JP2018203583A - Coal ash composition - Google Patents

Coal ash composition Download PDF

Info

Publication number
JP2018203583A
JP2018203583A JP2017112547A JP2017112547A JP2018203583A JP 2018203583 A JP2018203583 A JP 2018203583A JP 2017112547 A JP2017112547 A JP 2017112547A JP 2017112547 A JP2017112547 A JP 2017112547A JP 2018203583 A JP2018203583 A JP 2018203583A
Authority
JP
Japan
Prior art keywords
coal ash
mass
chlorine bypass
bypass dust
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017112547A
Other languages
Japanese (ja)
Other versions
JP6922448B2 (en
Inventor
知昭 鷲尾
Tomoaki Washio
知昭 鷲尾
明宏 古賀
Akihiro Koga
明宏 古賀
英喜 中田
Hideki Nakada
英喜 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2017112547A priority Critical patent/JP6922448B2/en
Publication of JP2018203583A publication Critical patent/JP2018203583A/en
Application granted granted Critical
Publication of JP6922448B2 publication Critical patent/JP6922448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

To provide a coal ash composition suppressing elution of heavy metals in coal ash and available as a raw material for civil engineering materials or environmental materials at inexpensive price.SOLUTION: The coal ash composition contains coal ash, chlorine bypass dust, and a segment, and has Blaine specific surface area of 2000 to 10000 cm/g. SiOcontent in the coal ash composition is 30 to 70 mass%, AlOcontent is 8 to 30 mass%, FeOcontent is 1 to 10 mass%, CaO content is 1 to 25 mass%, MgO content is 0.1 to 3 mass% and SOcontent is 0.01 to 3 mass%.SELECTED DRAWING: None

Description

本発明は石炭灰組成物に関する。   The present invention relates to a coal ash composition.

石炭火力発電所から発生する石炭灰は、SiOやAlを主成分とする鉱物である石英やムライトで主に構成されており、従来、セメント原料やコンクリート混和材、埋戻し材や盛土材などの土木資材、底質改善材、水質浄化材などの環境資材として利用されている。中でも、近年の石炭灰発生量の増加に伴い、石炭灰を大量に有効利用が可能であると見込まれる土木資材や環境資材への利用が有望視されている。しかし、石炭灰は石炭由来の重金属類を含んでおり、石炭灰から土壌環境基準を超過する重金属類が溶出することが報告されている。したがって、石炭灰を土木資材あるいは環境資材に有効利用するためには、石炭灰に含まれる重金属類の溶出を抑制する必要がある。 Coal ash generated from coal-fired power plants is mainly composed of quartz and mullite, which are minerals mainly composed of SiO 2 and Al 2 O 3. Conventionally, cement raw materials, concrete admixtures, backfill materials, It is used as environmental materials such as civil engineering materials such as embankment materials, bottom quality improvement materials, and water purification materials. Among them, with the recent increase in the amount of coal ash generated, it is considered promising to use it for civil engineering materials and environmental materials that are expected to be able to effectively use a large amount of coal ash. However, coal ash contains coal-derived heavy metals, and it has been reported that heavy metals exceeding soil environmental standards are eluted from coal ash. Therefore, in order to effectively use coal ash for civil engineering materials or environmental materials, it is necessary to suppress elution of heavy metals contained in coal ash.

石炭灰中の重金属類の溶出を抑制する方法として、特許文献1には、石炭灰にセメントと還元剤と消石灰とを添加して硬化させる方法が開示されている。特許文献2には、石炭灰に還元剤とセメント、石灰、石膏等を添加して造粒する方法が開示されている。   As a method for suppressing elution of heavy metals in coal ash, Patent Document 1 discloses a method in which cement, a reducing agent, and slaked lime are added to coal ash and hardened. Patent Document 2 discloses a method of granulating by adding a reducing agent and cement, lime, gypsum and the like to coal ash.

他方、セメント工場では近年、高塩素含有廃棄物のセメント原燃料化が拡大してきており、セメントキルン内の塩素を除去するために設置されている塩素バイパス設備から発生する塩素バイパスダストの発生量が増加している。塩素バイパスダストは従来、水洗処理して塩素を除去した後にセメントに添加する方法やセメント系固化材に添加する方法で処理されてきたが、発生量の増加に伴い新たな処理方法や有効利用方法の開発が望まれている。   On the other hand, in cement factories, the use of high chlorine-containing waste as a raw material for cement has expanded in recent years, and the amount of chlorine bypass dust generated from chlorine bypass equipment installed to remove chlorine in cement kilns has increased. It has increased. Chlorine bypass dust has traditionally been treated by washing with water and removing chlorine, and then adding it to cement or adding it to cement-based solidified materials. Development is desired.

特開2016−47519号公報Japanese Unexamined Patent Publication No. 2016-47519 特開2007−119341号公報JP 2007-119341 A

特許文献1及び2に開示される方法では、石炭灰と、セメント、石灰及び石膏のうち少なくとも一種以上とを含む石炭灰組成物を用いているため、石炭灰に含まれるフッ素、ホウ素、ヒ素及びセレンといった重金属類の不溶化効果は期待されるが、六価クロムの溶出抑制効果は期待できない。また、六価クロムの溶出を抑制するには高価な還元剤を必要とするため、材料コスト及び製品単価が高くなり、安価な材料が要求される土木資材や環境資材等への有効利用が困難となる。更に、特許文献1のように、還元剤として酸性の鉄塩のみを用いると、石炭灰組成物及び石炭灰組成物から製造した石炭灰硬化物のpHが低下し、ホウ素等の溶出抑制効果に悪影響を及ぼすことが懸念される。   In the methods disclosed in Patent Documents 1 and 2, since a coal ash composition containing coal ash and at least one of cement, lime, and gypsum is used, fluorine, boron, arsenic, and The effect of insolubilizing heavy metals such as selenium is expected, but the effect of inhibiting elution of hexavalent chromium cannot be expected. In addition, since an expensive reducing agent is required to suppress the elution of hexavalent chromium, the material cost and the unit price of the product increase, making it difficult to effectively use it for civil engineering and environmental materials that require inexpensive materials. It becomes. Furthermore, like patent document 1, if only an acidic iron salt is used as a reducing agent, the pH of the coal ash composition and the hardened coal ash produced from the coal ash composition is lowered, and the elution suppression effect of boron and the like is reduced. There are concerns about adverse effects.

したがって、本発明の課題は、石炭灰を含む組成物を原料として土木資材や環境資材を製造した場合に、石炭灰中の重金属類の溶出が抑制され、かつ土木資材や環境資材用の原料として安価に利用可能な石炭灰組成物を提供することにある。更に本発明の課題は、近年発生量が増加している塩素バイパスダストの有効な利用方法を提供することにある。   Therefore, the problem of the present invention is that when civil engineering materials and environmental materials are produced using a composition containing coal ash as a raw material, elution of heavy metals in coal ash is suppressed, and as a raw material for civil engineering materials and environmental materials. The object is to provide a coal ash composition that can be used at low cost. Furthermore, the subject of this invention is providing the effective usage method of the chlorine bypass dust which the generation amount has increased in recent years.

本発明者らは、石炭灰及びセメントの反応を促進する成分であるフリーライム(以下「f.CaO」とも言う。)及び塩素分を含む塩素バイパスダストに着目して解析を進めた結果、塩素バイパスダストに含まれるカルシウム、アルミニウム、硫酸分及び塩素分が水和してアルミネート系化合物を生成すること、塩素バイパスダストに還元性物質が含まれること、塩素バイパスダストにf.CaOやアルカリ分等の本発明の石炭灰組成物から硬化物を製造した場合に、硬化物のpHを上昇させる成分が含まれること、並びに塩素バイパスダストには重金属類を安定的に収着しやすいTiOやMnO等の多価金属が微量成分として含まれることを見出した。本発明者らはこれらの知見に基づき、石炭灰に塩素バイパスダスト及びセメントを含む石炭灰組成物と水とを混練後、養生することで製造した石炭灰硬化物は、塩素バイパスダスト無添加の場合に比べ、石炭灰硬化物からの重金属類の溶出量を低減できることを見出し、本発明を完成させるに至った。 The present inventors proceeded with analysis focusing on chlorine-bypass dust containing free lime (hereinafter also referred to as “f.CaO”), which is a component that accelerates the reaction between coal ash and cement, and chlorine as a result. Calcium, aluminum, sulfuric acid and chlorine contained in the bypass dust are hydrated to produce an aluminate compound, the reducing substance is contained in the chlorine bypass dust, and f. When a cured product is produced from the coal ash composition of the present invention such as CaO or alkali, it contains components that increase the pH of the cured product, and the chlorine bypass dust stably sorbs heavy metals. It was found that polyvalent metals such as easy TiO 2 and MnO are contained as trace components. Based on these findings, the inventors of the present invention made a hardened coal ash by kneading a coal ash composition containing chlorine bypass dust and cement and water with coal ash, and curing the coal ash. As compared with the case, it has been found that the elution amount of heavy metals from the hardened coal ash can be reduced, and the present invention has been completed.

すなわち、本発明は、石炭灰と、塩素バイパスダストと、セメントとを含み、ブレーン比表面積が2000〜10000cm/gである石炭灰組成物に関する。
本発明は、前記石炭灰組成物のSiO含有量が30〜70質量%であり、Al含有量が8〜30質量%であり、Fe含有量が1〜10質量%であり、CaO含有量が1〜25質量%であり、MgO含有量が0.1〜3質量%であり、SO含有量が0.01〜3質量%である石炭灰組成物に関する。
本発明は、石炭灰100質量部に対して塩素バイパスダストを0.1〜10質量部含む石炭灰組成物に関する。
本発明は、前記塩素バイパスダストのf.CaO含有量が15〜45質量%である石炭灰組成物に関する。
本発明は、前記塩素バイパスダストのSO含有量が3〜15質量%である石炭灰組成物に関する。本発明は、前記塩素バイパスダストのブレーン比表面積が3000〜20000cm/gである石炭灰組成物に関する。
本発明は、前記塩素バイパスダストのセレン溶出量が0.001〜1.0mg/Lである石炭灰組成物に関する。
本発明は、石炭灰100質量部に対してセメントを3〜25質量部含む石炭灰組成物に関する。
本発明は、前記石炭灰組成物が石炭灰100質量部に対して、石膏を1〜15質量部含む石炭灰組成物に関する。本発明は、前記石炭灰組成物が石炭灰100質量部に対して、石灰を1〜15質量部含む石炭灰組成物に関する。
That is, the present invention relates to a coal ash composition that includes coal ash, chlorine bypass dust, and cement, and has a brain specific surface area of 2000 to 10,000 cm 2 / g.
The present invention is a SiO 2 content of 30 to 70% by weight of the coal ash composition is Al 2 O 3 content of 8 to 30 mass%, Fe 2 O 3 content of 1-10 wt% , and the a CaO content of 1 to 25 wt%, a MgO content of 0.1 to 3 wt%, about coal ash composition SO 3 content of 0.01 to 3 wt%.
The present invention relates to a coal ash composition containing 0.1 to 10 parts by mass of chlorine bypass dust with respect to 100 parts by mass of coal ash.
The present invention relates to f. It is related with the coal ash composition whose CaO content is 15-45 mass%.
The present invention relates to a coal ash composition SO 3 content of the chlorine bypass dust is 3 to 15 mass%. The present invention relates to a coal ash composition in which the chlorine bypass dust has a Blaine specific surface area of 3000 to 20000 cm 2 / g.
The present invention relates to a coal ash composition in which the selenium elution amount of the chlorine bypass dust is 0.001 to 1.0 mg / L.
The present invention relates to a coal ash composition containing 3 to 25 parts by mass of cement with respect to 100 parts by mass of coal ash.
The present invention relates to a coal ash composition containing 1 to 15 parts by mass of gypsum with respect to 100 parts by mass of the coal ash. This invention relates to the coal ash composition in which the said coal ash composition contains 1-15 mass parts of lime with respect to 100 mass parts of coal ash.

本発明の石炭灰組成物は、石炭灰と、塩素バイパスダストと、セメントとを含むことにより、土木資材や環境資材用の硬化物の原料として使用することによって、硬化物からの重金属類の溶出量を土壌環境基準以下まで低減することができる。
また、本発明の石炭灰組成物は、重金属類の溶出抑制材として産業廃棄物である塩素バイパスダストを利用していることから、従来の市販の重金属類の溶出抑制材を利用した場合に比較して、安価な土木資材あるいは環境資材用の原料として利用でき、石炭灰の有効利用量の拡大を図ることができるとともに、塩素バイパスダストの有効利用を図ることができる。
The coal ash composition of the present invention contains coal ash, chlorine bypass dust, and cement, and is used as a raw material for hardened materials for civil engineering and environmental materials, thereby leaching heavy metals from the hardened material. The amount can be reduced to below soil environmental standards.
In addition, since the coal ash composition of the present invention uses chlorine bypass dust, which is industrial waste, as an elution inhibitor for heavy metals, it is compared with the case where a conventional commercially available elution inhibitor for heavy metals is used. Thus, it can be used as a raw material for inexpensive civil engineering materials or environmental materials, and the effective use of coal ash can be increased, and the chlorine bypass dust can be effectively used.

以下、本発明の好適な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

本発明の石炭灰組成物は、石炭灰と、塩素バイパスダストと、セメントとを含むものである。石炭灰組成物は、石炭灰と、塩素バイパスダストと、セメントとを含む混合物であり、粉末状の形態を有している。   The coal ash composition of the present invention includes coal ash, chlorine bypass dust, and cement. The coal ash composition is a mixture containing coal ash, chlorine bypass dust, and cement, and has a powdery form.

本発明で用いられる石炭灰は、石炭の燃焼によって生成したものであれば特に限定されない。例えば、石炭火力発電所にて微粉炭を燃焼した際に生成する灰であって、電気集塵機等で回収されるフライアッシュや、燃焼ボイラから落下採取されるクリンカアッシュ等が挙げられる。特にフライアッシュは、クリンカアッシュに比べて重金属類を多く含有し、その溶出量も多いため、本発明の石炭灰組成物の形態で土木資材及び/又は環境資材用の硬化物の原料として好適に有効利用される。   The coal ash used in the present invention is not particularly limited as long as it is generated by coal combustion. Examples include ash generated when pulverized coal is burned at a coal-fired power plant, and fly ash collected by an electric dust collector or the like, clinker ash dropped from a combustion boiler, and the like. In particular, fly ash contains more heavy metals than clinker ash and has a large amount of elution, so it is suitable as a raw material for hardened materials for civil engineering materials and / or environmental materials in the form of the coal ash composition of the present invention. It is used effectively.

石炭灰は、例えばヒ素(As)、セレン(Se)及び六価クロム(Cr6+)等の石炭由来の重金属を含んでいる。重金属以外にも石炭灰はフッ素(F)及びホウ素(B)などの元素を含んでいる。以下の説明においては、これらの重金属及びそれ以外の元素であるフッ素やホウ素を総称して「重金属類」と言う。重金属類は石炭灰から土壌環境基準を超過して溶出する恐れがある。これらの重金属類を不溶化する方法として、セメントを添加して硬化させることで硬化物内に物理的に封じ込めて不溶化する方法や、石炭灰のポゾラン反応やセメントの水和反応により生成する水和物に固定化して不溶化する方法が知られている。フッ素、ヒ素及びセレンはこれらの方法を用いることにより、石炭灰からの溶出を十分に抑制することができる。 Coal ash contains heavy metals derived from coal such as arsenic (As), selenium (Se), and hexavalent chromium (Cr 6+ ). In addition to heavy metals, coal ash contains elements such as fluorine (F) and boron (B). In the following description, these heavy metals and other elements such as fluorine and boron are collectively referred to as “heavy metals”. Heavy metals may leach out of coal ash in excess of soil environmental standards. As a method for insolubilizing these heavy metals, cement is added and cured, and it is physically contained in the cured product and insolubilized, and coal ash pozzolanic reaction and cement hydration reaction. There is known a method of immobilizing and insolubilizing. Fluorine, arsenic and selenium can sufficiently suppress elution from coal ash by using these methods.

一方、ホウ素は、セメントの水和反応や石炭灰のポゾラン反応により生成する水和物によって不溶化されるが、中性化等によりpHが低下すると溶出量が増加しやすい元素である。また六価クロムは、還元剤を添加して三価クロムの形態に還元することで不溶化されるが、三価クロムの形態に還元する方法以外では溶出抑制が難しい元素である。本発明の石炭灰組成物は、その構成成分として塩素バイパスダストを含有することにより、中性化等に起因するpHの低下が起こりにくく、また六価クロムの溶出抑制効果をも有するため、フッ素、ホウ素、ヒ素、セレン及び六価クロムのうち少なくとも一種以上を溶出する石炭灰を好適に有効利用でき、ホウ素及び六価クロムのうち少なくとも一種以上を溶出する石炭灰をより好適に有効利用できる。   On the other hand, boron is insolubilized by a hydrate produced by cement hydration reaction or coal ash pozzolanic reaction, but it is an element whose elution amount tends to increase when pH is lowered due to neutralization or the like. Hexavalent chromium is insolubilized by adding a reducing agent and reducing it to the form of trivalent chromium, but it is difficult to suppress elution except by the method of reducing to the form of trivalent chromium. Since the coal ash composition of the present invention contains chlorine bypass dust as a constituent component thereof, it is difficult for pH to decrease due to neutralization and the like, and also has an effect of suppressing elution of hexavalent chromium. Coal ash eluting at least one or more of boron, arsenic, selenium and hexavalent chromium can be effectively used, and coal ash eluting at least one or more of boron and hexavalent chromium can be more effectively used.

本発明で用いられる石炭灰のホウ素溶出量は、0.001〜15mg/Lが好ましく、0.001〜10mg/Lがより好ましく、0.001〜7.5mg/Lが更に好ましい。石炭灰のホウ素溶出量がこれらの範囲であれば、本発明の石炭灰組成物を原料として硬化物を製造した場合に、硬化物からのホウ素溶出量を土壌環境基準以下に抑制することができる。   The boron elution amount of coal ash used in the present invention is preferably 0.001 to 15 mg / L, more preferably 0.001 to 10 mg / L, and still more preferably 0.001 to 7.5 mg / L. If the boron elution amount of coal ash is within these ranges, the boron elution amount from the cured product can be suppressed below the soil environment standard when the cured product is produced using the coal ash composition of the present invention as a raw material. .

本発明で用いられる石炭灰の六価クロム溶出量は、0.001〜0.3mg/Lが好ましく、0.001〜0.2mg/Lがより好ましく、0.001〜0.1mg/Lが更に好ましい。石炭灰の六価クロム溶出量がこれらの範囲であれば、本発明の石炭灰組成物を原料として硬化物を製造した場合に、硬化物からの六価クロム溶出量を土壌環境基準以下に抑制することができる。   The hexavalent chromium elution amount of coal ash used in the present invention is preferably 0.001 to 0.3 mg / L, more preferably 0.001 to 0.2 mg / L, and 0.001 to 0.1 mg / L. Further preferred. If the elution amount of hexavalent chromium in coal ash is within these ranges, when the cured product is produced using the coal ash composition of the present invention as a raw material, the elution amount of hexavalent chromium from the cured product is suppressed below the soil environmental standard. can do.

本発明で用いられる石炭灰のセレン溶出量は、0.0001〜0.3mg/Lが好ましく、0.0001〜0.2mg/Lがより好ましく、0.0001〜0.1mg/Lが更に好ましい。セレンは、本発明の石炭灰組成物に含有される塩素バイパスダストからも溶出するが、石炭灰のセレン溶出量が前述の範囲であれば、本発明の石炭灰組成物を原料として硬化物を製造した場合に、硬化物からのセレン溶出量を土壌環境基準以下に抑制することができる。   The selenium elution amount of coal ash used in the present invention is preferably 0.0001 to 0.3 mg / L, more preferably 0.0001 to 0.2 mg / L, and still more preferably 0.0001 to 0.1 mg / L. . Selenium is also eluted from the chlorine bypass dust contained in the coal ash composition of the present invention, but if the selenium elution amount of coal ash is in the above-mentioned range, the cured product is obtained using the coal ash composition of the present invention as a raw material. When manufactured, the amount of selenium eluted from the cured product can be suppressed below the soil environmental standard.

石炭灰からのホウ素溶出量、六価クロム溶出量及びセレン溶出量は、後述する実施例に記載の方法によって測定される。   The boron elution amount, hexavalent chromium elution amount, and selenium elution amount from coal ash are measured by the methods described in Examples described later.

本発明で用いられる塩素バイパスダストは、セメント製造工程において塩素含有量の多い原料を使用した際に、セメント工場設備のセメントキルン内に生じる塩素分を含む排ガスの一部を塩素バイパス設備により抽気し、その抽気した排ガスを冷却した際に発生するダスト(粉状物)のことである。塩素バイパスダストは、塩化カリウムなどの塩化物、f.CaOなどのセメント原料の仮焼物等により構成される。本発明において、塩素バイパスダストは、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出抑制材として好適に含有される。   The chlorine bypass dust used in the present invention, when using a raw material with a high chlorine content in the cement manufacturing process, bleeds part of the exhaust gas containing chlorine generated in the cement kiln of the cement factory equipment by the chlorine bypass equipment. It is dust (powder) generated when the extracted exhaust gas is cooled. Chlorine bypass dust is a chloride such as potassium chloride, f. It is composed of a calcined material of cement raw material such as CaO. In the present invention, the chlorine bypass dust is suitably contained as an elution inhibitor for heavy metals from a cured product produced using the coal ash composition of the present invention as a raw material.

塩素バイパスダストが、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出抑制材としての効果を有する理由は明らかではないが、本発明者は以下のように推測している。
(1)塩素バイパスダストに含まれるf.CaOや塩化カリウムが石炭灰のポゾラン反応及び/又はセメントの水和反応を促進する作用があることから、石炭灰組成物を原料として硬化物を製造した場合に硬化物の硬化が促進され、石炭灰に含まれる重金属類が硬化物内に物理的に封じ込められる効果が向上するとともに、重金属類を固定化する水和物の生成量が増加することで溶出抑制効果が向上するものと考えられる。
(2)塩素バイパスダストはカルシウム、アルミニウム、硫酸分及び塩素分を含み、塩素バイパスダスト中のカルシウム及びアルミニウムと、硫酸分と塩素分とのうち少なくとも一方の成分とが水和して重金属類を取り込むアルミネート系化合物が生成することから、塩素バイパスダストを添加することで、本発明の石炭灰組成物から硬化物を製造した場合に、六価クロムやその他重金属類が石炭灰硬化物中に不溶化される効果が高まるものと考えられる。
(3)塩素バイパスダストはf.CaOに加えてアルカリ分を更に含むことから、石炭灰組成物を硬化物とした場合に、硬化物のpHが上昇することにより、pHの高い領域で不溶化されやすいホウ素の溶出抑制効果が向上するものと考えられる。
(4)本発明者らは検討を進めたところ、前記セメントキルンの窯尻近傍から抽気された排ガスのガス雰囲気は酸素濃度が低く、還元性物質が生成しやすいことに起因して、塩素バイパスダスト中に還元性物質が含まれていることが判った。この還元性物質によって、六価クロムが三価クロムに還元されることにより溶出抑制効果が向上するものと考えられる。
なお本発明者は、塩素バイパスダストに6価のセレン酸と4価の亜セレン酸とが共存していることを実測しており、塩素バイパスダストが還元雰囲気に曝されていることを確認している。
(5)塩素バイパスダストは、TiOやMnO等の多価金属を微量成分として含有することから、重金属類がこれらの多価金属に収着しやすいことによって、石炭灰組成物を硬化物とした場合に重金属類の溶出が抑制されるものと考えられる。
The reason why the chlorine bypass dust has an effect as an elution inhibitor of heavy metals from the cured product produced from the coal ash composition of the present invention is not clear, but the present inventor presumes as follows Yes.
(1) f. Contained in chlorine bypass dust. Since CaO and potassium chloride have an action of promoting the pozzolanic reaction of coal ash and / or the hydration reaction of cement, when the cured product is produced using the coal ash composition as a raw material, the curing of the cured product is promoted. The effect that the heavy metals contained in the ash are physically contained in the cured product is improved, and the elution suppression effect is considered to be improved by increasing the amount of hydrates that immobilize the heavy metals.
(2) Chlorine bypass dust contains calcium, aluminum, sulfuric acid and chlorine, and calcium and aluminum in the chlorine bypass dust and at least one component of sulfuric acid and chlorine are hydrated to remove heavy metals. Since the aluminate-based compound to be taken in is produced, when a hardened product is produced from the coal ash composition of the present invention by adding chlorine bypass dust, hexavalent chromium and other heavy metals are contained in the hardened coal ash. It is thought that the effect of insolubilization increases.
(3) Chlorine bypass dust is f. Since it further contains an alkali component in addition to CaO, when the coal ash composition is used as a cured product, the pH of the cured product increases, thereby improving the boron elution suppression effect that is easily insolubilized in a high pH region. It is considered a thing.
(4) As a result of investigations by the present inventors, the gas atmosphere of the exhaust gas extracted from the vicinity of the kiln bottom of the cement kiln has a low oxygen concentration, and it is easy to generate reducing substances. It was found that reducing substances were contained in the dust. It is considered that this reducing substance improves the elution suppression effect by reducing hexavalent chromium to trivalent chromium.
The present inventor has actually measured that hexavalent selenate and tetravalent selenious acid coexist in the chlorine bypass dust, and confirmed that the chlorine bypass dust is exposed to the reducing atmosphere. ing.
(5) Chlorine bypass dust contains polyvalent metals such as TiO 2 and MnO as trace components, so that heavy metals easily sorb on these polyvalent metals, thereby converting the coal ash composition into a cured product. In this case, it is considered that elution of heavy metals is suppressed.

本発明の石炭灰組成物に含有される塩素バイパスダストの量は、石炭灰100質量部に対して0.1〜10質量部が好ましく、0.5〜5質量部がより好ましく、1〜3質量部が更に好ましい。塩素バイパスダストの量が0.1質量部未満では石炭灰に含まれる重金属類の溶出抑制効果が得られない。塩素バイパスダストの量が10質量部を超えると、石炭灰からのセレン溶出量が前記範囲であっても、塩素バイパスダストに含まれるセレンが石炭灰組成物を原料として製造した硬化物から溶出することによって、石炭灰と塩素バイパスダストとの合計セレン溶出量が土壌環境基準を超過する可能性があるため好ましくない。   0.1-10 mass parts is preferable with respect to 100 mass parts of coal ash, and, as for the quantity of the chlorine bypass dust contained in the coal ash composition of this invention, 0.5-5 mass parts is more preferable, 1-3 Part by mass is more preferable. If the amount of chlorine bypass dust is less than 0.1 parts by mass, the elution suppression effect of heavy metals contained in coal ash cannot be obtained. When the amount of chlorine bypass dust exceeds 10 parts by mass, even if the amount of selenium eluted from coal ash is within the above range, selenium contained in the chlorine bypass dust is eluted from the cured product produced using the coal ash composition as a raw material. Therefore, the total selenium elution amount of coal ash and chlorine bypass dust may exceed the soil environment standard, which is not preferable.

本発明の石炭灰組成物に含有される塩素バイパスダストのセレン溶出量は、0.001〜1.0mg/Lが好ましく、0.001〜0.75mg/Lがより好ましく、0.001〜0.5mg/Lが更に好ましい。塩素バイパスダストのセレン溶出量が1.0mg/Lを超えると、石炭灰からのセレン溶出量や石炭灰組成物に含有される塩素バイパスダストの量が前記範囲であっても、石炭灰組成物を原料として製造した硬化物からのセレン溶出量が土壌環境基準を超過する可能性があるため好ましくない。塩素バイパスダストのセレン溶出量は、後述する実施例に記載の方法によって測定される。   The selenium elution amount of the chlorine bypass dust contained in the coal ash composition of the present invention is preferably 0.001 to 1.0 mg / L, more preferably 0.001 to 0.75 mg / L, and 0.001 to 0 More preferably, 5 mg / L. When the selenium elution amount of the chlorine bypass dust exceeds 1.0 mg / L, even if the selenium elution amount from the coal ash or the amount of the chlorine bypass dust contained in the coal ash composition is within the above range, the coal ash composition Since the selenium elution amount from the hardened | cured material manufactured by using as a raw material may exceed a soil environmental standard, it is unpreferable. The selenium elution amount of the chlorine bypass dust is measured by the method described in the examples described later.

塩素バイパスダストのf.CaO含有量は、15〜45質量%が好ましく、20〜40質量%がより好ましく、25〜35質量%が更に好ましい。f.CaO含有量が15質量%未満であると、本発明の石炭灰組成物を原料として硬化物を製造した場合に、石炭灰のポゾラン反応及び/又はセメントの水和反応の促進及び/又は硬化物のpHが上昇することによる硬化物からの重金属類の溶出抑制効果が不十分となり好ましくない。また、45質量%を超えるような塩素バイパスダストは塩素バイパス設備からの排出量が少なく、実用性に乏しいため好ましくない。塩素バイパスダストのf.CaO含有量は、後述する実施例に記載の方法によって測定される。   Chlorine bypass dust f. The CaO content is preferably 15 to 45% by mass, more preferably 20 to 40% by mass, and still more preferably 25 to 35% by mass. f. When the cured product is produced using the coal ash composition of the present invention as the raw material when the CaO content is less than 15% by mass, the promotion of the coal ash pozzolanic reaction and / or the cement hydration reaction and / or the cured product The effect of suppressing the elution of heavy metals from the cured product due to the increase in pH of the cured product becomes insufficient, which is not preferable. Further, chlorine bypass dust exceeding 45% by mass is not preferable because the amount of discharge from the chlorine bypass facility is small and practicality is poor. Chlorine bypass dust f. The CaO content is measured by the method described in Examples described later.

塩素バイパスダストのCl含有量は、1〜20質量%が好ましく、5〜15質量%がより好ましく、10〜12.5質量%が更に好ましい。塩素バイパスダストのCl含有量が1質量%未満であると、本発明の石炭灰組成物を原料として硬化物を製造した場合に、石炭灰のポゾラン反応及び/又はセメントの水和反応を促進することによる硬化物からの重金属類の溶出抑制効果が不十分となり好ましくない。また、塩素バイパスダストのCl含有量が20質量%を超えるような塩素バイパスダストは、塩素バイパス設備からの排出量が少なく、実用性に乏しいため好ましくない。塩素バイパスダストのCl含有量は、後述する実施例に記載の方法によって測定される。   The Cl content of the chlorine bypass dust is preferably 1 to 20% by mass, more preferably 5 to 15% by mass, and still more preferably 10 to 12.5% by mass. When the Cl content of the chlorine bypass dust is less than 1% by mass, when the cured product is produced using the coal ash composition of the present invention as a raw material, the pozzolanic reaction of coal ash and / or the hydration reaction of cement is promoted. This is not preferable because the effect of suppressing elution of heavy metals from the cured product is insufficient. Chlorine bypass dust in which the chlorine content of the chlorine bypass dust exceeds 20% by mass is not preferable because the amount of discharge from the chlorine bypass facility is small and practicality is poor. The Cl content of the chlorine bypass dust is measured by the method described in Examples described later.

塩素バイパスダストのSO含有量は、3〜15質量%が好ましく、5〜12.5質量%がより好ましく、7.5〜10質量%が更に好ましい。SO含有量が前記範囲であれば、塩素バイパスダスト、石炭灰、セメントに含まれるカルシウム、アルミニウム等と反応して重金属類を固定化するアルミネート系水和物を生成することにより、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出量がより低減されるため好ましい。塩素バイパスダストのSO含有量は、後述する実施例に記載の方法によって測定される。 The SO 3 content of the chlorine bypass dust is preferably 3 to 15% by mass, more preferably 5 to 12.5% by mass, and still more preferably 7.5 to 10% by mass. If the SO 3 content is within the above range, the present invention can be obtained by reacting with chlorine bypass dust, coal ash, calcium contained in cement, aluminum, etc. to produce an aluminate hydrate that immobilizes heavy metals. Since the elution amount of heavy metals from the hardened | cured material manufactured using the coal ash composition of this as a raw material is reduced more, it is preferable. The SO 3 content of the chlorine bypass dust is measured by the method described in Examples described later.

塩素バイパスダストのAl含有量は、1〜10質量%が好ましく、2〜7.5質量%がより好ましく、3〜5質量%が更に好ましい。Al含有量が前記範囲であれば、重金属類を固定化するアルミネート系水和物の生成により、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出量がより低減されるため好ましい。塩素バイパスダストのAl含有量は、後述する実施例に記載の方法によって測定される。 The content of Al 2 O 3 in the chlorine bypass dust is preferably 1 to 10% by mass, more preferably 2 to 7.5% by mass, and still more preferably 3 to 5% by mass. If the Al 2 O 3 content is within the above range, the elution amount of heavy metals from the cured product produced from the coal ash composition of the present invention as a raw material by the production of an aluminate hydrate that immobilizes heavy metals. Is preferable because it is further reduced. The Al 2 O 3 content of the chlorine bypass dust is measured by the method described in Examples described later.

塩素バイパスダストのアルカリ(RO)含有量は、3〜15質量%が好ましく、5〜13質量%がより好ましく、7〜11質量%が更に好ましい。アルカリ含有量が前記範囲であれば、石炭灰硬化物のpHが上昇し、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出がより低減されるため好ましい。本明細書において、アルカリ(RO)のRは、Na又はKを表す。塩素バイパスダストのアルカリ(RO)含有量は、後述する実施例に記載の方法によって算出される。 Alkaline chlorine bypass dust (R 2 O) content is preferably 3 to 15 wt%, more preferably from 5 to 13 mass%, still more preferably 7 to 11 wt%. If alkali content is the said range, since pH of coal ash hardened | cured material rises and the elution of heavy metals from the hardened | cured material manufactured using the coal ash composition of this invention as a raw material is reduced, it is preferable. In the present specification, R in the alkali (R 2 O) represents Na or K. The alkali (R 2 O) content of the chlorine bypass dust is calculated by the method described in Examples described later.

塩素バイパスダストのTiO含有量は、0.05〜0.5質量%が好ましく、0.1〜0.4質量%がより好ましく、0.15〜0.35質量%が更に好ましい。TiO含有量が前記範囲であれば、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出がより低減されるため好ましい。塩素バイパスダストのTiO含有量は、後述する実施例に記載の方法によって測定される。 The TiO 2 content of the chlorine bypass dust is preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.4% by mass, and still more preferably 0.15 to 0.35% by mass. When the TiO 2 content is in the above range, it is preferable because elution of heavy metals from a cured product produced using the coal ash composition of the present invention as a raw material is further reduced. The TiO 2 content of the chlorine bypass dust is measured by the method described in Examples described later.

塩素バイパスダストのMnO含有量は、0.001〜0.2質量%が好ましく、0.005〜0.15質量%がより好ましく、0.01〜0.1質量%が更に好ましい。MnO含有量が前記範囲であれば、本発明の石炭灰組成物を原料として製造した硬化物からの重金属類の溶出がより低減されるため好ましい。塩素バイパスダストのMnO含有量は、後述する実施例に記載の方法によって測定される。   The MnO content of the chlorine bypass dust is preferably 0.001 to 0.2% by mass, more preferably 0.005 to 0.15% by mass, and still more preferably 0.01 to 0.1% by mass. If MnO content is the said range, since elution of heavy metals from the hardened | cured material manufactured using the coal ash composition of this invention as a raw material is reduced more, it is preferable. The MnO content of the chlorine bypass dust is measured by the method described in the examples described later.

塩素バイパスダストのブレーン比表面積は、3000〜20000cm/gが好ましく、4000〜15000cm/gがより好ましく、5000〜10000cm/gが更に好ましい。ブレーン比表面積が前記範囲であれば、石炭灰組成物を原料として硬化物を製造する際に、塩素バイパスダストは硬化物中で十分に反応することができ、硬化物からの重金属類の溶出がより低減されるため好ましい。ブレーン比表面積の測定方法は後述する実施例において詳述する。 Blaine specific surface area of the chlorine bypass dust is preferably 3000~20000cm 2 / g, more preferably 4000~15000cm 2 / g, more preferably 5000~10000cm 2 / g. If the Blaine specific surface area is within the above range, when producing a cured product from the coal ash composition, the chlorine bypass dust can sufficiently react in the cured product, and the elution of heavy metals from the cured product Since it is further reduced, it is preferable. The method for measuring the specific surface area of branes will be described in detail in the examples described later.

本発明に用いられるセメントは、特に限定されるものではなく、普通ポルトランドセメント、高炉セメント、早強セメント等が挙げられる。六価クロムの溶出抑制及び塩素バイパスダストとの反応性の観点から、高炉スラグを含有する高炉セメントを用いることが好ましい。石炭灰組成物に含有されるセメント量は、石炭灰100質量部に対して3〜25質量部が好ましく、5〜20質量部がより好ましく、10〜15質量部が更に好ましい。石炭灰組成物に含有されるセメント量が3質量部未満であると、石炭灰組成物を原料として製造した硬化物からの重金属類の溶出抑制効果が不十分となり、25質量部を超えると材料コストが高くなるため好ましくない。   The cement used in the present invention is not particularly limited, and examples thereof include ordinary Portland cement, blast furnace cement, and early strength cement. From the viewpoint of suppressing elution of hexavalent chromium and reactivity with chlorine bypass dust, it is preferable to use blast furnace cement containing blast furnace slag. The amount of cement contained in the coal ash composition is preferably 3 to 25 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass with respect to 100 parts by mass of coal ash. If the amount of cement contained in the coal ash composition is less than 3 parts by mass, the effect of suppressing elution of heavy metals from the cured product produced from the coal ash composition as a raw material becomes insufficient, and if it exceeds 25 parts by mass, the material This is not preferable because the cost increases.

上述の各成分を含有する本発明の石炭灰組成物は、そのブレーン比表面積が、2000〜10000cm/gであることが好ましく、3000〜8000cm/gであることがより好ましく、4000〜6000cm/gであることが更に好ましく、4500〜5500cm/gであることが最も好ましい。ブレーン比表面積が前記範囲であることによって、石炭灰組成物を原料として硬化物を製造するときに、石炭灰、セメント及び塩素バイパスダストが硬化物中で十分に反応することができ、硬化物からの重金属類の溶出がより低減されるという効果が奏される。ブレーン比表面積は、後述する実施例の方法を用いて測定することができる。 The coal ash composition of the present invention containing the above-mentioned components preferably has a brane specific surface area of 2000 to 10000 cm 2 / g, more preferably 3000 to 8000 cm 2 / g, and 4000 to 6000 cm. 2 / g is more preferable, and 4500-5500 cm 2 / g is most preferable. When the brane specific surface area is in the above range, when producing a cured product using the coal ash composition as a raw material, the coal ash, cement and chlorine bypass dust can sufficiently react in the cured product. There is an effect that elution of heavy metals is further reduced. The specific surface area of branes can be measured by using the method of Examples described later.

本発明の石炭灰組成物は、SiO含有量が30〜70質量%であり、Al含有量が8〜30質量%であり、Fe含有量が1〜10質量%であり、CaO含有量が1〜25質量%であり、MgO含有量が0.1〜3質量%であり、SO含有量が0.01〜3質量%であることが好ましく、SiO含有量が40〜60質量%であり、Al含有量が15〜25質量%であり、Fe含有量が3〜7質量%であり、CaO含有量が3〜20質量%であり、MgO含有量が0.5〜2質量%であり、SO含有量が0.1〜2質量%であることがより好ましい。これらの化合物の含有量が前記範囲であることによって、石炭灰組成物を原料として硬化物を製造するときに、重金属類を取り込む水和物の生成や硬化物のpHの上昇に起因して、硬化物からの重金属の溶出がより低減されるという効果が奏される。前記化合物の含有量は、後述する実施例の方法を用いて測定することができる。前記化合物の含有量は、石炭灰と、塩素バイパスダストと、セメントとの混合割合を、前述の含有範囲を満たす範囲で変化させることによっても調整することができる。 The coal ash composition of the present invention has an SiO 2 content of 30 to 70% by mass, an Al 2 O 3 content of 8 to 30% by mass, and an Fe 2 O 3 content of 1 to 10% by mass. Yes, CaO content is 1 to 25% by mass, MgO content is 0.1 to 3% by mass, SO 3 content is preferably 0.01 to 3% by mass, SiO 2 content Is 40 to 60% by mass, Al 2 O 3 content is 15 to 25% by mass, Fe 2 O 3 content is 3 to 7% by mass, and CaO content is 3 to 20% by mass. More preferably, the MgO content is 0.5 to 2% by mass and the SO 3 content is 0.1 to 2% by mass. When the content of these compounds is in the above range, when producing a cured product from the coal ash composition as a raw material, due to the formation of hydrates that take in heavy metals and the increase in the pH of the cured product, There is an effect that elution of heavy metal from the cured product is further reduced. Content of the said compound can be measured using the method of the Example mentioned later. The content of the compound can also be adjusted by changing the mixing ratio of coal ash, chlorine bypass dust, and cement within a range that satisfies the content range described above.

本発明の石炭灰組成物には、更に石膏が含まれていてもよい。本発明で使用される石膏としては、例えば二水石膏、半水石膏、無水石膏が挙げられる。石炭灰組成物に含有される石膏の量は、石炭灰100質量部に対して二水石膏換算で1〜15質量部が好ましく、3〜12.5質量部がより好ましく、5〜10質量部が更に好ましい。二水石膏換算の石膏量が3質量部未満であると、石炭灰組成物を原料として製造した硬化物からの重金属類の溶出抑制効果が得られず、15質量部を超えると該硬化物からの重金属類の溶出抑制効果は高まるが、材料コストが高くなるため好ましくない。   The coal ash composition of the present invention may further contain gypsum. Examples of the gypsum used in the present invention include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum. The amount of gypsum contained in the coal ash composition is preferably 1 to 15 parts by mass, more preferably 3 to 12.5 parts by mass, and more preferably 5 to 10 parts by mass with respect to 100 parts by mass of coal ash. Is more preferable. When the amount of gypsum in terms of dihydrate gypsum is less than 3 parts by mass, the effect of suppressing elution of heavy metals from the cured product produced from the coal ash composition as a raw material cannot be obtained, and when the amount exceeds 15 parts by mass, Although the elution suppression effect of heavy metals increases, it is not preferable because the material cost increases.

本発明の石炭灰組成物には、更に石灰が含まれていてもよい。本発明で使用される石灰としては、消石灰及び生石灰が挙げられる。石炭灰組成物に含有される石灰の量は、消石灰を例にすると、石炭灰100質量部に対して1〜15質量部が好ましく、3〜12.5質量部がより好ましく、5〜10質量部が更に好ましい。消石灰の量が1質量部未満であると、石炭灰組成物を原料として製造した硬化物からの重金属類の溶出抑制効果が得られず、15質量部を超えると材料コストが高くなるため好ましくない。また、石炭灰組成物に含有される石灰の量は、生石灰を例にすると、石炭灰100質量部に対して1〜11.5質量部が好ましく、2〜9.5質量部がより好ましく、3〜7.5質量部が更に好ましい。   The coal ash composition of the present invention may further contain lime. Examples of lime used in the present invention include slaked lime and quicklime. The amount of lime contained in the coal ash composition is preferably 1 to 15 parts by mass, more preferably 3 to 12.5 parts by mass with respect to 100 parts by mass of coal ash when slaked lime is taken as an example. Part is more preferred. If the amount of slaked lime is less than 1 part by mass, the effect of suppressing elution of heavy metals from the cured product produced from the coal ash composition as a raw material cannot be obtained, and if it exceeds 15 parts by mass, the material cost increases, which is not preferable. . The amount of lime contained in the coal ash composition is preferably 1 to 11.5 parts by mass, more preferably 2 to 9.5 parts by mass with respect to 100 parts by mass of coal ash when quick lime is taken as an example. 3-7.5 mass parts is still more preferable.

また、本発明の石炭灰組成物は、本発明の効果を阻害しない範囲で塩化第一鉄、硫酸第一鉄、多硫化カルシウム、硫化カルシウムなどの還元剤、高炉スラグ、炭酸カルシウムなどのカルシウム化合物、酸化マグネシウム、水酸化マグネシウム、ドロマイトなどのマグネシウム化合物を更に含んでいてもよい。   Further, the coal ash composition of the present invention is a reducing compound such as ferrous chloride, ferrous sulfate, calcium polysulfide, and calcium sulfide within a range not inhibiting the effects of the present invention, and calcium compounds such as blast furnace slag and calcium carbonate. Further, magnesium compounds such as magnesium oxide, magnesium hydroxide and dolomite may be further contained.

本発明の石炭灰組成物は、石炭灰に塩素バイパスダストとセメントを添加・混合することによって製造できるので、特別な混合設備や製造設備を必要としない。このように製造された石炭灰組成物は、石炭灰と塩素バイパスダストとセメントとの混合物であって、粉末状の形態を有するため、重金属類の溶出がなく、一般的な粉末と同様の方法で保管、流通することができる。   Since the coal ash composition of the present invention can be produced by adding and mixing chlorine bypass dust and cement to coal ash, no special mixing equipment or production equipment is required. The coal ash composition thus produced is a mixture of coal ash, chlorine bypass dust, and cement, and has a powdery form, so there is no elution of heavy metals, and the same method as general powder Can be stored and distributed.

本発明の石炭灰組成物は、水を加えて養生し硬化させ硬化物を製造した場合に、硬化物からの重金属類の溶出が環境基準以下に抑制されている。このことに起因して、土木資材や環境資材の原料として好適に利用することができる。本発明の石炭灰組成物を原料として製造可能な土木資材の用途例としては、埋戻し材、路盤材、盛土材、埋立材、地盤改良材、裏込め材、空洞充填材等のスラリー材、等が挙げられる。環境資材の用途例としては、底質改善材や水質浄化材等が挙げられる。   When the coal ash composition of the present invention is cured by adding water and cured to produce a cured product, elution of heavy metals from the cured product is suppressed to an environmental standard or less. Because of this, it can be suitably used as a raw material for civil engineering materials and environmental materials. Examples of civil engineering materials that can be produced using the coal ash composition of the present invention as a raw material include backfill materials, roadbed materials, embankment materials, landfill materials, ground improvement materials, backfill materials, slurry materials such as cavity fillers, Etc. Examples of uses of environmental materials include bottom quality improving materials and water purification materials.

本発明の石炭灰組成物を原料とした土木資材及び/又は環境資材の製造方法としては、本発明の石炭灰組成物と水とを混練し、得られた湿潤状態の混練物を養生して硬化させる方法、前記混練物を更に造粒して得られた造粒物を養生して硬化させる方法、石炭灰組成物と水とを混合してスラリーとし、前記スラリーを型枠に打設して硬化させる方法等、公知の方法を適用することができる。また、本発明の石炭灰組成物は粉末状の組成物であるため、工事現場にて土木資材及び/又は環境資材に適宜加工して利用することが可能であり、利便性が高いものである。   As a method for producing civil engineering materials and / or environmental materials using the coal ash composition of the present invention as a raw material, the coal ash composition of the present invention and water are kneaded, and the obtained wet kneaded material is cured. A method of curing, a method of curing and curing the granulated product obtained by further granulating the kneaded product, a coal ash composition and water are mixed to form a slurry, and the slurry is placed in a mold A known method such as a curing method can be applied. Moreover, since the coal ash composition of the present invention is a powdery composition, it can be used by appropriately processing it into civil engineering materials and / or environmental materials at a construction site, and is highly convenient. .

本発明の石炭灰組成物を原料とした土木資材及び/又は環境資材の製造の際に、本発明の効果を阻害しない範囲で他の材料と混合して利用することもできる。他の材料としては、例えば減水剤、AE剤、消泡剤、収縮低減剤、凝結促進剤、凝結遅延剤、増粘剤などが挙げられる。これらの材料は、土木資材及び/又は環境資材に求められる性能に応じて、これらのうち一種を単独で使用してもよいし、複数を組み合わせて使用してもよい。   In the production of civil engineering materials and / or environmental materials using the coal ash composition of the present invention as a raw material, it can also be used by mixing with other materials within a range that does not impair the effects of the present invention. Examples of other materials include water reducing agents, AE agents, antifoaming agents, shrinkage reducing agents, setting accelerators, setting retarders, and thickeners. These materials may be used alone or in combination of two or more depending on the performance required for civil engineering materials and / or environmental materials.

石炭灰組成物を原料とした土木資材及び/又は環境資材の製造の際に減水剤を配合させる場合、リグニン系、ナフタレンスルホン酸系、アミノスルホン酸系、ポリカルボン酸系の減水剤、高性能減水剤、高性能AE減水剤等を使用することができる。減水剤の配合量は、石炭灰100質量部に対して0.1〜10質量部であることが好ましく、1〜5質量部であることがより好ましい。   When mixing water reducing agents in the production of civil engineering materials and / or environmental materials made from coal ash composition, lignin-based, naphthalene sulfonic acid-based, amino sulfonic acid-based, polycarboxylic acid-based water reducing agents, high performance A water reducing agent, a high performance AE water reducing agent, etc. can be used. It is preferable that the compounding quantity of a water reducing agent is 0.1-10 mass parts with respect to 100 mass parts of coal ash, and it is more preferable that it is 1-5 mass parts.

以下に、本発明について実施例及び比較例を挙げて詳細に説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples. Note that the present invention is not limited to these examples.

〔1.石炭灰〕
石炭灰には、石炭火力発電所の電気集塵機で回収されたフライアッシュを使用した。使用した石炭灰の重金属類溶出量を表1に示す。表1に示す分析値は、平成3年環境庁告示第46号付表に準拠して溶出試験を行って得た検液の重金属類濃度を、JIS K 0012「工場排水試験方法」に準拠して測定した値である。なお、以下の土壌環境基準は、平成3年環境庁告示第46号別表の記載を用いた。
[1. (Coal ash)
For the coal ash, fly ash recovered with an electric dust collector at a coal-fired power plant was used. Table 1 shows the amount of heavy metals eluted from the coal ash used. Analytical values shown in Table 1 are based on JIS K 0012 “Factory drainage test method” for the concentration of heavy metals in the test solution obtained from the elution test in accordance with Appendix No. 46 of the 1991 Environment Agency Notification. It is a measured value. In addition, the following soil environment standard used the description of the 1991 Environment Agency notification 46 separate table.

Figure 2018203583
Figure 2018203583

〔2.塩素バイパスダスト〕
使用した塩素バイパスダストの性状を、以下の表2に示す。表2に示す分析値は以下の方法で測定した値である。
(i)SiO、Al、Fe、CaO、MgO、SO、NaO、KO、RO、TiO、MnO含有量
SiO、Al、Fe、CaO、MgO、SO、NaO、KO、TiO、MnO含有量は、JIS M 8853「セラミックス用アルミノけい酸塩質原料の化学分析方法」を参考にして測定した。
O含有量は、上記の方法により測定したNaO及びKOの含有量(質量%)から、下記の式(1)により算出した。なお、「0.658」はKOをNaOのモル当量に換算する係数である。
O含有量(質量%)=NaO含有量+(0.658×KO含有量) ・・・(1)
(ii)f.CaO含有量
f.CaO含有量は、セメント協会標準試験方法のJCAS I−01:1997「遊離酸化カルシウムの定量方法」に準拠して測定した。
(iii)Cl、Se含有量
Cl及びSe含有量は、JIS R 5202「セメントの化学分析方法」に準拠して測定した。
(iv)Se溶出量
Se溶出量は、平成3年環境庁告示第46号付表に準拠して検液を作製し、その検液のSe濃度をJIS K 0102「工場排水試験方法」に準拠して測定した。
(v)ブレーン比表面積
ブレーン比表面積は、JIS R 5201:1997「セメントの物理試験方法」に従い、ブレーン空気透過装置を用いて測定した。
[2. Chlorine bypass dust)
The properties of the used chlorine bypass dust are shown in Table 2 below. The analytical values shown in Table 2 are values measured by the following method.
(I) SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, K 2 O, R 2 O, TiO 2 , MnO content SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, SO 3 , Na 2 O, K 2 O, TiO 2 and MnO content were measured with reference to JIS M 8853 “Chemical analysis method of aluminosilicate materials for ceramics”. .
The R 2 O content was calculated from the Na 2 O and K 2 O content (% by mass) measured by the above method according to the following formula (1). “0.658” is a coefficient for converting K 2 O into a molar equivalent of Na 2 O.
R 2 O content (mass%) = Na 2 O content + (0.658 × K 2 O content) (1)
(Ii) f. CaO content f. The CaO content was measured in accordance with JCAS I-01: 1997 “Method for Quantifying Free Calcium Oxide” of the Cement Association Standard Test Method.
(Iii) Cl and Se contents Cl and Se contents were measured in accordance with JIS R 5202 "Cement chemical analysis method".
(Iv) Se elution amount The Se elution amount was prepared in accordance with the Appendix of Environment Agency Notification No. 46 in 1991, and the Se concentration of the test solution was determined in accordance with JIS K 0102 “Factory drainage test method”. Measured.
(V) Brain specific surface area The brain specific surface area was measured using a brain air permeation apparatus in accordance with JIS R 5201: 1997 “Cement physical test method”.

Figure 2018203583
Figure 2018203583

〔3.石炭灰組成物の作製〕
前記石炭灰と塩素バイパスダスト、高炉セメントB種(宇部三菱セメント社製)、二水石膏(排煙脱硫石膏)及び消石灰(宇部マテリアルズ社製、JIS特号)をポリ袋に投入し、ポリ袋を手でよく振って混合することで石炭灰組成物を作製した。石炭灰組成物は、石炭灰に対する塩素バイパスダストの配合量を変化させて、石炭灰組成物A〜Fの6種類を作製した。また、作製した各石炭灰組成物のブレーン比表面積を前述の塩素バイパスダストのブレーン比表面積と同様の方法で測定した。石炭灰組成物A〜Fにおける各材料の配合割合及びブレーン比表面積の測定結果を併せて表3に示す。
[3. Preparation of coal ash composition)
The coal ash and chlorine bypass dust, blast furnace cement type B (manufactured by Ube-Mitsubishi Cement), dihydrate gypsum (exhaust gas desulfurization gypsum) and slaked lime (manufactured by Ube Materials, JIS special name) are put into a plastic bag, The coal ash composition was prepared by shaking the bag well by hand and mixing. The coal ash composition produced six types of coal ash compositions A to F by changing the blending amount of the chlorine bypass dust with respect to the coal ash. Moreover, the brane specific surface area of each produced coal ash composition was measured by the same method as that of the above-mentioned chlorine bypass dust. Table 3 shows the blending ratio of each material in the coal ash compositions A to F and the measurement result of the Blaine specific surface area.

Figure 2018203583
Figure 2018203583

〔4.石炭灰硬化物の作製〕
前記石炭灰組成物A〜Fを得た後、ポリカルボン酸系減水剤(BASF社製、マスターグレニウムSP8SV)と石炭灰組成物A〜Fがスラリー化する量の水を添加してホバートミキサー(ホバート・ジャパン株式会社製の型番:N50)を用いて591rpmで10分間混練した。得られた混練物を長方形の容器に投入し、振動を加えてスラリー状にして容器内に均一に充填した後、1日密封養生して硬化させた。硬化体を容器から脱型し、10〜15mmの粒度に切断して石炭灰硬化物A’〜F’を得た。石炭灰硬化物A’〜F’は、石炭灰組成物A〜Fを使用してそれぞれ製造したものである。石炭灰硬化物の配合割合を表4に示す。
[4. (Production of hardened coal ash)
After obtaining the coal ash compositions A to F, a polycarboxylic acid-based water reducing agent (manufactured by BASF, master glenium SP8SV) and water in an amount to make the coal ash compositions A to F slurry are added to a Hobart mixer. (Model number: N50 manufactured by Hobart Japan Co., Ltd.) was used and kneaded at 591 rpm for 10 minutes. The obtained kneaded material was put into a rectangular container, and was shaken to form a slurry, which was uniformly filled in the container, and then cured by sealing for one day. The cured body was removed from the container and cut to a particle size of 10 to 15 mm to obtain hardened coal ash A ′ to F ′. Coal ash hardened | cured material A'-F 'is manufactured using coal ash composition A-F, respectively. Table 4 shows the blending ratio of the hardened coal ash.

Figure 2018203583
Figure 2018203583

〔4.石炭灰硬化物の重金属類溶出量の評価〕
以下に示すとおり、石炭灰硬化物A’〜F’からの重金属類溶出量を評価した。
[4. (Evaluation of heavy metal elution from hardened coal ash)
As shown below, the heavy metal elution amount from hardened coal ash A'-F 'was evaluated.

〔実施例1〕
石炭灰100質量部に対して塩素バイパスダストを0.5質量部添加して調製した石炭灰組成物Aから作製した石炭灰硬化物A’を28日間湿空養生した後、重金属類の溶出量を評価した。重金属類の溶出量の評価は、JIS K 0058−1の5「スラグ類の化学物質試験方法」に準拠して検液を作製し、その検液のpH及びB、Se、Cr6+濃度をJIS K 0102「工場排水試験方法」に準拠して測定した。結果を表5に示す。
[Example 1]
After the cured coal ash A ′ prepared from the coal ash composition A prepared by adding 0.5 parts by mass of chlorine bypass dust to 100 parts by mass of coal ash is wet-air cured for 28 days, the amount of elution of heavy metals Evaluated. Evaluation of the elution amount of heavy metals is made according to JIS K 0058-1 5 “Testing methods for chemical substances in slags”, and the pH, B, Se, and Cr 6+ concentration of the test solution are measured according to JIS. Measured according to K 0102 “Factory drainage test method”. The results are shown in Table 5.

〔実施例2〕
石炭灰100質量部に対して塩素バイパスダストを1質量部添加して調製した石炭灰組成物Bから作製した石炭灰硬化物B’を用いた以外は、実施例1と同様の方法で石炭灰硬化物からの重金属類の溶出量を評価した。結果を表5に示す。
[Example 2]
Coal ash is produced in the same manner as in Example 1 except that the hardened coal ash B ′ prepared from the coal ash composition B prepared by adding 1 part by weight of chlorine bypass dust to 100 parts by weight of coal ash is used. The amount of elution of heavy metals from the cured product was evaluated. The results are shown in Table 5.

〔実施例3〕
石炭灰100質量部に対して塩素バイパスダストを2質量部添加して調製した石炭灰組成物Cから作製した石炭灰硬化物C’を用いた以外は、実施例1と同様の方法で石炭灰硬化物からの重金属類の溶出量を評価した。結果を表5に示す。
Example 3
Coal ash is produced in the same manner as in Example 1 except that the hardened coal ash C ′ prepared from the coal ash composition C prepared by adding 2 parts by weight of chlorine bypass dust to 100 parts by weight of coal ash is used. The amount of elution of heavy metals from the cured product was evaluated. The results are shown in Table 5.

〔実施例4〕
石炭灰100質量部に対して塩素バイパスダストを5質量部添加して調製した石炭灰組成物Dから作製した石炭灰硬化物D’を用いた以外は、実施例1と同様の方法で石炭灰硬化物からの重金属類の溶出量を評価した。結果を表5に示す。
Example 4
Coal ash is produced in the same manner as in Example 1 except that the hardened coal ash D ′ prepared from the coal ash composition D prepared by adding 5 parts by weight of chlorine bypass dust to 100 parts by weight of coal ash is used. The amount of elution of heavy metals from the cured product was evaluated. The results are shown in Table 5.

〔実施例5〕
石炭灰100質量部に対して塩素バイパスダストを10質量部添加して調製した石炭灰組成物Eから作製した石炭灰硬化物E’を用いた以外は、実施例1と同様の方法で石炭灰硬化物からの重金属類の溶出量を評価した。結果を表5に示す。
Example 5
Coal ash is produced in the same manner as in Example 1 except that a hardened coal ash E ′ prepared from a coal ash composition E prepared by adding 10 parts by mass of chlorine bypass dust to 100 parts by mass of coal ash is used. The amount of elution of heavy metals from the cured product was evaluated. The results are shown in Table 5.

〔比較例1〕
塩素バイパスダストを添加せずに調製した石炭灰組成物Fから作製した石炭灰硬化物F’を用いた以外は、実施例1と同様の方法で石炭灰硬化物からの重金属類の溶出量を評価した。結果を表5に示す。
[Comparative Example 1]
The amount of elution of heavy metals from the hardened coal ash was the same as in Example 1 except that the hardened coal ash F ′ prepared from the coal ash composition F prepared without adding chlorine bypass dust was used. evaluated. The results are shown in Table 5.

Figure 2018203583
Figure 2018203583

表5に示す実施例1〜5及び比較例1より、塩素バイパスダストを添加した石炭灰硬化物A’〜E’では、塩素バイパスダスト無添加の石炭灰硬化物F’と比較して、ホウ素及び六価クロムの溶出量が低減されていることが判る。石炭灰硬化物からのセレン溶出量は塩素バイパスダストの添加量の増加に伴って増加傾向であるものの、塩素バイパスダストの添加量を本発明の範囲内に設定することによって、セレンの溶出量を土壌環境基準以下に抑制できることが判った。なお、フッ素及びヒ素の溶出量はここでは示していないが、実施例1〜5におけるフッ素及びヒ素の溶出量は土壌環境基準以下であった。   From Examples 1 to 5 and Comparative Example 1 shown in Table 5, in the hardened coal ash A ′ to E ′ to which chlorine bypass dust was added, boron was compared with the hardened coal ash F ′ to which no chlorine bypass dust was added. It can also be seen that the elution amount of hexavalent chromium is reduced. Although the amount of selenium eluted from the hardened coal ash tends to increase as the amount of added chlorine bypass dust increases, the amount of selenium eluted can be reduced by setting the amount of added chlorine bypass dust within the scope of the present invention. It was found that it can be controlled below the soil environmental standard. In addition, although the elution amounts of fluorine and arsenic are not shown here, the elution amounts of fluorine and arsenic in Examples 1 to 5 were below the soil environment standard.

Claims (10)

石炭灰と、塩素バイパスダストと、セメントとを含み、ブレーン比表面積が2000〜10000cm/gである石炭灰組成物。 A coal ash composition comprising coal ash, chlorine bypass dust, and cement and having a brain specific surface area of 2000 to 10000 cm 2 / g. 前記石炭灰組成物のSiO含有量が30〜70質量%であり、Al含有量が8〜30質量%であり、Fe含有量が1〜10質量%であり、CaO含有量が1〜25質量%であり、MgO含有量が0.1〜3質量%であり、SO含有量が0.01〜3質量%である請求項1に記載の石炭灰組成物。 The coal ash composition has an SiO 2 content of 30 to 70% by mass, an Al 2 O 3 content of 8 to 30% by mass, an Fe 2 O 3 content of 1 to 10% by mass, and CaO. a content of 1 to 25 wt%, MgO content is 0.1 to 3 wt%, coal ash composition according to claim 1 SO 3 content is 0.01 to 3 wt%. 前記石炭灰100質量部に対して、塩素バイパスダストを0.1〜10質量部含む請求項1又は2に記載の石炭灰組成物。   The coal ash composition according to claim 1 or 2, comprising 0.1 to 10 parts by mass of chlorine bypass dust with respect to 100 parts by mass of the coal ash. 前記塩素バイパスダストのf.CaO含有量が15〜45質量%である請求項1ないし3のいずれか一項に記載の石炭灰組成物。   F. Of said chlorine bypass dust. The coal ash composition according to any one of claims 1 to 3, wherein the CaO content is 15 to 45 mass%. 前記塩素バイパスダストのSO含有量が3〜15質量%である請求項1ないし4のいずれか一項に記載の石炭灰組成物。 The coal ash composition according to any one of claims 1 to 4, wherein the chlorine bypass dust has an SO3 content of 3 to 15 mass%. 前記塩素バイパスダストのブレーン比表面積が3000〜20000cm/gである請求項1ないし5のいずれか一項に記載の石炭灰組成物。 Coal ash composition according to any one of 5 to Blaine specific surface area of the chlorine bypass dust claims 1 a 3000~20000cm 2 / g. 前記塩素バイパスダストのセレン溶出量が0.001〜1.0mg/Lである請求項1ないし6のいずれか一項に記載の石炭灰組成物。   The coal ash composition according to any one of claims 1 to 6, wherein a selenium elution amount of the chlorine bypass dust is 0.001 to 1.0 mg / L. 前記石炭灰100質量部に対してセメントを3〜25質量部含む請求項1ないし7のいずれか一項に記載の石炭灰組成物。   The coal ash composition according to any one of claims 1 to 7, comprising 3 to 25 parts by mass of cement with respect to 100 parts by mass of the coal ash. 前記石炭灰100質量部に対して石膏を1〜15質量部含む請求項1ないし8のいずれか一項に記載の石炭灰組成物。   The coal ash composition according to any one of claims 1 to 8, comprising 1 to 15 parts by mass of gypsum with respect to 100 parts by mass of the coal ash. 前記石炭灰100質量部に対して石灰を1〜15質量部含む請求項1ないし9のいずれか一項に記載の石炭灰組成物。   The coal ash composition according to any one of claims 1 to 9, comprising 1 to 15 parts by mass of lime with respect to 100 parts by mass of the coal ash.
JP2017112547A 2017-06-07 2017-06-07 Coal ash composition Active JP6922448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017112547A JP6922448B2 (en) 2017-06-07 2017-06-07 Coal ash composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017112547A JP6922448B2 (en) 2017-06-07 2017-06-07 Coal ash composition

Publications (2)

Publication Number Publication Date
JP2018203583A true JP2018203583A (en) 2018-12-27
JP6922448B2 JP6922448B2 (en) 2021-08-18

Family

ID=64955107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017112547A Active JP6922448B2 (en) 2017-06-07 2017-06-07 Coal ash composition

Country Status (1)

Country Link
JP (1) JP6922448B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138878A (en) * 2019-02-27 2020-09-03 三菱マテリアル株式会社 Fly-ash composition
JP2021155258A (en) * 2020-03-26 2021-10-07 三菱マテリアル株式会社 Cement system solidification material and manufacturing method of cement system solidification material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130494A (en) * 1997-10-28 1999-05-18 Ryuukyuu Cement Kk Production of granulated material containing coal ash
US20090044726A1 (en) * 2007-08-13 2009-02-19 Fred Brouillette Cement Stabilization of Soils Using a Proportional Cement Slurry
JP2009062266A (en) * 2007-08-10 2009-03-26 Ube Ind Ltd Cement composition and cement-based solidifying material
JP2009062260A (en) * 2007-08-10 2009-03-26 Ube Ind Ltd Cement composition and cement-based solidifying material
JP2011133344A (en) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp Evaluation method of expression property of strength of coal ash and improvement method of expression property of strength
WO2012090884A1 (en) * 2010-12-28 2012-07-05 太平洋セメント株式会社 Cement admixture, cement additive and method for producing mixed cement
JP2012158510A (en) * 2011-01-12 2012-08-23 Taiheiyo Cement Corp Coal ash-mixed cement composition
JP2016088767A (en) * 2014-10-30 2016-05-23 宇部興産株式会社 Cement composition and manufacturing method therefor
JP2018158876A (en) * 2017-03-24 2018-10-11 宇部興産株式会社 Coal ash hardened material
JP6683025B2 (en) * 2016-06-09 2020-04-15 宇部興産株式会社 Cement composition and method for producing the same
JP6855691B2 (en) * 2016-06-09 2021-04-07 宇部興産株式会社 Cement composition and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130494A (en) * 1997-10-28 1999-05-18 Ryuukyuu Cement Kk Production of granulated material containing coal ash
JP2009062266A (en) * 2007-08-10 2009-03-26 Ube Ind Ltd Cement composition and cement-based solidifying material
JP2009062260A (en) * 2007-08-10 2009-03-26 Ube Ind Ltd Cement composition and cement-based solidifying material
US20090044726A1 (en) * 2007-08-13 2009-02-19 Fred Brouillette Cement Stabilization of Soils Using a Proportional Cement Slurry
JP2011133344A (en) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp Evaluation method of expression property of strength of coal ash and improvement method of expression property of strength
WO2012090884A1 (en) * 2010-12-28 2012-07-05 太平洋セメント株式会社 Cement admixture, cement additive and method for producing mixed cement
JP2012158510A (en) * 2011-01-12 2012-08-23 Taiheiyo Cement Corp Coal ash-mixed cement composition
JP2016088767A (en) * 2014-10-30 2016-05-23 宇部興産株式会社 Cement composition and manufacturing method therefor
JP6683025B2 (en) * 2016-06-09 2020-04-15 宇部興産株式会社 Cement composition and method for producing the same
JP6855691B2 (en) * 2016-06-09 2021-04-07 宇部興産株式会社 Cement composition and its manufacturing method
JP2018158876A (en) * 2017-03-24 2018-10-11 宇部興産株式会社 Coal ash hardened material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020138878A (en) * 2019-02-27 2020-09-03 三菱マテリアル株式会社 Fly-ash composition
JP7200006B2 (en) 2019-02-27 2023-01-06 Ube三菱セメント株式会社 fly ash composition
JP2021155258A (en) * 2020-03-26 2021-10-07 三菱マテリアル株式会社 Cement system solidification material and manufacturing method of cement system solidification material
JP7437210B2 (en) 2020-03-26 2024-02-22 Ube三菱セメント株式会社 Cement-based solidifying material and method for producing cement-based solidifying material

Also Published As

Publication number Publication date
JP6922448B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP5091519B2 (en) Geopolymer composition and method for producing the same
AU2017399309B2 (en) Geopolymer composition, and mortar and concrete using same
JP4835359B2 (en) Coal ash granulated sand and method for producing coal ash granulated sand
JP2010163360A (en) Method of choosing air-cooled blast furnace slag powder suitably used as cement admixture
JP4616113B2 (en) Quick-hardening clinker and cement composition
JP4878432B2 (en) Solidifying material composition
JP6850171B2 (en) Solidification insolubilization method
JP6547455B2 (en) Ground improvement material and ground improvement method
JP6957922B2 (en) Hardened coal ash
JP6922448B2 (en) Coal ash composition
JP6355946B2 (en) Selenium insolubilizing material for soil and method for insolubilizing selenium in soil
JP6907747B2 (en) Hardened coal ash
JP3919648B2 (en) Hazardous heavy metal collector
JP2000093927A (en) Material for fixing hazardous substance
WO2023022172A1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP5515329B2 (en) Cement clinker, cement-based solidified material, method for solidifying soil, and method for producing cement clinker
JP3549645B2 (en) Cement admixture and cement composition
JP3810350B2 (en) Cement admixture and cement composition
JPH09110490A (en) Cement admixture and cement composition
JP6536215B2 (en) Ground improvement material and ground improvement method
WO2023219029A1 (en) Geopolymer composition, geopolymer cured body, and method for producing geopolymer cured body
JP2014162696A (en) Cement-based solidifying material
JP6832723B2 (en) Manufacturing method of cement additive and cement composition
JP2013119586A (en) Earthwork material
JP7157685B2 (en) Fly ash mixed material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6922448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250