JP3374960B2 - Cement solidification material for organic soil - Google Patents

Cement solidification material for organic soil

Info

Publication number
JP3374960B2
JP3374960B2 JP20962997A JP20962997A JP3374960B2 JP 3374960 B2 JP3374960 B2 JP 3374960B2 JP 20962997 A JP20962997 A JP 20962997A JP 20962997 A JP20962997 A JP 20962997A JP 3374960 B2 JP3374960 B2 JP 3374960B2
Authority
JP
Japan
Prior art keywords
cement
weight
solidifying
organic
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20962997A
Other languages
Japanese (ja)
Other versions
JPH1135940A (en
Inventor
篤 ▲高▼倉
昭二 久芳
要 三宅
武 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20962997A priority Critical patent/JP3374960B2/en
Publication of JPH1135940A publication Critical patent/JPH1135940A/en
Application granted granted Critical
Publication of JP3374960B2 publication Critical patent/JP3374960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は有機質土用セメン
ト系固化材、詳しくは高濃度の有機酸質土壌に混和され
てこれを固化する有機質土用セメント系固化材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic soil cement-based solidifying material, and more particularly to an organic soil cement-based solidifying material which is mixed with high-concentration organic acid soil to solidify it.

【0002】[0002]

【従来の技術】含水比の大きい軟弱な粘性土やヘドロな
どを固化する場合、ポルトランドセメントでは改良の効
果があがりにくい。そこで、セメント系固化材が開発、
使用されている。セメント系固化材とは、ポルトランド
セメントを母材とし、固化を目的とした材料である。
2. Description of the Related Art When solidifying soft cohesive soil or sludge having a large water content, Portland cement is difficult to improve. Therefore, a cement-based solidifying material was developed,
It is used. The cement-based solidifying material is a material for solidifying, using Portland cement as a base material.

【0003】[0003]

【発明が解決しようとする課題】ところが、フミン酸等
の有機酸成分を大量に(例えば60%以上)含有する土
(有機質土)に、セメント系固化材を混入して固化する
場合、この有機酸成分により、セメントの水和反応が阻
害される。このため、処理土の強度発現が著しく遅延す
るという不具合があった。よって、有機質土に対して有
効なセメント系固化材の開発が望まれていたのである。
However, when the cement-based solidifying material is mixed with soil (organic soil) containing a large amount (for example, 60% or more) of organic acid components such as humic acid to solidify, The acid component inhibits the hydration reaction of cement. Therefore, there is a problem that the strength of the treated soil is significantly delayed. Therefore, the development of a cement-based solidifying material effective for organic soil has been desired.

【0004】そこで、発明者は、鋭意研究の結果、水和
阻害の原因としては、セメントの水和反応で生成する水
酸化カルシウムのカルシウムイオンCa2+が、土に含ま
れる有機酸成分(フミン酸など)と反応し、そのCa塩
がセメント粒子に沈着するからであると考えた。そし
て、例えば活性炭などのように、ポルトランドセメント
の水和反応を阻害せずに有機酸成分を吸着するような吸
着材を含む固化材、また、これに加えて、セメント粒子
からCa2+サイトの発生を抑えながら、エトリンガイト
のような針状結晶で比表面積の大きなセメント系初期水
和物を生成し、この水和物に有機酸成分を収着する(取
り込む)ような成分を含む固化材の使用が有効であると
考えた。発明者は、このような知見を得て、この発明を
完成させたものである。
As a result of intensive studies, the inventor has found that the cause of hydration inhibition is that the calcium ion Ca 2+ of calcium hydroxide produced by the hydration reaction of cement is an organic acid component (humin) contained in soil. It was thought that the Ca salt thereof would deposit on the cement particles. Then, for example, a solidifying material containing an adsorbent that adsorbs an organic acid component without inhibiting the hydration reaction of Portland cement, such as activated carbon, and in addition to this, from cement particles to Ca 2+ site While suppressing the generation, it produces a cement-based initial hydrate with needle-like crystals such as ettringite and a large specific surface area, and a solidifying material containing a component that sorbs (incorporates) an organic acid component into this hydrate. I thought the use was effective. The inventor has obtained such knowledge and completed the present invention.

