JPH11319894A - Solidifier for sludge, molded part using this and solidification process thereof - Google Patents
Solidifier for sludge, molded part using this and solidification process thereofInfo
- Publication number
- JPH11319894A JPH11319894A JP13510698A JP13510698A JPH11319894A JP H11319894 A JPH11319894 A JP H11319894A JP 13510698 A JP13510698 A JP 13510698A JP 13510698 A JP13510698 A JP 13510698A JP H11319894 A JPH11319894 A JP H11319894A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- amount
- clay
- weight
- cement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は汚泥の固化材及びそ
の固化方法に関し、詳しくは、汚泥の中でも微砂や粘土
を含む汚泥を固化させて圧縮強度を20N/mm2 以上
とし、ブロックや路盤材、その他の土木建築資材の一部
として利用するための固化材、それを用いた成形体、及
びその固化方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solidifying material for sludge and a method for solidifying the same. More particularly, sludge containing fine sand or clay is solidified among sludge to have a compressive strength of 20 N / mm 2 or more, and is used for blocks and roadbeds. The present invention relates to a solidified material to be used as a part of materials and other civil engineering and building materials, a molded body using the same, and a method of solidifying the same.
【0002】[0002]
【従来技術及びその課題】従来、各種鉱山の採掘工程や
洗浄工程において、あるいは土木建築工事に際し、多量
の汚泥が発生する。特に、建設汚泥の場合は、汚泥の種
類は粗骨材の場合もあるし、細骨材の場合も粘土の場合
も、これらの任意の混合物の場合もあり、発生する場所
によって異なるので一定しないが、微砂や粘土を多量に
含む混合物の場合は含水率が50〜80%程度と高いの
で、そのまま埋め戻すことができず、殆どは産業廃棄物
として最終処分場で処理(廃棄)されているのが現状で
ある。しかしながら、最終処分場は既に満杯であり、新
しい処分場の建設は、建設に反対する住民運動が顕在化
し、困難となっている。従って、このままでは鉱山の運
営にも支障きたし、また、新しい土木建築工事が発注で
きないという深刻な課題が生じている。2. Description of the Related Art Conventionally, a large amount of sludge is generated in mining and washing processes of various mines or in civil engineering and construction work. In particular, in the case of construction sludge, the type of sludge may be coarse aggregate, fine aggregate or clay, or may be an arbitrary mixture of these. However, in the case of a mixture containing a large amount of fine sand or clay, the water content is as high as about 50 to 80%, so that it cannot be backfilled, and most of it is treated (discarded) as industrial waste at the final disposal site. That is the current situation. However, the final disposal site is already full, and the construction of a new disposal site has become difficult due to the emergence of public opposition to construction. Therefore, the operation of the mine is hindered as it is, and serious problems have arisen that it is not possible to order new civil engineering and construction work.
【0003】これらの課題を解決するために、微砂や粘
土質の汚泥を800℃程度の高温で焼成して有効利用す
る方法や水溶性の接着剤で固化させて、そのまま建設資
材の一部として有効利用する方法なども研究されてい
る。しかしながら、高温処理する方法はそのまま建設資
材とはならなく、樹脂による固化は価格が高価であるこ
とと、臭気が強いものもあり労働衛生環境の課題が残
り、かつ、可燃性であることなどから大量に使用しにく
い面を有している。In order to solve these problems, a method of baking fine sand or clayey sludge at a high temperature of about 800 ° C. for effective use, or solidifying it with a water-soluble adhesive, and directly using a part of construction materials Methods for effective use as such have been studied. However, the method of high-temperature treatment is not directly used as a construction material, and solidification with resin is expensive, and some have a strong odor, leaving the issue of occupational health and flammability. It is difficult to use in large quantities.
【0004】本発明者は、安価で安全な材料を使用し
て、建設資材として利用可能な20N/mm2 以上の圧
縮強度を発現させる固化材、それを用いた成形体、及び
その固化方法を鋭意研究した結果、セメントを主成分と
した方法を見出し発明を完成させたものである。The present inventor has developed a solidified material which can be used as a construction material and has a compressive strength of 20 N / mm 2 or more, using a cheap and safe material, a molded body using the solidified material, and a solidifying method therefor. As a result of intensive research, they have found a method using cement as a main component and completed the invention.
【0005】[0005]
【課題を解決する手段】すなわち、本発明は、(1)セ
メント100重量部と、石膏類を無水物換算で1〜15
重量部と、シリカフューム、メタカオリン、ケイ化木の
焼却灰の中の一種又は二種以上を2〜20重量部配合す
ることを特徴とする汚泥の固化材、(2)セメントが粉
末度2500〜8000cm2 /gであることを特徴と
する(1)記載の汚泥の固化材、(3)(1)又は
(2)記載の固化材を用いて固化した成形体、(4)汚
泥中の粒子径が0.044mm以下の微砂や粘土に含ま
れる水分量に対して、請求項1又は2記載の固化材を、
水固化材比で1.30以下となるように配合して練混ぜ
ることを特徴とする汚泥の固化方法である。That is, the present invention provides (1) 100 parts by weight of cement and gypsum in an amount of 1 to 15 in terms of anhydride.
Parts by weight, and 2 to 20 parts by weight of one or more of silica fume, metakaolin, and incinerated ash, and (2) cement has a fineness of 2,500 to 8,000 cm. 2 / g, a solidified material of the sludge according to (1), a molded product solidified using the solidified material according to (3) (1) or (2), and (4) a particle diameter in the sludge. For the amount of moisture contained in fine sand or clay of 0.044 mm or less, the solidifying material according to claim 1 or 2,
This is a method for solidifying sludge, characterized by mixing and kneading so that the water-solidifying material ratio is 1.30 or less.
【0006】[0006]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明は、セメントと、石膏類と、シリカフューム、メ
タカオリン、ケイ化木の焼却灰の中の一種又は二種以上
からなる(以下、シリカフューム等という)汚泥の固化
材であり、それを用いた成形体、及び汚泥中の粒子径が
0.044mm以下の微砂や粘土(以下、粘土等とい
う)と固化材とを配合する汚泥の固化方法である。尚、
微砂や粘土は日本では0.05mm以下の粒子に分類
(日本農学学会法)されているが、当セメント業界では
0.044mmのふるいがあるので0.044mmを基
準とした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The present invention is a solidifying material for sludge consisting of cement, gypsum, and one or more of silica fume, metakaolin, and incinerated ash of silicified wood (hereinafter, referred to as silica fume). This is a method for solidifying sludge by mixing fine solid or clay (hereinafter referred to as clay or the like) having a particle diameter of 0.044 mm or less in a body and sludge with a solidifying material. still,
Fine sand and clay are classified into particles of 0.05 mm or less in Japan (Agricultural Science Law of Japan), but in the cement industry there is a sieve of 0.044 mm.
【0007】本発明の固化材において、使用されるセメ
ントは各種ポルトランドセメント及び高炉スラグセメン
トであり、セメント自身の粉末度が重要である。本発明
の固化材として使用されるセメントの粉末度は2500
cm2 /g以上であり、好ましくは3000cm2 /g
以上であり、4000〜8000cm2 /gの範囲がよ
り好ましい。粉末度が2500cm2 /g未満では石膏
類やシリカフューム等と併用し、水固化材比を小さくし
ても20N/mm2 以上の強度を得ることは困難であ
り、8000cm2 /gを超える粉末度では水和反応が
速すぎて急結気味となったりして粘土等との練混ぜ操作
や成形操作が困難となり、強度低下につながるので、細
かすぎても好ましくない。The cement used in the solidified material of the present invention is various portland cement and blast furnace slag cement, and the fineness of the cement itself is important. The fineness of the cement used as the solidifying material of the present invention is 2500.
cm 2 / g or more, preferably 3000 cm 2 / g
The range is more preferably 4000 to 8000 cm 2 / g. If the fineness is less than 2500 cm 2 / g, it is difficult to obtain a strength of 20 N / mm 2 or more even when the ratio of the water-solidifying material is reduced by using in combination with gypsum or silica fume, and the fineness exceeding 8000 cm 2 / g. In such a case, the hydration reaction is too fast and tends to rapidly set, so that the kneading operation with a clay or the like or the forming operation becomes difficult, leading to a decrease in strength.
【0008】本発明で使用される石膏類としては、二水
石膏、半水石膏、III 型無水石膏の他、II型無水石膏の
一種又は二種以上が使用される。これらは無水物換算で
セメント100重量部に対して、1〜15重量部配合さ
れるが、1重量部未満では強度発現効果は小さく、15
重量部を超えると強度が低下するか、強度の伸びが停滞
するようになり好ましくない。常温では、好ましくは3
〜10重量部、より好ましくは4〜8重量部であり、蒸
気養生では配合量の高い方に好ましい範囲がシフトす
る。尚、より好ましい石膏類はII型無水石膏であるが、
石膏類の粉末度は強度に対する影響は小さく、セメント
と同等以上であれば良いものである。さらに、本発明に
おいてシリカフューム、メタカオリン、ケイ化木の焼却
灰の中の一種又は二種以上を、セメント100重量部に
対して2〜20重量部配合する。[0008] As the gypsum used in the present invention, one or two or more of type II anhydrous gypsum besides gypsum dihydrate, hemihydrate gypsum and type III anhydrous gypsum are used. These are mixed in an amount of 1 to 15 parts by weight with respect to 100 parts by weight of cement in terms of anhydride.
If the amount exceeds the weight part, the strength is lowered or the elongation of the strength is stagnated, which is not preferable. At room temperature, preferably 3
The range is preferably from 10 to 10 parts by weight, more preferably from 4 to 8 parts by weight, and in steam curing, the preferred range is shifted to a higher blending amount. Incidentally, more preferred gypsum is type II anhydrous gypsum,
The fineness of the gypsum has little effect on the strength and may be any value as long as it is equal to or more than that of the cement. Furthermore, in the present invention, 2 to 20 parts by weight of one or more of silica fume, metakaolin and incinerated ash of silicified wood are mixed with 100 parts by weight of cement.
【0009】シリカフュームとは金属シリコンやフェロ
シリコン合金などを電気炉で製造する際に、副生する非
晶質のSiO2 の超微粉末であり、メタカオリンはカオ
リンなどの粘土を800℃程度で焼成したアルミノケイ
酸質の微粉末である。、ケイ化木の焼却灰は稲、藁、竹
などのケイ化木の焼成した時の灰で非晶質SiO2 であ
る。いずれも、ポゾラン活性が強くセメントの水和によ
って生成するCa(OH)2 と反応して固化する。2重
量部未満では、石膏類と併用しても強度増進効果は小さ
く、20重量部を超えて添加してもそれ以上の強度増進
効果が示されないものであり、好ましくは4重量部以
上、より好ましくは5〜10重量部である。[0009] Silica fume is an ultrafine powder of amorphous SiO 2 produced as a by-product when metal silicon or ferrosilicon alloy is produced in an electric furnace. Metakaolin is a material obtained by firing clay such as kaolin at about 800 ° C. Aluminosilicate fine powder. The incinerated ash of silicified wood is ash when silicified wood such as rice, straw and bamboo is baked, and is amorphous SiO 2 . All have strong pozzolanic activity and react with Ca (OH) 2 generated by hydration of cement to solidify. When the amount is less than 2 parts by weight, the strength enhancing effect is small even when used in combination with gypsum, and no further strength enhancing effect is exhibited even when added in excess of 20 parts by weight, preferably 4 parts by weight or more. Preferably it is 5 to 10 parts by weight.
【0010】本発明の実施において、前述したように、
汚泥は粘土等のみの場合だけでなく、粗砂や礫との任意
の混合物である場合も多い。従って、粒度試験より粘土
等の分量と粗砂や礫の構成比率を測定し、粘土等の量に
対して固化材量を配合し、かつ、水固化材比が1.30
以下となるように調節する。この際、固化材と反応させ
る水は粘土等の中の水分を利用し、新たに水は添加しな
い。尚、水固化材比とは、汚泥中の粒子径が0.044
mm以下の微砂や粘土に含まれる水分量と用いる固化材
量の比率であり、重量比である。In the practice of the present invention, as described above,
Sludge is often not only clay or the like but also an arbitrary mixture with coarse sand or gravel. Therefore, the amount of clay and the like and the composition ratio of coarse sand and gravel are measured by a particle size test, and the amount of solidifying material is added to the amount of clay and the like, and the ratio of water-solidifying material is 1.30.
Adjust so that: At this time, the water to be reacted with the solidifying material uses water in clay or the like, and no new water is added. The water-solidifying material ratio means that the particle diameter in the sludge is 0.044.
It is the ratio between the amount of water contained in fine sand or clay of less than mm and the amount of solidifying material used, and is a weight ratio.
【0011】水固化材比(重量比)が1.30を超える
と20N/mm2 以上の強度は得られ難くなり、好まし
くは1.0前後以下である。そして水固化材比が小さい
ほど強度も高くなるが、水固化材比の調節は固化材量で
行うので小さくするほど不経済となることと、小さすぎ
ても成形ができなくなり、かえって、強度低下が生ずる
ので水固化材比は0.25以上が好ましい。When the water solidifying material ratio (weight ratio) exceeds 1.30, it is difficult to obtain a strength of 20 N / mm 2 or more, and preferably about 1.0 or less. And the strength becomes higher as the water-solidifying material ratio is smaller, but the water-solidifying material ratio is adjusted by the amount of the solidifying material. Therefore, the water-solidifying material ratio is preferably 0.25 or more.
【0012】本発明の実施において、成形体とする際に
細骨材や粗骨材等の骨材を粘土等に含まれているものと
は別に適量添加することは好ましいことである。細骨材
とは0.044mmを超え、5mm以下の粗砂であり、
粗骨材とは5mmを超え、40mm以下の礫である。
尚、40mmを超える粗骨材を除外するのは、プレキャ
スト品の肉厚は、一般にマスコンクリートのように厚く
できないので、肉厚に対して大きな骨材は強度等の欠陥
部分となるためであり、予め粘土等に含む場合は、製造
過程でふるいでとり除く。これらの骨材は粘土等と固化
材との練混ぜ効率を上げ、固化材の分散効果を高めるの
で強度を高める。また、粘土等と固化材のみの微粒子だ
けの硬化体では構造敏感性が高く強度は高くても脆くな
り、スリヘリ量(路盤材などに必要な物性、骨材のロサ
ンゼルス試験機で試験する)なども低くなるのに対し
て、骨材を添加することによって構造敏感性を低下さ
せ、安定した高い強度とスリヘリ抵抗性も得られるもの
である。さらに骨材の添加は、処理する粘土等の量と固
化材量にプラスされるるために出来上がりの製品量が多
くなるので経済的にも好ましいものである。In the practice of the present invention, it is preferable to add an appropriate amount of aggregates such as fine aggregate and coarse aggregate separately from those contained in clay or the like when forming a molded body. Fine aggregate is coarse sand of more than 0.044 mm and 5 mm or less,
Coarse aggregate is gravel exceeding 5 mm and 40 mm or less.
The reason why the coarse aggregate exceeding 40 mm is excluded is that the thickness of the precast product is generally not as thick as mass concrete, so that an aggregate larger than the thickness becomes a defective portion such as strength. If it is previously contained in clay or the like, it is removed by sieving in the manufacturing process. These aggregates increase the mixing efficiency of the clay or the like and the solidified material, and enhance the dispersing effect of the solidified material, thereby increasing the strength. In addition, a cured product consisting only of fine particles consisting of clay and solidified material has a high structural sensitivity and is brittle even if the strength is high, and the amount of sand helicopter (physical properties required for roadbed materials, etc., tested with a Los Angeles tester for aggregate) On the other hand, the addition of the aggregate reduces the structural sensitivity, and also provides stable high strength and shear resistance. Further, the addition of the aggregate is economically preferable because the amount of the finished product increases because it is added to the amount of the clay or the like to be treated and the amount of the solidified material.
【0013】骨材は天然産、各種人工骨材やスラグが利
用され、通常、モルタルやコンクリートに使用可能な品
質のものであれば、特に限定されない。これら骨材の配
合率(予め粘土に含まれているものも計算に入れる)
は、粘土等の量100重量部に対して、細骨材は30〜
300重量部配合し混合する。細骨材が30重量部未満
では混合効率が悪く、また、強度も高くならないので好
ましくない。300重量部を超えるようになると成型し
難くなるので好ましくない。好ましい細骨材量は50重
量部以上、より好ましくは70〜150重量部である。
また、粗骨材の場合は成形可能な範囲で任意量で良い。
尚、40mmを超える粗骨材は、成形体の製造過程でふ
るいで取り除く。As the aggregate, natural products, various types of artificial aggregates and slags are used, and there is no particular limitation as long as it has a quality generally usable for mortar and concrete. Mixing ratio of these aggregates (including those already contained in the clay are also taken into account)
Is fine aggregate 30 to 100 parts by weight of clay etc.
300 parts by weight are blended and mixed. If the fine aggregate is less than 30 parts by weight, the mixing efficiency is poor and the strength is not increased, which is not preferable. If the amount exceeds 300 parts by weight, molding becomes difficult, which is not preferable. The preferred amount of fine aggregate is 50 parts by weight or more, more preferably 70 to 150 parts by weight.
In the case of coarse aggregate, any amount may be used as long as it can be molded.
In addition, coarse aggregate exceeding 40 mm is removed by sieving in the process of manufacturing the molded body.
【0014】本発明の固化方法において、練混ぜは、コ
ンクリート用の強制練りミキサーやニーダーやその他の
練混ぜ装置が使用される。これらの練混物は、一見、乾
燥しているような状態となるが、これを型枠に入れ、タ
ンピングによる突き固めや加圧、又は振動加圧によって
成型して製品とする。成形後の養生方法は、常温で強度
が発現するまで気乾又は湿潤養生しても良いし、任意の
時間又は材齢で蒸気養生して強度を発現させても良いも
のである。In the solidification method of the present invention, for mixing, a forced kneading mixer for concrete, a kneader or another kneading device is used. At first glance, these kneaded mixtures are in a state of being dry, but they are put into a mold and compacted by tamping, pressurized, or pressed by vibration to obtain a product. The curing method after molding may be air-dry or wet curing at room temperature until the strength is developed, or steam-cured at any time or material age to develop the strength.
【0015】実際の汚泥に対して、どの様に固化材を添
加して、処理していくかを説明する。 (1)汚泥が全量粘土質で細骨材や粗骨材を含まない場
合は、まず、平均的となるように任意の箇所からサンプ
リングを行い、それを練り混ぜてその適当量を150℃
で、その乾燥時間に対する重量変化量が1wt.%以下
となるまで乾燥して粘土の含水量として求める。そし
て、粘土100重量部に対して固化材を、必要によって
は細骨材や粗骨材を前記した適正量を配合して練り混
ぜ、成形する。この場合の乾燥のためのサンプリング量
は500g〜1000gである。 (2)汚泥が任意に細骨材や粗骨材を含む場合は、ま
ず、平均的となるように任意の箇所からサンプリングを
行い、それを練り混ぜてその適当量を秤取り150℃で
乾燥して全体の含水量として求める。尚、この場合の乾
燥のためのサンプリング量は、混ざっている粗骨材の寸
法によって異なるが1kg〜10kgである。別に、練
り混ぜたものを適当量秤取り、適量の水を加えて懸濁さ
せ、0.044mmと5mmと40mmのふるいを重ね
て懸濁液をふるう。0.044mmのふるい上に残った
5mm以下の細骨材、5mmのふるい上に残った40m
m以下を粗骨材とし、40mmのふるいに残った粗骨材
も含めて、0.044mm以下の粘土等との構成重量を
百分率で表す。この際、細骨材や粗骨材、40mmを超
える骨材は表面乾燥状態に調整して測定した重量を用い
る。そして、各構成量は下記の式から求める。 粘土量=全体量−〔表面乾燥した細骨材、粗骨材、及び
40mmを超える骨材の合量〕/全体量×100 細骨材量=全体量−〔粘土量、粗骨材量、及び40mm
を超える骨材の合量〕/全体量×100 粘土だけの含水量の算出は、全体の乾燥減量から、細骨
材、粗骨材、及び40mmを超える骨材の含水量を2w
t.%一定とし、構成量から算出し、全体の乾燥重量か
ら減ずる。また、成形体の製造時は、粘土などの中の細
骨材、粗骨材(5mmを超え40mm以下)を加えた上
で新たに適量の細骨材、粗骨材を配合して固化材と共に
練り混ぜる。この混合物はバサバサの水分のないような
状態となるので40mmでふるうことによって、40m
mを超える大きな粗骨材を成形前に容易に取り除くこと
ができる。A description will be given of how a solidifying material is added to actual sludge and treated. (1) If the sludge is entirely clayey and does not contain fine or coarse aggregates, first sample it from any location so that it is average, mix it, and mix it at 150 ° C.
The amount of change in weight with respect to the drying time is 1 wt. % And dried to obtain the water content of the clay. Then, the solidifying material is mixed with 100 parts by weight of the clay, and if necessary, fine aggregates and coarse aggregates are blended in an appropriate amount, kneaded and molded. The sampling amount for drying in this case is 500 g to 1000 g. (2) If the sludge optionally contains fine aggregate or coarse aggregate, first sample from an arbitrary point so as to obtain an average, knead and mix it, weigh out an appropriate amount, and dry at 150 ° C. To determine the total water content. In this case, the sampling amount for drying varies depending on the size of the coarse aggregate mixed, but is 1 kg to 10 kg. Separately, an appropriate amount of the kneaded mixture is weighed, an appropriate amount of water is added to suspend the mixture, and sieves of 0.044 mm, 5 mm, and 40 mm are stacked, and the suspension is sieved. Fine aggregate of 5 mm or less remaining on a 0.044 mm sieve, 40 m remaining on a 5 mm sieve
m or less is defined as coarse aggregate, and the composition weight of 0.044 mm or less of clay or the like, including coarse aggregate remaining in a 40 mm sieve, is expressed in percentage. At this time, for fine aggregate, coarse aggregate, and aggregate exceeding 40 mm, the weight measured by adjusting the surface to a dry state is used. Each component is obtained from the following equation. Clay amount = total amount− [total amount of surface-dried fine aggregate, coarse aggregate, and aggregate exceeding 40 mm] / total amount × 100 fine aggregate amount = total amount− [clay amount, coarse aggregate amount, And 40mm
The total water content of the clay alone is calculated from the total loss on drying by subtracting the water content of fine aggregate, coarse aggregate, and aggregate exceeding 40 mm by 2 watts.
t. % Constant, calculated from the composition amount, and subtracted from the total dry weight. Also, at the time of production of the molded body, after adding fine aggregate and coarse aggregate (more than 5 mm and not more than 40 mm) in clay or the like, an appropriate amount of fine aggregate and coarse aggregate are newly added and the solidified material is added. Knead with it. Since this mixture is in a state free of moisture of lumps, it is sieved with 40 mm to obtain 40 m.
Large aggregates larger than m can be easily removed before molding.
【0016】以下、本発明を実施例にて詳しく説明する
が、これらに限られるものではない。Hereinafter, the present invention will be described in detail with reference to Examples, but it should not be construed that the invention is limited thereto.
【0017】[0017]
【実施例】実施例1 組成を任意に変化させた固化材と、沼地から採取した含
水率65%の粘土(44μm、0.044mmの水ぶる
い全通、粗砂や礫なし)と、細骨材としてコンクリート
用(5mm下)の表面乾燥状態の川砂を使用して、それ
ぞれの割合を任意に変化させて、JISモルタル用のモ
ルタルミキサーで5分間練混ぜた。練混ぜたものをφ5
×10cmの型枠に入れ、φ12mmの丸鋼を切断した
切断面を利用して人力で幾層にも突き固めて成形した。
成形体は3日後に脱型し、そのまま、20℃の室内で気
乾養生して材齢28日の圧縮強度を測定した。その結果
を表1、表2に示す。尚、使用した材料は以下の通りで
ある。EXAMPLES Example 1 A solidified material having an arbitrary composition, a clay having a moisture content of 65% (44 μm, 0.044 mm through the water, no coarse sand or gravel) collected from a marsh, Using river sand in a dry state for concrete (5 mm below) as an aggregate, the mixture was kneaded with a mortar mixer for JIS mortar for 5 minutes while arbitrarily changing each ratio. Knead the mixture to φ5
It was placed in a mold frame of × 10 cm, and was formed by squeezing several layers by human power using a cut surface obtained by cutting a round steel of φ12 mm.
The molded body was removed from the mold after 3 days, and air-cured in a room at 20 ° C., and the compressive strength of a 28-year-old material was measured. The results are shown in Tables 1 and 2. The materials used are as follows.
【0018】《固化材の成分》 セメント 普通ポルトランドセメントクリンカーにSO3 として2
%となるように二水石膏を配合して、振動ポットミル
で、粉末度(ブレーン法、ポロシチー0.5とした)を
種々変えたセメントと、これに、一部、SO3 として2
%となるように二水石膏を配合して粉砕した高炉水砕ス
ラグ粉末(粉末度5050cm2 /gに粉砕したもの)
を混合した高炉スラグセメントを用いた。 a.2090cm2 /g(普通セメント) b.2500cm2 /g(普通セメント) c.3080cm2 /g(普通セメント) d.4050cm2 /g(普通セメント) e.5100cm2 /g(高炉スラグ粉末45%内割り
配合した) f.6090cm2 /g(普通セメント) g.7120cm2 /g(普通セメント) h.7990cm2 /g(普通セメント) i.9200cm2 /g(普通セメント)<< Components of solidifying material >> Cement Ordinary Portland cement clinker as SO 3
%, And a cement with various fineness (Brain method, porosity 0.5) was mixed with a vibrating pot mill, and partially added with SO 3 as SO 3.
% Blast-furnace granulated slag powder (pulverized to a fineness of 5050 cm 2 / g)
The blast furnace slag cement mixed with was used. a. 2090 cm 2 / g (normal cement) b. 2500 cm 2 / g (normal cement) c. 3080 cm 2 / g (normal cement) d. 4050 cm 2 / g (normal cement) e. 5100 cm 2 / g (with 45% blast furnace slag powder blended) f. 6090 cm 2 / g (normal cement) g. 7120 cm 2 / g (normal cement) h. 7990 cm 2 / g (normal cement) i. 9200cm 2 / g (normal cement)
【0019】石膏類 A.フッ酸発生の不溶性無水石膏(粉末度3010cm
2 /g) B.工業用二水石膏を粉砕した物(粉末度5300cm
2 /g) C.Bを熱処理して半水石膏として粉砕(粉末度100
00cm2 /g以上) D.Bを熱処理して可溶性無水石膏として粉砕(粉末度
10000cm2 /g以上)Gypsum A. Insoluble anhydrous gypsum generated by hydrofluoric acid (fineness: 3010cm
2 / g) B. Industrial dihydrate gypsum ground (5300 cm fineness)
2 / g) C.I. B is heat treated and pulverized as hemihydrate gypsum (fineness 100
00 cm 2 / g or more) B is heat-treated and pulverized as soluble anhydrous gypsum (fineness: 10,000 cm 2 / g or more)
【0020】シリカフューム等 イ.シリカフューム(市販品、粉末度23m2 /g) ロ.メタカオリン(市販品、粉末度8000cm2 /
g) ハ.藁の焼成灰(粉末度1.2m2 /g)Silica fume etc. a. Silica fume (commercially available, fineness: 23 m 2 / g) b. Metakaolin (commercially available, fineness: 8000 cm 2 /
g) C. Straw ash (fineness 1.2m 2 / g)
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】表1、表2より、実験No.1−1の比較
例ではセメントの粉末度が適正であっても低い強度しか
得られないのに対して、本発明の固化材はセメントの粉
末度によって強度が大きく左右される。固化材に用いる
セメントの粉末度が2000cm2 /g(実験No.1
−2,比較例)では10N/mm2 強の強度しか得られ
ないのに対して、2500cm2 /g以上で急に強度が
増大して20N/mm 2 以上の強度が得られるようにな
り、粉末度が大きくなるほど高い値が示される。また、
高すぎてもセメントの水和が速くなり突き固めが不十分
となり、結果的に強度は急低下することも示される(実
験No.1−10,比較例)。From Tables 1 and 2, it was found that Experiment No. 1-1 comparison
In the example, even if the cement fineness is appropriate, only low strength
While the solidification material of the present invention cannot be obtained,
The strength greatly depends on the degree. Used for solidifying material
Fineness of cement is 2000cmTwo/ G (Experiment No. 1)
-2, 10 N / mm in Comparative Example)TwoOnly strong strength can be obtained
There is no 2500cmTwo/ G or more suddenly
Increase to 20 N / mm TwoTo obtain the above strength
The higher the fineness, the higher the value. Also,
Even if too high, cement hydrates quickly and inadequate compaction
It is also shown that the strength drops sharply as a result (actually,
Experiment No. 1-10, comparative example).
【0024】そして、本発明ではセメントの粉末度が2
500cm2 /g以上、好ましくは3000cm2 /g
以上、より好ましくは、4000〜8000cm2 /g
であることが示される(実験No.1−3〜1−9)。In the present invention, the fineness of the cement is 2
500 cm 2 / g or more, preferably 3000 cm 2 / g
Above, more preferably 4000 to 8000 cm 2 / g
(Experiment Nos. 1-3 to 1-9).
【0025】また、石膏類単独では、その配合量の多少
にかかわらず20N/mm2 以上の強度は示されない
(実験No.1−11〜1−19)。シリカフューム等
の場合もその配合量の多少にかかわらず、20N/mm
2 以上の強度は示されない(実験No.1−20〜1−
26)。Further, the gypsum alone does not exhibit a strength of 20 N / mm 2 or more regardless of the amount of the gypsum (Experiment No. 1-11-1-19). Even in the case of silica fume, etc., regardless of the blending amount, 20 N / mm
No strength of 2 or more is shown (Experiment Nos. 1-20 to 1-
26).
【0026】石膏類とシリカフュームの併用は、相乗的
に強度を増進させ、それぞれ1重量部、2重量部以上の
併用で20N/mm2 以上の高い強度が得られるように
なる(実験No.1−27〜1−34)。そして、それ
ぞれの単独添加ではあるが、石膏類は好ましくは3〜1
0重量部、より好ましくは4〜8重量部(実験No.1
−11〜1−19)となっており、シリカフューム等は
4重量部以上が好ましく、5〜10重量部がより好まし
い(実験No.1−20〜1−26)ことが示される
が、これらの範囲で双方を併用するのが好ましい。The combined use of gypsum and silica fume synergistically increases the strength, and a combined strength of 1 part by weight and 2 parts by weight or more enables a high strength of 20 N / mm 2 or more to be obtained (Experiment No. 1). -27 to 1-34). And although each is a single addition, gypsum is preferably 3-1.
0 parts by weight, more preferably 4 to 8 parts by weight (Experiment No. 1)
-11 to 1-19), and silica fume and the like are preferably at least 4 parts by weight, more preferably 5 to 10 parts by weight (Experiment Nos. 1-20 to 1-26). It is preferable to use both in the range.
【0027】水固化材比では1.30以下で20N/m
m2 以上の強度が得られるようになり、1.0前後以下
が好ましい。水固化材比が小さくなるほど強度も高くな
るが、小さすぎても強度は低下する。これは固化材量が
多くなりすぎると成形性が悪くなるためであり、0.2
5以上とするのが好ましい(実験No.1−35〜1−
42)。The water-solidifying material ratio is 20 N / m at 1.30 or less.
A strength of at least m 2 can be obtained, and is preferably about 1.0 or less. The strength increases as the ratio of the water-solidifying material decreases, but the strength decreases when the ratio is too small. This is because if the amount of the solidifying material is too large, the moldability deteriorates.
5 or more (Experiment Nos. 1-35 to 1-
42).
【0028】細骨材の添加は、粘土への固化材の分散性
を高めて強度を増大させ、細骨材量は多くなるほど強度
も高くなるが、多すぎても成形性が悪くなるため強度は
低下する。細骨材量は30〜300重量部で効果が示さ
れ、50〜200重量部が好ましく、より好ましくは7
0〜150重量部である(実験No.1−49〜1−5
5)。The addition of fine aggregate increases the strength by increasing the dispersibility of the solidified material in the clay. The greater the amount of fine aggregate, the higher the strength. Drops. The effect is exhibited when the amount of fine aggregate is 30 to 300 parts by weight, preferably 50 to 200 parts by weight, more preferably 7 to 300 parts by weight.
0 to 150 parts by weight (Experiment Nos. 1-49 to 1-5)
5).
【0029】実施例2 実施例1の実験No.1−1とNo.1−52を使用
し、標準粒度で表乾状態の25〜5mmと40〜5mm
の粗骨材(砕石)の配合量を変えて、容量50リットル
の遊星型強制練りミキサーで全量で約30リットル分の
粘土と固化材と細骨材、粗骨材を5分間練混ぜた。供試
体はφ12.5±25cmの型枠に約23cmの高さに
成形した。成形方法は、先端にφ5×10cmのシリン
ダーを溶接したφ12mmの鋼棒を用いて、幾層にも分
けて突き固め、最後にφ12×5cmの鉄製の盤を当て
全体を20トンの圧力でプレスした。養生は供試体を作
製してから4時間後、75℃まで3時間で上げ、そのま
ま5時間保持してから、蒸気バルブを締めて翌日まで徐
冷して脱型した。その後、室内気乾養生して材齢7日で
圧縮強度を測定した。その結果を表3に示す。Example 2 Experiment No. 1 of Example 1 1-1 and No. 1 Using 1-52, 25 to 5 mm and 40 to 5 mm in the standard particle size in the surface dry state
The amount of the coarse aggregate (crushed stone) was changed, and a total of about 30 liters of clay, solidified material, fine aggregate and coarse aggregate were kneaded for 5 minutes using a planetary forced kneading mixer having a capacity of 50 liters. The specimen was formed into a mold having a diameter of about 12.5 ± 25 cm and a height of about 23 cm. The forming method uses a φ12 mm steel rod with a φ5 × 10 cm cylinder welded to the tip, squeezes it into several layers, and finally applies a φ12 × 5 cm iron plate and presses the whole with a pressure of 20 tons. did. Curing was performed 4 hours after the preparation of the test specimen, raised to 75 ° C. in 3 hours, kept for 5 hours, and then gradually cooled down to the next day by closing the steam valve and demolding. Then, it was cured in a room air and the compressive strength was measured at the age of 7 days. Table 3 shows the results.
【0030】[0030]
【表3】 [Table 3]
【0031】表3より、粗骨材の適量添加は単なる増量
材的意味だけではなく、強度を増大させる。これは粗骨
材の積み重なりが強度に貢献するものと推察される。From Table 3, it can be seen that the addition of an appropriate amount of coarse aggregate not only has the meaning of a filler but also increases the strength. This is presumed that stacking of coarse aggregate contributes to strength.
【0032】[0032]
【発明の効果】以上説明した様に、本発明を利用するこ
とにより、鉱山の採掘や建設工事に伴う発生汚泥の中で
も最も固化し難い、含水量の高い微砂や粘土質の微粒子
を固化させることができ、かつ、建設資材に使用可能な
強度まで高めることができる。従って、汚泥の産業廃棄
物としての処理が不要となり、かつ、汚泥に付加価値を
与え、環境をも整える。As described above, the present invention makes it possible to solidify fine sand and clay-like fine particles having a high water content, which are the most difficult to solidify among the sludges generated in mining and construction work. And the strength can be increased to a level usable for construction materials. Therefore, it is not necessary to treat the sludge as industrial waste, and the sludge is given added value and the environment is prepared.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI //(C04B 28/02 22:14 22:06 14:10 18:10) C09K 103:00 ──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification symbol FI // (C04B 28/02 22:14 22:06 14:10 18:10) C09K 103: 00
Claims (4)
物換算で1〜15重量部と、シリカフューム、メタカオ
リン、ケイ化木の焼却灰の中の一種又は二種以上を2〜
20重量部配合することを特徴とする汚泥の固化材。1. 100 parts by weight of cement, 1 to 15 parts by weight of gypsum in terms of anhydride, and one or two or more of silica fume, metakaolin, and incinerated ash of silicified wood
A solidification material for sludge, which is blended in an amount of 20 parts by weight.
m2 /gであることを特徴とする請求項1記載の汚泥の
固化材。2. The cement has a fineness of 2500 to 8000 c.
2. The sludge solidifying material according to claim 1, wherein the sludge is m 2 / g.
化した成形体。3. A molded article solidified using the solidifying material according to claim 1.
微砂や粘土に含まれる水分量に対して、請求項1又は2
記載の固化材を、水固化材比で1.30以下となるよう
に配合して練混ぜることを特徴とする汚泥の固化方法。4. The method according to claim 1, wherein the amount of water contained in the fine sand or clay having a particle diameter of 0.044 mm or less in the sludge is reduced.
A method for solidifying sludge, comprising mixing and kneading the solidified material described above so that the water-solidified material ratio is 1.30 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13510698A JP3982907B2 (en) | 1998-05-18 | 1998-05-18 | Sludge solidification material, molded body using the same, and solidification method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13510698A JP3982907B2 (en) | 1998-05-18 | 1998-05-18 | Sludge solidification material, molded body using the same, and solidification method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11319894A true JPH11319894A (en) | 1999-11-24 |
JP3982907B2 JP3982907B2 (en) | 2007-09-26 |
Family
ID=15143986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13510698A Expired - Fee Related JP3982907B2 (en) | 1998-05-18 | 1998-05-18 | Sludge solidification material, molded body using the same, and solidification method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3982907B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005344031A (en) * | 2004-06-04 | 2005-12-15 | Dc Co Ltd | Soil improving material |
JP2012072301A (en) * | 2010-09-29 | 2012-04-12 | Tachibana Material Co Ltd | Soil improving solidifying material |
JP2012102473A (en) * | 2010-11-08 | 2012-05-31 | Oji Paper Co Ltd | Base course material and method of manufacturing the same |
JP2013517216A (en) * | 2010-01-20 | 2013-05-16 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for preparing composite material from waste and resulting material |
JP2013121568A (en) * | 2011-12-12 | 2013-06-20 | Nakamichi Kankyo Kaihatsu:Kk | Method of recycling construction sludge |
JP2015134715A (en) * | 2010-05-31 | 2015-07-27 | Jfeスチール株式会社 | Method for manufacturing artificial stone material |
CN106082903A (en) * | 2016-06-17 | 2016-11-09 | 武汉大学 | A kind of dredging silt composite curing agent |
-
1998
- 1998-05-18 JP JP13510698A patent/JP3982907B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005344031A (en) * | 2004-06-04 | 2005-12-15 | Dc Co Ltd | Soil improving material |
JP4584630B2 (en) * | 2004-06-04 | 2010-11-24 | 株式会社デイ・シイ | Soil improvement material |
JP2013517216A (en) * | 2010-01-20 | 2013-05-16 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | Method for preparing composite material from waste and resulting material |
JP2015134715A (en) * | 2010-05-31 | 2015-07-27 | Jfeスチール株式会社 | Method for manufacturing artificial stone material |
JP2012072301A (en) * | 2010-09-29 | 2012-04-12 | Tachibana Material Co Ltd | Soil improving solidifying material |
JP2012102473A (en) * | 2010-11-08 | 2012-05-31 | Oji Paper Co Ltd | Base course material and method of manufacturing the same |
JP2013121568A (en) * | 2011-12-12 | 2013-06-20 | Nakamichi Kankyo Kaihatsu:Kk | Method of recycling construction sludge |
CN106082903A (en) * | 2016-06-17 | 2016-11-09 | 武汉大学 | A kind of dredging silt composite curing agent |
Also Published As
Publication number | Publication date |
---|---|
JP3982907B2 (en) | 2007-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108558303A (en) | A kind of regeneration concrete bulk and its production method | |
US4336069A (en) | High strength aggregate for concrete | |
JP6065720B2 (en) | Method for producing hydrated solid body | |
JP2010149402A (en) | Manufacturing method of concrete composition and concrete molding | |
CN109305792A (en) | A kind of soil-solidified-agent, preparation method and soil solidification construction method | |
JP3982907B2 (en) | Sludge solidification material, molded body using the same, and solidification method thereof | |
WO2006122976A2 (en) | High performance concrete with a quick resistance development lacking added materials with latent hydraulic activity | |
JP2002362958A (en) | Water-permeable concrete | |
JP2019014617A (en) | Geopolymer composition and geopolymer-cured body | |
JP2004155636A (en) | Construction or building material using slag or fly ash as main material | |
JP7042016B1 (en) | How to make soil cement | |
JP3072423B2 (en) | Manufacturing method of high-strength artificial aggregate | |
JP2018172245A (en) | Method for producing solidified body | |
JP4014400B2 (en) | Soil treatment material composition and method for producing the same | |
JP2003012361A (en) | Instant stripping porous concrete compact | |
JP4979186B2 (en) | Method for producing granulated material | |
JPH0676235B2 (en) | Hydraulic cement composition | |
JP2000072523A (en) | Sulfur concrete product | |
JP6315063B2 (en) | Method for producing hydrated solid body | |
JP2000335950A (en) | Concrete for structure of civil engineering and construction for recycling | |
JP2002356358A (en) | Water permeable concrete | |
JP3103195B2 (en) | Concrete composition | |
JPH10273661A (en) | Solidifying material having low alkali content and its production | |
RU2377213C1 (en) | Building mixture and method of concrete production | |
JPH06106153A (en) | Cement solidification of incineration ash and cement solidified product of incineration ash |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070703 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |