JP2006076825A - Method for utilizing carbon dioxide - Google Patents

Method for utilizing carbon dioxide Download PDF

Info

Publication number
JP2006076825A
JP2006076825A JP2004262111A JP2004262111A JP2006076825A JP 2006076825 A JP2006076825 A JP 2006076825A JP 2004262111 A JP2004262111 A JP 2004262111A JP 2004262111 A JP2004262111 A JP 2004262111A JP 2006076825 A JP2006076825 A JP 2006076825A
Authority
JP
Japan
Prior art keywords
carbon dioxide
mass
cement
magnesium carbonate
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262111A
Other languages
Japanese (ja)
Other versions
JP4625294B2 (en
Inventor
Hideo Ide
秀夫 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004262111A priority Critical patent/JP4625294B2/en
Publication of JP2006076825A publication Critical patent/JP2006076825A/en
Application granted granted Critical
Publication of JP4625294B2 publication Critical patent/JP4625294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Abstract

<P>PROBLEM TO BE SOLVED: To attempt effective utilization of carbon dioxide for reducing discharge amount of the same. <P>SOLUTION: Magnesium carbonate is prepared from carbon dioxide and a magnesium oxide-containing substance. The magnesium carbonate is utilized as a cement admixture together with silica and a setting retarder. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地球温暖化ガスの1つである炭酸ガスの排出量を削減するための炭酸ガスの利用方法に関するものである。   The present invention relates to a method for using carbon dioxide for reducing the amount of carbon dioxide that is one of the global warming gases.

近年、地球温暖化が人類の直面する重大な課題として注目されている。地球温暖化ガスの1つである炭酸ガスの排出量削減については、様々な方法が検討されている。具体的には、炭酸ガスの海洋貯留や地中貯留あるいは産業廃棄物や天然鉱物への炭酸ガスの固定化である。   In recent years, global warming has attracted attention as a serious issue facing humanity. Various methods are being studied for reducing the emission of carbon dioxide, which is one of the global warming gases. Specifically, carbon dioxide is stored in the ocean or underground, or carbon dioxide is fixed to industrial waste or natural minerals.

ここで、産業廃棄物への炭酸ガスの固定化の例として、コンクリート廃材から再生骨材を製造する際に廃棄物として排出されるセメント微粉末を水と混合してスラリーとし、水中にカルシウム成分を溶出させ、該スラリー中に炭酸ガスを吹き込んでカルシウム成分と反応させて炭酸カルシウムを得るという方法が開示されている(非特許文献1、参照)。   Here, as an example of the fixation of carbon dioxide gas to industrial waste, cement fine powder discharged as waste when producing recycled aggregate from concrete waste is mixed with water to form a slurry, and the calcium component in water Is dissolved, and carbon dioxide gas is blown into the slurry to react with the calcium component to obtain calcium carbonate (see Non-Patent Document 1).

また、炭酸ガスの固定化方法のうち海洋貯留と地中貯留は高濃度の炭酸ガスが自然界に与える影響が不明であり、その検証に長期間を要する。   Among the carbon dioxide immobilization methods, ocean storage and underground storage are unclear on the effects of high-concentration carbon dioxide on the natural world and require a long time for verification.

更に、いずれの方法も、単に、貯留や固定化だけでは処理コストがかかるだけであり有効利用されないと、インセンティブが働きにくい。そこで、固定化処理によって炭酸ガスの有効利用が可能となり、コスト的なインセンティブが働くような技術が望まれる。   Furthermore, in any method, simply storing and fixing only costs processing, and if it is not used effectively, incentives are difficult to work. Therefore, a technique that enables effective utilization of carbon dioxide gas by immobilization treatment and provides cost incentives is desired.

そのように産業的に有効利用する技術として、炭酸ガスを産業廃棄物や天然鉱物に固定化して、炭酸塩すなわち炭酸マグネシウム等を製造し、これをセメント混和剤として利用することがあげられる。   As an industrially effective technology, carbon dioxide is immobilized on industrial waste or natural minerals to produce carbonate, that is, magnesium carbonate, and use it as a cement admixture.

炭酸マグネシウムのセメント混和剤への適用例としては、凝結促進剤として炭酸マグネシウム類、及び、硫酸アルミニウム類からなる群より選ばれた一種又は二種以上の成分αと、増粘剤及び減水剤とを有効成分とするセメント混和剤がある(特許文献1、参照)。   Examples of application of magnesium carbonate to cement admixtures include magnesium carbonates as setting accelerators, and one or more components α selected from the group consisting of aluminum sulfates, thickeners and water reducing agents, There is a cement admixture containing as an active ingredient (see Patent Document 1).

特許第3171879号公報Japanese Patent No. 3171879 飯塚他、「廃コンクリートを用いた新規な二酸化炭素固定プロセス」、化学工学論文集、Vol.28,No.5,(2002)Iizuka et al., "New carbon dioxide fixation process using waste concrete," Chemical Engineering, Vol.28, No.5, (2002)

本発明者は、前記特許文献1の方法を適用しようと試みた。その結果、炭酸マグネシウムを添加すると強度が低下するという問題が起こった。   The inventor tried to apply the method of Patent Document 1. As a result, there was a problem that the strength was reduced when magnesium carbonate was added.

本発明では、この問題を解決し、炭酸マグネシウムのセメント混和剤への適用の際に、強度低下を抑制して、セメント系の建設、土木材料として有効利用が可能で、炭酸ガスの固定化率を向上させた、炭酸ガスの固定化方法を提供することを目的とする。   In the present invention, when this problem is solved and magnesium carbonate is applied to a cement admixture, it is possible to effectively use as cement construction and civil engineering materials by suppressing the strength reduction, and the fixation rate of carbon dioxide gas. An object of the present invention is to provide a method for immobilizing carbon dioxide gas, which improves the above.

本発明の概要は、以下の通りである。   The outline of the present invention is as follows.

(1)セメントが10〜20質量%、細骨材が35〜45質量%、粗骨材が40〜55質量%で、合計100質量%のセメント混合物に、水を添加してコンクリートを製造する際に、セメントの0質量%を越えて15質量%以下に換えて炭酸ガスを含むガスと酸化マグネシウム含有物質から生成した炭酸マグネシウムを添加し、細骨材の0.3〜1.2質量%に換えてシリカを添加し、更に、セメント及び炭酸マグネシウムの総量に対して凝結遅延剤を0.05〜0.15質量%添加することを特徴とする炭酸ガスの利用方法。   (1) Cement is 10 to 20% by mass, fine aggregate is 35 to 45% by mass, coarse aggregate is 40 to 55% by mass, and water is added to a total of 100% by mass of cement mixture to produce concrete. In addition, the carbon dioxide gas and the magnesium carbonate produced from the magnesium oxide-containing substance are added in place of 15% by mass or less exceeding 0% by mass of the cement, and 0.3 to 1.2% by mass of the fine aggregate. In addition, silica is added, and 0.05 to 0.15% by mass of a setting retarder is added to the total amount of cement and magnesium carbonate.

本発明により、地球温暖化ガスである炭酸ガスを安全且つ経済的に有効利用することが出来る。炭酸マグネシウムはセメント混和剤として有効利用できる。   According to the present invention, carbon dioxide, which is a global warming gas, can be used safely and economically. Magnesium carbonate can be effectively used as a cement admixture.

以下で、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、地球温暖化ガスの1つである炭酸ガスの排出量を削減するための炭酸ガスの有効利用を行う方法である。炭酸ガスは、各種燃焼排ガス、高炉ガス、転炉ガス等に含まれている。その含有量は一般に2体積%以上である。   The present invention is a method for effectively using carbon dioxide to reduce the amount of carbon dioxide that is one of the global warming gases. Carbon dioxide gas is contained in various combustion exhaust gases, blast furnace gas, converter gas, and the like. Its content is generally at least 2% by volume.

本発明の実施形態の例としては、先ずは、炭酸ガスを含むガスと酸化マグネシウム含有物質から炭酸マグネシウムを生成する。   As an example of an embodiment of the present invention, first, magnesium carbonate is generated from a gas containing carbon dioxide and a magnesium oxide-containing substance.

ここで酸化マグネシウム含有物質とは、MgOを10質量%以上含むものであり、蛇紋岩、カンラン石、滑石、緑泥石、石綿、フェロニッケルスラグなどが挙げられる。炭酸マグネシウムの生成方法としては、例えば、炭酸ガスを含むガスとして高炉ガスをアンモニア溶液に通し、炭酸ガスとアンモニアを反応させて炭酸アンモニウム溶液を得る。   Here, the magnesium oxide-containing substance contains 10% by mass or more of MgO, and examples include serpentinite, olivine, talc, chlorite, asbestos, and ferronickel slag. As a method for producing magnesium carbonate, for example, a blast furnace gas as a gas containing carbon dioxide gas is passed through an ammonia solution, and carbon dioxide gas and ammonia are reacted to obtain an ammonium carbonate solution.

また、マグネシウム含有物質として蛇紋岩を塩酸溶液と接触させ、蛇紋岩中のMgOと塩酸を反応させて塩化マグネシウム溶液を得る。該塩化マグネシウム溶液と蛇紋岩の未反応分をろ過して分離する。   Further, serpentine as a magnesium-containing substance is brought into contact with a hydrochloric acid solution, and MgO in the serpentine is reacted with hydrochloric acid to obtain a magnesium chloride solution. The magnesium chloride solution and the unreacted portion of serpentinite are separated by filtration.

次に、炭酸アンモニウム溶液と塩化マグネシウム溶液を反応させる。すると、炭酸マグネシウムが沈殿し、溶液中には塩化アンモニウムが生成する。塩化アンモニウム溶液は蒸留塔に送り、塩酸とアンモニアに分離する。溶液をろ過して回収することで、炭酸マグネシウムを得ることができる。   Next, the ammonium carbonate solution and the magnesium chloride solution are reacted. Then, magnesium carbonate precipitates and ammonium chloride is generated in the solution. The ammonium chloride solution is sent to a distillation column and separated into hydrochloric acid and ammonia. Magnesium carbonate can be obtained by collecting the solution by filtration.

次に、この炭酸マグネシウムをセメント混和剤として利用する。すなわち、通常のコンクリートは、セメント、細骨材(砂等)、粗骨材(安山岩等)に、水又は水及び混和剤を加えて混合して製造するが、本実施形態では、セメントの一部に換えて上記炭酸マグネシウムを添加し、細骨材の一部に換えてシリカを添加し、更に、凝結遅延剤を添加することで、炭酸ガスを固定化した炭酸マグネシウムを有効利用することができる。   Next, this magnesium carbonate is utilized as a cement admixture. That is, ordinary concrete is produced by adding water or water and an admixture to cement, fine aggregate (sand, etc.) and coarse aggregate (andesite, etc.). It is possible to effectively use magnesium carbonate in which carbon dioxide gas is fixed by adding the above magnesium carbonate instead of part, adding silica instead of a part of fine aggregate, and further adding a setting retarder. it can.

各物質の添加量の割合は、セメントと細骨材と粗骨材の合計を100質量%としたとき、セメント10〜20質量%、細骨材35〜45質量%、粗骨材40〜55質量%をベースとして、好ましい範囲を持つ。   The ratio of the amount of each substance added is 10-20% by mass of cement, 35-45% by mass of fine aggregate, 40-55 of coarse aggregate, when the total of cement, fine aggregate and coarse aggregate is 100% by mass. A preferred range is based on mass%.

炭酸マグネシウムの添加量は、セメント量に対して、0質量%超、15質量%以下が好ましい。セメントに対する置換率がわずかでもあれば炭酸ガス固定化効果があるので、0質量%を越えればよいが、15質量%を越えるとセメント不足により強度が低下する。   The addition amount of magnesium carbonate is preferably more than 0% by mass and 15% by mass or less with respect to the cement amount. Even if the substitution rate with respect to the cement is small, the carbon dioxide gas fixing effect can be obtained. Therefore, it is sufficient to exceed 0% by mass.

炭酸マグネシウムの形態としては、炭酸マグネシウム(MgCO3)、正炭酸マグネシウム(MgCO3・3H2O)、塩基性炭酸マグネシウム{aMgCO3・Mg(OH)2・bH2O、(a,b)=(3,3)、(4,4)、(1,3)、(4,5)、(4,8)}のいずれでもよい。 The form of magnesium carbonate, magnesium carbonate (MgCO 3), magnesium positive carbonate (MgCO 3 · 3H 2 O) , basic magnesium carbonate {aMgCO 3 · Mg (OH) 2 · bH 2 O, (a, b) = Any of (3, 3), (4, 4), (1, 3), (4, 5), (4, 8)} may be used.

シリカの添加量は、細骨材量に対して、0.3〜1.2質量%と置換することが好ましい。0.3質量%未満では強度発現効果が不十分であり、1.2質量%を越えると充填性が悪化して強度が低下する。なお、シリカとしては、結晶質シリカ微粉末、非晶質シリカ微粉末、シリカヒュームなどが利用できる。   The addition amount of silica is preferably replaced with 0.3 to 1.2% by mass with respect to the amount of fine aggregate. If the amount is less than 0.3% by mass, the strength development effect is insufficient, and if it exceeds 1.2% by mass, the filling property is deteriorated and the strength is lowered. As silica, crystalline silica fine powder, amorphous silica fine powder, silica fume and the like can be used.

凝結遅延剤の添加量は、セメントと炭酸マグネシウムの合計量に対して0.05〜0.15質量%が好ましい。0.05質量%未満では凝結遅延効果が不十分であり、0.15質量%を越えるとセメントの凝結が阻害される。なお、凝結遅延剤としては、グルコン酸塩、リグニンスルホン酸塩などが利用できる。   The addition amount of the setting retarder is preferably 0.05 to 0.15 mass% with respect to the total amount of cement and magnesium carbonate. If it is less than 0.05% by mass, the setting delay effect is insufficient, and if it exceeds 0.15% by mass, the setting of cement is inhibited. As the setting retarder, gluconate, lignin sulfonate, etc. can be used.

本発明における実施例を示す(表3、参照)。   Examples of the present invention are shown (see Table 3).

本実施例における炭酸ガスを含むガスは高炉ガスを対象とした。その化学組成を表1に示す。マグネシウム含有物質として蛇紋岩を用いた。その化学組成を表2に示す。   The gas containing carbon dioxide in this example was blast furnace gas. The chemical composition is shown in Table 1. Serpentinite was used as the magnesium-containing material. The chemical composition is shown in Table 2.

高炉ガスをアンモニア溶液に通して炭酸ガスを吸収させ炭酸アンモニウム溶液を得た。なお、アンモニア溶液はコークス炉から発生する安水より得られたものを用いてもよい。   Blast furnace gas was passed through the ammonia solution to absorb the carbon dioxide gas to obtain an ammonium carbonate solution. In addition, you may use the ammonia solution obtained from the low water generated from a coke oven.

また、蛇紋岩を粉砕し塩酸溶液と接触させ、蛇紋岩中のMgOと塩酸を反応させて塩化マグネシウム溶液を得た。次に、炭酸アンモニウム溶液と塩化マグネシウム溶液を反応させた。炭酸マグネシウムが沈殿し、溶液中には塩化アンモニウムが生成した。   Further, the serpentine was crushed and brought into contact with a hydrochloric acid solution, and MgO in the serpentine and hydrochloric acid were reacted to obtain a magnesium chloride solution. Next, the ammonium carbonate solution and the magnesium chloride solution were reacted. Magnesium carbonate precipitated and ammonium chloride formed in the solution.

塩化アンモニウム溶液は蒸留塔に送り、塩酸とアンモニアに分離した。アンモニアは高炉ガス中の炭酸ガスの吸収に、塩酸は蛇紋岩との反応に再び用いた。炭酸マグネシウムをろ過して回収し、表3に示す割合でセメント混和剤として用いた。ここで、炭酸マグネシウムは、MgCO3である。凝結遅延剤、シリカとして、各々、グルコン酸ナトリウム、非晶質シリカ微粉末を用いた。 The ammonium chloride solution was sent to a distillation column and separated into hydrochloric acid and ammonia. Ammonia was used again to absorb carbon dioxide in the blast furnace gas, and hydrochloric acid was used again to react with serpentine. Magnesium carbonate was recovered by filtration and used as a cement admixture in the proportions shown in Table 3. Here, the magnesium carbonate is MgCO 3 . As the setting retarder and silica, sodium gluconate and amorphous silica fine powder were used, respectively.

28日養生後にコンクリートの圧縮強度を測定した。その結果を、表3の本発明例1〜7に示す。表3で水セメント比はいずれも55%とした。ここで、水セメント比とは、セメント質量を100としたときの、加える水の質量比である。   The compressive strength of the concrete was measured after curing for 28 days. The results are shown in Invention Examples 1 to 7 in Table 3. In Table 3, the water cement ratio was 55%. Here, the water cement ratio is the mass ratio of water to be added when the cement mass is 100.

一方、従来法については、以下の方法により確認を行った。従来法1は、混和剤等を配合しない標準的な試験条件である。従来法2は、前記特許文献1に示されるように、炭酸マグネシウム類、及び、硫酸アルミニウム類からなる群より選ばれた一種又は二種以上の成分αと、増粘剤及び減水剤とを有効成分とするセメント混和剤に関するものである。従来法1及び2について材令28日圧縮強度を測定した。その結果を、表3の従来法1及び2に示す。   On the other hand, the conventional method was confirmed by the following method. Conventional method 1 is a standard test condition in which no admixture or the like is blended. As shown in Patent Document 1, the conventional method 2 effectively uses one or more components α selected from the group consisting of magnesium carbonates and aluminum sulfates, a thickener and a water reducing agent. It relates to a cement admixture as a component. For the conventional methods 1 and 2, the material age 28-day compressive strength was measured. The results are shown in Conventional Methods 1 and 2 in Table 3.

表3の結果を見ると、材令28日圧縮強度について、従来法が29〜34MPaに対して、本発明例は40〜57MPaであり、全て従来法よりも高い強度を発現できた。表3の比較例は、いずれも製造条件が特許請求の範囲を外れる場合である。比較例は、本発明例よりも圧縮強度がやや低い。しかし、従来法よりは高い値を示している。   When the result of Table 3 was seen, regarding the material age 28-day compressive strength, the conventional method was 29 to 34 MPa, and the present invention example was 40 to 57 MPa, and all of them could exhibit higher strength than the conventional method. The comparative examples in Table 3 are cases where the manufacturing conditions are outside the scope of the claims. The comparative example has a slightly lower compressive strength than the inventive example. However, the value is higher than that of the conventional method.

Figure 2006076825
Figure 2006076825

Figure 2006076825
Figure 2006076825

Figure 2006076825
Figure 2006076825

本発明によれば、前述したように、地球温暖化ガスである炭酸ガスを安全且つ経済的に有効利用することができるので、本発明は、地球環境保全技術としての利用可能性が大きいものである。   According to the present invention, as described above, since carbon dioxide, which is a global warming gas, can be used safely and economically, the present invention has a great applicability as a global environmental conservation technology. is there.

Claims (1)

セメントが10〜20質量%、細骨材が35〜45質量%、粗骨材が40〜55質量%で、合計100質量%のセメント混合物に、水を添加してコンクリートを製造する際に、セメントの0質量%を越えて15質量%以下に換えて炭酸ガスを含むガスと酸化マグネシウム含有物質から生成した炭酸マグネシウムを添加し、細骨材の0.3〜1.2質量%に換えてシリカを添加し、更に、セメント及び炭酸マグネシウムの総量に対して凝結遅延剤を0.05〜0.15質量%添加することを特徴とする炭酸ガスの利用方法。
When cement is produced by adding water to a cement mixture of 10 to 20% by mass, fine aggregates of 35 to 45% by mass, and coarse aggregates of 40 to 55% by mass and a total of 100% by mass, Add the carbon dioxide-containing gas and magnesium carbonate produced from the magnesium oxide-containing substance to 0 to 15% by mass over the cement, and replace it with 0.3 to 1.2% by mass of fine aggregate. A method for using carbon dioxide, comprising adding silica and further adding 0.05 to 0.15 mass% of a setting retarder with respect to the total amount of cement and magnesium carbonate.
JP2004262111A 2004-09-09 2004-09-09 How to use carbon dioxide Active JP4625294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262111A JP4625294B2 (en) 2004-09-09 2004-09-09 How to use carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262111A JP4625294B2 (en) 2004-09-09 2004-09-09 How to use carbon dioxide

Publications (2)

Publication Number Publication Date
JP2006076825A true JP2006076825A (en) 2006-03-23
JP4625294B2 JP4625294B2 (en) 2011-02-02

Family

ID=36156595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262111A Active JP4625294B2 (en) 2004-09-09 2004-09-09 How to use carbon dioxide

Country Status (1)

Country Link
JP (1) JP4625294B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009156740A1 (en) * 2008-06-26 2009-12-30 Novacem Limited Binder composition
EP2207753A1 (en) * 2008-06-17 2010-07-21 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
CN101806116A (en) * 2010-02-26 2010-08-18 哈尔滨工业大学深圳研究生院 Hollow recycled concrete component and preparation method
AU2009287466B2 (en) * 2008-10-22 2010-09-16 Arelac, Inc. Reduced-carbon footprint concrete compositions
US7875163B2 (en) 2008-07-16 2011-01-25 Calera Corporation Low energy 4-cell electrochemical system with carbon dioxide gas
US7914685B2 (en) 2007-06-28 2011-03-29 Calera Corporation Rocks and aggregate, and methods of making and using the same
US7931809B2 (en) 2007-06-28 2011-04-26 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US8006446B2 (en) 2008-09-30 2011-08-30 Calera Corporation CO2-sequestering formed building materials
WO2012028419A1 (en) 2010-09-02 2012-03-08 Novacem Limited Binder composition
US8137444B2 (en) 2009-03-10 2012-03-20 Calera Corporation Systems and methods for processing CO2
US8333944B2 (en) 2007-12-28 2012-12-18 Calera Corporation Methods of sequestering CO2
US8357270B2 (en) 2008-07-16 2013-01-22 Calera Corporation CO2 utilization in electrochemical systems
US8470275B2 (en) 2008-09-30 2013-06-25 Calera Corporation Reduced-carbon footprint concrete compositions
US8491858B2 (en) 2009-03-02 2013-07-23 Calera Corporation Gas stream multi-pollutants control systems and methods
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
JP2017222541A (en) * 2016-06-16 2017-12-21 大成建設株式会社 Hydraulic composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256557A (en) * 1987-04-15 1988-10-24 電気化学工業株式会社 Cement admixing material
JPH01305836A (en) * 1988-06-03 1989-12-11 Nissan Chem Ind Ltd Additive for hydraulic cement
JPH059049A (en) * 1991-06-27 1993-01-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256557A (en) * 1987-04-15 1988-10-24 電気化学工業株式会社 Cement admixing material
JPH01305836A (en) * 1988-06-03 1989-12-11 Nissan Chem Ind Ltd Additive for hydraulic cement
JPH059049A (en) * 1991-06-27 1993-01-19 Denki Kagaku Kogyo Kk Cement admixture and cement composition

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914685B2 (en) 2007-06-28 2011-03-29 Calera Corporation Rocks and aggregate, and methods of making and using the same
US7931809B2 (en) 2007-06-28 2011-04-26 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
US8333944B2 (en) 2007-12-28 2012-12-18 Calera Corporation Methods of sequestering CO2
US9260314B2 (en) 2007-12-28 2016-02-16 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
EP2207753A1 (en) * 2008-06-17 2010-07-21 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
EP2207753A4 (en) * 2008-06-17 2012-01-18 Calera Corp Methods and systems for utilizing waste sources of metal oxides
WO2009156740A1 (en) * 2008-06-26 2009-12-30 Novacem Limited Binder composition
US8496751B2 (en) 2008-06-26 2013-07-30 Calix Ltd Binder composition
US8894830B2 (en) 2008-07-16 2014-11-25 Celera Corporation CO2 utilization in electrochemical systems
US7875163B2 (en) 2008-07-16 2011-01-25 Calera Corporation Low energy 4-cell electrochemical system with carbon dioxide gas
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
US8357270B2 (en) 2008-07-16 2013-01-22 Calera Corporation CO2 utilization in electrochemical systems
US7939336B2 (en) 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US8603424B2 (en) 2008-09-30 2013-12-10 Calera Corporation CO2-sequestering formed building materials
US8006446B2 (en) 2008-09-30 2011-08-30 Calera Corporation CO2-sequestering formed building materials
US8431100B2 (en) 2008-09-30 2013-04-30 Calera Corporation CO2-sequestering formed building materials
US8470275B2 (en) 2008-09-30 2013-06-25 Calera Corporation Reduced-carbon footprint concrete compositions
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
AU2009287466B2 (en) * 2008-10-22 2010-09-16 Arelac, Inc. Reduced-carbon footprint concrete compositions
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US9267211B2 (en) 2009-02-10 2016-02-23 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8491858B2 (en) 2009-03-02 2013-07-23 Calera Corporation Gas stream multi-pollutants control systems and methods
US8883104B2 (en) 2009-03-02 2014-11-11 Calera Corporation Gas stream multi-pollutants control systems and methods
US8137444B2 (en) 2009-03-10 2012-03-20 Calera Corporation Systems and methods for processing CO2
US7993511B2 (en) 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
CN101806116A (en) * 2010-02-26 2010-08-18 哈尔滨工业大学深圳研究生院 Hollow recycled concrete component and preparation method
WO2012028419A1 (en) 2010-09-02 2012-03-08 Novacem Limited Binder composition
JP2017222541A (en) * 2016-06-16 2017-12-21 大成建設株式会社 Hydraulic composition

Also Published As

Publication number Publication date
JP4625294B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4625294B2 (en) How to use carbon dioxide
JP5091519B2 (en) Geopolymer composition and method for producing the same
KR100648827B1 (en) Solidifying agent for sludge, hardened product using the same and manufacturing method of the building materials using the hardended product
CN1419523A (en) Reactive magnesium oxide cements
JP2003306359A (en) Cement composition and hydrated hardened body
JP2006075717A (en) Utilization method of carbon dioxide
JP2003165751A (en) Hydraulic composition and hydrated hardened body
JP4878432B2 (en) Solidifying material composition
CN102633453A (en) Neutral modifying agent for fluorgypsum and method for utilizing neutral modifying agent to modify fluorgypsum
JP2014148434A (en) Hydraulic composition
JP4723452B2 (en) Alkalinity reducing agent
JP6355946B2 (en) Selenium insolubilizing material for soil and method for insolubilizing selenium in soil
JP2001328856A (en) Nonshrinking mortar composition and quick-hardenable nonshrinking mortar composition
JP2018158876A (en) Coal ash hardened material
JP2004136160A (en) Toxic heavy metal collecting material
JP3374960B2 (en) Cement solidification material for organic soil
JP4561190B2 (en) Solidification method of target soil
JP2018203583A (en) Coal ash composition
JP2004292568A (en) Soil solidifying material
JPH10245555A (en) Cemental solidifier for organic soil
JPS62260753A (en) Neutral consolidating agent and manufacture
JP5620170B2 (en) Foaming quick setting agent, spraying material and spraying method using the same
JP6577785B2 (en) Hardened concrete for salt damage prevention and manufacturing method thereof
JP2004105783A (en) Solidification material and solidification method for soil
JPH0848549A (en) Slag curing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R151 Written notification of patent or utility model registration

Ref document number: 4625294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350