KR100374189B1 - The manufacturing method for soil stabilization - Google Patents

The manufacturing method for soil stabilization Download PDF

Info

Publication number
KR100374189B1
KR100374189B1 KR10-2000-0079112A KR20000079112A KR100374189B1 KR 100374189 B1 KR100374189 B1 KR 100374189B1 KR 20000079112 A KR20000079112 A KR 20000079112A KR 100374189 B1 KR100374189 B1 KR 100374189B1
Authority
KR
South Korea
Prior art keywords
weight
parts
soil
cement
solidified
Prior art date
Application number
KR10-2000-0079112A
Other languages
Korean (ko)
Other versions
KR20020049817A (en
Inventor
홍성윤
Original Assignee
한일시멘트 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한일시멘트 (주) filed Critical 한일시멘트 (주)
Priority to KR10-2000-0079112A priority Critical patent/KR100374189B1/en
Publication of KR20020049817A publication Critical patent/KR20020049817A/en
Application granted granted Critical
Publication of KR100374189B1 publication Critical patent/KR100374189B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only
    • C09K17/06Calcium compounds, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

토질안정처리재의 제조방법에 있어서, 고로수재슬래그가 80 내지 90 중량부, 시멘트 소성과정중에 발생한 집진더스트 10 내지 20 중량부로 이루어진 조성물에 칼슘설포알루미네이트 3 내지 10 중량부, 무수석고 3 내지 10중량부를 첨가한 것을 기본조성물로 하고 여기에 염화칼슘, 수산화나트륨, 탄산나트륨, 황산나트륨에서 선택된 화합물중 하나이상의 알칼리 염을 1내지 3 중량부를 첨가하여 제조함을 특징으로 하는 토질안정처리재의 제조방법에 관한 것이다.In the method for producing a soil stabilizer, 3 to 10 parts by weight of calcium sulfoaluminate and 3 to 10 parts by weight of sulphate aluminate in a composition consisting of 80 to 90 parts by weight of blast furnace slag, 10 to 20 parts by weight of dust collection dust generated during the cement firing process It is related to the method for producing a soil stabilizer, characterized in that the addition of 1 to 3 parts by weight of an alkali salt of at least one compound selected from calcium chloride, sodium hydroxide, sodium carbonate, sodium sulfate is added to the base composition.

Description

토질안정 처리재의 제조방법 {The manufacturing method for soil stabilization}The manufacturing method for soil stabilization

본 발명은 해안매립지, 항만, 연약지반 등 취약한 토양을 안정화시키는 시멘트계 토질안정처리재의 제조방법에 관한 것으로서, 더욱 상세하게는 고로수재슬래그, 집진더스트, 칼슘설포알루미네이트, 무수석고, 염화칼슘, 수산화나트륨, 탄산나트륨, 황산나트륨 등의 알칼리 염으로 조성된 토양안정처리재의 제조방법에 관한 것이다.The present invention relates to a method for producing a cement-based soil stabilization material for stabilizing fragile soils such as coastal landfills, harbors, soft ground, more specifically blast furnace slag, dust collection, calcium sulfoaluminate, anhydrous gypsum, calcium chloride, sodium hydroxide The present invention relates to a process for preparing a soil stabilizing material composed of alkali salts such as sodium carbonate and sodium sulfate.

일반적으로 고화재를 사용하여 토질을 안정화시키고자 할 때 고려되어야 할 인자는 매우 다양하고 복잡하며 대상토질의 전반적인 평가를 통하여 고화재를 선정하는 것이 중요하며 고화재는 이들 토질의 상황에 맞는 물성과 요구조건을 만족시켜 주어야 한다. 고화재가 지녀야 할 기본적인 특성은 고화된 후의 고화체의 입도분포, 강도특성, 다짐특성 및 투수성 등이 있으며 이들 외에 함수비의 적절한 조절능력, 유기물 존재하에서의 적절한 경화속도 조절능력, 그리고 중금속 등 유해성분의 고정능력 등이 필수적인 물성조건으로 포함된다.In general, the factors to be considered when stabilizing soil using solid fire are very diverse and complex, and it is important to select solid waste through the overall evaluation of the soil. The requirements must be met. The basic characteristics of solidified materials include particle size distribution, strength characteristics, compaction characteristics, and permeability of the solidified body after solidification.In addition, the proper control of water content, proper curing rate in the presence of organic matter, and harmful components such as heavy metals Fixed capacity is included as an essential property condition.

고화재가 보통 수분이 많은 토질의 고결화에 필요한 재료라면 토질과 고화재의 화학반응(여기서는 주로 시멘트계 재료의 수화반응)을 통한 자유수분의 결정수로의 전환과정이 필요하며 이러한 과정을 통하여 고화재는 안정적으로 대상토양을 안정화 시킨다. 이 과정에서 필수적으로 요구되는 화학반응생성물은 에트린가이트(3CaO·Al2O3·3CaSO4·32H2O)로서 32분자에 달하는 결합수가 반응초기 지속적으로 자유수분을 감소시킴으로 인해 함수율을 저하시키고 개개 고화재 입자 및 토질류를 결속시켜(interlocking) 분리되지 아니하고 고화작용을 용이하게 하여준다. 에트린가이트는 시멘트 중의 CaO, Al2O3성분과 석고의 SO3성분이 액상중에서 용해석출과정을 통하여 생성되는 수화물로서 실질적으로는 보통포틀랜드시멘트가 주재료가 되는 고화재 시스템에서는 해안지대 등의 함수율이 높은 연약지반을 효과적으로 응집시켜 고화하기에는 에트린가이트의 생성속도 및 생성량이 부족하다. 그 이유는 보통포틀랜드시멘트 중의 C3A가 에트린가이트로 전이되기 위한 수화과정이 1차적으로 빠르게 이루어지지 않고 C3A의 일부는 다른 수화물 즉 하이드로가넷(3CaO·Al2O3·6H2O) 및 AFm (4CaO·Al2O3·14H2O)으로 분산하여 전이 되기 때문이다. 또한 생성되는 에트린가이트가 일률적으로 수용액상에서 미세한 핵생성 및 석출과정을 통하여 고르게 분포되지 않기 때문에 보통포틀랜드시멘트 외에 에트린가이트의 생성을 유도하는 다른 수단으로서의 조성물 선택이 요구된다.If solidified materials are usually required for the solidification of soils with high moisture content, conversion of free moisture to crystallized water through chemical reaction of soil and solidified materials (here, mainly hydration of cement-based materials) is required. Stability stabilizes the target soil. The chemical reaction product required in this process is ethringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O), which reduces the water content due to the continuous decrease of free moisture in the initial stage of the reaction. Individual solidifying particles and soils are interlocked to facilitate solidification without separation. Et Lin gayiteu is substantially normal moisture content, such as in a fire system is Portland cement which is a main material coastal areas as a hydrate CaO, Al 2 O 3 component in the cement and the SO 3 component of the gypsum is being produced by a dissolution precipitation process in a liquid phase In order to effectively aggregate and solidify this high soft ground, the production rate and amount of ethringite are insufficient. The reason for this is that the hydration process for transferring C 3 A to ethringite is usually not fast, and some of C 3 A is hydrated (3CaOAl 2 O 3 · 6H 2 O). And AFm (4CaO.Al 2 O 3 .14H 2 O) to disperse and transition. In addition, since the resulting ettringite is not uniformly distributed through the process of fine nucleation and precipitation in the aqueous solution uniformly, selection of the composition as another means for inducing the production of ethringite in addition to the ordinary portland cement is required.

일반적으로 토질은 많은 유기물질을 포함하고 있으며 이러한 물질은 시멘트계 재료의 초기수화반응을 억제하는 역할을 한다. 실제로 이러한 유기물의 존재때문에 수화반응에 의한 고화재의 고결작용이 제대로 이루어지지 않아 미세구조조직 발달에 악영향을 미치게 된다. 따라서 이 경우 고화재는 유기물질에 의한 영향을 받지 않고 정상적인 수화반응을 통하여 고화재를 형성할 수 있는 수화촉진 수단이 필요하다.In general, the soil contains many organic substances, and these substances serve to inhibit the initial hydration of cement-based materials. Indeed, due to the presence of such organic matter, solidification of the solidified material by the hydration reaction is not properly performed, which adversely affects the development of the microstructure. Therefore, in this case, the solidified material needs a hydration promoting means capable of forming the solidified material through a normal hydration reaction without being affected by organic substances.

통상적으로 이러한 상황하에서 수화촉진을 이루기 위해서는 염화칼슘, 수산화나트륨, 탄산나트륨, 황산나트륨 등의 알칼리 염이 필요하며 이들의 역할은 유기물피막을 제거하고 시멘트계 재료의 수화반응이온종의 용해현상을 촉진하여 수화를 진행시킨다.Generally, in order to achieve hydration promotion under such circumstances, alkali salts such as calcium chloride, sodium hydroxide, sodium carbonate and sodium sulfate are required, and their role is to remove the organic coating and promote hydration of hydration species of cement-based materials. Let's do it.

고화재 조성물을 고려할 때 주의해야 할 다른 요인은 화학적 기능을 부여하는 것이다. 시멘트계의 수화물은 그 수화생성물 중 Ca(OH)2및 C-S-H의 생성으로 인해 그 시스템을 pH 12 이상으로 유지할 수 있다. pH 값이 12 이상으로 유지된다는 의미는 각종 미생물의 번식이나 중금속의 억제기능을 부여한다는 의미이며 전형적인 예가 고알칼리 분위기에서의 불용성 수산화물의 석출에 의한 중금속이온의 고화를 들 수 있다.Another factor to be aware of when considering solidifying compositions is to impart chemical functions. Cement-based hydrates can maintain the system above pH 12 due to the production of Ca (OH) 2 and CSH in the hydration product. The fact that the pH value is maintained at 12 or more means that the growth of various microorganisms and the inhibition of heavy metals are imparted. Typical examples include solidification of heavy metal ions due to precipitation of insoluble hydroxides in a high alkali atmosphere.

나노미터스케일의 C-S-H의 생성도 중금속 이온의 고화작용에 중요한 역할을 하는데 보통 높은 비표면적에 의한 흡착기능, 격자내 이온간 치환기능 등을 들 수 있다. 이때 중요한 것은 생성된 C-S-H의 Ca/Si 의 몰비가 낮은 수준으로 유지되는 것이 중요하며 통상 1.5 이하의 값이 요구된다. 이는 낮은 몰비의 C-S-H의 미세구조가 더욱 치밀하며 이온의 흡착기능을 효과적으로 부여할 수 있기 때문이다. 통상 보통 포틀랜드시멘트로부터 생성된 C-S-H는 그 Ca/Si 몰비가 평균 1.8 수준으로서 이러한 의미를 감안할 때 효과적인 화학기능을 부여하기 힘들다.The production of C-S-H on the nanometer scale also plays an important role in the solidification of heavy metal ions. The adsorption function by the high specific surface area and the inter-ion substitution function in the lattice are usually mentioned. At this time, it is important that the molar ratio of Ca / Si of the produced C-S-H is kept at a low level, and a value of 1.5 or less is usually required. This is because the low molar ratio of C-S-H microstructure is more dense and can effectively impart ions adsorption. Normally, C-S-H, which is usually produced from portland cement, has an average molar ratio of 1.8, which makes it difficult to give effective chemical function.

고화재료의 중금속이온 고화에서 고려되어야 할 또 한가지의 중요한 인자는 고화재시스템이 갖는 산화환원포텐셜(Redox potential: Eh)의 수치이다. 보통 포틀랜드시멘트가 갖는 Eh값은 평균 100 정도이지만 고로수재슬래그의 경우는 그 값이 평균 -400 수준을 유지하여 매우 큰 환원성을 갖게 된다. 환원성이 크다는 뜻은 중금속 이온이 시스템내에서 그 이온종의 특성이 변환되는 것을 의미하며 이에 따라 용해도 등의 중요한 특성이 변화되는 것을 의미한다. 예를 들어 6가크롬은 슬래그가 다량 포함된 시멘트시스템에서는 3가크롬으로 수일내 전이하여 안정화되는 반면 보통 포틀랜드시멘트로는 이러한 전이의 발생이 일어나지 않으므로 수분의 이동에 의한 지하수의 오염 등 부작용을 초래할 수 있다.Another important factor to be considered in the solidification of heavy metal ions in solidified materials is the value of the redox potential (E h ) of the solidified system. In general, Eh value of Portland cement is about 100 on average, but in case of blast furnace slag, the value is maintained at -400 on average so that it has very large reducing ability. High reducibility means that heavy metal ions are transformed in the system, and thus important properties such as solubility change. For example, hexavalent chromium stabilizes by transitioning to trivalent chromium in a few days in a cement system containing a large amount of slag, whereas portland cement does not occur such a transition. Can be.

국내공개특허공보 공개번호 제83-7471호는 황산제1철, 질산제1철 등의 수용성 철염류, 납, 카드뮴등의 유해 중금속을 흡착 제거시키기 위한 제올라이트, 소석회, 생석회, 석회류, 알카리금속수산화물, 탄산염 및 중탄산염 등의 무기염류 및 물을 혼합하거나 통상의 비료성분을 혼합시킨 토양 개량제와, 동공보 공개공보 제95-5952호에는 제오라이트 토양, 야자유처리 생석회, 시멘트, 투명성방수액, 토양고화혼합물로 조성된 생활쓰레기 및 산업계기물 매립지 지반의 토양 고화조성물이, 동 공보 공개번호 제95-18395호에는 석회, 염화칼슘, 황산소다, 리그닌술폰산과 석고로 구성된 혼합체를 시멘트 플라이애쉬와 고로슬래그로 구성된 토양고화제의 제조방법이, 동공보 공개번호 제10-95-23618호에는 초극미쇄시멘트와 카바이트를 첨가하여 아세틸렌가스를 방생시켜 파쇄된 신선한 시멘트면의 포조란 활성을 증대시킨 시멘트계 토양고화제의 제조방법이, 동공보 공개번호 제98-15384호에 생석회, 자바사이트, 황산칼슘, 산화마그네슘, 염화코발트, 화산알루미나 등의 조성물로 각종오니 및 슬러지의 안정화 및 고화처리제 조성물이,Korean Patent Publication No. 83-7471 discloses zeolites, slaked lime, quicklime, lime and alkali metals for adsorption and removal of harmful heavy metals such as ferrous sulfate and ferrous nitrate, water-soluble iron salts such as lead and cadmium. Soil modifiers in which inorganic salts such as hydroxides, carbonates and bicarbonates and water are mixed or common fertilizer components, and Publication No. 95-5952 disclose zeolite soils, palm oil-treated quicklime, cement, transparent waterproofing liquids, soil solidified mixture Soil solidified composition of landfills and industrial waste landfills, which are composed of a mixture of lime, calcium chloride, sodium sulfate, lignin sulfonic acid and gypsum, are composed of cement fly ash and blast furnace slag. A method for preparing a solidifying agent is disclosed in Korean Patent Publication No. 10-95-23618, which discloses acetylene gas by adding ultrafine cement and carbide. The method for producing cement-based soil hardeners which increase pojoran activity of freshly crushed fresh cement noodles is disclosed in Korean Laid-Open Publication No. 98-15384, including quicklime, javasite, calcium sulfate, magnesium oxide, cobalt chloride, and volcanic alumina. As a composition, various sludge and sludge stabilization and solidifying agent compositions,

동공보 공개번호 2000-49749호에는 저발열시멘트, 실리카, 칼슘술퍼알루니늄계 팽창제, 벤토나이트, 무수석고, 소석회, 비산회(포졸란)로 구성된 저발열시멘트계 고화제 조성물과 그 제조방법이 기재되어 있으나,Publication No. 2000-49749 discloses a low exothermic cement-based solidifying agent composition comprising a low exothermic cement, silica, calcium sulfaluminum-based expanding agent, bentonite, anhydrous gypsum, hydrated lime, fly ash (pozzolane), and a method of manufacturing the same.

종래의 고화재 시스템은 이러한 다양한 토질층의 여건을 만족시키기 위한 기술적 고려가 충분치 않은 단점이 있으므로 제한적으로 적용되는 한계를 지니고 있다.The conventional solidified fire system has a limitation that is limited because there is a disadvantage that the technical considerations for satisfying the conditions of the various soil layers are not sufficient.

본 발명의 목적은 해안매립지, 항만, 도로 등의 연약지반과 토질의 안정화가 필요한 장소에 적용하여 안정적으로 고화시키기 위하여 고로슬래그, 시멘트킬른 집진더스트, 칼슘설포알루미네이트, 무수석고를 기본조성물로 하여 염화칼슘, 수산화나트륨, 탄산나트륨, 황산나트륨 등의 알칼리 염을 배합함으로서 고화가 어려운 장소에 효과적으로 고결작용을 하여 안정화시키는 토질안정 처리재의 제조방법을 제공하는 것을 그 목적으로 하는 것이다.The object of the present invention is to use the blast furnace slag, cement kiln dust, calcium sulfoaluminate, anhydrous gypsum as a basic composition to stably solidify by applying to the soft ground and the place where the soil stabilization needs to be stabilized, such as coastal landfill, harbor, road It is an object of the present invention to provide a method for producing a soil stabilizing treatment material which effectively stabilizes by stabilizing effectively in a place where solidification is difficult by blending alkali salts such as calcium chloride, sodium hydroxide, sodium carbonate and sodium sulfate.

상기와 같은 목적을 달성하기 위하여, 본 발명은 고로수재슬래그가 80 내지 90 중량부, 시멘트 소성과정중에 발생한 집진더스트 10 내지 20 중량부로 이루어진 조성물에 칼슘설포알루미네이트 3 내지 10 중량부, 무수석고 3 내지 10중량부를 첨가한 것을 기본조성물로 하고 여기에 염화칼슘, 수산화나트륨, 탄산나트륨, 황산나트륨 중 1종이상의 알칼리 염을 1내지 3 중량부를 첨가하여 토질안정처리재를 제조하는 방법에 관한 것이다. 이때 수화생성물 중 C-S-H의 Ca/Si 몰비가 1.5 이하가 되도록 조성물의 배합비를 조절하는 것이 중요하다.In order to achieve the above object, the present invention is a blast furnace slag 80 to 90 parts by weight, calcium sulfoaluminate 3 to 10 parts by weight, anhydrous gypsum 3 in a composition consisting of 10 to 20 parts by weight of dust collecting dust generated during the cement firing process The present invention relates to a method of preparing a soil stabilizing material by adding 1 to 3 parts by weight of an alkali salt of calcium chloride, sodium hydroxide, sodium carbonate, and sodium sulfate, by adding 10 parts by weight to 10 parts by weight. At this time, it is important to adjust the blending ratio of the composition so that the Ca / Si molar ratio of C-S-H in the hydration product is 1.5 or less.

본 발명 토질안정처리재는 종래의 토질안정처리재와는 달리 보통포틀랜드시멘트나 석회계를 주원료로 사용하지 않고 고로슬래그를 주원료로 사용하는데 이는 보통포틀랜드시멘트의 급격한 수화열 발생에 의한 고화재의 크랙발생을 방지하여 주는 효과가 있으며 장기적으로 포졸란 반응에 의한 강도발현 효과도 얻을 수 있는 장점을 지니고 있다. 슬래그가 주원료로 사용되는 가장 중요한 이유는 상기한 바와 같이 치밀한 C-S-H의 생성을 통한 유해이온의 고화, 환원성이 큰 Eh값을 확보하여 유해이온종의 용해특성을 바꾸어주는 역할, 해수 및 지하수의 환경 하에서도 고화재의 내화학성이 유지되는 특성을 들 수 있다. 슬래그의 함량이 이로부터 생성되는C-S-H의 Ca/Si 몰비를 1.5 이상으로 조절되도록 할 경우 고화효과가 탁월하지 못하며 Eh값도 -200 수준 이상으로 상승하여 환원성이 저하되는 단점이 있다.Soil stabilization material of the present invention, unlike the conventional soil stabilization material is used as the main raw material instead of using the ordinary portland cement or lime system as the main raw material, which causes cracking of solidified material due to rapid heat of hydration of ordinary portland cement It has the effect of preventing the strength and the effect of strength expression by the pozzolanic reaction in the long term. The most important reason that slag is used as a main raw material is as described above, which solidifies harmful ions through the formation of dense CSH and secures a highly reducing E h value, thereby changing the dissolution characteristics of harmful ions, and the environment of seawater and groundwater. The characteristic which the chemical-resistance of a solidified material is maintained also under these is mentioned. If the slag content is adjusted to the Ca / Si molar ratio of the resulting CSH to 1.5 or more, the solidification effect is not excellent and the E h value also rises above -200 level has a disadvantage of reducing the reducibility.

칼슘설포알루미네이트와 무수석고는 수용액상에서 에트린가이트를 생성시켜초기수화과정에서 고화재 입자를 효과적으로 응집시키는 역할을 한다. 칼슘설포알루미네이트가 10 중량부 이상이면 작업성이 저하되는 등의 문제점이 있고 3 중량부 이하면 그 효과가 미미하다.Calcium sulfoaluminate and anhydrous gypsum produce ettringite in aqueous solution, which effectively agglomerates solidified particles during initial hydration. If the calcium sulfoaluminate is 10 parts by weight or more, there is a problem that workability is lowered, and if it is 3 parts by weight or less, the effect is insignificant.

집진더스트는 그 자체가 함유하고 있는 고알칼리 성분을 이용하여 슬래그를 수화 자극함으로서 다량의 C-S-H 젤을 생성함과 동시에 고화재의 강도를 획기적으로 증진시키는 역할을 한다.Dust collection dust uses a high alkali ingredient contained in itself to hydrate the slag to produce a large amount of C-S-H gel, and at the same time plays a role of significantly increasing the strength of the solidified fire.

염화칼슘 등 알칼리 염은 유기물 등의 존재로 인해 지연되는 고화재의 초기수화반응을 촉진하는 작용을 하며 물에 용해된 후 수산화기의 작용으로 고로슬래그의 수화경화체(C-S-H)의 생성을 더욱 촉진시켜주는 역할을 한다.Alkali salts, such as calcium chloride, promote the initial hydration of solidified materials, which are delayed due to the presence of organic substances, and further promote the formation of hydrated hardeners (CSH) of blast furnace slag by dissolving in water. Do it.

이하 실시예를 들어 본 발명을 더욱 상세히 설명한다.The present invention will be described in more detail with reference to the following Examples.

실시예Example

고로수재슬래그 85중량부, 킬른 집진더스트 15중량부로 이루어진 조성물 A에 대하여 칼슘설포알루미네이트 5중량부, 무수석고 3중량부 및 황산나트륨이 1 중량부 첨가된 조성물 B를 혼합하여 고화재인 토양안정처리재를 제조하였다. 배합비를 표 1에 나타내었다.Soil stabilization treatment was carried out by mixing composition B comprising 5 parts by weight of calcium sulfoaluminate, 3 parts by weight of anhydrous gypsum and 1 part by weight of sodium sulfate, based on composition A consisting of 85 parts by weight of blast furnace slag and 15 parts by weight of kiln dust collecting dust. Ash was prepared. The compounding ratio is shown in Table 1.

비교예 (1내지 3)Comparative Example (1 to 3)

분말도가 3200 cm2/g 수준인 보통 포틀랜드시멘트 단독과 고로수재슬래그가보통 포틀랜드시멘트에 대하여 40중량부, 60중량부 혼합된 혼합시멘트 조성물에 대하여 상기 실시예의 조성물B를 혼합하여 고화재인 토양안정처리재를 제조하였다. 배합비를 표 1에 나타내었다.Soil which is solidified by mixing Composition B of the above example for a mixed cement composition of 40 parts by weight and 60 parts by weight of ordinary Portland cement alone and blast furnace slag having a powder level of 3200 cm 2 / g. Stable treatment material was prepared. The compounding ratio is shown in Table 1.

표 1.Table 1.

구 분division 보통포틀랜드시멘트Common Portland Cement 조 성 물 AComposition Water A 조 성 물 BComposition water B 고로수재슬래그Blast furnace slag 집진더스트Dust collection dust 칼슘설포알루미네이트Calcium sulfoaluminate 무수석고Anhydrous gypsum 황산나트륨Sodium sulfate 실시예 1Example 1 -- 85 중량부85 parts by weight 15 중량부15 parts by weight 5 중량부5 parts by weight 3 중량부3 parts by weight 1 중량부1 part by weight 비교예 1Comparative Example 1 100 중량부100 parts by weight -- -- -- -- -- 비교예 2Comparative Example 2 60 중량부60 parts by weight 40 중량부40 parts by weight -- 5 중량부5 parts by weight 3 중량부3 parts by weight 1 중량부1 part by weight 비교예 3Comparative Example 3 40 중량부40 parts by weight 60 중량부60 parts by weight -- 5 중량부5 parts by weight 3 중량부3 parts by weight 1 중량부1 part by weight

실험예Experimental Example

실시예 및 비교예에서 제조된 토양안정처리재를 물과 1:1 로 혼합하여 슬러리를 제조, 몰드로 성형한 후 기건상태로 양생하여 KS 강도를 측정하고 28일 재령에서 Eh값 및 중금속 용출량을 측정하였다. 중금속 용출량의 시험은 폐기물 공정시험방법에 준하여 측정하였다. 측정결과는 표 2, 3, 4에 나타내었다.Examples and Comparative Examples, the soil stabilization treatment chemicals for water and one manufactured by: preparing a slurry by mixing with 1, is molded in the mold after the curing to air dry average state and measure the KS strength E h value and heavy metal elution from 28 days age Was measured. Heavy metal leaching was measured according to the waste process test method. The measurement results are shown in Tables 2, 3 and 4.

표 2.Table 2.

구 분division 압 축 강 도 (kg/cm2)Compression strength (kg / cm 2) 3 일3 days 7 일7 days 28 일28 days 실시예 1Example 1 4.14.1 9.39.3 15.615.6 비교예 1Comparative Example 1 1.31.3 2.52.5 4.14.1 비교예 2Comparative Example 2 2.32.3 4.84.8 7.57.5 비교예 3Comparative Example 3 3.83.8 6.46.4 9.99.9

표 3.Table 3.

구 분division Eh (mV)Eh (mV) Cr 이온종 (28일 후)Cr ionic species (after 28 days) 실시예 1Example 1 -380-380 3가 크롬Trivalent chrome 비교예 1Comparative Example 1 +120+120 6가 크롬Hexavalent chromium 비교예 2Comparative Example 2 -106-106 6가 크롬Hexavalent chromium 비교예 3Comparative Example 3 -223-223 6가 크롬Hexavalent chromium

표 4.Table 4.

구 분division 용출농도 (ppm)Elution concentration (ppm) Cr (102)Cr (102) Cd (105)Cd (105) Pb (113)Pb (113) As (99)As (99) 실시예 1Example 1 8.18.1 5.75.7 3.23.2 0.50.5 비교예 1Comparative Example 1 6363 2121 2929 4.34.3 비교예 2Comparative Example 2 2727 1212 1414 2.12.1 비교예 3Comparative Example 3 1919 1010 9.49.4 1.61.6

( ) 안의 숫자는 초기 고화재내 농도The number in () is the initial solid concentration

상기와 같은 본 발명은 수분의 함유율이 높은 습지, 인체에 유해한 중금속 등이 오염된 토양, 유기물이 함유된 토양, 도로건설시의 연약지반 등 지반의 고결화가 필요한 장소에 효과적으로 적용, 안정화시키는 효과가 있는 것이다.As described above, the present invention has an effect of effectively applying and stabilizing in places where soil solidification is required, such as wetlands with high water content, soils contaminated with heavy metals harmful to humans, soils containing organic matter, and soft grounds during road construction. It is.

Claims (1)

토질안정처리재의 제조방법에 있어서, 고로수재슬래그가 80 내지 90 중량부, 시멘트 소성과정중에 발생한 집진더스트 10 내지 20 중량부로 이루어진 조성물에 칼슘설포알루미네이트 3 내지 10 중량부, 무수석고 3 내지 10중량부를 첨가한 것을 기본조성물로 하고 여기에 염화칼슘, 수산화나트륨, 탄산나트륨, 황산나트륨에서 선택된 화합물중 하나이상의 알칼리 염을 1내지 3 중량부를 첨가하여 제조함을 특징으로 하는 토질안정처리재의 제조방법.In the method for producing a soil stabilizer, 3 to 10 parts by weight of calcium sulfoaluminate and 3 to 10 parts by weight of sulphate aluminate in a composition consisting of 80 to 90 parts by weight of blast furnace slag, 10 to 20 parts by weight of dust collection dust generated during the cement firing process A method of producing a soil stabilizer, characterized in that the addition of 1 to 3 parts by weight of an alkali salt of at least one compound selected from calcium chloride, sodium hydroxide, sodium carbonate and sodium sulfate is added thereto.
KR10-2000-0079112A 2000-12-20 2000-12-20 The manufacturing method for soil stabilization KR100374189B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079112A KR100374189B1 (en) 2000-12-20 2000-12-20 The manufacturing method for soil stabilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0079112A KR100374189B1 (en) 2000-12-20 2000-12-20 The manufacturing method for soil stabilization

Publications (2)

Publication Number Publication Date
KR20020049817A KR20020049817A (en) 2002-06-26
KR100374189B1 true KR100374189B1 (en) 2003-03-04

Family

ID=27683767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0079112A KR100374189B1 (en) 2000-12-20 2000-12-20 The manufacturing method for soil stabilization

Country Status (1)

Country Link
KR (1) KR100374189B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964534A (en) * 2019-09-20 2020-04-07 上海市政工程设计研究总院(集团)有限公司 High-performance environment-friendly soft soil curing agent and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406500B2 (en) * 2003-05-20 2008-07-29 International Business Machines Corporation Techniques for providing a virtual workspace comprised of a multiplicity of electronic devices
KR100772638B1 (en) * 2006-04-22 2007-11-02 한국전력공사 Composition for solidifying of slurry backfill material to apply to underground cable duct and structure
GB2489981B (en) * 2011-04-14 2013-04-10 Green Binder Technologies Ltd Cementitious binders containing ground granulated blast furnace slag
KR101148916B1 (en) * 2011-08-17 2012-05-29 (주) 지오시스 Solidifying agent and method for solidifying soft ground using the same
RU2602253C1 (en) * 2015-06-19 2016-11-10 Общество с ограниченной ответственностью "Научно-исследовательский центр" ООО "НИЦ" Composition for soil conditioning and soil conditioning method
KR102499577B1 (en) * 2020-07-27 2023-02-15 (주)케미우스코리아 Eco-friendly nrg method using micro cement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950018395A (en) * 1993-12-21 1995-07-22 백운 Soil hardener and its manufacturing method
KR0174716B1 (en) * 1996-08-21 1999-02-18 이남출 Process agent component for stabilizing and solidifying all kinds of sludge
KR19990012305A (en) * 1997-07-29 1999-02-25 김춘자 Soil stabilization composition and soil stabilization method using the same
JPH11140443A (en) * 1997-11-06 1999-05-25 Taiheiyo Cement Corp Dehydration solidification of soil of high water content and dehydration type solidification material
KR20000049749A (en) * 2000-04-27 2000-08-05 정광식 A solidifying agent composition of which chief ingredient is low exothermic cement and a preparing method thereof
KR100272947B1 (en) * 1997-11-12 2000-12-01 김춘자 Soil stabilization composition and the method for constituting waste made land using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950018395A (en) * 1993-12-21 1995-07-22 백운 Soil hardener and its manufacturing method
KR0174716B1 (en) * 1996-08-21 1999-02-18 이남출 Process agent component for stabilizing and solidifying all kinds of sludge
KR19990012305A (en) * 1997-07-29 1999-02-25 김춘자 Soil stabilization composition and soil stabilization method using the same
JPH11140443A (en) * 1997-11-06 1999-05-25 Taiheiyo Cement Corp Dehydration solidification of soil of high water content and dehydration type solidification material
KR100272947B1 (en) * 1997-11-12 2000-12-01 김춘자 Soil stabilization composition and the method for constituting waste made land using same
KR20000049749A (en) * 2000-04-27 2000-08-05 정광식 A solidifying agent composition of which chief ingredient is low exothermic cement and a preparing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964534A (en) * 2019-09-20 2020-04-07 上海市政工程设计研究总院(集团)有限公司 High-performance environment-friendly soft soil curing agent and preparation method thereof
CN110964534B (en) * 2019-09-20 2021-10-01 上海市政工程设计研究总院(集团)有限公司 High-performance environment-friendly soft soil curing agent and preparation method thereof

Also Published As

Publication number Publication date
KR20020049817A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
EP1281692B1 (en) Cement composition
KR101112719B1 (en) The solidification block composition and its manufacturing method that using the sludge and inorganic waste resources
KR100648827B1 (en) Solidifying agent for sludge, hardened product using the same and manufacturing method of the building materials using the hardended product
CA2551822A1 (en) Porous particulate material for fluid treatment, cementitious composition and method of manufacture thereof
CA3016363A1 (en) Hazing control for carbonatable calcium silicate-based cements and concretes
KR100771490B1 (en) Manufacturing method of solidification agent for organic or inorganic waste resources
KR100648461B1 (en) A solidification agent for soft ground and sludge improvement strengthen using industrial waste
Yum et al. Recycling of limestone fines using Ca (OH) 2-and Ba (OH) 2-activated slag systems for eco-friendly concrete brick production
JP5047745B2 (en) Ground improvement material
KR100431797B1 (en) Non-sintering cement using blast furnace slag
KR100374189B1 (en) The manufacturing method for soil stabilization
JPH08311446A (en) Solidifier for soil conditioning
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
KR101293132B1 (en) The binder composition using the main stuff for soil
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
KR100375407B1 (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
JP2013086030A (en) Method for treating dolomite sludge and soil improving material
JP3374960B2 (en) Cement solidification material for organic soil
JP2003313553A (en) Soil-stabilizing material and molded product made of soil
KR100833217B1 (en) Solidification method of dredged soils and solidification agent for dredged soils
KR100935204B1 (en) Solity of high hardened using solidity material and method of manufacturing solity
Jiang et al. Recycling, reusing and environmental safety of industrial by-product gypsum in construction and building materials
KR20030075045A (en) The Manufacturing Method and The Soil Stabilizer Improving High Water Content-Soft Ground Reusong Industrial Discharge and Ocean Waste
KR100375408B1 (en) Solidity material for reapplication of waste
JPH10212479A (en) Solidifying material for soil improvement

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180207

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190128

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 18