【0005】[0005]

【発明の目的】この発明は、処理土の強度発現を良好と
する有機質土用セメント系固化材を提供することを、そ
の目的とする。
OBJECT OF THE INVENTION It is an object of the present invention to provide a cement-based solidifying material for organic soil, which makes the treated soil exhibit good strength.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、ポルトランドセメント70〜90重量%と、石膏1
0〜30重量%と、カルシウムシリケート鉱物表面への
有機酸Ca塩の沈積を少なくして、ポルトランドセメン
トの水和反応を阻害しないことを目的として、有機質土
に含まれる有機酸成分を吸着する吸着材0.5〜10重
量%とからなる有機質土用セメント系固化材である。
The invention according to claim 1 is based on 70-90% by weight of Portland cement and 1 gypsum.
0 to 30% by weight, on the surface of calcium silicate minerals
Organic soil comprising 0.5 to 10% by weight of an adsorbent for adsorbing an organic acid component contained in the organic soil for the purpose of reducing the deposition of the organic acid Ca salt and not inhibiting the hydration reaction of Portland cement. It is a cement-based solidifying material.

【0007】ポルトランドセメントが70重量%未満で
は、初期から長期にかけての強度の発現が低下するとい
う不都合がある。また、ポルトランドセメントが90重
量%を超えると、セメント粒子への有機酸成分の沈着が
増大し、ポルトランドセメントの凝結遅延を生じる他、
初期強度に寄与するエトリンガイトの生成が十分でなく
なるという理由から、初期強度の発現が遅延したり、強
度低下を生じるという不都合がある。
If the content of Portland cement is less than 70% by weight, the strength development from the initial stage to the long term is disadvantageously lowered. In addition, when the content of Portland cement exceeds 90% by weight, the deposition of organic acid components on the cement particles increases, which causes a delay in setting of Portland cement.
Since the generation of ettringite that contributes to the initial strength becomes insufficient, there is a disadvantage that the development of the initial strength is delayed or the strength is reduced.

【0008】石膏が10重量%未満では、セメント系初
期水和物であるエトリンガイトの生成が少なくなる。こ
れにより、初期強度の発現が低下したり、強度発現が遅
延する。また、石膏が30重量%を超えると、エトリン
ガイトの生成が多くなり、カルシウムシリケートの水和
物の生成が少なくなって、材齢7日以降の強度発現が悪
くなってしまう。なお、使用する石膏は、二水石膏、半
水石膏、無水石膏の何れでもよい。また、これらのこと
は請求項2にもあてはまる。
When the amount of gypsum is less than 10% by weight, the production of ettringite, which is a cement-based initial hydrate, is reduced. As a result, the expression of initial strength is reduced or the expression of strength is delayed. On the other hand, if the gypsum content exceeds 30% by weight, the amount of ettringite is increased, the amount of hydrate of calcium silicate is decreased, and the strength development after 7 days of age deteriorates. The gypsum used may be any of gypsum dihydrate, gypsum hemihydrate, and anhydrous gypsum. Further, these things also apply to claim 2.

【0009】ここでいう吸着材とは、例えば活性炭、ゼ
オライト(天然ゼオライト、合成ゼオライト)などの有
機質土に含まれる有機酸成分を吸着できる材料が挙げら
れる。吸着材の好ましい添加量は、0.5〜10重量%
である。0.5重量%未満では有機酸の吸着量が減少し
て固化強度が著しく低くなる。10重量%を超えると吸
着材が過剰になり、製造コストが高くなる。
Examples of the adsorbent as used herein include materials capable of adsorbing organic acid components contained in organic soil such as activated carbon and zeolite (natural zeolite and synthetic zeolite). The preferable amount of adsorbent added is 0.5 to 10% by weight.
Is. If it is less than 0.5% by weight, the amount of adsorbed organic acid is reduced and the solidification strength is significantly lowered. If it exceeds 10% by weight, the adsorbent becomes excessive and the manufacturing cost becomes high.

【0010】請求項2に記載の発明は、ポルトランドセ
メント20〜40重量%と、高炉スラグ微粉末40〜6
0重量%と、石膏10〜30重量%と、カルシウムシリ
ケート鉱物表面への有機酸Ca塩の沈積を少なくして、
ポルトランドセメントの水和反応を阻害しないことを目
的として、有機質土に含まれる有機酸成分を吸着する吸
着材0.5〜10重量%とからなる有機質土用セメント
系固化材である。高炉スラグ微粉末が40重量%未満で
は、セメント系初期水和物であるエトリンガイトの生成
が少なく、その強度が低下するという不都合がある。ま
た、高炉スラグ微粉末が60重量%を超えると、粉末度
の高いものを使用しなければ、初期強度に寄与するエト
リンガイトの生成が十分でなくなり、製造コストが高く
なるという不都合がある。
The invention according to claim 2 is such that Portland cement 20 to 40% by weight and blast furnace slag fine powder 40 to 6 are used.
0% by weight, gypsum 10-30% by weight, calcium
Decrease the deposition of organic acid Ca salt on the surface of the silicate mineral,
Aim to not inhibit the hydration reaction of Portland cement
Specifically as a organic dog days cement solidifying material composed of the adsorbent from 0.5 to 10% by weight for adsorbing organic acid component contained in the organic soil. If the blast furnace slag fine powder is less than 40% by weight, the production of ettringite, which is a cement-based initial hydrate, is small and the strength thereof is lowered. Further, if the blast furnace slag fine powder exceeds 60% by weight, the production of ettringite, which contributes to the initial strength, is not sufficient unless the powder having a high degree of fineness is used, resulting in an increase in manufacturing cost.

【0011】なお、ポルトランドセメントに添加される
石膏と高炉スラグ微粉末との関係において、石膏が10
重量%未満の場合や、石膏の比表面積が3000cm2
/g未満の場合には、高炉スラグ微粉末との反応が低下
し、セメント系初期水和物であるエトリンガイトの生成
が少なくなって、初期強度の発現が低下したり、強度発
現が遅延する。
In the relationship between gypsum added to Portland cement and blast furnace slag fine powder, gypsum is 10
If the content is less than wt% or the specific surface area of gypsum is 3000 cm 2
If it is less than / g, the reaction with the blast furnace slag fine powder is reduced, the amount of ettringite, which is a cement-based initial hydrate, is reduced, and the initial strength is lowered or the strength is delayed.

【0012】請求項3に記載の発明は、上記有機質土用
セメント系固化材に対して、0.5〜10重量%の硫酸
塩および/または0.5〜10重量%の塩化物を混合し
た請求項1または請求項2に記載の有機質土用セメント
系固化材である。すなわち、有機質土用セメント系固化
材に対して、硫酸塩、塩化物は、それぞれ単独で混合し
てもよく、または、これらを組み合わせて混合してもよ
い。硫酸塩または塩化物が0.5重量%未満では、セメ
ント系初期水和物であるエトリンガイトやオキシクロラ
イド系の水和物の生成を促進する効果が小さいという理
由から、有機酸の収着が十分でなく、強度発現が遅延す
るという不都合がある。また、硫酸塩または塩化物が1
0重量%を超えると全体としてコスト高となる。硫酸塩
としては、硫酸アルミニウム、みょうばん、硫酸鉄、硫
酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグ
ネシウムなどがある。塩化物としては、例えば塩化カル
シウム、塩化マグネシウム、塩化鉄、塩化アルミニウ
ム、塩化カリウムなどがある。
According to a third aspect of the present invention, 0.5 to 10% by weight of a sulfate and / or 0.5 to 10% by weight of a chloride is mixed with the above-described organic soil cementitious solidifying material. It is the cement-based solidifying material for organic soil according to claim 1 or 2. That is, with respect to the organic soil cement-based solidifying material, the sulfates and chlorides may be mixed alone or in combination. If the amount of sulfate or chloride is less than 0.5% by weight, the effect of promoting the formation of ettringite, which is a cement-based initial hydrate, or oxychloride-based hydrate is small, so the sorption of organic acids is sufficient. In addition, there is a disadvantage that the strength development is delayed. Also, sulfate or chloride is 1
If it exceeds 0% by weight, the cost becomes high as a whole. Examples of the sulfate include aluminum sulfate, alum, iron sulfate, lithium sulfate, sodium sulfate, potassium sulfate and magnesium sulfate. Examples of chlorides include calcium chloride, magnesium chloride, iron chloride, aluminum chloride and potassium chloride.

【0013】請求項4に記載の発明は、上記ポルトラン
ドセメントは比表面積が3000〜5500cm2/g
であり、上記高炉スラグ微粉末は比表面積が4000〜
10000cm2/gであり、上記石膏は比表面積が3
000〜7000cm2/gである請求項2または請求
項3に記載の有機質土用セメント系固化材である。ポル
トランドセメントの比表面積が3000cm2/g未満
では、セメント系初期水和物であるエトリンガイトの生
成が少なくなり、有機酸の収着が充分とはいえずに強度
発現が遅延する。また、比表面積が5500cm2/g
を超えると、通常品とは異なってしまい、製造コストが
上昇する。石膏の比表面積が3000cm2/g未満で
は、固化材全体の比表面積が小さくなり、高炉スラグ微
粉末との反応が低下して、強度発現性が悪くなる。ま
た、7000cm2/gを超えると、通常品とは異なっ
てその製造コストが大幅に上昇する。高炉スラグ微粉末
の比表面積が4000cm2/g未満では、比表面積が
小さくなり過ぎて、高炉スラグ微粉末の添加効果を発揮
できず、強度発現が悪くなる。また、10000cm2
/gを超えると、通常品とは異なって、その製造コスト
が大幅に上昇する。
According to a fourth aspect of the present invention, the Portland cement has a specific surface area of 3000 to 5500 cm 2 / g.
The blast furnace slag fine powder has a specific surface area of 4000 to
10000 cm 2 / g, and the plaster has a specific surface area of 3
000~7000cm is 2 / g according to claim 2, wherein
Item 3. A cement-based solidifying material for organic soil according to item 3 . When the specific surface area of Portland cement is less than 3000 cm 2 / g, the production of ettringite, which is a cement-based initial hydrate, is reduced, the sorption of organic acid is not sufficient, and the strength development is delayed. Also, the specific surface area is 5500 cm 2 / g
If it exceeds, it will be different from normal products and the manufacturing cost will increase. When the specific surface area of gypsum is less than 3000 cm 2 / g, the specific surface area of the entire solidifying material is small, the reaction with the fine powder of blast furnace slag is reduced, and the strength development is deteriorated. On the other hand, if it exceeds 7,000 cm 2 / g, the production cost will be significantly increased unlike the ordinary product. When the specific surface area of the blast furnace slag fine powder is less than 4000 cm 2 / g, the specific surface area becomes too small, the addition effect of the blast furnace slag fine powder cannot be exhibited, and the strength development deteriorates. Also 10,000 cm 2
If it exceeds / g, the production cost will be significantly increased, unlike ordinary products.

【0014】[0014]

【作用】請求項1〜請求項4に記載の発明では、このよ
うなセメント系固化材を有機質土に混合すると、カルシ
ウムシリケート鉱物表面への有機酸Ca塩の沈積を少な
くすることができる。その結果、セメントの水和阻害を
抑制することができ、処理土の強度発現を良好とするこ
とができる。すなわち、吸着材が有機酸成分を吸着する
ことにより、セメントの水和反応で生成する水酸化カル
シウムのカルシウムイオンCa2+が土に含まれる有機酸
成分(フミン酸など)と反応する有機酸Ca塩が少なく
なる。よって、セメント水和の阻害がなく、有機酸成分
の少ない土と同じような反応が生じる。さらに、エトリ
ンガイトのような針状結晶で比表面積の大きなセメント
系初期水和物を生成し、この水和物に有機酸成分を収着
する(取り込む)ことも有効である。
In the invention described in claims 1 to 4, when such a cement-based solidifying material is mixed with the organic soil, the deposition of the organic acid Ca salt on the surface of the calcium silicate mineral can be reduced. As a result, the inhibition of hydration of the cement can be suppressed, and the strength of the treated soil can be improved. That is, when the adsorbent adsorbs the organic acid component, the calcium ion Ca 2+ of calcium hydroxide generated by the hydration reaction of cement reacts with the organic acid component (humic acid, etc.) contained in the soil. Less salt. Therefore, there is no inhibition of cement hydration, and a reaction similar to soil with less organic acid components occurs. Further, it is also effective to generate a cement-based initial hydrate having a large specific surface area with needle-like crystals such as ettringite and sorbing (incorporating) an organic acid component into this hydrate.

【0015】また、高炉スラグ微粉末は、固化材のpH
を低下させ、水酸化カルシウムCa(OH) 2の溶出を
抑えるとともに、水酸化カルシウムを消費し、石膏やポ
ルトランドセメントと反応し、エトリンガイトを生成す
る。特に、粉末度の高いものにその効果が顕著である。
また、硫酸アルミニウム、みょうばん、硫酸鉄、硫酸リ
チウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシ
ウムなどは、ポルトランドセメントと反応し、エトリン
ガイトを生成する。特に、硫酸アルミニウム、みょうば
んなどの硫酸塩は、そのpH値が低く、ポルトランドセ
メントにプレミックスすることで、セメントからの水酸
化カルシウムの溶出を抑えるとともに、エトリンガイト
系の初期水和物の生成を促進させる。塩化カルシウム、
塩化マグネシウム、塩化鉄、塩化アルミニウム、塩化カ
リウムなどの塩化物は、ポルトランドセメントと反応
し、エトリンガイトに似た針状結晶であるオキシクロラ
イド系水和物を生成する。
The blast furnace slag fine powder has a pH of the solidifying material.
Decrease, calcium hydroxide Ca (OH) 2Elution of
In addition to suppressing, it consumes calcium hydroxide and
Reacts with Rutland cement to form ettringite
It In particular, the effect is remarkable for those having a high fineness.
In addition, aluminum sulfate, alum, iron sulfate, lithium sulfate
Tium, sodium sulfate, potassium sulfate, magnesi sulfate
Um, etc. reacts with Portland cement and
Generates a gite. Especially aluminum sulfate, alum
Sulfates such as cancer have a low pH value and
By mixing it with the cement
Suppresses the elution of calcium oxide, and also improves ettringite
Promotes the formation of the primary hydrate of the system. Calcium chloride,
Magnesium chloride, iron chloride, aluminum chloride, calcium chloride
Chlorides such as thorium react with Portland cement
Oxychlora, a needle-like crystal resembling ettringite
This produces an id hydrate.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施例を説明す
る。 〈実施例1〜4、比較例1,2〉これらの実施例および
比較例では、セメント系固化材として、ポルトランドセ
メントと、石膏(無水石膏)と、吸着材(活性炭)とを
所定の割合で混合したものについて、その28日材齢強
度による評価を行った。評価方法は公知の一軸圧縮試験
法で行った。混合する有機質土でのフミン酸量は60
%、セメント系固化材の添加量は300kg/m3、そ
のW/C(水/固化材)は80%である。材齢28日強
度が8kgf/cm2以上を適(○)とした。なお、使
用したポルトランドセメントの比表面積は4500cm
2/g、石膏の場合は5000cm2/gである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. <Examples 1 to 4, Comparative Examples 1 and 2> In these Examples and Comparative Examples, Portland cement, gypsum (anhydrite gypsum), and adsorbent (activated carbon) were used as a cement-based solidifying material at a predetermined ratio. The mixed materials were evaluated by their 28-day-old strength. The evaluation method was a known uniaxial compression test method. The amount of humic acid in the mixed organic soil is 60
%, The addition amount of the cement-based solidifying material is 300 kg / m 3 , and the W / C (water / solidifying material) thereof is 80%. A material having a 28-day-old strength of 8 kgf / cm 2 or more was determined to be suitable (◯). The specific surface area of the used Portland cement is 4500 cm.
2 / g, and in the case of gypsum, it is 5000 cm 2 / g.

【0017】これらの結果を比較例とともに表1に示
す。また、製造コストによる評価についても併せて示
す。製造コストの評価は初期強度についての判断で行っ
た。表1に示すように、ポルトランドセメントが70〜
90重量%、石膏10〜30重量%、吸着材が0.5〜
10重量%のときに、好適な強度の発現があった。
The results are shown in Table 1 together with comparative examples. In addition, evaluation by manufacturing cost is also shown. The manufacturing cost was evaluated by judging the initial strength. As shown in Table 1, Portland cement has 70-
90% by weight, gypsum 10-30% by weight, adsorbent 0.5-
When the amount was 10% by weight, suitable strength was exhibited.

【0018】[0018]

【表1】 [Table 1]

【0019】〈実施例5〜8,比較例3,4〉これらの
実施例および比較例では、セメント系固化材として、ポ
ルトランドセメントと、高炉スラグ微粉末と、石膏(無
水石膏)と、吸着材(活性炭)とを所定の割合で混合し
たものについて、上記と同様の評価を行った。なお、使
用したポルトランドセメントの比表面積は3500cm
2/g、石膏の場合は5000cm2/g、高炉スラグ微
粉末の場合は4000cm2/gである。これらの結果
を比較例とともに表2に示す。この表から明らかなよう
に、ポルトランドセメントが20〜40重量%、石膏1
0〜30重量%、高炉スラグ微粉末40〜60重量%、
吸着材が0.5〜10重量%のときに、好適な強度の発
現があった。
<Examples 5 to 8 and Comparative Examples 3 and 4> In these Examples and Comparative Examples, Portland cement, blast furnace slag fine powder, gypsum (anhydrous gypsum), and adsorbent were used as cement-based solidifying materials. The same evaluation as above was performed for the mixture of (activated carbon) at a predetermined ratio. The specific surface area of the used Portland cement is 3500 cm.
2 / g, in the case of gypsum in the case of 5000 cm 2 / g, ground granulated blast furnace slag is 4000 cm 2 / g. The results are shown in Table 2 together with the comparative examples. As is clear from this table, Portland cement is 20-40% by weight, and gypsum 1
0 to 30% by weight, blast furnace slag fine powder 40 to 60% by weight,
When the adsorbent was 0.5 to 10% by weight, suitable strength was exhibited.

【0020】[0020]

【表2】 [Table 2]

【0021】〈実施例9,比較例5,6〉この実施例で
は、吸着材3重量%、セメント20〜27重量%、高炉
スラグ微粉末50重量%、石膏15〜20重量%の割合
で混合したセメント系固化材に対して塩化アルミニウム
を添加した場合の上記と同様の評価を示す。28日強度
とコストとによる。塩化アルミニウムは、粉末として加
えた。これらの結果を比較例とともに表3に示す。すな
わち、固化材全体に対して0.5%以上の添加で好適な
強度の発現があった。なお、塩化物の添加量を10重量
%を超えて増すとコスト高となる。
<Example 9, Comparative Examples 5 and 6> In this example, adsorbent 3% by weight, cement 20 to 27% by weight, blast furnace slag fine powder 50% by weight and gypsum 15 to 20% by weight were mixed. The same evaluation as above when aluminum chloride is added to the cement-based solidified material is shown. 28 days Depends on strength and cost. Aluminum chloride was added as a powder. The results are shown in Table 3 together with the comparative examples. That is, the addition of 0.5% or more to the entire solidified material exhibited suitable strength. If the amount of chloride added exceeds 10% by weight, the cost will increase.

【0022】[0022]

【表3】 [Table 3]

【0023】〈実施例10、比較例7,8〉この実施例
では、吸着材3重量%、セメント20〜27重量%、高
炉スラグ微粉末50重量%、石膏15〜20重量%の固
化材に対して硫酸アルミニウムを添加した場合の評価を
示す。28日強度とコストとによる。硫酸アルミニウム
は、粉末として加えた。これらの結果を比較例とともに
表4に示す。すなわち、固化材全体に対して0.5%以
上の添加で好適な強度の発現があった。なお、硫酸アル
ミニウムの添加量を増して、固化材全体に対して10重
量%を超して添加すると、コスト高となる。
<Example 10, Comparative Examples 7 and 8> In this example, a solidifying material containing 3% by weight of adsorbent, 20 to 27% by weight of cement, 50% by weight of blast furnace slag fine powder and 15 to 20% by weight of gypsum. On the other hand, the evaluation when aluminum sulfate is added is shown. 28 days Depends on strength and cost. Aluminum sulfate was added as a powder. The results are shown in Table 4 together with the comparative examples. That is, the addition of 0.5% or more to the entire solidified material exhibited suitable strength. If the amount of aluminum sulfate added is increased to more than 10% by weight with respect to the entire solidified material, the cost will increase.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】この発明に係る有機質土用セメント系固
化材を有機質土に混合すると、ポルトランドセメントの
水和反応を阻害せずに、有機質土に含まれる有機酸成分
を吸着材が吸着するので、カルシウムシリケート鉱物表
面への有機酸Ca塩の沈積を少なくすることができ、セ
メントの水和阻害を抑制することができ、処理土の強度
発現を良好とすることができる。また、ポルトランドセ
メントの比表面積を3000〜5500cm2/g、石
膏の比表面積を3000〜7000cm2/gとしたの
で、処理土の強度発現をより良好とすることができる。
When the cement-based solidifying material for organic soil according to the present invention is mixed with the organic soil, the adsorbent adsorbs the organic acid component contained in the organic soil without inhibiting the hydration reaction of Portland cement. The deposition of the organic acid Ca salt on the surface of the calcium silicate mineral can be reduced, the hydration inhibition of the cement can be suppressed, and the strength development of the treated soil can be improved. Further, the specific surface area of the Portland cement 3000~5500cm 2 / g, since the specific surface area of the plaster was 3000~7000cm 2 / g, it can be better the strength development of the treated soil.

【0026】特に、請求項2,4の発明によれば、比表
面積4000〜10000cm2/gの高炉スラグ微粉
末を混合したので、さらに処理土の強度発現が良好にな
る。
In particular, according to the inventions of claims 2 and 4, since the blast furnace slag fine powder having a specific surface area of 4000 to 10000 cm 2 / g is mixed, the strength development of the treated soil is further improved.

【0027】また、請求項3の発明によれば、有機質土
用セメント系固化材に対して、若干量の硫酸塩および塩
化物の少なくとも一方を混合したので、さらに処理土の
強度発現を良好とすることができる。
Further, according to the invention of claim 3, since a small amount of at least one of sulfate and chloride is mixed with the cementitious solidifying material for organic soil, the strength of treated soil is further improved. can do.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 22:14 C04B 14:36 14:36) C09K 103:00 C09K 103:00 (72)発明者 三宅 要 福岡県北九州市八幡西区洞南町1番1号 三菱マテリアル株式会社セメント開発 センタ−内 (72)発明者 河野 武 福岡県北九州市八幡西区洞南町1番1号 三菱マテリアル株式会社セメント開発 センタ−内 (56)参考文献 特開 昭50−67280(JP,A) 特開 平9−176634(JP,A) 特開 昭61−118181(JP,A) 特開 平5−78664(JP,A) 特開 昭62−260753(JP,A) 特開 平6−200249(JP,A) 特開 平6−287555(JP,A) 特開 平10−297951(JP,A) 特開 平10−15594(JP,A) 特開 平10−151443(JP,A) 特開 平10−291849(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09K 17/00 - 17/52 C04B 2/00 - 32/02 C04B 40/00 - 40/06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C04B 22:14 C04B 14:36 14:36) C09K 103: 00 C09K 103: 00 (72) Inventor Kaname Miyake Hachiman, Kitakyushu, Fukuoka 1-1, Konan-cho, Nishi-ku, Mitsubishi Materials Co., Ltd. Cement Development Center (72) Inventor Takeshi Kono 1-1-1, Donan-cho, Hachimansai-ku, Kitakyushu, Fukuoka Prefecture Mitsubishi Materials Co., Ltd. Cement Development Center (56) References Special Kai 50-67280 (JP, A) JP 9-176634 (JP, A) JP 61-118181 (JP, A) JP 5-78664 (JP, A) JP 62-260753 ( JP, A) JP 6-200249 (JP, A) JP 6-287555 (JP, A) JP 10-297951 (JP, A) JP 10-15594 (JP, A) JP Flat 10-151443 (JP, ) Patent flat 10-291849 (JP, A) (58 ) investigated the field (Int.Cl. 7, DB name) C09K 17/00 - 17/52 C04B 2/00 - 32/02 C04B 40/00 - 40 / 06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポルトランドセメント70〜90重量%
と、 石膏10〜30重量%と、カルシウムシリケート鉱物表面への有機酸Ca塩の沈積
を少なくして、 ポルトランドセメントの水和反応を阻害
しないことを目的として、有機質土に含まれる有機酸成
分を吸着する吸着材0.5〜10重量%とからなる有機
質土用セメント系固化材。
1. Portland cement 70 to 90% by weight
And gypsum 10 to 30% by weight , deposition of organic acid Ca salt on the surface of calcium silicate mineral
To reduce Portland cement hydration
For the purpose of not doing so, a cement-based solidifying material for organic soil, which comprises 0.5 to 10% by weight of an adsorbent that adsorbs an organic acid component contained in organic soil.
【請求項2】 ポルトランドセメント20〜40重量%
と、 高炉スラグ微粉末40〜60重量%と、 石膏10〜30重量%と、カルシウムシリケート鉱物表面への有機酸Ca塩の沈積
を少なくして、 ポルトランドセメントの水和反応を阻害
しないことを目的として、有機質土に含まれる有機酸成
分を吸着する吸着材0.5〜10重量%とからなる有機
質土用セメント系固化材。
2. Portland cement 20 to 40% by weight
40 to 60% by weight of blast furnace slag fine powder, 10 to 30% by weight of gypsum , and deposition of organic acid Ca salt on the surface of calcium silicate mineral
To reduce Portland cement hydration
For the purpose of not doing so, a cement-based solidifying material for organic soil, which comprises 0.5 to 10% by weight of an adsorbent that adsorbs an organic acid component contained in organic soil.
【請求項3】 上記有機質土用セメント系固化材に対し
て、0.5〜10重量%の硫酸塩および/または0.5
〜10重量%の塩化物を混合した請求項1または請求項
2に記載の有機質土用セメント系固化材。
3. 0.5 to 10% by weight of a sulphate and / or 0.5 based on the organic soil cement-based solidifying material.
The cement-based solidifying material for organic soil according to claim 1 or 2, wherein 10% by weight of chloride is mixed.
【請求項4】 上記ポルトランドセメントは比表面積が
3000〜5500cm2/gであり、 上記高炉スラグ微粉末は比表面積が4000〜1000
0cm2/gであり、 上記石膏は比表面積が3000〜7000cm2/gで
ある請求項2または請求項3に記載の有機質土用セメン
ト系固化材。
4. The Portland cement has a specific surface area of 3000 to 5500 cm 2 / g, and the blast furnace slag fine powder has a specific surface area of 4000 to 1000.
0cm a 2 / g, organic doyo cement solidifying material according to claim 2 or claim 3 said gypsum specific surface area of 3000~7000cm 2 / g.
JP20962997A 1997-07-18 1997-07-18 Cement solidification material for organic soil Expired - Fee Related JP3374960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20962997A JP3374960B2 (en) 1997-07-18 1997-07-18 Cement solidification material for organic soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20962997A JP3374960B2 (en) 1997-07-18 1997-07-18 Cement solidification material for organic soil

Publications (2)

Publication Number Publication Date
JPH1135940A JPH1135940A (en) 1999-02-09
JP3374960B2 true JP3374960B2 (en) 2003-02-10

Family

ID=16575972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20962997A Expired - Fee Related JP3374960B2 (en) 1997-07-18 1997-07-18 Cement solidification material for organic soil

Country Status (1)

Country Link
JP (1) JP3374960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886726B1 (en) * 2007-11-22 2009-03-04 삼성물산 주식회사 High-strength ultrafine cement, early-strength admixture, and grout for reinforcement of ground using those

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029812A (en) * 2000-07-14 2002-01-29 Akio Henmi Method of reducing eluting quantity of heavy metal in cement-based solidified soil using artificial zeolite
JP2006008765A (en) * 2004-06-23 2006-01-12 Sumitomo Osaka Cement Co Ltd Soil-reinforcing material and method for reinforcing soil
JP2006070150A (en) * 2004-09-02 2006-03-16 Mitsubishi Materials Corp Cement solidification material for organic soil
KR100845248B1 (en) 2008-02-05 2008-07-09 주식회사 윈플로 Solidificator manufacturing method for construction soil cement
JP2015101830A (en) * 2013-11-21 2015-06-04 一般財団法人砂防・地すべり技術センター Sand arrestation soil cement method utilizing organic soil as construction material
CN113735526A (en) * 2021-09-27 2021-12-03 北京安科兴业科技股份有限公司 Soft soil hardening agent for sea area environment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5067280A (en) * 1973-10-22 1975-06-05
JPS61118181A (en) * 1984-11-14 1986-06-05 Takenaka Komuten Co Ltd Treatment of contaminated soil
JPH0214308B2 (en) * 1986-05-02 1990-04-06 Kazuhiko Kishigami
JP2864811B2 (en) * 1991-09-19 1999-03-08 株式会社大林組 Solidification material for solidification treatment method
JP3452330B2 (en) * 1992-10-09 2003-09-29 脇村 嘉郎 Solidified material mixed with crushed stone powder and construction method using solidified material mixed with crushed stone powder
JPH06287555A (en) * 1993-03-31 1994-10-11 Onoda Cement Co Ltd Solidifier for organic soft ground
JPH09176634A (en) * 1995-12-22 1997-07-08 Fujita Corp Method for conditioning dredged earth and sand
JPH1015594A (en) * 1996-07-08 1998-01-20 Mitsubishi Materials Corp Deodorizing and solidifying material of sludge or dredging sludge
JP3262210B2 (en) * 1996-11-25 2002-03-04 三菱マテリアル株式会社 Treatment method for water containing organic matter
JPH10291849A (en) * 1997-04-21 1998-11-04 Mitsubishi Materials Corp Cement based hydraulic composition having nox purifying function
JP3760559B2 (en) * 1997-04-25 2006-03-29 宇部興産株式会社 Method for producing hardened cement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100886726B1 (en) * 2007-11-22 2009-03-04 삼성물산 주식회사 High-strength ultrafine cement, early-strength admixture, and grout for reinforcement of ground using those

Also Published As

Publication number Publication date
JPH1135940A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP2001527465A (en) How to encapsulate hazardous waste
JP2001348571A (en) Ground-modifying material
JP3374960B2 (en) Cement solidification material for organic soil
JP2004292568A (en) Soil solidifying material
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
JP2012046704A (en) Solidification material
JPH11106244A (en) Cement composition
CN1329336C (en) Cement early strength agent and its prepn
CN108264323A (en) With flyash and the partition wall batten of desulfurated plaster preparation and preparation method thereof
JPH10245555A (en) Cemental solidifier for organic soil
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP2006070150A (en) Cement solidification material for organic soil
KR100374189B1 (en) The manufacturing method for soil stabilization
JP3365699B2 (en) Cement admixture and cement composition
JP3407854B2 (en) Rapid hardening soil improvement material
JP2003321676A (en) Soil solidifier
CN110052489A (en) A kind for the treatment of agent and preparation method for manganese mud heavy metal pollution
JP2003013064A (en) Dusting-preventing type solidification material, and method for producing dusting-preventing type solidification material
JP4225560B2 (en) Soil hardening material
KR20010025183A (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same
JP3463505B2 (en) Solidifying material for wet soil and method for improving solidification of wet soil
JP4174818B2 (en) Granulated soil
JP4883390B2 (en) Solidifying material for ground improvement and solidified soil using the same
JP3810350B2 (en) Cement admixture and cement composition
JP5274739B2 (en) Method for reducing hexavalent chromium by adjusting the particle size of silicon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees