JPH10323820A - Compounding ratio determining method for hardened body manufacture using large amount of fine powder - Google Patents

Compounding ratio determining method for hardened body manufacture using large amount of fine powder

Info

Publication number
JPH10323820A
JPH10323820A JP13707297A JP13707297A JPH10323820A JP H10323820 A JPH10323820 A JP H10323820A JP 13707297 A JP13707297 A JP 13707297A JP 13707297 A JP13707297 A JP 13707297A JP H10323820 A JPH10323820 A JP H10323820A
Authority
JP
Japan
Prior art keywords
water
ratio
compressive strength
powder ratio
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13707297A
Other languages
Japanese (ja)
Other versions
JP3993914B2 (en
Inventor
Tatsuo Suzuki
達雄 鈴木
Kazuto Fukutome
和人 福留
Mamoru Sakamoto
守 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Corp
Marino Forum 21
Original Assignee
Hazama Gumi Ltd
Marino Forum 21
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Marino Forum 21 filed Critical Hazama Gumi Ltd
Priority to JP13707297A priority Critical patent/JP3993914B2/en
Publication of JPH10323820A publication Critical patent/JPH10323820A/en
Application granted granted Critical
Publication of JP3993914B2 publication Critical patent/JP3993914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compounding ratio determining method by which a water-powder ratio and a cement adding ratio to maximize the compressive strength of a hardened body to be manufactured by using a large amount of a fine powder such as coal ash, can be easily obtained. SOLUTION: This is a method for obtaining a compounding ratio of respective materials in order to manufacture a hardened body comprising a material including cement, a large amount of a fine powder such as coal ash, and water of a water-powder ratio at a degree of an optimum moisture content, and a kneaded article is formed by kneading cement, the fine powder and water, and a water-powder ratio to show a specified flow value is obtained by performing a flow test regarding this kneaded article, and an estimate for the water-powder ratio to maximize the compressive strength of the hardened body is obtained by an operation from the water-powder ratio, and from this estimate for the water-powder ratio, an estimate for the compressive strength of the hardened body is obtained by an operation, and from the estimate for the compressive strength and a required compressive strength for the hardened body, a cement adding ratio is obtained by an operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微粉体を多量に用
いた硬化体の製造方法に関し、更に詳細には、硬化体を
構成する各材料の配合比率の決定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cured product using a large amount of fine powder, and more particularly to a method for determining a mixing ratio of each material constituting the cured product.

【0002】[0002]

【従来の技術】石炭火力発電により発生する石炭灰は、
その一部がセメント原料またはコンクリート用混和材等
の用途で利用されているものの、多くが埋立て処分され
ており、環境保護や資源活用の観点からも利用拡大が求
められている。また汚水を水質浄化した後に生じる汚泥
等の焼却灰に関しても、同様に埋立て処分以外の利用が
求められている。
2. Description of the Related Art Coal ash generated by coal-fired power generation is:
Some of them are used for cement raw materials or as admixtures for concrete, but many of them are landfilled, and there is a demand for expanded use from the viewpoint of environmental protection and resource utilization. Similarly, incineration ash such as sludge generated after purifying sewage water is also required to be used for purposes other than landfill disposal.

【0003】そこで、本発明の発明者等は、石炭灰や汚
泥焼却灰等の微粉体を多量に用いて硬化体を製造する方
法や、この硬化体を様々な構造物に適用することを提案
した。すなわち、硬化体の製造方法は、セメント、石炭
灰または汚泥焼却灰等の微粉体、水および硬化促進剤を
最適含水比(JIS A 1210-1979の突固めによる土の締固
め試験により、最大乾燥密度が得られる含水比)に近い
水粉体比で練り混ぜた後、振動数ほぼ4000rpm程度、振
幅ほぼ1.0mm程度の振動を概ね5分間程度加えることに
より締め固めて形成するものである。ここで、セメン
ト、石炭灰または汚泥焼却灰等の微粉体、及び硬化促進
剤に最適含水比程度の水を混ぜ合わせて練り上げた場
合、混練物は単に湿り気のある粉体の状態になるだけで
あるが、上記最適含水比において振動を加えた後には、
流体状に変化して締め固めが可能となる。また上記最適
含水比は、混練物が振動締め固めにより流体化する限界
の水粉体比とほぼ一致していることが判っている。
Therefore, the inventors of the present invention have proposed a method of producing a hardened body using a large amount of fine powder such as coal ash and sludge incineration ash, and application of the hardened body to various structures. did. In other words, the production method of the cured product is as follows: the fine powder such as cement, coal ash or sludge incineration ash, water and the curing accelerator are optimally moisturized. The mixture is kneaded at a water powder ratio close to the water content ratio at which the density can be obtained, and then compacted by applying a vibration having a frequency of about 4000 rpm and an amplitude of about 1.0 mm for about 5 minutes. Here, when fine powder such as cement, coal ash or sludge incineration ash, and a curing accelerator are mixed and kneaded with water having an optimal water content, the kneaded material merely becomes a wet powder state. However, after applying vibration at the above optimal water content,
It changes to a fluid state and can be compacted. Further, it has been found that the above-mentioned optimum water content ratio substantially coincides with the limit water powder ratio at which the kneaded material is fluidized by vibration compaction.

【0004】コンクリートに関して、振動により流動性
が増大することは従来よく知られており、コンクリート
の締め固めに標準的に利用されている。しかしながら、
練上げ後のコンクリートは振動前の状態でも流体状であ
り、振動によってセメントペーストの粘性が低下して流
動性が増しているにすぎない。これに対して、上述の硬
化体製造方法では、振動の作用により、湿り気のある粉
体状の混練物が流体状に変化し、振動停止後も流体の状
態が持続される点で、従来のコンクリート締め固めとは
全く異なるものである。
[0004] Regarding concrete, it is well known that the fluidity is increased by vibration, and it is used as a standard for compaction of concrete. However,
The concrete after kneading is in a fluid state even before the vibration, and the vibration only lowers the viscosity of the cement paste to increase the fluidity. On the other hand, in the above-described method for producing a cured body, the wet powdery kneaded material changes into a fluid state by the action of vibration, and the state of the fluid is maintained even after the vibration is stopped. It is completely different from concrete compaction.

【0005】上記硬化体の製造方法における最適含水比
は、使用する石炭灰や汚泥焼却灰等の微粉体の種類によ
り大きく異なるため、微粉体ごとに突固めによる土の締
固め試験により求める必要があるが、この場合、試験回
数はかなり多くなることもあり、手間が掛かるという問
題点があった。
[0005] Since the optimum water content in the above-mentioned method for producing a cured product greatly varies depending on the type of fine powder such as coal ash or sludge incineration ash, it is necessary to determine the optimum moisture content by compaction test of soil by compaction for each fine powder. However, in this case, the number of tests may be considerably increased, and there is a problem that it takes time and effort.

【0006】また、硬化体の圧縮強度が最大になる水粉
体比(以下、「最適水粉体比」という。)は、概ね前記
最適含水比近傍の値になることが判っているものの、最
適含水比近傍において水粉体比が小さくなるほど(水量
が少ないほど)高い圧縮強度が得られるわけではないた
め、使用する微粉体の種類ごとに最適水粉体比を求める
必要があった。
The water powder ratio at which the compressive strength of the cured product is maximized (hereinafter referred to as the "optimal water powder ratio") is known to be approximately in the vicinity of the optimum water content ratio. As the water-powder ratio decreases (the water content decreases) in the vicinity of the optimum water content, a higher compressive strength cannot be obtained. Therefore, it is necessary to determine the optimum water-powder ratio for each type of fine powder used.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点に着目し、これを解決せんとしたものであり、
その課題は、多量の微粉体を用いて製造する硬化体の圧
縮強度を最大にする水粉体比やセメント添加率を容易に
求めることができる配合比率決定方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention focuses on the above-mentioned problems of the prior art and attempts to solve them.
An object of the present invention is to provide a method for determining a compounding ratio that can easily determine a water powder ratio and a cement addition ratio that maximize the compressive strength of a cured product produced using a large amount of fine powder.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、セメントと、多量の微粉体と、最適含
水比程度の水粉体比の水とを含む材料からなる硬化体を
製造するために、各材料の配合比率を求める方法であっ
て、セメントと微粉体と水とを練り混ぜて混練物を生成
し、該混練物についてフロー試験を行って所定のフロー
値を示す水粉体比を求め、該水粉体比から、硬化体の圧
縮強度が最大となる水粉体比(最適水粉体比)の推定値
を演算により求め、水粉体比の該推定値から硬化体の圧
縮強度の推定値を演算により求め、圧縮強度の該推定値
と、硬化体の所要圧縮強度とからセメント添加率を演算
により求めることを特徴とする配合比率決定方法が提供
される。
In order to solve the above-mentioned problems, the present invention provides a cured product made of a material containing cement, a large amount of fine powder, and water having a water-powder ratio about the optimum water content. In order to produce, a method of determining the mixing ratio of each material, kneading and mixing cement, fine powder, and water to produce a kneaded material, performing a flow test on the kneaded material, water showing a predetermined flow value The powder ratio is obtained, and from the water powder ratio, an estimated value of the water powder ratio (optimal water powder ratio) at which the compressive strength of the cured body is maximized is calculated, and the estimated value of the water powder ratio is obtained from the calculated value. There is provided a method for determining a mixing ratio, wherein an estimated value of the compressive strength of a hardened body is obtained by calculation, and a cement addition ratio is obtained by calculation from the estimated value of the compressive strength and the required compressive strength of the hardened body.

【0009】本発明において、前記最適含水比程度の水
粉体比の水としては海水または真水等を用いることがで
きて、また前記微粉体としては石炭灰や汚泥焼却灰等を
用いることができる。また本発明において、前記セメン
トと微粉体と水とを練り混ぜて混練物を生成する際に
は、混和剤を加えても良く、かように混和剤の添加され
た混練物についてフロー試験を行い所定のフロー値を示
す水粉体比を求め、以下、上記と同様にすれば、混和剤
を加えた場合の配合比率も決定することができる。ここ
で、混和剤としては塩(NaCl等)を採用することが可能で
あり、例えば、最適含水比程度の水粉体比の水として真
水を使用した場合には、水に対する重量比で約3%程度
の塩(NaCl等)を添加する。一方、前記の水として海水を
使用した場合には、海水中に含まれる同程度の重量比の
塩分(NaCl等)が該混和剤として作用する。以上のように
混和剤を添加することにより、硬化体の短期・長期の圧
縮強度が増強される。
In the present invention, seawater or fresh water can be used as the water having a water powder ratio of about the optimum water content ratio, and coal ash or sludge incineration ash can be used as the fine powder. . Further, in the present invention, when kneading the cement, fine powder and water to produce a kneaded material, an admixture may be added, and a flow test is performed on the kneaded material thus added with the admixture. A water powder ratio showing a predetermined flow value is determined, and the same procedure as described above can be used to determine the mixing ratio when the admixture is added. Here, a salt (NaCl or the like) can be used as the admixture. For example, when pure water is used as water having a water powder ratio of about the optimum water content, about 3 weight% of water is used. % Salt (such as NaCl) is added. On the other hand, when seawater is used as the water, salt (NaCl or the like) having a similar weight ratio contained in the seawater acts as the admixture. By adding the admixture as described above, the short-term and long-term compressive strength of the cured product is enhanced.

【0010】本発明において、演算により求められたセ
メント添加率で再度混練物を生成し、再度フロー試験を
行って所定のフロー値を示す水粉体比を求め、該水粉体
比から最適水粉体比の推定値を演算により再度求め、こ
れを最適水粉体比の補正値としても良い。かように最適
水粉体比の補正値を求めれば、更に最適な配合比率を求
めることができる。
In the present invention, a kneaded material is formed again at the cement addition rate determined by calculation, and a flow test is performed again to obtain a water powder ratio showing a predetermined flow value. The estimated value of the powder ratio may be obtained again by calculation, and this may be used as the correction value of the optimum water powder ratio. If the correction value of the optimum water powder ratio is obtained in this manner, a more optimum compounding ratio can be obtained.

【0011】また本発明において、所定のフロー値を示
す水粉体比から最適水粉体比の推定値を求める演算は、
予備実験により計算式を予め求めれば、この計算式によ
り行うことができる。すなわち、予備実験では、石炭灰
等の微粉体の種類ごとに所定のセメント添加率で作成し
た水粉体比が異なる複数の混練物についてフロー値を求
めて、この結果から所定のフロー値を示す水粉体比を求
め、さらに、これらの混練物から硬化体を作成して所定
材令、例えば、3日、7日、28日等の材令で圧縮強度
を求め、この結果から圧縮強度が最大値を示す水粉体
比、すなわち最適水粉体比を求める。かように求めた最
適水粉体比と、所定フロー値を示す水粉体比とを変数と
して回帰式を求めれば、この回帰式により上述した演算
が可能となる。
In the present invention, the calculation for obtaining the estimated value of the optimum water powder ratio from the water powder ratio indicating a predetermined flow value is as follows:
If a calculation formula is obtained in advance by a preliminary experiment, the calculation can be performed by this calculation formula. That is, in the preliminary experiment, the flow value is obtained for a plurality of kneaded materials having different water powder ratios prepared at a predetermined cement addition rate for each type of fine powder such as coal ash, and a predetermined flow value is shown from the result. The water-powder ratio is determined, and further, a cured body is prepared from these kneaded materials, and the compression strength is determined by a predetermined material age, for example, a material age such as 3 days, 7 days, 28 days, and the like. The water powder ratio showing the maximum value, that is, the optimum water powder ratio is determined. If the regression equation is determined using the optimum water powder ratio thus determined and the water powder ratio indicating a predetermined flow value as variables, the above-described calculation can be performed using the regression equation.

【0012】さらに本発明において、水粉体比の推定値
から硬化体の圧縮強度の推定値を求める演算は、予備実
験により計算式を予め求めれば、この計算式により行う
ことができる。すなわち、予備実験では、石炭灰等の微
粉体の種類ごとに所定のセメント添加率で作成した水粉
体比が異なる複数の硬化体について、複数の材令で圧縮
強度を求め、各材令ごとに、圧縮強度と水粉体比とを変
数として回帰式を求めれば、この回帰式により上述した
演算が可能となる。
Further, in the present invention, the calculation for obtaining the estimated value of the compressive strength of the cured product from the estimated value of the water powder ratio can be performed by a calculation formula if a calculation formula is obtained in advance by a preliminary experiment. That is, in the preliminary experiment, the compressive strength was determined by a plurality of materials for a plurality of hardened materials having different water powder ratios prepared at a predetermined cement addition ratio for each type of fine powder such as coal ash, If the regression equation is determined using the compressive strength and the water powder ratio as variables, the above-described calculation can be performed using the regression equation.

【0013】更にまた本発明において、圧縮強度の推定
値と所要圧縮強度とからセメント添加率を求める演算
は、予備実験により計算式を予め求めれば、この計算式
により行うことができる。すなわち、予備実験では、石
炭灰等の微粉体の種類ごとにセメント添加率の異なる複
数の硬化体を作成し、いくつかの材令で圧縮強度を求
め、各材令ごとに、セメント添加率が1%増減するごと
の圧縮強度の増減率を定数として求める。そして、該定
数を用いて、圧縮強度の推定値に対する所要圧縮強度の
増減率と、セメント添加率の増減値との比例式を求めれ
ば、この比例式により上述した演算が可能となる。
Further, in the present invention, the calculation of the cement addition rate from the estimated value of the compressive strength and the required compressive strength can be performed by this formula if the formula is obtained in advance by a preliminary experiment. In other words, in the preliminary experiment, a plurality of hardened bodies with different cement addition rates were created for each type of fine powder such as coal ash, and the compressive strength was determined by several grades. The increase / decrease rate of the compressive strength for every 1% increase / decrease is determined as a constant. Then, if the proportional equation is calculated between the increase / decrease rate of the required compressive strength with respect to the estimated value of the compressive strength and the increase / decrease value of the cement addition rate using the constant, the above-described calculation can be performed by this proportional equation.

【0014】本発明におけるフロー試験は、JIS R 5201
-1992に規定された試験器具や試験方法によって実施す
ることができる。本発明では、所定のフロー値を示す水
粉体比を求める工程において、所定のフロー値とは、水
粉体比を変えて作成した複数の混練物についてフロー試
験を行った場合、フロー値と水粉体比との間にある程度
の比例関係が見られる範囲の値であれば良く、更に好ま
しくは該範囲における下限の値とする。すなわち、異な
る種類の石炭灰等の微粉体を用いて、この微粉体とセメ
ントと水とを混合し、複数の水粉体比で混練物を作成し
てフロー値を求める予備実験を行った結果、フロー値が
ほぼ130〜170程度の範囲では、フロー値と水粉体
比との間に比例関係が見られ、この比例関係はフロー値
140程度で確実に示されたので、所定のフロー値を1
40とすることが好ましい。なお、この所定のフロー値
は、フロー値と水粉体比との関係を求める予備実験によ
り適宜変更可能である。
The flow test in the present invention is carried out according to JIS R 5201
It can be performed by the test equipment and test method specified in -1992. In the present invention, in the step of obtaining a water powder ratio indicating a predetermined flow value, the predetermined flow value is, when a flow test is performed on a plurality of kneaded materials created by changing the water powder ratio, the flow value and Any value within a range in which a certain proportional relationship with the water-powder ratio is observed may be used, and more preferably the lower limit value in the range. That is, using a fine powder of different types of coal ash and the like, mixing the fine powder, cement and water, preparing a kneaded material with a plurality of water powder ratios, and conducting a preliminary experiment for obtaining a flow value. When the flow value is in the range of approximately 130 to 170, a proportional relationship is observed between the flow value and the water powder ratio. 1
It is preferably set to 40. The predetermined flow value can be appropriately changed by a preliminary experiment for obtaining the relationship between the flow value and the water powder ratio.

【0015】また本発明において、所定のフロー値を示
す水粉体比を求める工程では、最初に所定の水粉体比の
混練物を作成し、この混練物についてフロー試験を行
い、得られたフロー値に応じて適宜水粉体比を増減させ
て、フロー値が所定値の近傍に達するまでフロー試験を
繰り返せば求めることができる。ここで、所定のフロー
値が得られない場合には、この所定値をはさんで前後の
フロー値を示す水粉体比を求め、比例配分により水粉体
比を求めても良い。
In the present invention, in the step of obtaining a water powder ratio showing a predetermined flow value, a kneaded product having a predetermined water powder ratio is first prepared, and a flow test is performed on the kneaded material. It can be obtained by increasing or decreasing the water powder ratio as appropriate according to the flow value and repeating the flow test until the flow value reaches the vicinity of the predetermined value. Here, when the predetermined flow value cannot be obtained, the water powder ratio indicating the flow value before and after this predetermined value may be obtained, and the water powder ratio may be obtained by proportional distribution.

【0016】[0016]

【実施例】以下、添付図面に基づいて実施例を説明する
が、本発明はこれに限定されるものではない。図1は本
実施例で用いた石炭灰の品質を示す一覧表であり、図2
は水粉体比と圧縮強度との関係を示すグラフであり、図
3は水粉体比とフロー値との関係を示すグラフであり、
図4はフロー値140となる水粉体比と最適水粉体比と
の関係を示すグラフであり、図5(a)〜(d)は粉体水比と
圧縮強度との関係を各材令ごとに示したグラフであり、
図6(a)〜(d)はセメント添加率と圧縮強度との関係を各
材令ごとに示したグラフである。なお本実施例におい
て、セメントの重量を「C」、石炭灰の重量を「F」、
さらに水の重量を「W」でそれぞれ簡略に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below with reference to the accompanying drawings, but the present invention is not limited to these embodiments. FIG. 1 is a list showing the quality of the coal ash used in the present embodiment.
FIG. 3 is a graph showing the relationship between the water powder ratio and the compressive strength, and FIG. 3 is a graph showing the relationship between the water powder ratio and the flow value;
FIG. 4 is a graph showing the relationship between the water powder ratio at which the flow value becomes 140 and the optimum water powder ratio. FIGS. 5 (a) to 5 (d) show the relationship between the powder water ratio and the compressive strength for each material. It is a graph shown for each order,
FIGS. 6A to 6D are graphs showing the relationship between the cement addition ratio and the compressive strength for each material age. In this embodiment, the weight of cement is "C", the weight of coal ash is "F",
Further, the weight of water is simply indicated by “W”.

【0017】本発明の配合比率決定方法では、セメント
と石炭灰とを所定の比率、例えば、セメント:石炭灰=
15:85の重量比で混合し、水と粉体(セメントと石
炭灰)とを練り混ぜて複数の水粉体比で混練物を作成
し、該水粉体比の異なる複数の混練物についてフロー試
験を行って所定のフロー値を示す水粉体比を求める。そ
して、この水粉体比を、予め求められている第一の式
(最適水粉体比と所定のフロー値を示す水粉体比との関
係式)に代入し、最適水粉体比すなわち硬化体の圧縮強
度が最大となる水粉体比の推定値を求める。さらに、こ
の最適水粉体比の推定値を、予め求められている第二の
式(最適水粉体比と圧縮強度との関係式)に代入し、最
適水粉体比における硬化体の圧縮強度の推定値を求め
る。かようにして求められた圧縮強度の推定値と、硬化
体の所要圧縮強度(目標圧縮強度)とを、予め求められ
ている第三の式(圧縮強度とセメント添加率との関係
式)に代入し、所要圧縮強度を得ることができるセメン
ト添加率の推定値を求める。以上のようにして、セメン
ト添加率と水粉体比とを求めて、硬化体製造のための材
料の配合比率は決定される。次に、本実施例の配合比率
決定方法に用いる上記第一の式乃至第三の式について説
明する。
In the method for determining the mixing ratio of the present invention, cement and coal ash are mixed in a predetermined ratio, for example, cement: coal ash =
Mix at a weight ratio of 15:85, knead water and powder (cement and coal ash) to make a kneaded material with a plurality of water powder ratios, and for a plurality of kneaded materials having different water powder ratios A flow test is performed to determine a water powder ratio showing a predetermined flow value. Then, this water powder ratio is substituted into a first equation (a relational expression between the optimum water powder ratio and a water powder ratio indicating a predetermined flow value) determined in advance, and the optimum water powder ratio, An estimated value of the water powder ratio at which the compressive strength of the cured product is maximized is determined. Further, the estimated value of the optimum water-powder ratio is substituted into a second equation (the relational expression between the optimum water-powder ratio and the compressive strength) obtained in advance, and the compression of the cured product at the optimum water-powder ratio is performed. Find an estimate of the intensity. The estimated value of the compressive strength obtained in this way and the required compressive strength of the hardened body (target compressive strength) are converted into a third equation (the relational equation between the compressive strength and the cement addition rate) obtained in advance. Substituting to obtain an estimated value of the cement addition rate that can obtain the required compressive strength. As described above, the cement addition ratio and the water powder ratio are obtained, and the compounding ratio of the material for producing the cured product is determined. Next, the first to third equations used in the method for determining the blending ratio of the present embodiment will be described.

【0018】《第一の式(最適水粉体比と所定のフロー
値を示す水粉体比との関係式)》図1に示したような1
5種類の石炭灰A〜Oについて、JIS R 5201-1992に規
定された方法によりフロー試験を行った結果、図3のグ
ラフを得た。すなわち、石炭灰A〜Oについてセメント
添加率(C/(C+F)×100)が15%になるように、粉体材
料(セメント、石炭灰)を計量し、これらの粉体材料をミ
キサーに投入して所定時間練り混ぜ、この中に所定の水
粉体比(W/(C+F)×100)で水を投入して更に所定時間練
り混ぜる。そして、練り混ぜを終了した材料をフローコ
ーンに二層に分けて詰め、それぞれ15回づつ突き棒で
突き固めて、このフローコーンをテーブル上に載置して
ゆっくりと引き上げる。この後、15秒間に15回テー
ブルを上下動させて、最大直径とその直角方向の直径を
測定し、その平均値をフロー値とした。かようなフロー
試験を、各石炭灰ごとに3〜5種類の水粉体比で行い、
その結果を図3のグラフに示した。なお、図3に用いた
混練物は、撹拌して練り混ぜるだけで充分な流動性を示
すような水粉体比で作成されものであり、振動締め固め
は一切行っていない。図3に示したように、水粉体比と
フロー値との関係は石炭灰の種類により異なっているも
のの、各石炭灰ごとに所定の範囲、つまりフロー値が概
ね130〜170程度の範囲では比例関係(直線グラフ)
にあることが判った。かような結果をうけて、可能な限
り水粉体比が小さくなると共に、水粉体比とフロー値と
が比例関係を示し易いことから、石炭灰A〜Fについて
フロー値140における水粉体比を図3から求めた。ま
た石炭灰A〜Fを用いてセメント添加率15%、最適含
水比近傍の複数の水粉体比、硬化促進剤としての塩を水
に対して重量比で3%添加した条件で、複数の硬化体を
作成してそれぞれの28日材令の圧縮強度を求め、その
結果を図2に示した。この図2からは、水粉体比が小さ
いほど高い強度が得られるとは限らず、硬化体は、各石
炭灰A〜Fごとに強度が最大になる水粉体比(すなわち
最適水粉体比)があることが判った。上記図2から求め
た最適水粉体比と、フロー値140における水粉体比と
の関係を図4に示した。図4に示したように、異なる石
炭灰A〜Fに関する両値には極めて良好な相関関係が見
られ、以下の回帰式、すなわち第一の式を得た。
<< First Equation (Relationship Equation between Optimal Water Powder Ratio and Water Powder Ratio Showing a Predetermined Flow Value) >> As shown in FIG.
As a result of performing a flow test on the five types of coal ashes A to O by the method specified in JIS R 5201-1992, the graph of FIG. 3 was obtained. That is, powder materials (cement, coal ash) are weighed so that the cement addition rate (C / (C + F) × 100) of coal ash A to O becomes 15%, and these powder materials are put into a mixer. Then, the mixture is kneaded for a predetermined time, water is added thereto at a predetermined water powder ratio (W / (C + F) × 100), and the mixture is further kneaded for a predetermined time. The kneaded material is divided into two layers in a flow cone, packed 15 times each with a push rod, and the flow cone is placed on a table and slowly pulled up. Thereafter, the table was moved up and down 15 times in 15 seconds, the maximum diameter and the diameter in the direction perpendicular to the maximum diameter were measured, and the average value was used as the flow value. Such a flow test is performed for each coal ash at a water powder ratio of 3 to 5 types,
The results are shown in the graph of FIG. The kneaded material used in FIG. 3 was prepared with a water-powder ratio that exhibited sufficient fluidity only by stirring and kneading, and was not subjected to vibration compaction at all. As shown in FIG. 3, although the relationship between the water powder ratio and the flow value differs depending on the type of coal ash, a predetermined range for each coal ash, that is, a flow value in a range of approximately 130 to 170, is used. Proportional relationship (linear graph)
It was found to be. As a result, the water powder ratio becomes as small as possible, and the water powder ratio and the flow value tend to show a proportional relationship. The ratio was determined from FIG. Also, a plurality of coal ashes A to F were added under the condition that a cement addition rate was 15%, a plurality of water powder ratios near an optimum water content ratio, and a salt as a hardening accelerator was added by 3% by weight to water. A cured product was prepared and the compressive strength of each 28-day age was determined, and the results are shown in FIG. From FIG. 2, it can be seen that the smaller the water powder ratio, the higher the strength is not necessarily obtained. Ratio). FIG. 4 shows the relationship between the optimum water powder ratio obtained from FIG. 2 and the water powder ratio at a flow value of 140. As shown in FIG. 4, a very good correlation was found between the two values for the different coal ashes A to F, and the following regression equation, that is, the first equation was obtained.

【0019】《第一の式》 (最適水粉体比%)=0.789×(フロー値140mmにおける水
粉体比%)+3.05 したがって、使用する石炭灰の種類ごとにフロー試験を
行い、フロー値140mmにおける水粉体比を求め、この水
粉体比を第一の式に代入すれば、高い精度で最適水粉体
比の推定値を求めることができる。
<< First formula >> (Optimal water powder ratio%) = 0.789 × (water powder ratio% at a flow value of 140 mm) +3.05 Therefore, a flow test is performed for each type of coal ash to be used, and By obtaining the water powder ratio at a value of 140 mm and substituting this water powder ratio into the first equation, it is possible to obtain an estimated value of the optimum water powder ratio with high accuracy.

【0020】《第二の式(最適水粉体比と圧縮強度との
関係式)》図5(a)〜(d)には、セメント添加率15%で
作成された石炭灰A〜Fの硬化体における粉体水比((C
+F)/W)と圧縮強度(kgf/cm2)との関係を、材令3日、
7日、28日、91日ごとに示した。図5(a)〜(d)にお
いて、石炭灰の種類により若干ばらつきが見られるが、
粉体水比と圧縮強度とは全ての材令で極めて良好な比例
関係(相関関係)を示し、各材令ごとに以下の回帰式、す
なわち第二の式を得た。 《第二の式》 材令3日 (圧縮強度(kgf/cm2))=100×23.5/(水粉体
比(%))−43.2 材令7日 (圧縮強度(kgf/cm2))=100×57.2/(水粉体
比(%))−119 材令28日 (圧縮強度(kgf/cm2))=100× 105/(水粉体
比(%))−167 材令91日 (圧縮強度(kgf/cm2))=100× 103/(水粉体
比(%))−67.6 したがって、第一の式から導きだした最適水粉体比を、
各材令における第二の式の水粉体比に代入すれば、最適
水粉体比における圧縮強度の推定値を高い精度で求める
ことができる。
<< Second Equation (Relationship Equation between Optimum Water Powder Ratio and Compressive Strength) >> FIGS. 5 (a) to 5 (d) show the results of the coal ashes A to F prepared at a cement addition rate of 15%. Powder water ratio ((C
+ F) / W) and compressive strength (kgf / cm 2 )
Shown every 7, 28, and 91 days. 5 (a) to 5 (d), there is a slight variation depending on the type of coal ash,
The powder water ratio and the compressive strength showed a very good proportional relationship (correlation) in all the ages, and the following regression equation, that is, the second equation was obtained for each ages. << Second formula >> Material age 3 days (compressive strength (kgf / cm 2 )) = 100 × 23.5 / (water powder ratio (%)) − 43.2 Material age 7 days (compressive strength (kgf / cm 2 )) = 100 × 57.2 / (water powder ratio (%)) - 119 material age 28 days (compressive strength (kgf / cm 2)) = 100 × 105 / ( water powder ratio (%)) - 167 material age 91 days (Compressive strength (kgf / cm 2 )) = 100 × 103 / (water powder ratio (%)) − 67.6 Therefore, the optimal water powder ratio derived from the first equation is
By substituting into the water powder ratio of the second equation in each material age, an estimated value of the compressive strength at the optimum water powder ratio can be obtained with high accuracy.

【0021】《第三の式(圧縮強度とセメント添加率と
の関係式)》図6(a)〜(d)では、水粉体比を各々の最適
水粉体比に設定し、石炭灰B,C,D,Fを使用してセ
メント添加率(C/(C+F)×100(%))を10、15、20
%と変えて、さらに各々の水に対する重量比3%で硬化
促進剤を添加するという条件で硬化体を作成し、材令3
日、7日、28日、91日における圧縮強度を求めて、
それぞれグラフ化した。図6(a)〜(d)において、石炭灰
の種類によりばらつきが見られるものの、各材令におい
てセメント添加率を増加させれば所定の傾きで圧縮強度
も増加する傾向があり、しかも、セメント添加率15%
の前後ではグラフの傾きが異なることが判った。したが
って、各材令毎に、各セメント添加率(10、15、20%)に
おける圧縮強度を加重平均し、これらの加重平均値を用
いてセメント添加率10〜15%の区間と、15〜20
%の区間とにおける圧縮強度の増加率(%)を求めた。そ
して、上記二つの区間における圧縮強度の増加率を、セ
メント添加率の増加量で除して、以下の表1に示すセメ
ント添加率1%当たりの圧縮強度増加率(%)を求めた。
<< Third Equation (Relationship Equation Between Compressive Strength and Cement Addition Rate) >> In FIGS. 6 (a) to 6 (d), the water powder ratio is set to each optimum water powder ratio, and coal ash is set. Using B, C, D, F, the cement addition rate (C / (C + F) × 100 (%)) was 10, 15, 20
%, And a curing accelerator is added under the condition that a curing accelerator is added at a weight ratio of 3% with respect to each water.
Calculating the compressive strength on days 7, 7, 28 and 91,
Each was graphed. In FIGS. 6 (a) to 6 (d), although there is a variation depending on the type of coal ash, the compressive strength tends to increase at a predetermined slope if the cement addition rate is increased in each age, Addition rate 15%
Before and after, the slope of the graph was different. Therefore, for each material age, the compressive strength at each cement addition rate (10, 15, 20%) is weighted and averaged, and the weighted average value is used to calculate the section of the cement addition rate of 10 to 15%,
%, The increase rate (%) of the compressive strength was calculated. Then, the increase rate of the compressive strength in the above two sections was divided by the increase amount of the cement addition rate to obtain a compressive strength increase rate (%) per 1% of the cement addition rate shown in Table 1 below.

【0022】[0022]

【表1】 [Table 1]

【0023】表1において、αはセメント添加率15〜
20%の区間におけるセメント添加率1%当たりの圧縮
強度の増加率(%)を示し、βはセメント添加率10〜
15%の区間におけるセメント添加率1%当たりの圧縮
強度の増加率を示している。
In Table 1, α is a cement addition ratio of 15 to
The increase rate (%) of the compressive strength per 1% of the cement addition rate in the section of 20% is shown, and β is the cement addition rate of 10 to 10.
The increase rate of the compressive strength per 1% of the cement addition rate in the section of 15% is shown.

【0024】以上の第一及び第二の式により導きだされ
た圧縮強度の推定値は、セメント添加率15%で算出さ
れている。したがって、硬化体の圧縮強度を推定値より
も増減させる場合には、セメント添加率を増減して補正
する必要があり、このセメント添加率の補正値は、表1
の圧縮強度増加率を用いた下記の第三の式により算出す
ることができる。 《第三の式》 〈推定圧縮強度が目標圧縮強度より低い場合〉 α×(セメント添加率(%)−15)=(目標圧縮強度)/(推
定圧縮強度)×100−100 〈推定圧縮強度が目標圧縮強度より高い場合〉 β×(15−セメント添加率(%))=100−(目標圧縮強度)
/(推定圧縮強度)×100 したがって、上記第三の式に、目標圧縮強度と推定圧縮
強度とを代入すれば、セメント添加率の補正値が求めら
れる。
The estimated value of the compressive strength derived from the above first and second equations is calculated at a cement addition rate of 15%. Therefore, when increasing or decreasing the compressive strength of the hardened body from the estimated value, it is necessary to correct the cement addition rate by increasing or decreasing the cement addition rate.
Can be calculated by the following third equation using the compressive strength increase rate of << Third Formula >><When the estimated compressive strength is lower than the target compressive strength> α × (cement addition rate (%) − 15) = (target compressive strength) / (estimated compressive strength) × 100−100 <estimated compressive strength Is higher than the target compressive strength> β × (15-cement addition rate (%)) = 100-(target compressive strength)
/ (Estimated compressive strength) × 100 Therefore, by substituting the target compressive strength and the estimated compressive strength into the third equation, a correction value of the cement addition rate can be obtained.

【0025】次に、本発明の配合比率決定方法について
更に詳細に説明する。本発明の配合比率決定方法では、
最初にフロー試験を行う。すなわち、セメント添加率が
15%になるように計量した粉体材料(セメント、石炭
灰)をミキサーに投入して所定時間練り混ぜ、さらに水
粉体比が35%になるように計量した水をミキサーに投
入して所定時間練り混ぜる。かように作成された混練物
を用いて、上記と同様なフロー試験を行いフロー値を求
める。このフロー値によって水粉体比を表2のように変
更し、フロー値140をはさんで、これ以上の値とこれ
以下の値が2〜3点得られるまでフロー試験を繰り返
す。
Next, the method for determining the compounding ratio of the present invention will be described in more detail. In the method of determining the mixing ratio of the present invention,
First, a flow test is performed. That is, powder materials (cement, coal ash) weighed so that the cement addition ratio becomes 15% are put into a mixer and kneaded for a predetermined time, and then water weighed so that a water powder ratio becomes 35%. Put into a mixer and mix for a predetermined time. Using the kneaded material thus prepared, a flow test similar to the above is performed to determine a flow value. The water powder ratio is changed according to the flow value as shown in Table 2, and the flow test is repeated with the flow value 140 interposed therebetween until two or three values higher and lower than this value are obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】次に、フロー値140をはさむ値から等比
配分によってフロー値140mmとなる水粉体比を算出す
る。そして、この水粉体比を前記第一の式に代入して最
適水粉体比の推定値を求める。次いで、この最適水粉体
比の推定値を、前記第二の式に代入して、所定の材令に
おける圧縮強度の推定値を求める。さらに、圧縮強度の
推定値と目標圧縮強度とを比較し、この両圧縮強度を第
三の式に代入してセメント添加率の補正値を求める。こ
こで、最適水粉体比は、セメント添加率によって異なる
場合があるため、補正されたセメント添加率で前記と同
様に混練物を作成し、これについて前記と同様に再度フ
ロー試験を行って第一の式から最適水粉体比の補正値を
求める。以上のようにして、セメント添加率と最適水粉
体比の補正値とを求めれば、圧縮強度が最大になるセメ
ントと石炭灰と水との配合比率が求められる。
Next, a water powder ratio that gives a flow value of 140 mm is calculated from the values sandwiching the flow value 140 by equal distribution. Then, the estimated value of the optimum water powder ratio is obtained by substituting the water powder ratio into the first equation. Next, the estimated value of the optimum water-powder ratio is substituted into the second equation to obtain an estimated value of the compressive strength at a predetermined material age. Further, the estimated value of the compressive strength is compared with the target compressive strength, and the two compressive strengths are substituted into the third equation to obtain a correction value of the cement addition rate. Here, since the optimal water powder ratio may vary depending on the cement addition rate, a kneaded material is prepared in the same manner as described above with the corrected cement addition rate, and the kneaded material is subjected to the flow test again in the same manner as described above, and the A correction value of the optimum water powder ratio is obtained from one equation. As described above, by obtaining the cement addition rate and the correction value of the optimum water powder ratio, the mixing ratio of cement, coal ash, and water that maximizes the compressive strength is obtained.

【0028】《計算例1》フロー試験を行った結果、フ
ロー値140mmにおける水粉体比が42.1%で、28日材令
の目標圧縮強度が150kgf/cm2の場合。 水粉体比42.1%を第一の式に代入して最適水粉体比を
求める。 最適水粉体比=0.789×(フロー値140mmにおける水粉体比%)+3.05 =0.789×42.1+3.05 =36.3(%) 最適水粉体比36.3%を第二の式に代入して圧縮強度の
推定値を求める。 材令28日の圧縮強度=100× 105/(水粉体比(%))−167 =100× 105/36.3−167 =122(kgf/cm2) 材令28日の圧縮強度の推定値122kgf/cm2と、目標圧
縮強度が150kgf/cm2とを第三の式に代入してセメント
添加率の補正値を求める。この場合、推定圧縮強度が目
標圧縮強度より低いので下記の式を用いる。 α×(セメント添加率(%)−15)=(目標圧縮強度)/(推定圧縮強度)×100−100 セメント添加率(%)=15+{(目標圧縮強度)/(推定圧縮強度)×100−100}/α =15+{150/122×100−100}/7.38 =18.1(%) セメント添加率18.1(%)で混練物を作成し、再度フロ
ー試験を行って第一の式から最適水粉体比の補正値を求
める。
<< Calculation Example 1 >> As a result of a flow test, a water powder ratio at a flow value of 140 mm is 42.1%, and a target compressive strength of 28 days old is 150 kgf / cm 2 . The optimum water powder ratio is determined by substituting the water powder ratio of 42.1% into the first equation. Optimal water powder ratio = 0.789 x (water powder ratio% at a flow value of 140 mm) + 3.05 = 0.789 x 42.1 + 3.05 = 36.3 (%) Substituting the optimum water powder ratio 36.3% into the second equation Obtain an estimate of compressive strength. Material age compressive strength of 28 = 100 × 105 / (water powder ratio (%)) - 167 = 100 × 105 / 36.3-167 = 122 estimate of compressive strength (kgf / cm 2) material age 28 days 122kgf / Cm 2 and the target compressive strength of 150 kgf / cm 2 are substituted into the third equation to determine the correction value of the cement addition rate. In this case, since the estimated compression strength is lower than the target compression strength, the following equation is used. α × (cement addition rate (%) − 15) = (target compression strength) / (estimated compression strength) × 100−100 cement addition rate (%) = 15 + {(target compression strength) / (estimated compression strength) × 100 −100} / α = 15 + {150/122 x 100-100} / 7.38 = 18.1 (%) A kneaded product is prepared with a cement addition rate of 18.1 (%), and a flow test is performed again to determine the optimum water from the first equation. Find the correction value of the powder ratio.

【0029】[0029]

【発明の効果】本発明では、セメントと石炭灰等の微粉
体と水とを練り混ぜて混練物を生成し、該混練物につい
てフロー試験を行って所定のフロー値を示す水粉体比を
求め、該水粉体比から、硬化体の圧縮強度が最大となる
水粉体比の推定値を演算により求め、水粉体比の該推定
値から硬化体の圧縮強度の推定値を演算により求め、圧
縮強度の該推定値と、硬化体の所要圧縮強度とからセメ
ント添加率を演算により求める。したがって、水粉体比
やセメント添加率を求めるため、従来のように土の締固
め試験等の煩雑な試験をすること無く、ただ単に、生成
した混練物についてフロー試験を行って所定のフロー値
を示す水粉体比を求めれば、演算により硬化体の圧縮強
度を最大にする水粉体比やセメント添加率を容易に求め
ることが可能で、配合比率を決定することができる。
According to the present invention, a kneaded material is produced by kneading cement, fine powder such as coal ash, and water, and a flow test is performed on the kneaded material to determine a water-powder ratio showing a predetermined flow value. From the water powder ratio, an estimated value of the water powder ratio at which the compressive strength of the cured product is maximized is obtained by calculation, and an estimated value of the compressed strength of the cured product is calculated from the estimated value of the water powder ratio. The cement addition rate is obtained by calculation from the estimated value of the compressive strength and the required compressive strength of the hardened body. Therefore, in order to obtain the water powder ratio and the cement addition ratio, a complicated flow test such as a soil compaction test as in the related art is performed, and a flow test is simply performed on the resulting kneaded material to obtain a predetermined flow value. By calculating the water powder ratio, the water powder ratio and the cement addition ratio that maximize the compressive strength of the cured product can be easily obtained by calculation, and the mixing ratio can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例で用いた石炭灰の品質を示す一覧表で
ある。
FIG. 1 is a list showing the quality of coal ash used in this example.

【図2】水粉体比と圧縮強度との関係を示すグラフであ
る。
FIG. 2 is a graph showing a relationship between a water powder ratio and compressive strength.

【図3】水粉体比とフロー値との関係を示すグラフであ
る。
FIG. 3 is a graph showing a relationship between a water powder ratio and a flow value.

【図4】フロー値140となる水粉体比と最適水粉体比
との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a water powder ratio that gives a flow value of 140 and an optimum water powder ratio.

【図5】(a)〜(d)は粉体水比と圧縮強度との関係を各材
令ごとに示したグラフである。
FIGS. 5A to 5D are graphs showing the relationship between the powder water ratio and the compressive strength for each material age.

【図6】(a)〜(d)はセメント置換率と圧縮強度との関係
を各材令ごとに示したグラフである。
6 (a) to 6 (d) are graphs showing the relationship between the cement replacement ratio and the compressive strength for each material age.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 守 東京都港区北青山2−5−8 株式会社間 組内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Mamoru Sakamoto 2-5-8 Kitaaoyama, Minato-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セメントと、多量の微粉体と、最適含水
比程度の水粉体比の水とを含む材料からなる硬化体を製
造するために、各材料の配合比率を求める方法であっ
て、 セメントと微粉体と水とを練り混ぜて混練物を生成し、
該混練物についてフロー試験を行って所定のフロー値を
示す水粉体比を求め、 該水粉体比から、硬化体の圧縮強度が最大となる水粉体
比の推定値を演算により求め、 水粉体比の該推定値から硬化体の圧縮強度の推定値を演
算により求め、 圧縮強度の該推定値と、硬化体の所要圧縮強度とからセ
メント添加率を演算により求めることを特徴とする配合
比率決定方法。
1. A method for determining a compounding ratio of each material in order to produce a hardened body comprising a material containing cement, a large amount of fine powder, and water having a water powder ratio of about an optimum water content ratio. Kneading cement, fine powder and water to produce a kneaded material,
A flow test is performed on the kneaded material to obtain a water powder ratio indicating a predetermined flow value.From the water powder ratio, an estimated value of a water powder ratio at which the compressive strength of the cured product is maximized is calculated, An estimated value of the compressive strength of the hardened body is obtained by calculation from the estimated value of the water powder ratio, and a cement addition rate is obtained by calculation from the estimated value of the compressive strength and the required compressive strength of the hardened body. How to determine the mixing ratio.
【請求項2】 前記セメントと前記微粉体と前記水と
に、混和剤を加えて混練物を生成し、該混練物について
フロー試験を行って所定のフロー値を示す水粉体比を求
めることを特徴とする請求項1記載の配合比率決定方
法。
2. A kneaded product is formed by adding an admixture to the cement, the fine powder, and the water, and a flow test is performed on the kneaded product to obtain a water-powder ratio showing a predetermined flow value. The method according to claim 1, wherein:
JP13707297A 1997-05-27 1997-05-27 Method for determining the blending ratio for manufacturing a cured product using a large amount of fine powder Expired - Lifetime JP3993914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13707297A JP3993914B2 (en) 1997-05-27 1997-05-27 Method for determining the blending ratio for manufacturing a cured product using a large amount of fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13707297A JP3993914B2 (en) 1997-05-27 1997-05-27 Method for determining the blending ratio for manufacturing a cured product using a large amount of fine powder

Publications (2)

Publication Number Publication Date
JPH10323820A true JPH10323820A (en) 1998-12-08
JP3993914B2 JP3993914B2 (en) 2007-10-17

Family

ID=15190254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13707297A Expired - Lifetime JP3993914B2 (en) 1997-05-27 1997-05-27 Method for determining the blending ratio for manufacturing a cured product using a large amount of fine powder

Country Status (1)

Country Link
JP (1) JP3993914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224309A (en) * 2005-02-15 2006-08-31 Yamaguchi Univ Manufacturing method of cement concrete without using sand, and cement concrete without using sand
JP2011133344A (en) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp Evaluation method of expression property of strength of coal ash and improvement method of expression property of strength
JP2019158720A (en) * 2018-03-15 2019-09-19 株式会社安藤・間 Method for setting reference value for composite design and method for test method for cured composite body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224309A (en) * 2005-02-15 2006-08-31 Yamaguchi Univ Manufacturing method of cement concrete without using sand, and cement concrete without using sand
JP2011133344A (en) * 2009-12-24 2011-07-07 Taiheiyo Cement Corp Evaluation method of expression property of strength of coal ash and improvement method of expression property of strength
JP2019158720A (en) * 2018-03-15 2019-09-19 株式会社安藤・間 Method for setting reference value for composite design and method for test method for cured composite body

Also Published As

Publication number Publication date
JP3993914B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
JPH10323820A (en) Compounding ratio determining method for hardened body manufacture using large amount of fine powder
JP3936777B2 (en) Coal ash hardened body composition
JP4249176B2 (en) Determination method of primary water volume in split kneading method
Ranjani et al. Analysis of the foam generated using surfactant sodium lauryl sulfate
EP0544179B1 (en) Method for adjusting consistency
US5256197A (en) Abrasion-resistant synthetic article and method of making
JP2750407B2 (en) Mortar based cavity filler
JP3877562B2 (en) Coal ash concrete and its blending method
JP5173580B2 (en) Coal ash filler compounding design method
CN108529932A (en) Pumpable light aggregate concrete and preparation method thereof
JP4249248B1 (en) A method for calculating the surface adsorbed water ratio of an aggregate in a centrifugal dehydration test, and a method for producing mortar or concrete using the aggregate obtained by this calculation method.
JP4510985B2 (en) Formulation determination method in CSG method
JPH11319894A (en) Solidifier for sludge, molded part using this and solidification process thereof
JPS59101410A (en) Pasty curing agent for alginate impression material
JP2019183419A (en) Manufacturing method of solidification soil
JP2514668B2 (en) Ground improvement and stabilization briquette body
JP2890389B2 (en) Filler and manufacturing method thereof
JP3797825B2 (en) Building materials
JP2020001978A (en) Manufacturing method of coal ash mixed material
CN117637075B (en) Concrete mix proportion design method based on big data
JPS62235277A (en) Super lightweight cement set body and manufacture
JP3998121B2 (en) Manufacturing method of immediate demolding cement products
JPH07330393A (en) Dust-free cement-based setting material
JP2000335950A (en) Concrete for structure of civil engineering and construction for recycling
JPH0210788B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term