JP2011133344A - Evaluation method of expression property of strength of coal ash and improvement method of expression property of strength - Google Patents

Evaluation method of expression property of strength of coal ash and improvement method of expression property of strength Download PDF

Info

Publication number
JP2011133344A
JP2011133344A JP2009292944A JP2009292944A JP2011133344A JP 2011133344 A JP2011133344 A JP 2011133344A JP 2009292944 A JP2009292944 A JP 2009292944A JP 2009292944 A JP2009292944 A JP 2009292944A JP 2011133344 A JP2011133344 A JP 2011133344A
Authority
JP
Japan
Prior art keywords
days
coal ash
mass
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009292944A
Other languages
Japanese (ja)
Other versions
JP5455612B2 (en
Inventor
Shunkichi Sudo
俊吉 須藤
Chu Hirao
宙 平尾
Tomohisa Yoshikawa
知久 吉川
Takayuki Kimura
貴之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009292944A priority Critical patent/JP5455612B2/en
Publication of JP2011133344A publication Critical patent/JP2011133344A/en
Application granted granted Critical
Publication of JP5455612B2 publication Critical patent/JP5455612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quickly evaluating an expression property of a strength of a coal ash. <P>SOLUTION: The boron solution quantity, the free lime quantity, a vitrification ratio, the basicity of a glass phase, and the 45 μm-filtered residual quantity, are measured as physicality values of the coal ash. Compression strengths 1-3 (N/mm<SP>2</SP>) as estimation values of a coal ash-containing mortar are calculated at time points of material ages of 3, 7, and 28 days by using following formulas (1)-(3). The expression property of the strength of the coal ash is evaluated by using calculation values of the compression strengths 1-3. The formula (1): the compression strength 1 (the material age of 3 days)=9.3-0.028×boron solution quantity (mg/L)+1.2×free lime quantity (mass%)+1.2×basicity of the glass phase. The formula (2): the compression strength 2 (the material age of 7 days)=13.6-0.012×45 μm-filtered residual quantity (mass%)+0.363×free lime quantity (mass%)+4.67×basicity of a glass phase. The formula (3): the compression strength 3 (the material age of 28 days)=31.5-0.054×45 μm-filtered residual quantity (mass%)+0.06×basicity of the glass phase×vitrification ratio. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セメント、モルタル、コンクリート用の混和材として用いられる石炭灰の強度発現性の評価方法及び強度発現性の改善方法に関する。   The present invention relates to a method for evaluating the strength development of coal ash used as an admixture for cement, mortar and concrete, and a method for improving the strength development.

火力発電所の微粉炭燃焼ボイラからの副産物として大量に産出される石炭灰は、セメント、モルタルまたはコンクリート(以下、これらを総称して「コンクリート」という場合がある。)用の混和材として一部有効利用されているものの、大部分が埋立て等により廃棄処分されている。石炭灰のうち、コンクリート用混和材として用いられるフライアッシュは、その粒子が平滑かつ球状であるためにコンクリートのワーカビリティーを向上させ、コンクリート組織を緻密化させ、コンクリートの長期強度を増大させるとともに、化学薬品に対する抵抗性等を向上させ、その混入によりセメントの水和発熱が緩和されるために白己発熱による温度ひび割れが問題となるマスコンクリート構造物に適しており、アルカリ骨材反応に対する抑制効果を有している等、コンクリート用混和材として優れた特性を多く有している(非特許文献1)。   Coal ash produced in large quantities as a by-product from pulverized coal fired boilers at thermal power plants is partially used as an admixture for cement, mortar, or concrete (hereinafter sometimes collectively referred to as “concrete”). Although it is used effectively, most of it is disposed of by landfill. Among the coal ash, fly ash used as a concrete admixture improves the workability of concrete because its particles are smooth and spherical, densifies the concrete structure, increases the long-term strength of concrete, It is suitable for mass concrete structures where temperature cracking due to white heat generation is a problem because the hydration heat generation of cement is mitigated by improving the resistance to chemicals, etc., and the effect of suppressing alkali-aggregate reaction. It has many excellent properties as a concrete admixture (Non-patent Document 1).

一方、フライアッシュをコンクリートに多量に混合すると、凝結の遅延、初期強度の低下、低温環境下における強度発現の遅れ等の問題が生じ得るため、おのずとその混合量に制限がかけられてしまう。例えば、JIS−R5213に規定されているフライアッシュセメントは、セメントに対するフライアッシュの置換割合を最大で3割に制限しており、フライアッシュの大量使用に結びついていないのが現状である。   On the other hand, when a large amount of fly ash is mixed with concrete, problems such as a delay in setting, a decrease in initial strength, a delay in the development of strength in a low-temperature environment, and the like may occur, so that the mixing amount is naturally limited. For example, the fly ash cement defined in JIS-R5213 restricts the replacement ratio of fly ash to cement to 30% at the maximum, and is currently not connected to large-scale use of fly ash.

また、石炭灰の大量使用を妨げる原因の一つとして、火力発電所で使用される石炭が多種に及び、しかもその燃焼条件が同一でないために、得られる石炭灰のポゾラン活性が大きく変わってしまい、その結果、石炭灰を使用したコンクリートの強度発現性も異なってしまうという問題がある。   In addition, as one of the causes that hinder the use of large quantities of coal ash, there are many types of coal used in thermal power plants, and because the combustion conditions are not the same, the pozzolanic activity of the resulting coal ash greatly changes. As a result, there is a problem that the strength development of the concrete using coal ash is also different.

フライアッシュのポゾラン活性を評価する方法としては、JIS−A6201に規定されるコンクリート用フライアッシュの活性度指数を算出し、当該活性度指数により評価する方法が知られている。この方法は、所定の配合割合でフライアッシュを含む試験モルタル供試体とフライアッシュを含まない基準モルタル供試体とを調製し、両モルタル供試体の圧縮強度を測定し、かかる圧縮強度の比に基づいてフライアッシュの活性度を算出する方法である。   As a method for evaluating the pozzolanic activity of fly ash, a method is known in which the activity index of fly ash for concrete specified in JIS-A6201 is calculated and evaluated based on the activity index. This method prepares a test mortar specimen containing fly ash and a reference mortar specimen not containing fly ash at a predetermined blending ratio, measures the compressive strength of both mortar specimens, and based on the ratio of the compressive strength. This is a method for calculating the activity of fly ash.

荒井康夫著、「セメントの材料化学」,大日本図書株式会社,昭和59年3月10日,p.214−215Yasuo Arai, “Chemical Materials Chemistry”, Dai Nippon Book Co., Ltd., March 10, 1984, p. 214-215

前述のJIS−A6201に規定されるコンクリート用フライアッシュの活性度指数を算出する方法は、28日材齢及び91日材齢の各時点におけるモルタル供試体の圧縮強度を測定する必要があるため、コンクリート用フライアッシュの評価に3ヶ月程度もの長い期間を要するという問題がある。   Since the method for calculating the activity index of concrete fly ash specified in the above-mentioned JIS-A6201 needs to measure the compressive strength of the mortar specimen at each time point of 28-day age and 91-day age, There is a problem that it takes a long period of about 3 months to evaluate concrete fly ash.

このような課題に鑑みて、本発明は、石炭灰の強度発現性を迅速に評価することができる石炭灰の強度発現性の評価方法を提供することを目的とする。
また、本発明は、石炭灰の強度発現性を簡易にかつ確実に改善することができる石炭灰の強度発現性の改善方法を提供することを目的とする。
In view of such a problem, an object of the present invention is to provide a method for evaluating the strength development of coal ash capable of quickly evaluating the strength development of coal ash.
Another object of the present invention is to provide a method for improving the strength development of coal ash that can easily and reliably improve the strength development of coal ash.

本発明者らは、上記課題を解決するために鋭意検討した結果、石炭灰の物性値として、ホウ素溶出量、フリーライム量、ガラス化率、ガラス相の塩基度、及び45μm篩残分量を測定し、これらの測定値と特定の3つの式を用いることによって、材齢3日、7日、28日の各時点における圧縮強度を推定することができることなどを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[2]を提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have measured the boron elution amount, the amount of free lime, the vitrification rate, the basicity of the glass phase, and the 45 μm sieve residue as physical properties of coal ash. Then, by using these measured values and specific three formulas, it was found that the compressive strength at each time point of 3 days, 7 days and 28 days of age could be estimated, and the present invention was completed.
That is, the present invention provides the following [1] to [2].

[1] 石炭灰の物性値として、ホウ素溶出量、フリーライム量、ガラス化率、ガラス相の塩基度、及び45μm篩残分量を測定し、下記式(1)〜(3)を用いて、材齢3日、7日、28日の各時点における石炭灰含有モルタルの圧縮強度の推定値である圧縮強度1〜3を算出し、該圧縮強度1〜3の算出値を用いて、石炭灰の強度発現性を評価することを特徴とする石炭灰の強度発現性の評価方法。
圧縮強度1(材齢3日;単位:N/mm)=9.3−0.028×ホウ素溶出量(mg/L)+1.2×フリーライム量(質量%)+1.2×ガラス相の塩基度・・・(1)
圧縮強度2(材齢7日;単位:N/mm)=13.6−0.012×45μm篩残分量(質量%)+0.363×フリーライム量(質量%)+4.67×ガラス相の塩基度・・・(2)
圧縮強度3(材齢28日;単位:N/mm)=31.5−0.054×45μm篩残分量(質量%)+0.06×ガラス相の塩基度×ガラス化率・・・(3)
[2] 石炭灰の物性値として、ホウ素溶出量、フリーライム量、ガラス化率、ガラス相の塩基度、及び45μm篩残分量を測定し、下記式(1)〜(3)を用いて、材齢3日、7日、28日の各時点における石炭灰含有モルタルの圧縮強度の推定値である圧縮強度1〜3を算出し、該圧縮強度1〜3のいずれか1つ以上の算出値が、圧縮強度1〜3の各々について予め定めた基準値よりも小さい場合、前記圧縮強度1〜3の算出値のすべてが、前記予め定めた基準値以上となるように、フリーライム量の増大のための処理、及び/又は、45μm篩残分量の減少のための処理を行なうことを特徴とする石炭灰の強度発現性の改善方法。
圧縮強度1(材齢3日;単位:N/mm)=9.3−0.028×ホウ素溶出量(mg/L)+1.2×フリーライム量(質量%)+1.2×ガラス相の塩基度・・・(1)
圧縮強度2(材齢7日;単位:N/mm)=13.6−0.012×45μm篩残分量(質量%)+0.363×フリーライム量(質量%)+4.67×ガラス相の塩基度・・・(2)
圧縮強度3(材齢28日;単位:N/mm)=31.5−0.054×45μm篩残分量(質量%)+0.06×ガラス相の塩基度×ガラス化率・・・(3)
[1] As physical properties of coal ash, boron elution amount, free lime amount, vitrification rate, basicity of glass phase, and 45 μm sieve residue amount are measured, and using the following formulas (1) to (3), Compressive strength 1 to 3, which is an estimated value of the compressive strength of the coal ash-containing mortar at each time point of 3 days, 7 days and 28 days of age, is calculated. Strength evaluation property of coal ash characterized by evaluating strength development property of coal ash.
Compressive strength 1 (material age 3 days; unit: N / mm 2 ) = 9.3-0.028 × boron elution amount (mg / L) + 1.2 × free lime amount (mass%) + 1.2 × glass phase Basicity of (1)
Compressive strength 2 (age 7 days; unit: N / mm 2 ) = 13.6-0.012 × 45 μm sieve residue amount (mass%) + 0.363 × free lime amount (mass%) + 4.67 × glass phase Basicity of (2)
Compressive strength 3 (age 28 days; unit: N / mm 2 ) = 31.5−0.054 × 45 μm sieve residue (mass%) + 0.06 × basicity of glass phase × vitrification rate 3)
[2] As physical properties of coal ash, boron elution amount, free lime amount, vitrification rate, basicity of glass phase, and 45 μm sieve residue amount are measured, and using the following formulas (1) to (3), Calculate compressive strength 1 to 3, which is an estimate of the compressive strength of the coal ash-containing mortar at each time point of 3 days, 7 days and 28 days of age, and calculate one or more of the compressive strengths 1 to 3 Is smaller than a predetermined reference value for each of the compressive strengths 1 to 3, an increase in the amount of free lime so that all the calculated values of the compressive strengths 1 to 3 are equal to or greater than the predetermined reference value. A method for improving the strength development of coal ash, characterized in that a treatment for reducing the amount of residual sieve residue is performed.
Compressive strength 1 (material age 3 days; unit: N / mm 2 ) = 9.3-0.028 × boron elution amount (mg / L) + 1.2 × free lime amount (mass%) + 1.2 × glass phase Basicity of (1)
Compressive strength 2 (age 7 days; unit: N / mm 2 ) = 13.6-0.012 × 45 μm sieve residue amount (mass%) + 0.363 × free lime amount (mass%) + 4.67 × glass phase Basicity of (2)
Compressive strength 3 (age 28 days; unit: N / mm 2 ) = 31.5−0.054 × 45 μm sieve residue (mass%) + 0.06 × basicity of glass phase × vitrification rate 3)

本発明によれば、材齢28日等の強度を実際に測定することなく、石炭灰の強度発現性を迅速に評価することができる。
また、本発明によれば、石炭灰の強度発現性の評価方法で得られた結果に基き、かつ、該評価方法で用いた特定の式を利用して、簡易にかつ確実に、強度発現性の低い石炭灰を、強度発現性が良好な石炭灰に改質することができる。
According to the present invention, it is possible to quickly evaluate the strength development of coal ash without actually measuring the strength such as the age of 28 days.
Further, according to the present invention, based on the result obtained by the method for evaluating the strength development of coal ash, and using the specific formula used in the evaluation method, the strength development can be performed easily and reliably. The coal ash having a low strength can be reformed into a coal ash having good strength development.

以下、本発明について詳細に説明する。本発明においては、石炭灰の物性値として、ホウ素溶出量、フリーライム量、ガラス化率、ガラス相の塩基度、及び45μm篩残分量を測定する。
[ホウ素溶出量]
ホウ素溶出量は、以下の手順で測定する。
(1) 蒸留水75mlに石炭灰25gを投入し、pHを8.5±0.2に調整しつつ10分間撹拌する。この際、pH調整には、塩酸又は水酸化ナトリウム水溶液を使用する。
(2) 撹拌終了後に固液分離を行い、得られた液中のホウ素濃度を、ICPを用いて測定する。
Hereinafter, the present invention will be described in detail. In the present invention, boron elution amount, free lime amount, vitrification rate, basicity of glass phase, and 45 μm sieve residue are measured as physical properties of coal ash.
[Boron elution amount]
The boron elution amount is measured by the following procedure.
(1) Add 25 g of coal ash to 75 ml of distilled water and stir for 10 minutes while adjusting the pH to 8.5 ± 0.2. At this time, hydrochloric acid or a sodium hydroxide aqueous solution is used for pH adjustment.
(2) After completion of stirring, solid-liquid separation is performed, and the boron concentration in the obtained liquid is measured using ICP.

[フリーライム量]
フリーライム量は、JIS−R5202に準じて測定する。
[Amount of free lime]
The amount of free lime is measured according to JIS-R5202.

[ガラス化率]
石炭灰のガラス化率を測定する方法としては、ガラス化率を測定し得る限り、特に限定されるものではないが、例えば、粉末X線回折に基づく検量線法、粉末X線回折に基づくプロファイルフィッティング法等が挙げられる。
これらの方法のうち、粉末X線回折に基づく検量線法又は粉末X線回折に基づくプロファイルフィッティング法により、石炭灰のガラス化率を測定するのが好ましい。これらの方法によれば、石炭灰を所定の溶媒に懸濁させる等の化学的操作を要することなく、石炭灰のガラス化率を短時間で測定することができる。
[Vitrification rate]
The method for measuring the vitrification rate of coal ash is not particularly limited as long as the vitrification rate can be measured. For example, a calibration curve method based on powder X-ray diffraction, a profile based on powder X-ray diffraction Examples include a fitting method.
Among these methods, the vitrification rate of coal ash is preferably measured by a calibration curve method based on powder X-ray diffraction or a profile fitting method based on powder X-ray diffraction. According to these methods, the vitrification rate of coal ash can be measured in a short time without requiring a chemical operation such as suspending coal ash in a predetermined solvent.

粉末X線回折に基づく検量線法においては、ムライト(2θ=16.5゜付近に現れる(110)ピーク)、α−石英(2θ=20.8゜付近に現れる(010)ピーク)及びマグネタイト(2θ=25.6゜付近に現れる(022)ピーク)のそれぞれについての検量線を予め作成する。
次に、被測定試料としての石炭灰を、粉末X線回折法により回折する。そして、かかる回折強度(ピーク面積)を用い、上記のようにして予め作成した検量線に基づいて、石炭灰に含まれるムライト、α−石英及びマグネタイトのそれぞれを定量する。このようにして得られた定量結果を用いて、下記式に基づいて、石炭灰のガラス化率(質量%)を算出する。
ガラス化率(質量%)=100−結晶鉱物の合計量(質量%)
In the calibration curve method based on powder X-ray diffraction, mullite ((110) peak appearing near 2θ = 16.5 °), α-quartz ((010) peak appearing near 2θ = 20.8 °) and magnetite ( A calibration curve is prepared in advance for each of (022 peak) appearing in the vicinity of 2θ = 25.6 °.
Next, the coal ash as the sample to be measured is diffracted by the powder X-ray diffraction method. Then, using the diffraction intensity (peak area), each of mullite, α-quartz, and magnetite contained in the coal ash is quantified based on the calibration curve prepared in advance as described above. The vitrification rate (mass%) of coal ash is calculated based on the following formula using the quantitative result thus obtained.
Vitrification rate (mass%) = 100-total amount of crystal mineral (mass%)

なお、粉末X線回折は、市販の粉末X線回折装置(例えば、D8 ADVANCE(BRUKER AXS社製)等)を用いて、常法により行うことができる。この場合において、粉末X線回折は、被測定試料としての石炭灰に、Al、CaF、MgF等の内部標準物質を添加して行い、その添加量は5〜10質量%であるのが好ましい。 Powder X-ray diffraction can be performed by a conventional method using a commercially available powder X-ray diffractometer (for example, D8 ADVANCE (manufactured by BRUKER AXS) or the like). In this case, powder X-ray diffraction is performed by adding an internal standard substance such as Al 2 O 3 , CaF 2 , MgF 2 to coal ash as a sample to be measured, and the addition amount is 5 to 10% by mass. Preferably there is.

粉末X線回折に基づくプロファイルフィッティング法としては、例えば、リートベルト解析法等が挙げられる。
リートベルト解析法は、まず、被測定試料としての石炭灰を粉末X線回折法により回折し、その回折結果から石炭灰に含まれるムライト、α−石英及びマグネタイトの実測プロファイルを求める。なお、粉末X線回折は、上述した粉末X線回折に基づく検量線法と同様に、市販の粉末X線回折装置(例えば、D8 ADVANCE(BRUKER AXS社製)等)を用いて、常法により行うことができ、この場合において、粉末X線回折は、被測定試料としての石炭灰に、Al、CaF、MgF等の内部標準物質を添加して行い、その添加量は5〜10質量%であるのが好ましい。
次に、得られた実測プロファイルに、石炭灰に含まれるムライト、α−石英及びマグネタイトの理論プロファイルをフィッティングすることにより、石炭灰に含まれるムライト、α−石英及びマグネタイトのそれぞれを定量する。なお、実測プロファイルと理論プロファイルとのフィッティング及び結晶性鉱物の定量は、慣用されているリートベルト解析プログラム(例えば、TOPAS(BRUKER AXS社製)等)等を用いて行うことができる。
このようにして得られた結果から、下記式に基づいて、石炭灰のガラス化率(質量%)を算出する。
ガラス化率(質量%)=100−結晶鉱物の合計量(質量%)
Examples of the profile fitting method based on powder X-ray diffraction include a Rietveld analysis method.
In the Rietveld analysis method, first, coal ash as a sample to be measured is diffracted by a powder X-ray diffraction method, and an actual measurement profile of mullite, α-quartz and magnetite contained in the coal ash is obtained from the diffraction result. In addition, powder X-ray diffraction is a conventional method using a commercially available powder X-ray diffractometer (for example, D8 ADVANCE (manufactured by BRUKER AXS), etc.) in the same manner as the calibration curve method based on the above-mentioned powder X-ray diffraction. In this case, powder X-ray diffraction is performed by adding an internal standard substance such as Al 2 O 3 , CaF 2 , MgF 2 to coal ash as a sample to be measured, and the amount added is 5 It is preferable that it is 10 mass%.
Next, by fitting the theoretical profiles of mullite, α-quartz and magnetite contained in the coal ash to the obtained actual measurement profile, each of mullite, α-quartz and magnetite contained in the coal ash is quantified. The fitting between the measured profile and the theoretical profile and the quantification of the crystalline mineral can be performed using a commonly used Rietveld analysis program (for example, TOPAS (manufactured by BRUKER AXS) or the like).
From the result thus obtained, the vitrification rate (mass%) of coal ash is calculated based on the following formula.
Vitrification rate (mass%) = 100-total amount of crystal mineral (mass%)

[ガラス相の塩基度]
ガラス相の塩基度は、下記式に基づいて算出する。
塩基度=(非晶質Al(質量%)+非晶質CaO(質量%)+全MgO(質量%))/非晶質SiO(質量%)
ここで、式中の非晶質Al、非晶質CaO、及び非晶質SiOの各質量割合の値は、以下の式に基いて求めることができる。
非晶質Al(質量%)=全Al(質量%)−結晶質Al(質量%)
非晶質CaO(質量%)=全CaO(質量%)−フリーライム量(質量%)
非晶質SiO=全SiO(質量%)−結晶質SiO(質量%)
また、結晶質Al(質量%)と結晶質SiO(質量%)の値は、上記粉末X線回折に基づく検量線法やプロファイルフィッティング法において求めたムライト及びα−石英の量から算出することができる。
全MgO(質量%))、全Al(質量%)、全CaO(質量%)、全SiO(質量%)は、JIS R5202に準じて測定することができる。
[Basicity of glass phase]
The basicity of the glass phase is calculated based on the following formula.
Basicity = (Amorphous Al 2 O 3 (mass%) + Amorphous CaO (mass%) + Total MgO (mass%)) / Amorphous SiO 2 (mass%)
Here, the value of each mass ratio of amorphous Al 2 O 3 , amorphous CaO, and amorphous SiO 2 in the formula can be obtained based on the following formula.
Amorphous Al 2 O 3 (mass%) = total Al 2 O 3 (mass%) − crystalline Al 2 O 3 (mass%)
Amorphous CaO (mass%) = total CaO (mass%) − free lime amount (mass%)
Amorphous SiO 2 = total SiO 2 (mass%) − crystalline SiO 2 (mass%)
The values of crystalline Al 2 O 3 (mass%) and crystalline SiO 2 (mass%) are based on the amounts of mullite and α-quartz obtained by the calibration curve method or profile fitting method based on the above powder X-ray diffraction. Can be calculated.
Total MgO (mass%)), total Al 2 O 3 (mass%), total CaO (mass%), and total SiO 2 (mass%) can be measured according to JIS R5202.

[45μm篩残分量]
45μm篩残分量は、JIS−A6201の網ふるい方法に準じて測定することができる。
[45 μm sieve residue]
The amount of 45 μm sieve residue can be measured according to the screen screening method of JIS-A6201.

本発明においては、下記式(1)〜(3)を用いて、材齢3日、7日、28日の各時点における石炭灰含有モルタルの圧縮強度の推定値である圧縮強度1〜3を算出し、該圧縮強度1〜3の算出値を用いて、石炭灰の強度発現性を評価する。
圧縮強度1(材齢3日;単位:N/mm)=9.3−0.028×ホウ素溶出量(mg/L)+1.2×フリーライム量(質量%)+1.2×ガラス相の塩基度・・・(1)
圧縮強度2(材齢7日;単位:N/mm)=13.6−0.012×45μm篩残分量(質量%)+0.363×フリーライム量(質量%)+4.67×ガラス相の塩基度・・・(2)
圧縮強度3(材齢28日;単位:N/mm)=31.5−0.054×45μm篩残分量(質量%)+0.06×ガラス相の塩基度×ガラス化率・・・(3)
なお、圧縮強度1〜3は、中庸熱ポルトランドセメント70質量%と石炭灰30質量%の混合セメントについて、JIS−R5201に準じて測定して得られる材齢3日、7日、28日の各時点における圧縮強度に相当する推定値である。
石炭灰の評価の一例としては、圧縮強度1が9.5N/mm以上、圧縮強度2が16.0N/mm以上、圧縮強度3が33.0N/mm以上、の各条件をすべて満たす石炭灰を、初期〜長期に亘って強度発現性が良好であると評価することが挙げられる。なお、圧縮強度1または圧縮強度2が小さい場合は、初期強度の発現性が劣ると評価することができる。また、圧縮強度3が小さい場合は、長期強度の発現性が劣ると評価することができる。
In the present invention, by using the following formulas (1) to (3), compressive strengths 1 to 3 which are estimated values of the compressive strength of the coal ash-containing mortar at each time point of 3 days, 7 days and 28 days of age are used. It calculates and the strength expression property of coal ash is evaluated using the calculated value of this compression strength 1-3.
Compressive strength 1 (material age 3 days; unit: N / mm 2 ) = 9.3-0.028 × boron elution amount (mg / L) + 1.2 × free lime amount (mass%) + 1.2 × glass phase Basicity of (1)
Compressive strength 2 (age 7 days; unit: N / mm 2 ) = 13.6-0.012 × 45 μm sieve residue amount (mass%) + 0.363 × free lime amount (mass%) + 4.67 × glass phase Basicity of (2)
Compressive strength 3 (age 28 days; unit: N / mm 2 ) = 31.5−0.054 × 45 μm sieve residue (mass%) + 0.06 × basicity of glass phase × vitrification rate 3)
The compressive strengths 1 to 3 are the age of 3 days, 7 days and 28 days obtained by measuring according to JIS-R5201 for the mixed cement of 70% by mass of moderately hot Portland cement and 30% by mass of coal ash. This is an estimated value corresponding to the compression strength at the time.
As an example of the evaluation of coal ash, all the conditions that the compressive strength 1 is 9.5 N / mm 2 or more, the compressive strength 2 is 16.0 N / mm 2 or more, and the compressive strength 3 is 33.0 N / mm 2 or more. It is mentioned that the coal ash to be filled is evaluated as having good strength development from the initial stage to the long term. In addition, when compressive strength 1 or compressive strength 2 is small, it can be evaluated that the initial strength is poor. Moreover, when the compressive strength 3 is small, it can be evaluated that the long-term strength is poor.

次に、本発明の石炭灰の強度発現性の改善方法は、前述の圧縮強度1〜3のいずれか1つ以上の算出値が、圧縮強度1〜3の各々について予め定めた基準値(例えば、圧縮強度1:9.5N/mm以上、圧縮強度2:16.0N/mm以上、圧縮強度3:33.0N/mm以上)よりも小さい場合、圧縮強度1〜3の算出値のすべてが、前記予め定めた基準値以上となるように、フリーライム量の増大のための処理、及び/又は、45μm篩残分量の減少のための処理を行なうものである。
フリーライム量の増大のための処理の例としては、フリーライムを含む粉末と石炭灰を混合する方法が挙げられる。フリーライムを含む粉末中のフリーライムの割合は、好ましくは50質量%以上、より好ましくは60質量%以上である。フリーライムを含む粉末の例としては、生石灰粉末、塩素バイパスダスト等が挙げられる。該粉末のブレーン比表面積は、好ましくは3000〜8000cm/gである。
なお、石炭灰中のフリーライム量を増大させる場合、該フリーライム量は、0.5〜1.5質量%に調整することが好ましく、0.6〜1.4質量%に調整することがより好ましい。フリーライム量が0.5質量%未満では、強度向上効果がほとんど認められない。フリーライム量が1.5質量%を超えると、流動性の低下等が生じるおそれがある。
Next, in the method for improving the strength development of the coal ash according to the present invention, any one or more calculated values of the compression strengths 1 to 3 described above are predetermined reference values for the compression strengths 1 to 3 (for example, Compressive strength 1: 9.5 N / mm 2 or higher, Compressive strength 2: 16.0 N / mm 2 or higher, Compressive strength 3: 33.0 N / mm 2 or higher) The processing for increasing the amount of free lime and / or the processing for decreasing the amount of 45 μm sieve residue is performed so that all of the above are equal to or greater than the predetermined reference value.
As an example of the treatment for increasing the amount of free lime, there is a method of mixing powder containing free lime and coal ash. The proportion of free lime in the powder containing free lime is preferably 50% by mass or more, more preferably 60% by mass or more. Examples of the powder containing free lime include quick lime powder and chlorine bypass dust. The brane specific surface area of the powder is preferably 3000 to 8000 cm 2 / g.
In addition, when increasing the amount of free lime in coal ash, it is preferable to adjust this amount of free lime to 0.5-1.5 mass%, and to adjust to 0.6-1.4 mass%. More preferred. If the amount of free lime is less than 0.5% by mass, the strength improving effect is hardly recognized. When the amount of free lime exceeds 1.5% by mass, fluidity may be lowered.

45μm篩残分量を減少させる方法としては、石炭灰を粉砕する方法が挙げられる。
なお、45μm篩残分量を減少させる場合、45μm篩残分量は、12質量%以下に調整することが好ましく、11質量%以下に調整することがより好ましい。45μm篩残分量が12質量%を超えている場合は、強度向上効果はほとんど認められない。
As a method for reducing the amount of 45 μm sieve residue, there is a method of pulverizing coal ash.
In addition, when reducing 45 micrometer sieve residue amount, it is preferable to adjust 45 micrometer sieve residue amount to 12 mass% or less, and it is more preferable to adjust to 11 mass% or less. When the amount of 45 μm sieve residue exceeds 12% by mass, the strength improving effect is hardly recognized.

[実施例1]
(1)使用材料
使用した石炭灰A〜Gの各物性値を表1に示す。
(2)石炭灰の評価
中庸熱ポルトランドセメント(太平洋セメント社製)70質量%と上記各石炭灰30質量%の混合セメントについて、JIS−R5201に準じて、モルタルの圧縮強度(材齢:3日、7日、28日)を測定した。
上記各石炭灰の物性値と上記式(1)〜(3)とに基づいて算出される圧縮強度1〜3の算出値、及び、上記各石炭灰の圧縮強度の実測値を表2に示す。
[Example 1]
(1) Used material Table 1 shows the physical properties of the used coal ash A to G.
(2) Evaluation of coal ash For mixed cement of 70% by mass of medium heat Portland cement (manufactured by Taiheiyo Cement) and 30% by mass of each of the above coal ash, compressive strength of mortar (age: 3 days) according to JIS-R5201 , 7 and 28).
Table 2 shows the calculated values of the compression strengths 1 to 3 calculated based on the physical property values of the coal ash and the formulas (1) to (3), and the measured values of the compression strength of the coal ash. .

[実施例2]
実施例1において、材齢3日の圧縮強度が低かった石炭灰Gに生石灰粉末(ブレーン比表面積:3700cm/g)を混合して、フリーライム量が0.9質量%である石炭灰G2を得た。該石炭灰G2を使用して、実施例1と同じ方法でモルタルの圧縮強度を測定した。
その結果、材齢3日の圧縮強度は10.3N/mm、材齢7日の圧縮強度は16.4N/mm、材齢28日の圧縮強度は33.4N/mmであった。結果を表1及び2に示す。
[Example 2]
In Example 1, coal ash G2 having a free lime content of 0.9 mass% by mixing quick lime powder (Brain specific surface area: 3700 cm 2 / g) with coal ash G having a low compressive strength at the age of 3 days in Example 1. Got. Using the coal ash G2, the compressive strength of the mortar was measured in the same manner as in Example 1.
As a result, the compressive strength at the age of three days compressive strength of 10.3N / mm 2, the age 7 days 16.4N / mm 2, compression strength at the age of 28 days was 33.4N / mm 2 . The results are shown in Tables 1 and 2.

[実施例3]
実施例1において、材齢7日及び28日の圧縮強度が低かった石炭灰Fを粉砕して、45μm篩残分量が8.0質量%である石炭灰F2を得た。該石炭灰F2を使用して、実施例1と同じ方法でモルタルの圧縮強度を測定した。
その結果、材齢3日の圧縮強度は9.9N/mm、材齢7日の圧縮強度は16.1N/mm、材齢28日の圧縮強度は33.4N/mmであった。結果を表1及び2に示す。
[Example 3]
In Example 1, the coal ash F having a low compressive strength at 7 days and 28 days of age was pulverized to obtain coal ash F2 having a 45 μm sieve residue of 8.0% by mass. Using the coal ash F2, the compressive strength of the mortar was measured in the same manner as in Example 1.
As a result, the compressive strength at the age of 3 days was 9.9 N / mm 2 , the compressive strength at the age of 7 days was 16.1 N / mm 2 , and the compressive strength at the age of 28 days was 33.4 N / mm 2 . . The results are shown in Tables 1 and 2.

[実施例4]
実施例3で調製した石炭灰F2に生石灰粉末(ブレーン比表面積:3700cm/g)を混合して、フリーライム量が0.9質量%である石炭灰F3を得た。該石炭灰F3を使用して、実施例1と同じ方法でモルタルの圧縮強度を測定した。
その結果、材齢3日の圧縮強度は10.4N/mm、材齢7日の圧縮強度は16.5N/mm、材齢28日の圧縮強度は33.7N/mmであった。結果を表1及び2に示す。
[Example 4]
Quick lime powder (Blaine specific surface area: 3700 cm 2 / g) was mixed with the coal ash F2 prepared in Example 3 to obtain coal ash F3 having a free lime content of 0.9 mass%. Using the coal ash F3, the compressive strength of the mortar was measured in the same manner as in Example 1.
As a result, the compressive strength at the age of 3 days was 10.4 N / mm 2 , the compressive strength at the age of 7 days was 16.5 N / mm 2 , and the compressive strength at the age of 28 days was 33.7 N / mm 2 . . The results are shown in Tables 1 and 2.

Figure 2011133344
Figure 2011133344

Figure 2011133344
Figure 2011133344

表2に示すように、各石炭灰の物性値と上記式(1)〜(3)とに基づいて算出した圧縮強度1〜3(材齢3日、7日、28日相当)の値は、実測値(材齢3日、7日、28日)の値とほぼ等しい。
例えば、圧縮強度1が9.5N/mm以上、圧縮強度2が16.0N/mm以上、及び圧縮強度3が33.0N/mm以上と算出された石炭灰A〜Dでは、実測値においても、初期(3日)〜長期(28日)に亘って強度発現性が良好であることが分かる。
一方、圧縮強度1が9.0N/mmと算出された石炭灰Gでは、初期の強度発現性を示す実測値(3日)も低かった。また、圧縮強度2が16.0N/mm未満でかつ圧縮強度3が33.0N/mm未満と算出された石炭灰E〜Fでは、材齢7日、28日の強度発現性の実測値も低かった。
このように、本発明では、石炭灰の物性値と特定の式とに基づいて、石炭灰の強度発現性を高い信頼性で迅速に評価しうることが分かる。
また、実施例2〜4から、石炭灰のフリーライム量を増大させたり、あるいは、45μm篩残分量を減少させることによって、石炭灰の強度発現性を改善させうることが分かる。
As shown in Table 2, the values of the compressive strengths 1 to 3 (equivalent to 3 days, 7 days, and 28 days of age) calculated based on the physical properties of each coal ash and the above formulas (1) to (3) are The measured values (material age 3 days, 7 days, 28 days) are almost equal.
For example, in the coal ash A to D, in which the compressive strength 1 is calculated to be 9.5 N / mm 2 or more, the compressive strength 2 is 16.0 N / mm 2 or more, and the compressive strength 3 is 33.0 N / mm 2 or more, actual measurement is performed. Also in terms of values, it can be seen that the strength development is good from the initial stage (3 days) to the long term (28 days).
On the other hand, in the coal ash G in which the compressive strength 1 was calculated to be 9.0 N / mm 2 , the actual measurement value (3 days) showing the initial strength development was also low. In addition, in the coal ash E to F in which the compressive strength 2 is less than 16.0 N / mm 2 and the compressive strength 3 is calculated to be less than 33.0 N / mm 2 , the actual strength measurement of the ages 7 days and 28 days is actually measured. The value was also low.
Thus, in this invention, it turns out that the strength expression property of coal ash can be evaluated rapidly with high reliability based on the physical property value of coal ash and a specific formula.
Moreover, from Examples 2-4, it turns out that the intensity | strength expression property of coal ash can be improved by increasing the amount of free lime of coal ash, or reducing the amount of 45 micrometer sieve residue.

Claims (2)

石炭灰の物性値として、ホウ素溶出量、フリーライム量、ガラス化率、ガラス相の塩基度、及び45μm篩残分量を測定し、
下記式(1)〜(3)を用いて、材齢3日、7日、28日の各時点における石炭灰含有モルタルの圧縮強度の推定値である圧縮強度1〜3を算出し、該圧縮強度1〜3の算出値を用いて、石炭灰の強度発現性を評価することを特徴とする石炭灰の強度発現性の評価方法。
圧縮強度1(材齢3日;単位:N/mm)=9.3−0.028×ホウ素溶出量(mg/L)+1.2×フリーライム量(質量%)+1.2×ガラス相の塩基度・・・(1)
圧縮強度2(材齢7日;単位:N/mm)=13.6−0.012×45μm篩残分量(質量%)+0.363×フリーライム量(質量%)+4.67×ガラス相の塩基度・・・(2)
圧縮強度3(材齢28日;単位:N/mm)=31.5−0.054×45μm篩残分量(質量%)+0.06×ガラス相の塩基度×ガラス化率・・・(3)
As physical properties of coal ash, boron elution amount, free lime amount, vitrification rate, basicity of glass phase, and 45 μm sieve residue amount are measured,
Using the following formulas (1) to (3), compressive strengths 1 to 3 that are estimated values of the compressive strength of the coal ash-containing mortar at each time point of 3 days, 7 days, and 28 days are calculated. An evaluation method for strength development of coal ash, wherein strength development of coal ash is evaluated using calculated values of strengths 1 to 3.
Compressive strength 1 (material age 3 days; unit: N / mm 2 ) = 9.3-0.028 × boron elution amount (mg / L) + 1.2 × free lime amount (mass%) + 1.2 × glass phase Basicity of (1)
Compressive strength 2 (age 7 days; unit: N / mm 2 ) = 13.6-0.012 × 45 μm sieve residue amount (mass%) + 0.363 × free lime amount (mass%) + 4.67 × glass phase Basicity of (2)
Compressive strength 3 (age 28 days; unit: N / mm 2 ) = 31.5−0.054 × 45 μm sieve residue (mass%) + 0.06 × basicity of glass phase × vitrification rate 3)
石炭灰の物性値として、ホウ素溶出量、フリーライム量、ガラス化率、ガラス相の塩基度、及び45μm篩残分量を測定し、
下記式(1)〜(3)を用いて、材齢3日、7日、28日の各時点における石炭灰含有モルタルの圧縮強度の推定値である圧縮強度1〜3を算出し、該圧縮強度1〜3のいずれか1つ以上の算出値が、圧縮強度1〜3の各々について予め定めた基準値よりも小さい場合、前記圧縮強度1〜3の算出値のすべてが、前記予め定めた基準値以上となるように、フリーライム量の増大のための処理、及び/又は、45μm篩残分量の減少のための処理を行なうことを特徴とする石炭灰の強度発現性の改善方法。
圧縮強度1(材齢3日;単位:N/mm)=9.3−0.028×ホウ素溶出量(mg/L)+1.2×フリーライム量(質量%)+1.2×ガラス相の塩基度・・・(1)
圧縮強度2(材齢7日;単位:N/mm)=13.6−0.012×45μm篩残分量(質量%)+0.363×フリーライム量(質量%)+4.67×ガラス相の塩基度・・・(2)
圧縮強度3(材齢28日;単位:N/mm)=31.5−0.054×45μm篩残分量(質量%)+0.06×ガラス相の塩基度×ガラス化率・・・(3)
As physical properties of coal ash, boron elution amount, free lime amount, vitrification rate, basicity of glass phase, and 45 μm sieve residue amount are measured,
Using the following formulas (1) to (3), compressive strengths 1 to 3 that are estimated values of the compressive strength of the coal ash-containing mortar at each time point of 3 days, 7 days, and 28 days are calculated. When any one or more calculated values of the strengths 1 to 3 are smaller than a reference value determined in advance for each of the compression strengths 1 to 3, all the calculated values of the compression strengths 1 to 3 are determined in advance. A method for improving the strength development of coal ash, characterized in that a treatment for increasing the amount of free lime and / or a treatment for reducing the amount of 45 μm sieve residue is performed so as to be equal to or greater than a reference value.
Compressive strength 1 (material age 3 days; unit: N / mm 2 ) = 9.3-0.028 × boron elution amount (mg / L) + 1.2 × free lime amount (mass%) + 1.2 × glass phase Basicity of (1)
Compressive strength 2 (age 7 days; unit: N / mm 2 ) = 13.6-0.012 × 45 μm sieve residue amount (mass%) + 0.363 × free lime amount (mass%) + 4.67 × glass phase Basicity of (2)
Compressive strength 3 (age 28 days; unit: N / mm 2 ) = 31.5−0.054 × 45 μm sieve residue (mass%) + 0.06 × basicity of glass phase × vitrification rate 3)
JP2009292944A 2009-12-24 2009-12-24 Evaluation method of strength development of coal ash and improvement method of strength development Expired - Fee Related JP5455612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292944A JP5455612B2 (en) 2009-12-24 2009-12-24 Evaluation method of strength development of coal ash and improvement method of strength development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292944A JP5455612B2 (en) 2009-12-24 2009-12-24 Evaluation method of strength development of coal ash and improvement method of strength development

Publications (2)

Publication Number Publication Date
JP2011133344A true JP2011133344A (en) 2011-07-07
JP5455612B2 JP5455612B2 (en) 2014-03-26

Family

ID=44346241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292944A Expired - Fee Related JP5455612B2 (en) 2009-12-24 2009-12-24 Evaluation method of strength development of coal ash and improvement method of strength development

Country Status (1)

Country Link
JP (1) JP5455612B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311955B1 (en) 2011-10-27 2013-09-26 주식회사 포스코 Method of coke quality prediction
JP2015194480A (en) * 2014-03-28 2015-11-05 太平洋セメント株式会社 Method for predicting activity index of fly ash, fly ash for cement admixture or concrete admixture and method for manufacturing cement mixed with fly ash
JP2016031272A (en) * 2014-07-29 2016-03-07 太平洋セメント株式会社 Method for estimating vitrification rate of coal ash
JP2017062219A (en) * 2015-09-25 2017-03-30 太平洋セメント株式会社 Estimation method for vitrification ratio of coal ash
JP2017111087A (en) * 2015-12-18 2017-06-22 太平洋セメント株式会社 Method for promptly evaluating coal ash containing cement and method for manufacturing coal ash containing cement
JP6323579B1 (en) * 2017-02-02 2018-05-16 住友大阪セメント株式会社 Coal ash production method
JP2018122290A (en) * 2018-01-12 2018-08-09 住友大阪セメント株式会社 Coal ash and cement composition
JP2018127390A (en) * 2017-02-10 2018-08-16 三菱マテリアル株式会社 Modification method of coal ash and production method of fly ash for concrete admixture
JP2018203583A (en) * 2017-06-07 2018-12-27 宇部興産株式会社 Coal ash composition
JP2019001696A (en) * 2017-06-20 2019-01-10 宇部興産株式会社 Coal ash-cured substance
KR20200048444A (en) * 2018-10-30 2020-05-08 가천대학교 산학협력단 High volume fly ash binder for compressive strength improvement
JP2021050279A (en) * 2019-09-25 2021-04-01 関西熱化学株式会社 Method for producing coke

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304384A (en) * 1995-05-08 1996-11-22 Sumitomo Osaka Cement Co Ltd Early estimation method for concrete strength
JPH101345A (en) * 1996-06-18 1998-01-06 Mitsubishi Materials Corp Single powder type polymer cement composition for half deflective pavement
JPH10504641A (en) * 1994-05-20 1998-05-06 ニュージャージー インスティテュート オヴ テクノロジー Improved compressive strength of concrete and mortar containing fly ash
JPH10323820A (en) * 1997-05-27 1998-12-08 Marino Forum 21 Compounding ratio determining method for hardened body manufacture using large amount of fine powder
JP2000203907A (en) * 1999-01-14 2000-07-25 Shimizu Corp Production of concrete
JP2004219150A (en) * 2003-01-10 2004-08-05 Shimizu Corp Method for simply measuring amount of salt in cured concrete
JP2008304446A (en) * 2007-05-09 2008-12-18 Central Res Inst Of Electric Power Ind Fly ash type determination method and pozzolanic reactivity determination method of fly ash utilizing this determination method of this fly ash
JP2009121988A (en) * 2007-11-15 2009-06-04 Taiheiyo Cement Corp Evaluation method for coal ash

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504641A (en) * 1994-05-20 1998-05-06 ニュージャージー インスティテュート オヴ テクノロジー Improved compressive strength of concrete and mortar containing fly ash
JPH08304384A (en) * 1995-05-08 1996-11-22 Sumitomo Osaka Cement Co Ltd Early estimation method for concrete strength
JPH101345A (en) * 1996-06-18 1998-01-06 Mitsubishi Materials Corp Single powder type polymer cement composition for half deflective pavement
JPH10323820A (en) * 1997-05-27 1998-12-08 Marino Forum 21 Compounding ratio determining method for hardened body manufacture using large amount of fine powder
JP2000203907A (en) * 1999-01-14 2000-07-25 Shimizu Corp Production of concrete
JP2004219150A (en) * 2003-01-10 2004-08-05 Shimizu Corp Method for simply measuring amount of salt in cured concrete
JP2008304446A (en) * 2007-05-09 2008-12-18 Central Res Inst Of Electric Power Ind Fly ash type determination method and pozzolanic reactivity determination method of fly ash utilizing this determination method of this fly ash
JP2009121988A (en) * 2007-11-15 2009-06-04 Taiheiyo Cement Corp Evaluation method for coal ash

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311955B1 (en) 2011-10-27 2013-09-26 주식회사 포스코 Method of coke quality prediction
JP2015194480A (en) * 2014-03-28 2015-11-05 太平洋セメント株式会社 Method for predicting activity index of fly ash, fly ash for cement admixture or concrete admixture and method for manufacturing cement mixed with fly ash
JP2015194475A (en) * 2014-03-28 2015-11-05 太平洋セメント株式会社 Method for predicting activity index of fly ash, concrete fly ash and method for manufacturing cement mixed with fly ash
JP2016031272A (en) * 2014-07-29 2016-03-07 太平洋セメント株式会社 Method for estimating vitrification rate of coal ash
JP2017062219A (en) * 2015-09-25 2017-03-30 太平洋セメント株式会社 Estimation method for vitrification ratio of coal ash
JP2017111087A (en) * 2015-12-18 2017-06-22 太平洋セメント株式会社 Method for promptly evaluating coal ash containing cement and method for manufacturing coal ash containing cement
CN109414704A (en) * 2017-02-02 2019-03-01 住友大阪水泥股份有限公司 The manufacturing method and coal ash of coal ash, cement composition
JP2018122260A (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Method of manufacturing coal ash
WO2018142661A1 (en) * 2017-02-02 2018-08-09 住友大阪セメント株式会社 Method for producing coal ash, coal ash, and cement composition
KR102202526B1 (en) 2017-02-02 2021-01-13 스미토모 오사카 세멘토 가부시키가이샤 Method for manufacturing coal ash and composition of coal ash and cement
JP6323579B1 (en) * 2017-02-02 2018-05-16 住友大阪セメント株式会社 Coal ash production method
AU2017396650B2 (en) * 2017-02-02 2019-10-03 Sumitomo Osaka Cement Co., Ltd. Method for producing coal ash, coal ash, and cement composition
KR20190113527A (en) * 2017-02-02 2019-10-08 스미토모 오사카 세멘토 가부시키가이샤 Fly ash production method and coal ash, cement composition
CN109414704B (en) * 2017-02-02 2021-01-26 住友大阪水泥股份有限公司 Method for producing coal ash
US11338328B2 (en) 2017-02-10 2022-05-24 Mitsubishi Materials Corporation Method for reforming coal ash, and method for producing fly ash for concrete admixture
JP2018127390A (en) * 2017-02-10 2018-08-16 三菱マテリアル株式会社 Modification method of coal ash and production method of fly ash for concrete admixture
WO2018147360A1 (en) * 2017-02-10 2018-08-16 三菱マテリアル株式会社 Method for reforming coal ash, and method for producing fly ash for concrete admixture
CN110191867B (en) * 2017-02-10 2021-11-12 三菱综合材料株式会社 Method for modifying coal ash and method for producing coal ash for concrete admixture
CN110191867A (en) * 2017-02-10 2019-08-30 三菱综合材料株式会社 The method of modifying of coal ash and the manufacturing method of concrete mixing material flyash
JP2018203583A (en) * 2017-06-07 2018-12-27 宇部興産株式会社 Coal ash composition
JP2019001696A (en) * 2017-06-20 2019-01-10 宇部興産株式会社 Coal ash-cured substance
JP2018122290A (en) * 2018-01-12 2018-08-09 住友大阪セメント株式会社 Coal ash and cement composition
KR102135458B1 (en) 2018-10-30 2020-07-17 가천대학교 산학협력단 High volume fly ash binder for compressive strength improvement
KR20200048444A (en) * 2018-10-30 2020-05-08 가천대학교 산학협력단 High volume fly ash binder for compressive strength improvement
JP2021050279A (en) * 2019-09-25 2021-04-01 関西熱化学株式会社 Method for producing coke
JP7274993B2 (en) 2019-09-25 2023-05-17 関西熱化学株式会社 coke production method

Also Published As

Publication number Publication date
JP5455612B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5455612B2 (en) Evaluation method of strength development of coal ash and improvement method of strength development
JP5414170B2 (en) Coal ash evaluation method
Aliabdo et al. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete
Hossain Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics
Bakar et al. Malaysian rice husk ash–improving the durability and corrosion resistance of concrete: Pre-review
Binici et al. The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP)
Seraj et al. The role of particle size on the performance of pumice as a supplementary cementitious material
Duran-Herrera et al. Evaluation of sustainable high-volume fly ash concretes
Ataie et al. Influence of agricultural residue ash on early cement hydration and chemical admixtures adsorption
Antiohos et al. Investigating the role of reactive silica in the hydration mechanisms of high-calcium fly ash/cement systems
Feng et al. Evaluation of the physical and chemical properties of fly ash products for use in Portland cement concrete
JP4626541B2 (en) Ultra-fast hardening grout composition
JP4135743B2 (en) Cement composition
JP4585328B2 (en) Solidifying material composition
Ardoğa et al. Effect of particle size on early heat evolution of interground natural pozzolan blended cements
Dhengare et al. Utilization of sugarcane bagasse ash as a supplementary cementitious material in concrete and mortar—a review
Rogers Evaluation and testing of brick dust as a pozzolanic additive to lime mortars for architectural conservation
Wansom et al. Pozzolanic activity of rice husk ash: comparison of various electrical methods
JP2006036571A (en) Cement composition
JP4478531B2 (en) Cement composition
Bentz et al. Optimization of particle sizes in high volume fly ash blended cements
Sivakumar et al. Reactivity of modified iron silicate slag as sustainable alternative binder
JP6688099B2 (en) Medium heat fly ash cement
Bakar et al. Malaysian rice husk ash–improving the durability and corrosion resistance of concrete: Pre-review
JP2008156231A (en) Cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5455612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees