JP2012193223A - Method for treating dredged sedimentary soil - Google Patents

Method for treating dredged sedimentary soil Download PDF

Info

Publication number
JP2012193223A
JP2012193223A JP2011056107A JP2011056107A JP2012193223A JP 2012193223 A JP2012193223 A JP 2012193223A JP 2011056107 A JP2011056107 A JP 2011056107A JP 2011056107 A JP2011056107 A JP 2011056107A JP 2012193223 A JP2012193223 A JP 2012193223A
Authority
JP
Japan
Prior art keywords
combustion ash
paper sludge
weight
ash
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011056107A
Other languages
Japanese (ja)
Other versions
JP5818469B2 (en
Inventor
Kazuo Terasawa
一雄 寺澤
Kiyoshi Takigawa
清 滝川
Daizo Fukuoka
大造 福岡
Yuji Ono
裕司 小野
Yuki Kawamata
友紀 川真田
Tatsuya Masuda
龍哉 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUOKA KENSETSU KK
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
FUKUOKA KENSETSU KK
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUOKA KENSETSU KK, Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical FUKUOKA KENSETSU KK
Priority to JP2011056107A priority Critical patent/JP5818469B2/en
Publication of JP2012193223A publication Critical patent/JP2012193223A/en
Application granted granted Critical
Publication of JP5818469B2 publication Critical patent/JP5818469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a technique for efficiently producing high strength granules with good stability from dredged sedimentary soil.SOLUTION: Granules can be efficiently produced from dredged sedimentary soil by using coal combustion ash together with paper sludge combustion ash and blast furnace cement. Since the granules have a moderate strength and grain size and maintain the strength in water, they can be suitably used for the application of a foundation improver as a drain material or the like.

Description

本発明は地盤改良技術、すなわち水底堆積土を利用したドレーン材などとしての地盤改良材およびその製造方法に関するものである。   The present invention relates to a ground improvement technique, that is, a ground improvement material as a drain material using water bottom sediment and a manufacturing method thereof.

汚泥やヘドロなどの軟泥、流出しやすい土壌、軟弱な地盤の土壌などを固化して、土壌流出を抑制するため、従来から、各種の固化剤を軟泥や汚泥に添加して処理することが行われている。その際の固化剤としては、無機系の土壌に対してはセメント系固化剤、糞尿汚泥などの有機系の汚泥に対しては石灰系の固化剤が一般に用いられる。   In order to solidify sludge, sludge, and other soft mud, soil that tends to flow out, and soil with soft ground to suppress soil outflow, various solidifying agents have been conventionally added to soft mud and sludge for treatment. It has been broken. As the solidifying agent at that time, a cement-based solidifying agent is generally used for inorganic soil, and a lime-based solidifying agent is generally used for organic sludge such as manure sludge.

しかし、セメント系固化剤は、セメントの水和硬化反応を利用して土壌を固化するものであり、セメントの硬化反応は有機物によって阻害されてしまう。そのため、水底から得られる浚渫土砂のような有機物を含有する処理対象に対してセメント系固化剤を用いることは有効でなく、十分な強度を有する固化物が得られない。また、石灰系固化剤は、固化処理後にアルカリが溶出する問題があり、環境保全の立場から、石灰系固化剤は、土壌の流出抑制や埋め立て、護岸などの用途に適するものではない。さらに、水底から得られる浚渫土砂は、海水などに由来する塩を多く含有し、水分含量が高いため、水底の堆積土砂に対しては一般的な土壌固化剤が有効でない場合も多い。   However, the cement-based solidifying agent solidifies the soil using the hydration hardening reaction of cement, and the hardening reaction of cement is inhibited by organic substances. Therefore, it is not effective to use a cement-based solidifying agent for a treatment target containing an organic substance such as dredged sand obtained from the bottom of the water, and a solidified product having sufficient strength cannot be obtained. Further, the lime-based solidifying agent has a problem that alkali is eluted after the solidification treatment, and from the viewpoint of environmental conservation, the lime-based solidifying agent is not suitable for uses such as soil outflow suppression, land reclamation, and revetment. Furthermore, dredged soil obtained from the bottom of the water contains a large amount of salt derived from seawater and has a high water content, and therefore, a general soil solidifying agent is often not effective for sediment at the bottom of the water.

そこで、水底の堆積土砂に適した固化技術を開発すべく、種々の検討が行われており、例えば、以下の技術が報告されている。すなわち、特許文献1〜6には、ポリビニルアルコールを用いて浚渫土砂を固化する技術が記載されている。また、特許文献7には、硫酸第1鉄を用いて海底質汚泥を固化する技術が記載されている。さらに、特許文献8には、浚渫土砂から魚礁ブロックを製造する技術が記載されている。特許文献9には、石炭灰を用いて浚渫土砂を固化する技術が記載されている。   Therefore, various studies have been conducted to develop a solidification technique suitable for sediments on the bottom of the water. For example, the following techniques have been reported. That is, Patent Documents 1 to 6 describe a technique for solidifying dredged sand using polyvinyl alcohol. Patent Document 7 describes a technique for solidifying seabed sludge using ferrous sulfate. Furthermore, Patent Document 8 describes a technique for manufacturing a fish reef block from dredged soil. Patent Document 9 describes a technique for solidifying dredged sand using coal ash.

特開2008−253163号公報JP 2008-253163 A 特開2007−167790号公報JP 2007-167790 A 特開2007−007587号公報JP 2007-007587 A 特開2006−325514号公報JP 2006-325514 A 特開2006−325515号公報JP 2006-325515 A 特開2005−131595号公報JP 2005-131595 A 特開2005−334730号公報JP 2005-334730 A 特開2008−182898号公報JP 2008-182898 A 特開2003−055952号公報JP 2003-059552 A

しかし、水底堆積土の固化に関する従来の技術は、特殊な処理や高価な処理剤が必要であったり、大量の処理剤を使用するため、技術的または経済的に実用的とはいえず、より優れた水底堆積土の処理方法を開発することが強く望まれていた。   However, the conventional technology related to the solidification of the bottom sediment is not technically or economically practical because it requires special treatment or expensive treatment agent, or uses a large amount of treatment agent. It was highly desired to develop an excellent method for treating bottom sediments.

そこで、本発明の課題は、水分含量の高い水底堆積土から簡便かつ経済的に造粒物を得る技術を提供することである。   Then, the subject of this invention is providing the technique which obtains a granulated material simply and economically from the bottom sediment with high moisture content.

本発明者は、上記課題を解決すべく鋭意研究し、石炭燃焼灰に固化助剤としてペーパースラッジ燃焼灰と高炉セメントを併用することによって水底堆積土を効率的に固化して造粒物が得られることを見出し、本発明を完成させるに至った。   The present inventor has intensively studied to solve the above-mentioned problems, and by using paper sludge combustion ash and blast furnace cement in combination with coal combustion ash as a solidification aid, the bottom sediment can be efficiently solidified to obtain a granulated product. As a result, the present invention has been completed.

1つの態様において本発明は、地盤改良材であり、特に、石炭燃焼灰とペーパースラッジ燃焼灰とを含んでなる水底堆積土用固化剤である。また別の態様において本発明は、造粒物の製造方法であり、特に、水底堆積土と石炭燃焼灰などから造粒物を製造する方法に関する。さらに別の態様において本発明は、地盤改良方法であり、特に、水底堆積土から石炭燃焼灰などを用いて製造した造粒物によって地盤の改良を行う方法に関する。   In one embodiment, the present invention is a ground improvement material, and in particular, a solidifying agent for bottom sediments comprising coal combustion ash and paper sludge combustion ash. In another aspect, the present invention relates to a method for producing a granulated material, and more particularly to a method for producing a granulated material from bottom sediment and coal combustion ash. In still another aspect, the present invention relates to a ground improvement method, and more particularly, to a method of improving the ground by using a granulated product produced from bottom sediment using a coal combustion ash or the like.

本発明は、以下に限定されるものでないが、下記の発明を包含する。
(1) 石炭燃焼灰、ペーパースラッジ燃焼灰および高炉セメントを含んでなる水底堆積土用固化剤。
(2) 石炭燃焼灰、ペーパースラッジ燃焼灰および高炉セメントを水底堆積土に添加して造粒することを含む、水底堆積土から造粒物を製造する方法であって、水底堆積土の固形分重量と石炭燃焼灰、およびペーパースラッジ燃焼灰との合計重量に対して高炉セメントを10〜15重量%添加する上記方法。
(3) ペーパースラッジ燃焼灰が、CaO換算でカルシウムを20重量%以上含んでなる、(2)に記載の方法。
(4) 石炭燃焼灰とペーパースラッジ燃焼灰との合計添加量が、水底堆積土の固形分重量に対して150重量%以上である、(2)または(3)に記載の方法。
(5) 造粒物が、2mm以上の直径を有する粒子を40重量%以上含む、(2)〜(4)のいずれか1項に記載の方法。
(6) (2)〜(5)のいずれか1項に記載の方法によって得られた造粒物を海水中に投入することを含む、地盤改良方法。
Although this invention is not limited to the following, the following invention is included.
(1) A solidifying agent for bottom sediment, comprising coal combustion ash, paper sludge combustion ash and blast furnace cement.
(2) A method for producing a granulated material from bottom sediment, including adding coal combustion ash, paper sludge combustion ash and blast furnace cement to the bottom sediment, and granulating the solid sediment of the bottom sediment The said method of adding 10-15 weight% of blast furnace cement with respect to the total weight of a weight, coal combustion ash, and paper sludge combustion ash.
(3) The method according to (2), wherein the paper sludge combustion ash comprises 20% by weight or more of calcium in terms of CaO.
(4) The method according to (2) or (3), wherein the total addition amount of the coal combustion ash and the paper sludge combustion ash is 150% by weight or more based on the solid weight of the bottom sediment.
(5) The method according to any one of (2) to (4), wherein the granulated product contains 40% by weight or more of particles having a diameter of 2 mm or more.
(6) The ground improvement method including throwing the granulated material obtained by the method of any one of (2)-(5) into seawater.

本発明によれば、水底堆積土から効率的に造粒物を得ることができる。また、本発明の造粒物はある程度の強度を備えており、ドレーン材またはコンパクション材に使用することができ、軟弱地盤の改善など、環境保全にも有用である。さらに本発明は、水底堆積土や石炭燃焼灰、ペーパースラッジ燃焼灰といった廃棄物を利用して造粒物を得るため、コスト的に極めて優れており、廃棄物削減という観点からも有利である。   According to the present invention, a granulated material can be efficiently obtained from bottom sediment. Further, the granulated product of the present invention has a certain level of strength, can be used as a drain material or a compaction material, and is useful for environmental conservation such as improvement of soft ground. Furthermore, since the present invention obtains a granulated material using waste such as bottom sediment, coal combustion ash, and paper sludge combustion ash, it is extremely excellent in cost and advantageous from the viewpoint of waste reduction.

図1は、実験例1で製造したサンプル1(比較例)と原料(灰、土砂)のX線回折チャートである。FIG. 1 is an X-ray diffraction chart of Sample 1 (Comparative Example) and raw materials (ash, earth and sand) manufactured in Experimental Example 1. 図2は、実験例1で製造したサンプル3(実施例)とサンプル1のX線回折チャートである。FIG. 2 is an X-ray diffraction chart of Sample 3 (Example) and Sample 1 manufactured in Experimental Example 1.

1つの態様において本発明は、石炭燃焼灰とペーパースラッジ燃焼灰、高炉セメントとを含んでなる水底堆積土用固化剤に関する。また別の態様において本発明は、石炭燃焼灰とペーパースラッジ燃焼灰、高炉セメントとを水底堆積土に添加して造粒することを含む、水底堆積土から造粒物を製造する方法に関する。本発明では、石炭燃焼灰とペーパースラッジ燃焼灰、高炉セメントを併用することによって、軟泥である水底堆積土から適度な強度を有する造粒物を得ることができる。   In one aspect, the present invention relates to a bottom sediment soil solidifying agent comprising coal combustion ash, paper sludge combustion ash, and blast furnace cement. In yet another aspect, the present invention relates to a method for producing a granulated material from bottom sediment, comprising adding coal combustion ash, paper sludge combustion ash, and blast furnace cement to the bottom sediment and granulating it. In this invention, the granulated material which has moderate intensity | strength can be obtained from the bottom sediment soil which is soft mud by using coal combustion ash, paper sludge combustion ash, and a blast furnace cement together.

水底堆積土
本発明は水底堆積土の造粒技術に関し、本発明において水底堆積土とは、海や湖、河川などの水底に堆積している土砂のことを指す。本発明は特に海底堆積土に好適に適応することができるが、海底堆積土には、いわゆる外海の海底堆積土だけでなく、港湾などの内海の海底堆積土も含まれ、また、湖であっても海水湖であればその海底堆積土も含まれる。本発明の技術は、水中などの現場でそのまま施工して水底堆積土を造粒してもよく、また、水底から浚渫した土砂に本発明を適用して造粒してもよい。本発明の海底堆積土は、海や港湾などの海水環境における海底堆積土であり、浚渫土砂とは、航路浚渫やヘドロ浄化などのために水底から浚渫される土砂をいう。一般に、浚渫土砂は、環境保全のために湖沼や湾内のヘドロを取り除く際や、航路に堆積した土砂を取り除く際に得られ、浸食された海岸などへ運搬されて、臨海部の埋め立てや護岸工事などに利用されることもある。
Water bottom sediment present invention relates to granulation technique Subaqueous soil, the water bottom sediment in the present invention refers to the sediment deposited on the bottom of the water such as sea or lakes, rivers. Although the present invention can be suitably applied particularly to seabed sediments, the seabed sediments include not only so-called seafloor sediments in the open sea but also seabed sediments in inland seas such as harbors, and are also lakes. Even if it is a saltwater lake, its bottom sediment is also included. The technique of the present invention may be applied as it is in the field such as underwater to granulate the bottom sediment, or may be granulated by applying the present invention to soil dredged from the bottom of the water. The seabed sediment of the present invention is a seabed sediment in a seawater environment such as the sea or a harbor, and dredged sand refers to the earth and sand dredged from the bottom of the sea for the purpose of route dredging and sludge purification. In general, dredged soil is obtained when removing sludge in lakes and bays for environmental conservation, or when removing sediment accumulated in the channel, and transported to eroded beaches for landfill and revetment work in coastal areas. It may be used for such purposes.

本発明において水底堆積土は、軟泥状態、脱水後のケーキ状態等どのような状態でも使用できる。好ましい態様において、石炭燃焼灰を用いて処理する際の水底堆積土の水分含量は10〜65重量%であり、より好ましくは30〜60重量%である。このような水分含量の水底堆積土であれば、水底堆積土の濃度が高いため効率的に固化物を得ることができ、また、適度な流動性を有するため輸送や造粒処理に好適である。   In the present invention, the bottom sediment can be used in any state such as a soft mud state or a cake state after dewatering. In a preferred embodiment, the water content of the bottom sediment when treated with coal-burning ash is 10 to 65% by weight, more preferably 30 to 60% by weight. If it is a bottom sediment with such a water content, the concentration of the bottom sediment is high, so that a solidified product can be obtained efficiently, and since it has an appropriate fluidity, it is suitable for transportation and granulation treatment. .

本発明の水底堆積土として浚渫土砂を用いる場合、公知の浚渫方法によって水底から得ることができ、例えば、グラブ浚渫やポンプ浚渫などによって浚渫土砂を得ることができる。ここで、グラブ浚渫とは、浚渫船などから吊されたグラブで水底の土砂を堀りあげることであり、小規模の浚渫に一般的に利用される。ポンプ浚渫とは、ポンプを用いて水底の土砂を堀りあげることをいい、連続的に土砂を吸引できることから、底泥を広く薄く浚渫でき(薄層浚渫)、大規模で均一な浚渫が可能である。本発明において、浚渫土砂を得るための浚渫方法は特に制限されず、例えば、水底のヘドロを浚渫する場合、ヘドロの堆積高は数十cm程度であるため、ヘドロが舞い上がることを抑制しつつ、ヘドロ層を薄層浚渫するような方法を選択すればよい。   When dredged soil is used as the bottom sediment in the present invention, it can be obtained from the bottom by a known dredging method. For example, dredged sand can be obtained by a grab dredge or a pump dredge. Here, the grab dredging is to dig up the bottom sediment with a grab suspended from a dredger or the like, and is generally used for small dredging. Pump dredging is the use of a pump to dig up the sediment at the bottom of the water. Since the sediment can be continuously sucked in, the mud can be dredged widely and thinly (thin layer dredging), enabling large-scale and uniform dredging. It is. In the present invention, the dredging method for obtaining dredged soil is not particularly limited, for example, when dredging sludge on the bottom of the water, while the accumulation height of sludge is about several tens of cm, while suppressing sludge soaring, A method for thinning the sludge layer may be selected.

石炭燃焼灰
本発明は石炭の燃焼灰を用いる。本発明で用いる石炭燃焼灰とは、石炭を燃焼させて得られる焼却残渣であり、シリカ(SiO)、アルミナ(Al)を主成分とする。
Coal combustion ash The present invention uses coal combustion ash. The coal combustion ash used in the present invention is an incineration residue obtained by burning coal, and mainly contains silica (SiO 2 ) and alumina (Al 2 O 3 ).

本発明における石炭燃焼灰の作用は、高炉セメントのようなアルカリまたはアルカリ土類を添加されると、石炭燃焼灰の主成分であるシリカとアルミナが微細粒子の状態で、かつ水分の存在下では、セメントの水和によって生成される水酸化カルシウム(Ca(OH))と徐々に反応して、カルシウムシリケート水和物(3CaO・2SiO・3HO)、カルシウムアルミネート(3CaO・Al・6HO)、エトリンガイト(3CaO・Al・3CaSO・32HO)などを生成することにより、水底堆積土を凝集・固化させるものと考えられる。 The action of coal combustion ash in the present invention is that when alkali or alkaline earth such as blast furnace cement is added, silica and alumina, which are the main components of coal combustion ash, are in the state of fine particles and in the presence of moisture. It reacts gradually with calcium hydroxide (Ca (OH) 2 ) produced by hydration of cement to produce calcium silicate hydrate (3CaO · 2SiO 2 · 3H 2 O), calcium aluminate (3CaO · Al 2 O 3 · 6H 2 O), by generating the like ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O), believed to agglomerate and solidifying the water bottom sediment.

本発明において石炭燃焼灰の添加量は、特に制限されないが、好ましい態様において、水底堆積土よりも多くの石炭燃焼灰を使用し、例えば、水底堆積土の固形分重量に対して100〜200重量%の石炭燃焼灰を添加することが好ましい。   In the present invention, the amount of coal combustion ash added is not particularly limited. However, in a preferred embodiment, more coal combustion ash is used than the bottom sediment, for example, 100 to 200 weight based on the solid weight of the bottom sediment. % Coal-burning ash is preferably added.

ペーパースラッジ燃焼灰
本発明はペーパースラッジの燃焼灰を用いる。本発明においてペーパースラッジ(PS:Paper Sludge)とは、製紙工程から回収される廃棄物をいい、例えば、古紙再生工程(DIP製造工程)、パルプ製造工程、紙製造工程などから発生するものを含む。したがって、ペーパースラッジは、パルプ繊維、填料や顔料に由来する無機物(カオリン、タルク、炭酸カルシウム等)、インキやインク、接着剤などを含んで構成される。燃焼灰の原料となるペーパースラッジとしては、カルシウム含量などの観点から、古紙再生工程から発生するペーパースラッジが特に好ましい。一般にペーパースラッジは、製紙工場などから大量に排出されるため、ペーパースラッジ燃焼灰は入手が容易である。そのため、本発明の水底堆積土用固化剤は、廃棄物削減、入手容易性、経済性などの観点から特に有利である。
Paper Sludge Combustion Ash The present invention uses paper sludge combustion ash. In the present invention, paper sludge (PS) refers to waste recovered from the papermaking process, and includes, for example, waste generated from a used paper recycling process (DIP manufacturing process), a pulp manufacturing process, a paper manufacturing process, and the like. . Accordingly, the paper sludge is configured to include pulp fibers, inorganic substances derived from fillers and pigments (kaolin, talc, calcium carbonate, etc.), inks, inks, adhesives, and the like. The paper sludge that is the raw material for the combustion ash is particularly preferably paper sludge generated from the used paper recycling process from the viewpoint of calcium content and the like. Generally, since paper sludge is discharged in large quantities from a paper mill or the like, paper sludge combustion ash is easily available. Therefore, the water bottom sedimentation solidifying agent of the present invention is particularly advantageous from the viewpoints of waste reduction, availability, economy, and the like.

本発明で用いるペーパースラッジ燃焼灰(PS灰)とは、ペーパースラッジを燃焼させて得られる焼却残渣であり、炭酸カルシウム、硅砂、タルク、カオリンなどに由来する無機物を主成分とする。本発明のペーパースラッジ焼却灰は、ペーパースラッジの焼却残渣であれば、集塵機などで捕捉されるフライアッシュ(飛灰)や炉底灰が含まれていてもよい。ペーパースラッジの燃焼は、例えば、700〜1500℃程度の温度で行うことができる。また、公知の焼却設備を用いてペーパースラッジを焼却することができ、具体的には流動床焼却炉などを挙げることができる。   Paper sludge combustion ash (PS ash) used in the present invention is an incineration residue obtained by burning paper sludge, and mainly contains inorganic substances derived from calcium carbonate, cinnabar, talc, kaolin and the like. The paper sludge incineration ash of the present invention may contain fly ash (fly ash) or furnace bottom ash captured by a dust collector or the like as long as it is an incineration residue of paper sludge. The combustion of the paper sludge can be performed at a temperature of about 700 to 1500 ° C., for example. Moreover, paper sludge can be incinerated using a well-known incinerator, Specifically, a fluidized bed incinerator etc. can be mentioned.

一般に、紙には、炭酸カルシウムなどのカルシウム分が顔料や填料として添加されるため、ペーパースラッジを原料とする燃焼灰は、塵芥の焼却灰や高炉スラグと比較して、カルシウム含量が高いという特徴を有する。本発明の好ましい態様において、本発明で用いるペーパースラッジ燃焼灰は、元素分析した場合、CaO換算でCaOの比率が20重量%以上であることが好ましく、30重量%以上であることがより好ましい。また、CaOの比率の上限は特に限定されないが、60重量%以下であることが一般的である。さらに、本発明で用いるペーパースラッジ燃焼灰は、アルミニウム分に対するカルシウム分の比率も比較的高く、AlとCaOの比率が1:0.5〜1:3程度であることが好ましく、1:1〜1:2.5程度であることがより好ましい。 In general, since calcium content such as calcium carbonate is added to paper as a pigment or filler, combustion ash made from paper sludge has a high calcium content compared to dust incineration ash and blast furnace slag. Have In a preferred embodiment of the present invention, when the paper sludge combustion ash used in the present invention is subjected to elemental analysis, the CaO ratio in terms of CaO is preferably 20% by weight or more, and more preferably 30% by weight or more. The upper limit of the CaO ratio is not particularly limited, but is generally 60% by weight or less. Furthermore, the paper sludge combustion ash used in the present invention also has a relatively high ratio of calcium to aluminum, and the ratio of Al 2 O 3 and CaO is preferably about 1: 0.5 to 1: 3. : It is more preferable that it is about 1-1: 2.5.

本発明におけるペーパースラッジ燃焼灰の作用は、水底堆積土のような高含水軟泥に添加されると、土砂中の水分と水和反応し、エトリンガイト(3CaO・Al・3CaSO・32HO)やケイ酸カルシウム水和物などを生成しながら、水底堆積土を凝集・固化させるものと考えられる。本発明においてペーパースラッジ燃焼灰を用いると水底堆積土から適度な強度を有する造粒物が得られる理由の詳細は明らかでないが、ペーパースラッジ燃焼灰に含まれるアルミニウムやカルシウムが水底堆積土中の水分と反応して自硬するのに適しているためだと考えられる。 Action of paper sludge ash in the present invention, when added to high water ooze like water bottom sediment, and water and the hydration reaction in soil, ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 It is considered that the bottom sediments are agglomerated and solidified while producing O) and calcium silicate hydrate. In the present invention, when paper sludge combustion ash is used, details of the reason why a granulated product having an appropriate strength can be obtained from the bottom sediment soil is not clear, but aluminum and calcium contained in the paper sludge combustion ash are water in the bottom sediment soil. This is thought to be because it is suitable for self-hardening by reacting with.

本発明においてペーパースラッジ燃焼灰の添加量は、特に制限されないが、好ましい態様において、水底堆積土よりも多くのペーパースラッジ燃焼灰を使用し、例えば、水底堆積土の固形分重量に対して100〜400重量%のペーパースラッジ焼却灰を添加することが好ましい。すなわち、水底堆積土に対してペーパースラッジ燃焼灰を多く配合すると、造粒物の強度が高くなり、長期的に安定な造粒物を得ることができる。   In the present invention, the amount of the paper sludge combustion ash added is not particularly limited, but in a preferred embodiment, more paper sludge combustion ash is used than the bottom sediment, for example, 100 to 100% of the solid weight of the bottom sediment. It is preferable to add 400% by weight of paper sludge incineration ash. That is, when a large amount of paper sludge combustion ash is added to the bottom sediment, the strength of the granulated product is increased, and a stable granulated product can be obtained in the long term.

また、石炭燃焼灰とペーパースラッジ燃焼灰の添加量の合計は、水底堆積土の固形分重量に対して150重量%以上とすることが好ましく、200重量%以上とすることがより好ましい。   The total amount of coal combustion ash and paper sludge combustion ash added is preferably 150% by weight or more, and more preferably 200% by weight or more, based on the solid weight of the bottom sediment.

固化助剤
また本発明は、水底堆積土から造粒物を得るために、石炭燃焼灰とペーパースラッジ燃焼灰とともに、固化助剤として高炉セメントを併用する。このような固化助剤を併用することによって、軟泥である水底堆積土から、高強度かつ長期的に安定な粒状の造粒物を得ることができる。本発明において用いる高炉セメントとは、ポルトランドセメントに高炉スラグ微粉を混合して製造されるセメントである。ここで、高炉スラグとは、溶鉱炉から銑鉄とともに約1500℃の溶融状態で取り出された後比重差により分離して得ることができ、冷却固化の方法により、徐冷スラグと水砕スラグに分けられる。徐冷スラグとは、溶融状態の高炉スラグがゆっくり冷却されて岩石状に固まった結晶質のスラグである。また水砕スラグとは、溶融状態から水によって一気に冷却されて製造される砂上の非晶質体(ガラス質)であり、アルカリ性溶液による刺激を受けると急激に水和反応を起こす潜在水硬性を有することや、軽量でかみ合わせがよいことなど、天然材料にはない性質を有しており、高炉セメント原料やコンクリート混和材などに用いられている。
The solidification aid or the present invention uses blast furnace cement as a solidification aid together with coal combustion ash and paper sludge combustion ash in order to obtain a granulated product from bottom sediment. By using such a solidification aid in combination, it is possible to obtain a granulated product having a high strength and a long-term stability from the bottom sediment that is soft mud. The blast furnace cement used in the present invention is a cement produced by mixing blast furnace slag fine powder with Portland cement. Here, the blast furnace slag can be obtained by being separated from the blast furnace together with pig iron in a molten state of about 1500 ° C. by a specific gravity difference, and can be divided into slowly cooled slag and granulated slag by cooling and solidifying methods. . The slow cooling slag is a crystalline slag that is slowly cooled and solidified into a rock shape after the molten blast furnace slag is cooled. Granulated slag is an amorphous material (glassy) on sand that is produced by cooling from water in a molten state at once, and has a latent hydraulic property that causes a hydration reaction when stimulated by an alkaline solution. It has properties that are not found in natural materials, such as having light weight and good engagement, and is used for blast furnace cement raw materials and concrete admixtures.

高炉セメントの添加量は、水底堆積土(固形分重量)と石炭燃焼灰、ペーパースラッジ燃焼灰の合計重量に対して5〜20重量%であることが好ましい。さらに、10〜15重量%であることがより好ましい。このような範囲であれば、強度が高く、ある程度の粒子径を有する造粒物を効率よく製造することができる。また、経済性等を考慮すると、高炉セメントの添加量は、水底堆積土(固形分重量)と石炭燃焼灰、ペーパースラッジ燃焼灰の合計重量に対して10〜15重量%であることがより好ましい。   The amount of blast furnace cement added is preferably 5 to 20% by weight based on the total weight of bottom sediment (solid weight), coal combustion ash, and paper sludge combustion ash. Furthermore, it is more preferable that it is 10 to 15 weight%. Within such a range, a granulated product having high strength and a certain particle size can be efficiently produced. In addition, in consideration of economy and the like, the addition amount of blast furnace cement is more preferably 10 to 15% by weight based on the total weight of bottom sediment (solid weight), coal combustion ash, and paper sludge combustion ash. .

本発明においては、水底堆積土に対して、石炭燃焼灰とペーパースラッジ燃焼灰、高炉セメントとを添加して造粒物を製造するが、水底堆積土と添加剤とが十分に混合されれば、添加の態様は特に制限されない。   In the present invention, coal combustion ash, paper sludge combustion ash, and blast furnace cement are added to the bottom sediment to produce a granulated product. If the bottom sediment and the additive are sufficiently mixed, The mode of addition is not particularly limited.

造粒物
本発明によって得られる造粒物とは、粒状であればその形状は限定されない。造粒物の粒径とは、直径を意味するが、長径、短径のある場合はその平均を指し、レーザー回折、顕微鏡観察等により決定することができる。本発明の造粒物は、2mm以上の直径を有する粒子を40重量%以上含むことが好ましい。このような造粒物は、ある程度の大きさを有するため、例えば海中で使用しても波にさらわれにくく、自然環境における土壌流出を抑制できるため、特に有用である。また、本発明の造粒物は、平均粒子径が1mm以上であることが好ましく、2mm以上であることがより好ましい。なお、造粒物の粒子径は、例えば、固化剤の添加量や造粒時間などによって適宜調整することができ、また、振動式や回転式などのふるい分け法などによって一定の粒子径を有する造粒物を得てもよい。
Granulated product The shape of the granulated product obtained by the present invention is not limited as long as it is granular. The particle size of the granulated product means a diameter, but when there is a major axis or a minor axis, it indicates the average and can be determined by laser diffraction, microscopic observation or the like. The granulated product of the present invention preferably contains 40% by weight or more of particles having a diameter of 2 mm or more. Such a granulated product is particularly useful because it has a certain size and is not easily exposed to waves even when used in the sea, for example, and can suppress soil runoff in the natural environment. The granulated product of the present invention preferably has an average particle diameter of 1 mm or more, more preferably 2 mm or more. The particle size of the granulated product can be adjusted as appropriate depending on, for example, the addition amount of the solidifying agent and the granulation time, and the granulated product has a fixed particle size by a sieving method such as a vibration type or a rotary type. Granules may be obtained.

造粒物を製造する際には、通常の造粒技術を用いることができる。造粒は、公知の方法により行うことができ、例えば、逆流式、転動方式、撹拌方式、押出方式、破砕方式などの造粒法を採用することができる。具体的な装置としては日本アイリッヒ社製のインテンシィブミキサー(逆流式)やKitchen Aid社製のスタンドミキサー(撹拌方式)などが挙げられる。水底堆積土への石炭燃焼灰などの混合と造粒を両方行うことができ、造粒物の多孔性や強度を調整しやすい点で、逆流式ミキサーや撹拌方式のミキサーを好適に利用することができる。造粒時間に特に制限はなく、造粒時間を長くすると造粒物の粒子径が大きくなる傾向があるが、一定の大きさ以上には成長しない。撹拌方式のミキサーを用いる場合、造粒時間は、好ましくは1〜5分、より好ましくは2〜4分である。   When manufacturing a granulated material, a normal granulation technique can be used. The granulation can be performed by a known method, and for example, a granulation method such as a reverse flow method, a rolling method, a stirring method, an extrusion method, or a crushing method can be employed. Specific examples of the apparatus include an intensive mixer (reverse flow type) manufactured by Japan Eirich, and a stand mixer (stirring system) manufactured by Kitchen Aid. It is possible to mix and granulate coal-burning ash, etc. to the bottom sediment, and to use the reverse flow mixer and the mixer of the agitation method in terms of easy adjustment of the porosity and strength of the granulated material. Can do. There is no restriction | limiting in particular in granulation time, When the granulation time is lengthened, there exists a tendency for the particle diameter of a granulated material to become large, but it does not grow more than fixed size. In the case of using a stirring type mixer, the granulation time is preferably 1 to 5 minutes, more preferably 2 to 4 minutes.

このようにして得られた造粒物は、海、港湾などにおいて、造成、埋め立て、地盤改良などの用途に好適に使用することができる。本発明の造粒物は、海水中における強度が十分であるため、海底堆積土を固化・造粒した造粒物を再び海水中において用いる場合に特に好適である。また、ある程度の強度を有し、粒径をコントロールできるためサンドコンパクションパイル工法のドレーン材に適している。以上の点から、本発明で得られる造粒物は地盤改良材に適している。   The granulated product thus obtained can be suitably used for applications such as creation, land reclamation, and ground improvement in the sea, harbor, and the like. Since the granulated product of the present invention has sufficient strength in seawater, it is particularly suitable when the granulated product obtained by solidifying and granulating the seabed sediment is used again in seawater. In addition, it has a certain level of strength and can control the particle size, so it is suitable as a drain material for the sand compaction pile method. From the above points, the granulated product obtained by the present invention is suitable for the ground improvement material.

以下、本発明の実施例を挙げつつ、本発明の内容を詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、本明細書において、部および%などは特に記載がない場合、重量基準であり、数値範囲はその端点を含むものとして記載される。   Hereinafter, the content of the present invention will be described in detail with reference to examples of the present invention, but the present invention is not limited to the following examples. In the present specification, unless otherwise specified, parts and% are based on weight, and numerical ranges are described as including the end points.

実験例1:高炉セメントの使用
(1)海底堆積土
海底堆積土として、熊本県八代市八代港の海底から得た浚渫土砂を用いた。後述する固化剤と混合する際の浚渫土砂の水分含量は3重量%(固形分97%)であった。
(2)石炭燃焼灰
石炭を燃焼して得られる焼却残渣(燃焼灰)を用いた。
(3)ペーパースラッジ燃焼灰(PS燃焼灰)
製紙工場のパルプ製造工程や抄紙工程から回収されたペーパースラッジを焼却して得られる焼却残渣(燃焼灰)を用いた。ペーパースラッジの焼却は、流動床焼却炉にて800〜900℃で行った。
(4)海底堆積土の造粒処理
上記浚渫土砂160gに対し、石炭燃焼灰200g、ペーパースラッジ燃焼灰(PS灰)40g、水150gを添加して混合物の水分を37.5%とし、スタンドミキサー(KSM50P、Kitchen Aid社製)を用いて5分間処理することによって造粒物を製造した(表1:サンプル1)。また、表1に示すように高炉セメントを用いた造粒物(サンプル2、3)も製造した。
Experimental Example 1: Use of Blast Furnace Cement (1) Seabed sediment The dredged sand obtained from the seabed of Yatsushiro Port, Yatsushiro City, Kumamoto Prefecture was used as the seabed sediment. The moisture content of the dredged sand when mixed with the solidifying agent described later was 3% by weight (solid content 97%).
(2) Coal combustion ash Incineration residue (combustion ash) obtained by burning coal was used.
(3) Paper sludge combustion ash (PS combustion ash)
The incineration residue (combustion ash) obtained by incinerating paper sludge collected from the pulp manufacturing process and papermaking process of a paper mill was used. Paper sludge was incinerated at 800 to 900 ° C. in a fluidized bed incinerator.
(4) Granulation treatment of seabed sedimentary soil To the above-mentioned dredged soil 160g, coal combustion ash 200g, paper sludge combustion ash (PS ash) 40g and water 150g are added to make the water content of the mixture 37.5%, stand mixer (KSM50P, manufactured by Kitchen Aid) was used for 5 minutes to produce a granulated product (Table 1: Sample 1). Further, as shown in Table 1, granulated materials (samples 2 and 3) using blast furnace cement were also produced.

造粒物の圧縮強度を、リングクラッシュ試験機(日本TMC製)を用いて圧縮板の下降速度12.5mm/minという条件にて、造粒物を破壊するために要する力を測定した。圧縮強度の測定は粒径が2mmである造粒物を用いて行った。   The compression strength of the granulated product was measured using a ring crush tester (manufactured by Nippon TMC) under the condition that the compression plate descended at a rate of 12.5 mm / min. The compression strength was measured using a granulated product having a particle size of 2 mm.

Figure 2012193223
一般に、高炉セメントは、有機物によって効果反応を阻害されるセメント系固化剤であるため、浚渫土砂のように有機物を含む処理対象には不向きであるとされる。しかし、表1に示したように、固化助剤として高炉セメントを添加したサンプル2,3(実施例)は、高炉セメントを添加しないサンプル1(比較例)と比べて造粒物の圧縮強度が格段に向上し、高炉セメントの配合部数を多くすることでさらに造粒物の強度が向上した。
Figure 2012193223
In general, since blast furnace cement is a cement-based solidifying agent whose effective reaction is inhibited by organic matter, it is considered unsuitable for processing objects containing organic matter such as dredged soil. However, as shown in Table 1, Samples 2 and 3 (Example) to which blast furnace cement was added as a solidification aid had a compressive strength of the granulated product compared to Sample 1 (Comparative Example) to which blast furnace cement was not added. The strength of the granulated product was further improved by increasing the number of blended parts of blast furnace cement.

また、サンプル1(比較例)と原料(灰、土砂)のX線回折チャートを図1,サンプル3(実施例)とサンプル1のX線回折チャートを図2に示す。これらより、原料に含まれる緑泥石等の鉱物が、造粒によって硬化に寄与する物質に変化したということが推測される。   Moreover, the X-ray-diffraction chart of the sample 1 (comparative example) and a raw material (ash, earth and sand) is shown in FIG. 1, the sample 3 (Example) and the X-ray-diffraction chart of the sample 1 are shown in FIG. From these, it is presumed that minerals such as chlorite contained in the raw material have changed to substances that contribute to hardening by granulation.

実験例2:石膏の使用
浚渫土砂160gに対し、石炭燃焼灰200g、ペーパースラッジ燃焼灰(PS灰)40g、生石灰40g、水150gを添加して造粒物を製造した(表2:サンプル4)。また、表2に示すように異なる石膏を用いた造粒物(サンプル5,6)も製造した。
Experimental Example 2: Use of gypsum A granulated product was produced by adding 200 g of coal combustion ash, 40 g of paper sludge combustion ash (PS ash), 40 g of quick lime, and 150 g of water to 160 g of dredged sand (Table 2: Sample 4). . In addition, as shown in Table 2, granules (samples 5 and 6) using different gypsum were also produced.

一般に、生石灰や石膏などの石灰系固化剤は、有機系の汚泥などに対する固化剤として用いられている。しかし、表2に示したように、これらを添加しても高炉セメントを同量添加したときに比べて造粒物の圧縮強度が向上しなかった。また、固化助剤として生石灰を添加したサンプル4は、固化助剤を添加しないサンプル1と比べて圧縮強度が減少した。   Generally, lime-based solidifying agents such as quick lime and gypsum are used as solidifying agents for organic sludge and the like. However, as shown in Table 2, even when these were added, the compressive strength of the granulated material was not improved as compared with the case where the same amount of blast furnace cement was added. Sample 4 to which quick lime was added as a solidification aid had a reduced compressive strength compared to sample 1 to which no solidification aid was added.

Figure 2012193223
実験例3
石炭燃焼灰、高炉セメントおよびペーパースラッジ燃焼灰の添加量を表3のように変化させた以外は、実験例1と同様にして造粒物を製造した(サンプル7〜11)。
Figure 2012193223
Experimental example 3
Granules were produced in the same manner as in Experimental Example 1 except that the addition amounts of coal combustion ash, blast furnace cement, and paper sludge combustion ash were changed as shown in Table 3 (Samples 7 to 11).

表3に示したように、ペーパースラッジ燃焼灰の添加量を増やすことで造粒物の圧縮強度が向上したものの、ペーパースラッジ燃焼灰と高炉セメントを併用した場合と比べると造粒物の強度は低かった。   As shown in Table 3, although the compressive strength of the granulated product was improved by increasing the amount of paper sludge combustion ash added, the strength of the granulated product compared to the case where paper sludge combustion ash and blast furnace cement were used together was It was low.

Figure 2012193223
実験例4
実験例1・2と同様にして造粒物を作製した。得られた造粒物を海水に浸漬させ、海水浸漬前と浸漬後の造粒物の圧縮強度を測定した。海水への浸漬は、50mlビーカー中に造粒物10gと海水40mlを入れ、2日間経過後サンプルを取出すことにより行った。圧縮強度は実施例1と同様に測定した。
Figure 2012193223
Experimental Example 4
A granulated material was produced in the same manner as in Experimental Examples 1 and 2. The obtained granulated product was immersed in seawater, and the compressive strength of the granulated product before and after immersion in seawater was measured. The immersion in seawater was performed by putting 10 g of the granulated product and 40 ml of seawater in a 50 ml beaker and taking out the sample after two days. The compressive strength was measured in the same manner as in Example 1.

これらの結果をまとめて表4に示す。表4から、本発明によって得られた造粒物(サンプル2・3)を海水に浸漬することで、サンプルの圧縮強度が大きく向上することが明らかである。よって、本発明の造粒物は海水中に投入してドレーン材に使用するのに好適である。   These results are summarized in Table 4. From Table 4, it is clear that the compression strength of the sample is greatly improved by immersing the granulated product (samples 2 and 3) obtained by the present invention in seawater. Therefore, the granulated product of the present invention is suitable for use in a drain material after being poured into seawater.

Figure 2012193223
Figure 2012193223

Claims (6)

石炭燃焼灰、ペーパースラッジ燃焼灰および高炉セメントを含んでなる水底堆積土用固化剤。   A solidifying agent for bottom sediments comprising coal-burning ash, paper sludge combustion ash and blast furnace cement. 石炭燃焼灰、ペーパースラッジ燃焼灰および高炉セメントを水底堆積土に添加して造粒することを含む、水底堆積土から造粒物を製造する方法であって、水底堆積土の固形分重量と石炭燃焼灰、ペーパースラッジ燃焼灰との合計重量に対して高炉セメントを5〜20重量%添加する上記方法。   A method for producing a granulated material from bottom sediment, comprising adding coal combustion ash, paper sludge combustion ash and blast furnace cement to the bottom sediment, and granulating the solid sediment weight and coal The said method of adding 5-20 weight% of blast furnace cement with respect to the total weight with combustion ash and paper sludge combustion ash. ペーパースラッジ燃焼灰が、CaO換算でカルシウムを20重量%以上含んでなる、請求項2に記載の方法。   The method according to claim 2, wherein the paper sludge combustion ash comprises 20% by weight or more of calcium in terms of CaO. 石炭燃焼灰とペーパースラッジ燃焼灰の添加量の合計が、水底堆積土の固形分重量に対して150重量%以上である、請求項2または3に記載の方法。   The method of Claim 2 or 3 that the sum total of the addition amount of coal combustion ash and paper sludge combustion ash is 150 weight% or more with respect to the solid content weight of bottom sediment. 造粒物が、2mm以上の直径を有する粒子を40重量%以上含む、請求項2〜4のいずれか1項に記載の方法。   The method according to any one of claims 2 to 4, wherein the granulated product contains 40% by weight or more of particles having a diameter of 2 mm or more. 請求項2〜5のいずれか1項に記載の方法によって得られた造粒物を海水中に投入することを含む、地盤改良方法。   The ground improvement method including throwing in the seawater the granulated material obtained by the method of any one of Claims 2-5.
JP2011056107A 2011-03-15 2011-03-15 Treatment method of bottom sediment Active JP5818469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056107A JP5818469B2 (en) 2011-03-15 2011-03-15 Treatment method of bottom sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056107A JP5818469B2 (en) 2011-03-15 2011-03-15 Treatment method of bottom sediment

Publications (2)

Publication Number Publication Date
JP2012193223A true JP2012193223A (en) 2012-10-11
JP5818469B2 JP5818469B2 (en) 2015-11-18

Family

ID=47085454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056107A Active JP5818469B2 (en) 2011-03-15 2011-03-15 Treatment method of bottom sediment

Country Status (1)

Country Link
JP (1) JP5818469B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452024A (en) * 2013-08-20 2013-12-18 重庆大学 Red clay roadbed solidified by industrial solid wastes
JP2016175030A (en) * 2015-03-20 2016-10-06 三菱製紙株式会社 Ash granulated solidified body
JP2021116211A (en) * 2020-01-28 2021-08-10 住友大阪セメント株式会社 Mortar or concrete for marine product, and method of producing mortar or concrete for marine product
CN114960610A (en) * 2022-04-25 2022-08-30 三明学院 Composite foundation of single-component geopolymer reinforced soil body and construction method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145662A (en) * 1992-11-05 1994-05-27 Nippon Chem Ind Co Ltd Ground grouting agent and its grouting execution method
JP2005131595A (en) * 2003-10-31 2005-05-26 Japan Vam & Poval Co Ltd Sludge solidifying composition and sludge solidifying method
JP2006241232A (en) * 2005-03-01 2006-09-14 Mino Namacon Kk Soil improving and solidifying material
JP2008106088A (en) * 2006-10-23 2008-05-08 Anotsu Giken:Kk Powder solidifying material for soft mud soil and method for producing the same
JP2011012202A (en) * 2009-07-03 2011-01-20 Nippon Paper Industries Co Ltd Method for treating sedimented soil at bottom of water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145662A (en) * 1992-11-05 1994-05-27 Nippon Chem Ind Co Ltd Ground grouting agent and its grouting execution method
JP2005131595A (en) * 2003-10-31 2005-05-26 Japan Vam & Poval Co Ltd Sludge solidifying composition and sludge solidifying method
JP2006241232A (en) * 2005-03-01 2006-09-14 Mino Namacon Kk Soil improving and solidifying material
JP2008106088A (en) * 2006-10-23 2008-05-08 Anotsu Giken:Kk Powder solidifying material for soft mud soil and method for producing the same
JP2011012202A (en) * 2009-07-03 2011-01-20 Nippon Paper Industries Co Ltd Method for treating sedimented soil at bottom of water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103452024A (en) * 2013-08-20 2013-12-18 重庆大学 Red clay roadbed solidified by industrial solid wastes
CN103452024B (en) * 2013-08-20 2015-06-10 重庆大学 Red clay roadbed solidified by industrial solid wastes
JP2016175030A (en) * 2015-03-20 2016-10-06 三菱製紙株式会社 Ash granulated solidified body
JP2021116211A (en) * 2020-01-28 2021-08-10 住友大阪セメント株式会社 Mortar or concrete for marine product, and method of producing mortar or concrete for marine product
JP7402700B2 (en) 2020-01-28 2023-12-21 住友大阪セメント株式会社 Mortar or concrete for marine products and method for producing mortar or concrete for marine products
CN114960610A (en) * 2022-04-25 2022-08-30 三明学院 Composite foundation of single-component geopolymer reinforced soil body and construction method thereof
CN114960610B (en) * 2022-04-25 2024-03-26 三明学院 Composite foundation for reinforcing soil body by monocomponent geopolymer and construction method thereof

Also Published As

Publication number Publication date
JP5818469B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
CN101863601A (en) Flocculation curing agent, composition thereof and stabilization improvement method of silt type soil
JP2007516922A (en) Porous granular material for fluid treatment, cementitious composition and method for producing them
JP5042589B2 (en) Powder solidifying material for soft mud soil and method for producing the same
JP5818469B2 (en) Treatment method of bottom sediment
JP2008263928A (en) Dredged soil block for installing beach bedrock
JP5596942B2 (en) Treatment method of bottom sediment
CN107531573A (en) The cement composition of continuity of environment, it is used for the method for making dredging sediment/mud deactivation, correlation method and equipment for deactivation
JP2024045574A (en) Method for producing modified soil of high water content mud
CN111170663A (en) Sea mud curing agent
JP2800063B2 (en) Sludge solidification material
JP2000157094A (en) Stone material for sinking and disposing in water and its production
JP2002238401A (en) Method for improving underwater environment
JP5627283B2 (en) Treatment method of seabed sediment
JP2002137950A (en) Cement-based solidifier
JPH07265688A (en) Method for fixing co2
KR20130026438A (en) Method for producing artificial stone material
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
JP2005240544A (en) Method of developing shallows and the like
KR100374189B1 (en) The manufacturing method for soil stabilization
JP4751181B2 (en) Sand-capping method
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
JP2004024204A (en) Method for improving environment in water or on beach and environment improving material
Gutsalenko et al. Effects of GGBS on the solidification/stabilization of port sediments contaminated with heavy metals
KR100955073B1 (en) Method for constructing fill ground using mixed composition of reclaimed coal ash and dredged ground
JP2002294232A (en) Cement/lime-based solidifying material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350