particle size of the granulated product can be adjusted as appropriate depending on, for example, the amount of the solidifying agent added and the granulation time, and the granulated product has a fixed particle size by a sieving method such as a vibration type or a rotary type. Granules may be obtained.

造粒物を製造する際には、通常の造粒技術を用いることができる。造粒は、公知の方法により行うことができ、例えば、逆流式、転動方式、撹拌方式、押出方式、破砕方式などの造粒法を採用することができる。具体的な装置としては日本アイリッヒ社製のインテンシィブミキサー(逆流式)やKitchen Aid社製のスタンドミキサー(攪拌方式)などが挙げられる。水底堆積土へのペーパースラッジ焼却灰などの混合と造粒を両方行うことができ、造粒物の多孔性や強度を調整しやすい点で、逆流式ミキサーや攪拌方式のミキサーを好適に利用することができる。造粒時間に特に制限はなく、造粒時間を長くすると造粒物の粒子径が大きくなる傾向があるが、一定の大きさ以上には成長しない。攪拌方式のミキサーを用いる場合、造粒時間は、1〜5分、好ましくは2〜4分である。   When manufacturing a granulated material, a normal granulation technique can be used. The granulation can be performed by a known method, and for example, a granulation method such as a reverse flow method, a rolling method, a stirring method, an extrusion method, or a crushing method can be employed. Specific examples of the apparatus include an intensive mixer (reverse flow type) manufactured by Japan Eirich, and a stand mixer (stirring system) manufactured by Kitchen Aid. It is possible to mix and granulate paper sludge incineration ash, etc. to the bottom sediment, and to use the reverse flow mixer and the mixer of the stirring method suitably because it is easy to adjust the porosity and strength of the granulated product. be able to. There is no restriction | limiting in particular in granulation time, When the granulation time is lengthened, there exists a tendency for the particle diameter of a granulated material to become large, but it does not grow more than fixed size. In the case of using a stirring type mixer, the granulation time is 1 to 5 minutes, preferably 2 to 4 minutes.

このようにして得られた造粒物は、海、港湾、湖、河川、沼、干潟などにおいて、造成、埋め立て、護岸、土砂の流出防止などの用途に好適に使用することができる。特に本発明の造粒物は、海水中などの環境に置かれると、造粒物の強度が経時的に増大するため、好適である。海水中で本発明の造粒物の強度が向上する理由の詳細は明らかでないが、海水に含まれる塩などによって造粒物の硬化反応が進み、造粒物がより凝集するためであると推測される。本発明の造粒物は、海水中における強度が十分であり、また、海水中で強度が向上する特性を有するため、水底堆積土を固化・造粒した造粒物を再び海水中において用いる場合に特に好適である。さらに、かかる水底堆積土は、通常、15〜16%程度の有機栄養分を含むため、水底堆積土から製造した造粒物を人工干潟、藻礁、魚礁などとして海に設置することにより、そこに着生する生物への栄養供給源となって、現場海域の環境の回復などに大きく貢献し得る。以上の点から、本発明で得られる造粒物は干拓や人工干潟の造成に適している。   The granulated product thus obtained can be suitably used for purposes such as creation, landfill, revetment, prevention of sediment discharge in the sea, harbor, lake, river, swamp, tidal flat and the like. In particular, when the granulated product of the present invention is placed in an environment such as seawater, the strength of the granulated product increases with time. Although the details of the reason why the strength of the granulated product of the present invention is improved in seawater are not clear, it is assumed that the granulated product is more agglomerated due to the hardening reaction of the granulated product progressed by the salt contained in the seawater. Is done. Since the granulated product of the present invention has sufficient strength in seawater and has the property of improving strength in seawater, the granulated product obtained by solidifying and granulating the bottom sediment is used again in seawater. Is particularly suitable. Furthermore, since such submarine sediments usually contain about 15-16% organic nutrients, granulated products produced from submarine sediments can be placed in the sea as artificial tidal flats, algae reefs, fish reefs, etc. It can be a source of nutrients for living organisms and can greatly contribute to the restoration of the environment in the sea area. From the above points, the granulated product obtained by the present invention is suitable for reclamation and creation of artificial tidal flats.

以下、本発明の実施例を挙げつつ、本発明の内容を詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、本明細書において、部および%などは特に記載がない場合、重量基準であり、数値範囲はその端点を含むものとして記載される。   Hereinafter, the content of the present invention will be described in detail with reference to examples of the present invention, but the present invention is not limited to the following examples. In the present specification, unless otherwise specified, parts and% are based on weight, and numerical ranges are described as including the end points.

実施例1
(1)水底堆積土
水底堆積土として、熊本県熊本市新港の海底から得た浚渫土砂を用いた。後述する固化剤と混合する際の浚渫土砂の水分含量は60重量%(固形分40%)であった。また、この浚渫土砂を元素分析(蛍光X線分析)した結果を以下の表1に示す。表1から明らかなように、この浚渫土砂は、Si、Alを主成分としていた。また、浚渫土砂をX線回折により分析したところ、アノーサイト(CaAlSi)、オージャイト、SiOなどが確認された(図1)。
Example 1
(1) Submarine sediment The dredged soil obtained from the sea floor of Shinko, Kumamoto City, Kumamoto Prefecture was used as the bottom sediment. The water content of the dredged sand when mixed with the solidifying agent described later was 60% by weight (solid content 40%). Table 1 below shows the results of elemental analysis (fluorescence X-ray analysis) of this dredged soil. As is apparent from Table 1, this dredged sand was mainly composed of Si and Al. Further, when the dredged sand was analyzed by X-ray diffraction, anorthite (CaAl 2 Si 2 O 8 ), augite, SiO 2 and the like were confirmed (FIG. 1).

Figure 2011012202
Figure 2011012202

(2)ペーパースラッジ焼却灰(PS焼却灰)
製紙工場のパルプ製造工程や抄紙工程から回収されたペーパースラッジを焼却して得られる焼却残渣(焼却灰)を用いた。ペーパースラッジの焼却は、流動床焼却炉にて800〜900℃で行った。得られたペーパースラッジ焼却灰を元素分析した結果を表2に示す。表2から明らかなように、このペーパースラッジ焼却灰は、Si、Al、Caを主成分としていた。また、X線回折の結果から、SiO、ゲーレナイト(CaAlSiO)、炭酸カルシウム、生石灰などが確認された(図2)。
(2) Paper sludge incineration ash (PS incineration ash)
The incineration residue (incineration ash) obtained by incinerating paper sludge collected from the pulp manufacturing process and papermaking process of a paper mill was used. Paper sludge was incinerated at 800-900 ° C. in a fluidized bed incinerator. Table 2 shows the results of elemental analysis of the obtained paper sludge incineration ash. As is apparent from Table 2, this paper sludge incineration ash was composed mainly of Si, Al, and Ca. From the results of X-ray diffraction, SiO 2 , gehlenite (CaAl 2 SiO 2 ), calcium carbonate, quicklime, etc. were confirmed (FIG. 2).

Figure 2011012202
Figure 2011012202

(3)水底堆積土とPS焼却灰の混合物
上記の水底堆積土とPS焼却灰の50:50混合物について、元素分析した結果を表3、X線回折のチャートを図3に示す。
(3) Mixture of bottom sediment and PS incinerated ash Table 3 shows the results of elemental analysis of the 50:50 mixture of bottom sediment and PS incinerated ash, and FIG. 3 shows an X-ray diffraction chart.

Figure 2011012202
Figure 2011012202

(4)水底堆積土の造粒処理
上記浚渫土砂450g(固形分:180g)に対し、ペーパースラッジ焼却灰(PS灰)220g、生石灰(CaO)20g、水10gを添加して混合物の水分を40%とし、スタンドミキサー(KSM50P、Kitchen Aid社製)を用いて3分間処理することによって造粒物を製造した(表3:サンプル1)。また、表3に示す配合で上記と同様にして造粒物を製造した(表3:サンプル2〜10)。この際、混合後の水分が40%になるように水を添加した。
(4) Granulation treatment of bottom sediment soil To 450 g of the above dredged sand (solid content: 180 g), 220 g of paper sludge incineration ash (PS ash), 20 g of quick lime (CaO), and 10 g of water are added to reduce the water content of the mixture to 40 g. %, And a granulated product was produced by treating for 3 minutes using a stand mixer (KSM50P, manufactured by Kitchen Aid) (Table 3: Sample 1). Moreover, the granulated material was manufactured like the above with the composition shown in Table 3 (Table 3: Samples 2 to 10). At this time, water was added so that the water content after mixing was 40%.

得られた造粒物の粒度分布を評価するため、篩を用いて直径2mm以上の造粒物の比率を測定した。また、造粒物の圧縮強度を、リングクラッシュ試験機(日本TMC製)を用いて圧縮板の下降速度12.5mm/minという条件にて、造粒物を破壊するために要する力を測定した。圧縮強度の測定は粒径が2mmである造粒物を用いて行った。   In order to evaluate the particle size distribution of the obtained granulated product, the ratio of the granulated product having a diameter of 2 mm or more was measured using a sieve. The compressive strength of the granulated product was measured using a ring crush tester (manufactured by Nippon TMC) under the condition that the compression plate descended at a rate of 12.5 mm / min. . The compression strength was measured using a granulated product having a particle size of 2 mm.

Figure 2011012202
Figure 2011012202

表4から明らかなように、固化助剤である生石灰の添加量を増加させると、得られる造粒物の粒径が大きくなり、造粒物の圧縮強度が高くなる傾向が確認された(サンプル5〜10)。また、ペーパースラッジ焼却灰の添加量を増加させると、2mm以上の造粒物が少なくなり、造粒物の圧縮強度が高くなる傾向があった(サンプル1〜4)。   As is clear from Table 4, when the amount of quicklime, which is a solidification aid, is increased, the particle size of the resulting granulated product is increased, and the tendency for the compressed product to increase in compressive strength is confirmed (sample). 5-10). Moreover, when the addition amount of paper sludge incineration ash was increased, the granulated material of 2 mm or more decreased, and there existed a tendency for the compressive strength of a granulated material to become high (samples 1-4).

実施例2
実施例1のサンプル1と同様にして造粒物を作製し、4日間放置した。この造粒物を海水中に静置し、造粒物の経時変化を追跡した。
Example 2
A granulated material was produced in the same manner as Sample 1 of Example 1, and allowed to stand for 4 days. The granulated product was allowed to stand in seawater, and the change over time of the granulated product was followed.

Figure 2011012202
Figure 2011012202

元素分析と圧縮強度の測定結果を表5に示す。表5から明らかなように、造粒物を製造してから7日間後には造粒物の圧縮強度が1.5倍程度に向上しており、海水中に放置すると経時的に造粒物の強度が向上することが確認された。   Table 5 shows the results of elemental analysis and measurement of compressive strength. As can be seen from Table 5, the compression strength of the granulated material has improved to about 1.5 times after 7 days from the production of the granulated material. It was confirmed that the strength was improved.

Claims (8)

ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを含んでなる水底堆積土用固化剤。   A solidifying agent for bottom sediment, comprising paper sludge incineration ash and a solidification aid containing calcium. ペーパースラッジ焼却灰とカルシウムを含む固化助剤とを水底堆積土に添加して造粒することを含む、水底堆積土から造粒物を製造する方法。   A method for producing a granulated product from bottom sediment, comprising adding paper sludge incinerated ash and a solidification aid containing calcium to the bottom sediment. ペーパースラッジ焼却灰が、CaO換算でカルシウムを20重量%以上含んでなる、請求項2に記載の方法。   The method according to claim 2, wherein the paper sludge incineration ash comprises 20% by weight or more of calcium in terms of CaO. カルシウムを含む固化助剤が、生石灰、硫酸カルシウムおよび水酸化カルシウムからなる群より選択される1つ以上である、請求項2または3に記載の方法。   The method according to claim 2 or 3, wherein the solidification aid containing calcium is one or more selected from the group consisting of quicklime, calcium sulfate, and calcium hydroxide. カルシウムを含む固化助剤の添加量が、水底堆積土とペーパースラッジ焼却灰の合計重量に対して3〜15重量%である、請求項2〜4のいずれか1項に記載の方法。   The method of any one of Claims 2-4 whose addition amount of the solidification adjuvant containing calcium is 3 to 15 weight% with respect to the total weight of bottom sediment soil and paper sludge incineration ash. ペーパースラッジ焼却灰の添加量が、水底堆積土の固形分重量に対して100〜400重量%である、請求項2〜5のいずれか1項に記載の方法。   The method of any one of Claims 2-5 that the addition amount of paper sludge incineration ash is 100 to 400 weight% with respect to the solid content weight of bottom sediment. 造粒物が、2mm以上の直径を有する粒子を40重量%以上含む、請求項2〜6のいずれか1項に記載の方法。   The method according to any one of claims 2 to 6, wherein the granulated product contains 40% by weight or more of particles having a diameter of 2 mm or more. 請求項2〜7のいずれか1項に記載の方法によって得られた造粒物を水中に投入することを含む、土壌改良方法。   The soil improvement method including throwing in the water the granulated material obtained by the method of any one of Claims 2-7.
JP2009158582A 2009-07-03 2009-07-03 Treatment method of bottom sediment Active JP5596942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158582A JP5596942B2 (en) 2009-07-03 2009-07-03 Treatment method of bottom sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158582A JP5596942B2 (en) 2009-07-03 2009-07-03 Treatment method of bottom sediment

Publications (2)

Publication Number Publication Date
JP2011012202A true JP2011012202A (en) 2011-01-20
JP5596942B2 JP5596942B2 (en) 2014-09-24

Family

ID=43591409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158582A Active JP5596942B2 (en) 2009-07-03 2009-07-03 Treatment method of bottom sediment

Country Status (1)

Country Link
JP (1) JP5596942B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241295A (en) * 2010-05-18 2011-12-01 Nippon Paper Industries Co Ltd Method for treating sea-bottom-deposited soil
JP2012193223A (en) * 2011-03-15 2012-10-11 Nippon Paper Industries Co Ltd Method for treating dredged sedimentary soil
JP2014006183A (en) * 2012-06-26 2014-01-16 Penta Ocean Construction Co Ltd Quality control method for admixture of dredged soil and steelmaking slag
US9384878B2 (en) 2013-10-04 2016-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic carbon and boron lithium borohydride complexes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053960A (en) * 1998-06-03 2000-02-22 Fujita Corp Material for improving ground
JP2002088362A (en) * 2000-09-14 2002-03-27 Sueo Wada Setting agent for soil
JP2003313553A (en) * 2002-04-18 2003-11-06 Kawai Sekkai Kogyo Kk Soil-stabilizing material and molded product made of soil
JP2004321036A (en) * 2003-04-23 2004-11-18 Yasukaze Katsuki Granular culture soil
JP2006241232A (en) * 2005-03-01 2006-09-14 Mino Namacon Kk Soil improving and solidifying material
JP2007167790A (en) * 2005-12-22 2007-07-05 Japan Science & Technology Agency Method for manufacturing bottom sediment-solidified material
JP2008086911A (en) * 2006-10-02 2008-04-17 Kurita Water Ind Ltd Civil engineering material and its manufacturing method
JP2008106088A (en) * 2006-10-23 2008-05-08 Anotsu Giken:Kk Powder solidifying material for soft mud soil and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000053960A (en) * 1998-06-03 2000-02-22 Fujita Corp Material for improving ground
JP2002088362A (en) * 2000-09-14 2002-03-27 Sueo Wada Setting agent for soil
JP2003313553A (en) * 2002-04-18 2003-11-06 Kawai Sekkai Kogyo Kk Soil-stabilizing material and molded product made of soil
JP2004321036A (en) * 2003-04-23 2004-11-18 Yasukaze Katsuki Granular culture soil
JP2006241232A (en) * 2005-03-01 2006-09-14 Mino Namacon Kk Soil improving and solidifying material
JP2007167790A (en) * 2005-12-22 2007-07-05 Japan Science & Technology Agency Method for manufacturing bottom sediment-solidified material
JP2008086911A (en) * 2006-10-02 2008-04-17 Kurita Water Ind Ltd Civil engineering material and its manufacturing method
JP2008106088A (en) * 2006-10-23 2008-05-08 Anotsu Giken:Kk Powder solidifying material for soft mud soil and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241295A (en) * 2010-05-18 2011-12-01 Nippon Paper Industries Co Ltd Method for treating sea-bottom-deposited soil
JP2012193223A (en) * 2011-03-15 2012-10-11 Nippon Paper Industries Co Ltd Method for treating dredged sedimentary soil
JP2014006183A (en) * 2012-06-26 2014-01-16 Penta Ocean Construction Co Ltd Quality control method for admixture of dredged soil and steelmaking slag
US9384878B2 (en) 2013-10-04 2016-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic carbon and boron lithium borohydride complexes

Also Published As

Publication number Publication date
JP5596942B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
CN101955345B (en) Neutral inorganic composite material for dehydration, solidification and modification of high water content sludge
CN101863601A (en) Flocculation curing agent, composition thereof and stabilization improvement method of silt type soil
JP5042589B2 (en) Powder solidifying material for soft mud soil and method for producing the same
KR100956593B1 (en) Manufacturing method of artificial soil by solidifying organic or inorganic sludge
JP5596942B2 (en) Treatment method of bottom sediment
JP5818469B2 (en) Treatment method of bottom sediment
JP2024045574A (en) Method for producing modified soil of high water content mud
CN107531573A (en) The cement composition of continuity of environment, it is used for the method for making dredging sediment/mud deactivation, correlation method and equipment for deactivation
JP2002001397A (en) Modifier and process for solidifying and neutralizing muddy material
KR101379095B1 (en) Method of manufacturing artificial stone
JP5896057B2 (en) Manufacturing method of artificial stone
JP5627283B2 (en) Treatment method of seabed sediment
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
JP2005334730A (en) Composition for sludge solidification and sludge solidification method
JP2001252694A (en) Underwater structure and bottom material/water quality cleaning method
WO2011136395A1 (en) Method for producing artificial stone material
KR101600747B1 (en) Composition for solidification of spoil or sludge, method for solidification of spoil or sludge using the same, and solid matter prepared therefrom
JP2005013973A (en) Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge
JP2004024204A (en) Method for improving environment in water or on beach and environment improving material
KR100955073B1 (en) Method for constructing fill ground using mixed composition of reclaimed coal ash and dredged ground
JPH0971777A (en) Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
Gutsalenko et al. Effects of GGBS on the solidification/stabilization of port sediments contaminated with heavy metals
JP2006325515A (en) Method for producing ocean block
JP2001121193A (en) Method for regenerating sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R150 Certificate of patent or registration of utility model

Ref document number: 5596942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250