JP3982907B2 - Sludge solidification material, molded body using the same, and solidification method thereof - Google Patents

Sludge solidification material, molded body using the same, and solidification method thereof Download PDF

Info

Publication number
JP3982907B2
JP3982907B2 JP13510698A JP13510698A JP3982907B2 JP 3982907 B2 JP3982907 B2 JP 3982907B2 JP 13510698 A JP13510698 A JP 13510698A JP 13510698 A JP13510698 A JP 13510698A JP 3982907 B2 JP3982907 B2 JP 3982907B2
Authority
JP
Japan
Prior art keywords
sludge
weight
clay
parts
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13510698A
Other languages
Japanese (ja)
Other versions
JPH11319894A (en
Inventor
芳春 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP13510698A priority Critical patent/JP3982907B2/en
Publication of JPH11319894A publication Critical patent/JPH11319894A/en
Application granted granted Critical
Publication of JP3982907B2 publication Critical patent/JP3982907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Sludge (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は汚泥の固化材及びその固化方法に関し、詳しくは、汚泥の中でも微砂や粘土を含む汚泥を固化させて圧縮強度を20N/mm2 以上とし、ブロックや路盤材、その他の土木建築資材の一部として利用するための固化材、それを用いた成形体、及びその固化方法に関する。
【0002】
【従来技術及びその課題】
従来、各種鉱山の採掘工程や洗浄工程において、あるいは土木建築工事に際し、多量の汚泥が発生する。特に、建設汚泥の場合は、汚泥の種類は粗骨材の場合もあるし、細骨材の場合も粘土の場合も、これらの任意の混合物の場合もあり、発生する場所によって異なるので一定しないが、微砂や粘土を多量に含む混合物の場合は含水率が50〜80%程度と高いので、そのまま埋め戻すことができず、殆どは産業廃棄物として最終処分場で処理(廃棄)されているのが現状である。しかしながら、最終処分場は既に満杯であり、新しい処分場の建設は、建設に反対する住民運動が顕在化し、困難となっている。
従って、このままでは鉱山の運営にも支障きたし、また、新しい土木建築工事が発注できないという深刻な課題が生じている。
【0003】
これらの課題を解決するために、微砂や粘土質の汚泥を800℃程度の高温で焼成して有効利用する方法や水溶性の接着剤で固化させて、そのまま建設資材の一部として有効利用する方法なども研究されている。
しかしながら、高温処理する方法はそのまま建設資材とはならなく、樹脂による固化は価格が高価であることと、臭気が強いものもあり労働衛生環境の課題が残り、かつ、可燃性であることなどから大量に使用しにくい面を有している。
【0004】
本発明者は、安価で安全な材料を使用して、建設資材として利用可能な20N/mm2 以上の圧縮強度を発現させる固化材、それを用いた成形体、及びその固化方法を鋭意研究した結果、セメントを主成分とした方法を見出し発明を完成させたものである。
【0005】
【課題を解決するための手段】
すなわち、本発明は、粉末度が 2,500 8,000cm 2 /g であるセメント100重量部と、石膏類を無水物換算で1〜15重量部と、シリカフューム、メタカオリン、ケイ化木の焼却灰の中の一種又は二種以上を2〜20重量部配合することを特徴とする汚泥の固化材であり汚泥が、粒子径 0.044mm 以下の微砂や粘土を含有するものである該固化材であり、該固化材を用いてなる汚泥の固化方法であり、汚泥中の粒子径が0.044mm以下の微砂や粘土に含まれる水分量に対して、該固化材を、水固化材比で1.30以下となるように配合して練混ぜることを特徴とする汚泥の固化方法であり、汚泥、該固化材、及び細骨材を含有してなるモルタル又はコンクリートであり、汚泥が、粒子径 0.044mm 以下の微砂や粘土を含有するものである該モルタル又はコンクリートであり、細骨材が、汚泥中の粒子径が 0.044mm 以下の微砂や粘土 100 重量部に対して、 30 300 重量部である該モルタル又はコンクリートであり、該モルタル又はコンクリートを用いることを特徴とする汚泥の固化方法であり、該固化方法により固化した成形体である。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明は、セメントと、石膏類と、シリカフューム、メタカオリン、ケイ化木の焼却灰の中の一種又は二種以上からなる(以下、シリカフューム等という)汚泥の固化材であり、それを用いた成形体、及び汚泥中の粒子径が0.044mm以下の微砂や粘土(以下、粘土等という)と固化材とを配合する汚泥の固化方法である。
尚、微砂や粘土は日本では0.05mm以下の粒子に分類(日本農学学会法)されているが、当セメント業界では0.044mmのふるいがあるので0.044mmを基準とした。
【0007】
本発明の固化材において、使用されるセメントは各種ポルトランドセメント及び高炉スラグセメントであり、セメント自身の粉末度が重要である。本発明の固化材として使用されるセメントの粉末度は2,500 8,000cm 2 /gであり、好ましくは3,000cm2/g以上であり、4,000〜8,000cm2/g より好ましい。粉末度が2,500cm2/g未満では石膏類やシリカフューム等と併用し、水固化材比を小さくしても20N/mm2以上の強度を得ることは困難であり、8,000cm2/gを超える粉末度では水和反応が速すぎて急結気味となったりして粘土等との練混ぜ操作や成形操作が困難となり、強度低下につながるので、細かすぎても好ましくない。
【0008】
本発明で使用される石膏類としては、二水石膏、半水石膏、III 型無水石膏の他、II型無水石膏の一種又は二種以上が使用される。これらは無水物換算でセメント100重量部に対して、1〜15重量部配合されるが、1重量部未満では強度発現効果は小さく、15重量部を超えると強度が低下するか、強度の伸びが停滞するようになり好ましくない。常温では、好ましくは3〜10重量部、より好ましくは4〜8重量部であり、蒸気養生では配合量の高い方に好ましい範囲がシフトする。
尚、より好ましい石膏類はII型無水石膏であるが、石膏類の粉末度は強度に対する影響は小さく、セメントと同等以上であれば良いものである。
さらに、本発明においてシリカフューム、メタカオリン、ケイ化木の焼却灰の中の一種又は二種以上を、セメント100重量部に対して2〜20重量部配合する。
【0009】
シリカフュームとは金属シリコンやフェロシリコン合金などを電気炉で製造する際に、副生する非晶質のSiO2 の超微粉末であり、メタカオリンはカオリンなどの粘土を800℃程度で焼成したアルミノケイ酸質の微粉末である。、ケイ化木の焼却灰は稲、藁、竹などのケイ化木の焼成した時の灰で非晶質SiO2 である。いずれも、ポゾラン活性が強くセメントの水和によって生成するCa(OH)2 と反応して固化する。2重量部未満では、石膏類と併用しても強度増進効果は小さく、20重量部を超えて添加してもそれ以上の強度増進効果が示されないものであり、好ましくは4重量部以上、より好ましくは5〜10重量部である。
【0010】
本発明の実施において、前述したように、汚泥は粘土等のみの場合だけでなく、粗砂や礫との任意の混合物である場合も多い。
従って、粒度試験より粘土等の分量と粗砂や礫の構成比率を測定し、粘土等の量に対して固化材量を配合し、かつ、水固化材比が1.30以下となるように調節する。この際、固化材と反応させる水は粘土等の中の水分を利用し、新たに水は添加しない。
尚、水固化材比とは、汚泥中の粒子径が0.044mm以下の微砂や粘土に含まれる水分量と用いる固化材量の比率であり、重量比である。
【0011】
水固化材比(重量比)が1.30を超えると20N/mm2 以上の強度は得られ難くなり、好ましくは1.0前後以下である。そして水固化材比が小さいほど強度も高くなるが、水固化材比の調節は固化材量で行うので小さくするほど不経済となることと、小さすぎても成形ができなくなり、かえって、強度低下が生ずるので水固化材比は0.25以上が好ましい。
【0012】
本発明の実施において、成形体とする際に細骨材や粗骨材等の骨材を粘土等に含まれているものとは別に適量添加することは好ましいことである。細骨材とは0.044mmを超え、5mm以下の粗砂であり、粗骨材とは5mmを超え、40mm以下の礫である。
尚、40mmを超える粗骨材を除外するのは、プレキャスト品の肉厚は、一般にマスコンクリートのように厚くできないので、肉厚に対して大きな骨材は強度等の欠陥部分となるためであり、予め粘土等に含む場合は、製造過程でふるいでとり除く。
これらの骨材は粘土等と固化材との練混ぜ効率を上げ、固化材の分散効果を高めるので強度を高める。また、粘土等と固化材のみの微粒子だけの硬化体では構造敏感性が高く強度は高くても脆くなり、スリヘリ量(路盤材などに必要な物性、骨材のロサンゼルス試験機で試験する)なども低くなるのに対して、骨材を添加することによって構造敏感性を低下させ、安定した高い強度とスリヘリ抵抗性も得られるものである。
さらに骨材の添加は、処理する粘土等の量と固化材量にプラスされるるために出来上がりの製品量が多くなるので経済的にも好ましいものである。
【0013】
骨材は天然産、各種人工骨材やスラグが利用され、通常、モルタルやコンクリートに使用可能な品質のものであれば、特に限定されない。
これら骨材の配合率(予め粘土に含まれているものも計算に入れる)は、粘土等の量100重量部に対して、細骨材は30〜300重量部配合し混合する。細骨材が30重量部未満では混合効率が悪く、また、強度も高くならないので好ましくない。300重量部を超えるようになると成型し難くなるので好ましくない。好ましい細骨材量は50重量部以上、より好ましくは70〜150重量部である。また、粗骨材の場合は成形可能な範囲で任意量で良い。
尚、40mmを超える粗骨材は、成形体の製造過程でふるいで取り除く。
【0014】
本発明の固化方法において、練混ぜは、コンクリート用の強制練りミキサーやニーダーやその他の練混ぜ装置が使用される。これらの練混物は、一見、乾燥しているような状態となるが、これを型枠に入れ、タンピングによる突き固めや加圧、又は振動加圧によって成型して製品とする。成形後の養生方法は、常温で強度が発現するまで気乾又は湿潤養生しても良いし、任意の時間又は材齢で蒸気養生して強度を発現させても良いものである。
【0015】
実際の汚泥に対して、どの様に固化材を添加して、処理していくかを説明する。
(1)汚泥が全量粘土質で細骨材や粗骨材を含まない場合は、まず、平均的となるように任意の箇所からサンプリングを行い、それを練り混ぜてその適当量を150℃で、その乾燥時間に対する重量変化量が1wt.%以下となるまで乾燥して粘土の含水量として求める。そして、粘土100重量部に対して固化材を、必要によっては細骨材や粗骨材を前記した適正量を配合して練り混ぜ、成形する。この場合の乾燥のためのサンプリング量は500g〜1000gである。
(2)汚泥が任意に細骨材や粗骨材を含む場合は、まず、平均的となるように任意の箇所からサンプリングを行い、それを練り混ぜてその適当量を秤取り150℃で乾燥して全体の含水量として求める。尚、この場合の乾燥のためのサンプリング量は、混ざっている粗骨材の寸法によって異なるが1kg〜10kgである。別に、練り混ぜたものを適当量秤取り、適量の水を加えて懸濁させ、0.044mmと5mmと40mmのふるいを重ねて懸濁液をふるう。0.044mmのふるい上に残った5mm以下の細骨材、5mmのふるい上に残った40mm以下を粗骨材とし、40mmのふるいに残った粗骨材も含めて、0.044mm以下の粘土等との構成重量を百分率で表す。この際、細骨材や粗骨材、40mmを超える骨材は表面乾燥状態に調整して測定した重量を用いる。そして、各構成量は下記の式から求める。
粘土量=全体量−〔表面乾燥した細骨材、粗骨材、及び40mmを超える骨材の合量〕/全体量×100
細骨材量=全体量−〔粘土量、粗骨材量、及び40mmを超える骨材の合量〕/全体量×100
粘土だけの含水量の算出は、全体の乾燥減量から、細骨材、粗骨材、及び40mmを超える骨材の含水量を2wt.%一定とし、構成量から算出し、全体の乾燥重量から減ずる。
また、成形体の製造時は、粘土などの中の細骨材、粗骨材(5mmを超え40mm以下)を加えた上で新たに適量の細骨材、粗骨材を配合して固化材と共に練り混ぜる。この混合物はバサバサの水分のないような状態となるので40mmでふるうことによって、40mmを超える大きな粗骨材を成形前に容易に取り除くことができる。
【0016】
以下、本発明を実施例にて詳しく説明するが、これらに限られるものではない。
【0017】
【実施例】
実施例1
組成を任意に変化させた固化材と、沼地から採取した含水率65%の粘土(44μm、0.044mmの水ぶるい全通、粗砂や礫なし)と、細骨材としてコンクリート用(5mm下)の表面乾燥状態の川砂を使用して、それぞれの割合を任意に変化させて、JISモルタル用のモルタルミキサーで5分間練混ぜた。練混ぜたものをφ5×10cmの型枠に入れ、φ12mmの丸鋼を切断した切断面を利用して人力で幾層にも突き固めて成形した。成形体は3日後に脱型し、そのまま、20℃の室内で気乾養生して材齢28日の圧縮強度を測定した。その結果を表1、表2に示す。尚、使用した材料は以下の通りである。
【0018】
《固化材の成分》
セメント
普通ポルトランドセメントクリンカーにSO3 として2%となるように二水石膏を配合して、振動ポットミルで、粉末度(ブレーン法、ポロシチー0.5とした)を種々変えたセメントと、これに、一部、SO3 として2%となるように二水石膏を配合して粉砕した高炉水砕スラグ粉末(粉末度5050cm2 /gに粉砕したもの)を混合した高炉スラグセメントを用いた。
a.2090cm2 /g(普通セメント)
b.2500cm2 /g(普通セメント)
c.3080cm2 /g(普通セメント)
d.4050cm2 /g(普通セメント)
e.5100cm2 /g(高炉スラグ粉末45%内割り配合した)
f.6090cm2 /g(普通セメント)
g.7120cm2 /g(普通セメント)
h.7990cm2 /g(普通セメント)
i.9200cm2 /g(普通セメント)
【0019】
石膏類
A.フッ酸発生の不溶性無水石膏(粉末度3010cm2 /g)
B.工業用二水石膏を粉砕した物(粉末度5300cm2 /g)
C.Bを熱処理して半水石膏として粉砕(粉末度10000cm2 /g以上)
D.Bを熱処理して可溶性無水石膏として粉砕(粉末度10000cm2 /g
以上)
【0020】
シリカフューム等
イ.シリカフューム(市販品、粉末度23m2 /g)
ロ.メタカオリン(市販品、粉末度8000cm2 /g)
ハ.藁の焼成灰(粉末度1.2m2 /g)
【0021】
【表1】

Figure 0003982907
【0022】
【表2】
Figure 0003982907
【0023】
表1、表2より、実験No.1−1の比較例ではセメントの粉末度が適正であっても低い強度しか得られないのに対して、本発明の固化材はセメントの粉末度によって強度が大きく左右される。固化材に用いるセメントの粉末度が2000cm2 /g(実験No.1−2,比較例)では10N/mm2 強の強度しか得られないのに対して、2500cm2 /g以上で急に強度が増大して20N/mm2 以上の強度が得られるようになり、粉末度が大きくなるほど高い値が示される。また、高すぎてもセメントの水和が速くなり突き固めが不十分となり、結果的に強度は急低下することも示される(実験No.1−10,比較例)。
【0024】
そして、本発明ではセメントの粉末度が2500cm2 /g以上、好ましくは3000cm2 /g以上、より好ましくは、4000〜8000cm2 /gであることが示される(実験No.1−3〜1−9)。
【0025】
また、石膏類単独では、その配合量の多少にかかわらず20N/mm2 以上の強度は示されない(実験No.1−11〜1−19)。
シリカフューム等の場合もその配合量の多少にかかわらず、20N/mm2 以上の強度は示されない(実験No.1−20〜1−26)。
【0026】
石膏類とシリカフュームの併用は、相乗的に強度を増進させ、それぞれ1重量部、2重量部以上の併用で20N/mm2 以上の高い強度が得られるようになる(実験No.1−27〜1−34)。
そして、それぞれの単独添加ではあるが、石膏類は好ましくは3〜10重量部、より好ましくは4〜8重量部(実験No.1−11〜1−19)となっており、シリカフューム等は4重量部以上が好ましく、5〜10重量部がより好ましい(実験No.1−20〜1−26)ことが示されるが、これらの範囲で双方を併用するのが好ましい。
【0027】
水固化材比では1.30以下で20N/mm2 以上の強度が得られるようになり、1.0前後以下が好ましい。水固化材比が小さくなるほど強度も高くなるが、小さすぎても強度は低下する。これは固化材量が多くなりすぎると成形性が悪くなるためであり、0.25以上とするのが好ましい(実験No.1−35〜1−42)。
【0028】
細骨材の添加は、粘土への固化材の分散性を高めて強度を増大させ、細骨材量は多くなるほど強度も高くなるが、多すぎても成形性が悪くなるため強度は低下する。細骨材量は30〜300重量部で効果が示され、50〜200重量部が好ましく、より好ましくは70〜150重量部である(実験No.1−49〜1−55)。
【0029】
実施例2
実施例1の実験No.1−1とNo.1−52を使用し、標準粒度で表乾状態の25〜5mmと40〜5mmの粗骨材(砕石)の配合量を変えて、容量50リットルの遊星型強制練りミキサーで全量で約30リットル分の粘土と固化材と細骨材、粗骨材を5分間練混ぜた。
供試体はφ12.5±25cmの型枠に約23cmの高さに成形した。成形方法は、先端にφ5×10cmのシリンダーを溶接したφ12mmの鋼棒を用いて、幾層にも分けて突き固め、最後にφ12×5cmの鉄製の盤を当て全体を20トンの圧力でプレスした。
養生は供試体を作製してから4時間後、75℃まで3時間で上げ、そのまま5時間保持してから、蒸気バルブを締めて翌日まで徐冷して脱型した。
その後、室内気乾養生して材齢7日で圧縮強度を測定した。その結果を表3に示す。
【0030】
【表3】
Figure 0003982907
【0031】
表3より、粗骨材の適量添加は単なる増量材的意味だけではなく、強度を増大させる。これは粗骨材の積み重なりが強度に貢献するものと推察される。
【0032】
【発明の効果】
以上説明した様に、本発明を利用することにより、鉱山の採掘や建設工事に伴う発生汚泥の中でも最も固化し難い、含水量の高い微砂や粘土質の微粒子を固化させることができ、かつ、建設資材に使用可能な強度まで高めることができる。従って、汚泥の産業廃棄物としての処理が不要となり、かつ、汚泥に付加価値を与え、環境をも整える。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge solidifying material and a solidifying method thereof. Specifically, sludge containing fine sand and clay is solidified among sludges to a compressive strength of 20 N / mm 2 or more, and blocks, roadbed materials, and other civil engineering and building materials. The present invention relates to a solidified material for use as a part of the material, a molded body using the same, and a method for solidifying the same.
[0002]
[Prior art and its problems]
Conventionally, a large amount of sludge is generated in mining and cleaning processes of various mines or in civil engineering and construction work. In particular, in the case of construction sludge, the type of sludge may be coarse aggregate, fine aggregate, clay, or any mixture of these, and it varies depending on the location where it occurs, so it is not constant. However, in the case of a mixture containing a large amount of fine sand and clay, the water content is as high as about 50 to 80%, so it cannot be backfilled as it is, and most of it is treated (discarded) as industrial waste at the final disposal site. The current situation is. However, the final disposal site is already full, and construction of a new disposal site has become difficult due to the manifestation of residents' movement against the construction.
Accordingly, the operation of the mine has been hindered as it is, and there is a serious problem that new civil engineering construction work cannot be ordered.
[0003]
In order to solve these problems, fine sand and clay sludge are baked at a high temperature of about 800 ° C and effectively used, or solidified with a water-soluble adhesive and used as part of construction materials. The method of doing is also being studied.
However, the high-temperature treatment method does not become a construction material as it is, and the cost of solidification with resin is high, and because there are strong odors, there are problems in the occupational health environment and it is flammable. It has a surface that is difficult to use in large quantities.
[0004]
The present inventor has intensively studied a solidified material that expresses a compressive strength of 20 N / mm 2 or more that can be used as a construction material by using an inexpensive and safe material, a molded body using the same, and a solidification method thereof. As a result, the inventors have found a method based on cement and have completed the invention.
[0005]
[Means for Solving the Problems]
That is, the present invention provides a cement 100 parts by weight fineness is 2,500 ~ 8,000cm 2 / g, and 1 to 15 parts by weight of gypsum on a dry solid basis, silica fume, metakaolin, in the ash of silicified wood It is a solidifying material for sludge characterized by containing one or more of 2 to 20 parts by weight, and the sludge is a solidifying material containing fine sand or clay having a particle diameter of 0.044 mm or less The solidification method of the sludge using the solidification material, with respect to the amount of water contained in fine sand or clay having a particle diameter of 0.044mm or less in the sludge, the solidification material, the water solidification material ratio is 1.30 or less It is a solidification method of sludge characterized by being mixed and kneaded so that it is mortar or concrete containing sludge, the solidified material, and fine aggregate, and the sludge has a particle size of 0.044 mm or less The mortar or concrete containing fine sand and clay, and fine bone But the particle size in the sludge for the following fine sand and clay 100 parts by weight of 0.044 mm, a said mortar or concrete is 30 to 300 parts by weight, of the sludge, which comprises using the mortar or concrete It is a solidification method, and is a molded body solidified by the solidification method .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention is a solidified material of sludge composed of one or more of cement, gypsum, silica fume, metakaolin, and incinerated ash of silicified wood (hereinafter referred to as silica fume), and molding using the same This is a sludge solidification method in which fine sand or clay (hereinafter referred to as clay or the like) having a particle diameter in the body and sludge of 0.044 mm or less and a solidifying material are blended.
Fine sand and clay are classified into particles of 0.05 mm or less in Japan (Japan Agricultural Science Law), but 0.044 mm is used as the standard because there is a 0.044 mm sieve in this cement industry.
[0007]
In the solidified material of the present invention, the cements used are various Portland cements and blast furnace slag cements, and the fineness of the cement itself is important. Fineness of the cement that is used as a solidifying material of the present invention is 2,500 ~ 8,000cm 2 / g, is preferably 3,000 cm 2 / g or more, 4,000~8,000cm 2 / g is more preferable. Fineness is less than 2,500 cm 2 / g in combination with gypsum and silica fume etc., also to reduce the water solidifying material ratio obtain 20 N / mm 2 or more strength is difficult, greater than 8,000cm 2 / g If the fineness is too fine, the hydration reaction is too fast and suddenly feels so that the kneading operation with clay or the like becomes difficult, leading to a decrease in strength.
[0008]
As gypsum used in the present invention, dihydrate gypsum, hemihydrate gypsum, type III anhydrous gypsum, or one or more of type II anhydrous gypsum are used. These are blended in an amount of 1 to 15 parts by weight with respect to 100 parts by weight of cement, but if the amount is less than 1 part by weight, the strength development effect is small, and if it exceeds 15 parts by weight, the strength decreases or the strength increases. Is unfavorable as it becomes stagnant. At normal temperature, it is preferably 3 to 10 parts by weight, more preferably 4 to 8 parts by weight. In steam curing, a preferable range shifts to a higher blending amount.
A more preferable gypsum is II type anhydrous gypsum, but the fineness of gypsum has little influence on strength, and it should be equal to or higher than cement.
Furthermore, in this invention, 2-20 weight part is mix | blended with 1 type, or 2 or more types in silica fume, metakaolin, and incinerated ash of silicified wood with respect to 100 weight part of cement.
[0009]
Silica fume is an ultra-fine amorphous SiO 2 powder that is produced as a by-product in the production of metallic silicon and ferrosilicon alloys in an electric furnace. Metakaolin is aluminosilicate obtained by firing kaolin or other clay at about 800 ° C. It is a fine powder. The incinerated ash of silicified wood is ash when silicified wood such as rice, straw and bamboo is baked and is amorphous SiO 2 . Both have strong pozzolanic activity and solidify by reacting with Ca (OH) 2 produced by hydration of cement. If it is less than 2 parts by weight, the effect of enhancing the strength is small even when used in combination with gypsum, and even if added in excess of 20 parts by weight, no further effect of enhancing the strength is shown, preferably 4 parts by weight or more. Preferably it is 5-10 weight part.
[0010]
In the practice of the present invention, as described above, the sludge is not only clay and the like, but is often an arbitrary mixture with coarse sand and gravel.
Therefore, the amount of clay and the composition ratio of coarse sand and gravel are measured from the particle size test, the amount of solidifying material is blended with respect to the amount of clay, and the water solidifying material ratio is 1.30 or less. Adjust. At this time, the water to be reacted with the solidifying material uses moisture in the clay or the like, and no new water is added.
The water-solidifying material ratio is a ratio of the amount of water contained in fine sand or clay having a particle diameter of 0.044 mm or less in sludge to the amount of solidifying material used, and is a weight ratio.
[0011]
When the water-solidifying material ratio (weight ratio) exceeds 1.30, it is difficult to obtain a strength of 20 N / mm 2 or more, and preferably about 1.0 or less. And the smaller the water-solidifying material ratio, the higher the strength, but the adjustment of the water-solidifying material ratio is done by the amount of the solidifying material, so it becomes uneconomical as it decreases, and if it is too small, molding becomes impossible, on the contrary, the strength decreases Therefore, the water-solidifying material ratio is preferably 0.25 or more.
[0012]
In the practice of the present invention, it is preferable to add an appropriate amount of aggregate such as fine aggregate and coarse aggregate in addition to that contained in clay or the like when forming a molded body. The fine aggregate is coarse sand of more than 0.044 mm and 5 mm or less, and the coarse aggregate is gravel of more than 5 mm and 40 mm or less.
Note that coarse aggregates exceeding 40 mm are excluded because the thickness of precast products cannot generally be made as thick as mass concrete, so aggregates that are larger than the thickness are defective parts such as strength. If it is previously contained in clay, etc., it is removed by sieving during the manufacturing process.
These aggregates increase the mixing efficiency of clay and the solidified material, and increase the dispersion effect of the solidified material, thus increasing the strength. In addition, hardened bodies consisting only of fine particles of clay, etc. and solidified material have high structural sensitivity and become brittle even if the strength is high, and the amount of ground helicopter (physical properties necessary for roadbed materials, etc., tested with the Los Angeles testing machine for aggregates) On the other hand, by adding aggregate, the structural sensitivity is lowered, and a stable high strength and resistance to slipping can be obtained.
Furthermore, the addition of aggregate is economically preferable because it adds to the amount of clay to be treated and the amount of solidified material, so that the amount of finished product increases.
[0013]
As the aggregate, natural products, various types of artificial aggregates and slag are used, and are not particularly limited as long as they are of a quality that can be used for mortar and concrete.
As for the blending ratio of these aggregates (including those previously contained in the clay), 30 to 300 parts by weight of fine aggregates are blended and mixed with respect to 100 parts by weight of clay and the like. If the fine aggregate is less than 30 parts by weight, the mixing efficiency is poor and the strength is not increased. If it exceeds 300 parts by weight, it will be difficult to mold, which is not preferable. A preferable amount of fine aggregate is 50 parts by weight or more, more preferably 70 to 150 parts by weight. In the case of coarse aggregate, any amount may be used as long as it can be molded.
Note that coarse aggregates exceeding 40 mm are removed by sieving during the manufacturing process of the molded body.
[0014]
In the solidification method of the present invention, for the mixing, a forced mixing mixer, a kneader or other mixing device for concrete is used. Although these kneaded mixtures appear to be in a dry state at first glance, they are put in a mold and molded by tamping or pressurization by tamping, or vibration pressurization to obtain a product. The curing method after molding may be air-drying or wet curing until strength is developed at room temperature, or may be steam-cured at any time or age to develop strength.
[0015]
How to add solidification material to the actual sludge and treat it will be explained.
(1) If the sludge is all clay and does not contain fine aggregates or coarse aggregates, first, sample from any location so as to be average, knead and mix the appropriate amount at 150 ° C The weight change with respect to the drying time is 1 wt. Dry until it is less than or equal to%, and obtain the moisture content of the clay. Then, the solidified material is blended with the appropriate amount of fine aggregate or coarse aggregate as necessary, and mixed with 100 parts by weight of clay, and then molded. In this case, the sampling amount for drying is 500 g to 1000 g.
(2) If the sludge contains fine aggregate or coarse aggregate arbitrarily, first, sample from any location so that it becomes average, knead and mix it, weigh the appropriate amount and dry at 150 ° C To obtain the total water content. Note that the sampling amount for drying in this case is 1 kg to 10 kg although it varies depending on the size of the coarse aggregate mixed therein. Separately, an appropriate amount of the kneaded mixture is weighed, an appropriate amount of water is added and suspended, and 0.044 mm, 5 mm, and 40 mm sieves are stacked and the suspension is sieved. Fine aggregate of 5 mm or less remaining on the 0.044 mm sieve and coarse aggregate of 40 mm or less remaining on the 5 mm sieve, including coarse aggregate remaining on the 40 mm sieve, clay of 0.044 mm or less And the like are expressed in percentage. At this time, fine aggregates, coarse aggregates, and aggregates exceeding 40 mm use the weight measured by adjusting to a dry surface state. And each component amount is calculated | required from the following formula.
Clay amount = total amount− [total amount of fine aggregate, coarse aggregate, and aggregate exceeding 40 mm] / total amount × 100
Fine aggregate amount = total amount- [clay amount, coarse aggregate amount, and total amount of aggregate exceeding 40 mm] / total amount × 100
The calculation of the moisture content of the clay alone is based on the weight loss of the entire aggregate, and the moisture content of the fine aggregate, coarse aggregate, and aggregate exceeding 40 mm is 2 wt. % Constant, calculated from the composition, and subtracted from the total dry weight.
In addition, at the time of manufacturing the molded body, after adding fine aggregate and coarse aggregate (more than 5mm to 40mm or less) in clay, etc., a new amount of fine aggregate and coarse aggregate are added and solidified. Knead with. Since this mixture is in a state where there is no moisture in Basasaba, by shaking at 40 mm, a large coarse aggregate exceeding 40 mm can be easily removed before molding.
[0016]
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not restricted to these.
[0017]
【Example】
Example 1
Solidified material with an arbitrarily changed composition, 65% moisture content from the swamp (44 μm, 0.044 mm full of water, no coarse sand or gravel), and fine aggregate for concrete (5 mm Using the river sand in the dry state (below), each ratio was arbitrarily changed, and the mixture was kneaded with a mortar mixer for JIS mortar for 5 minutes. The kneaded product was put into a φ5 × 10 cm mold, and was molded into several layers manually by using a cut surface obtained by cutting a φ12 mm round steel. The molded body was removed from the mold after 3 days, and directly subjected to air drying in a room at 20 ° C., and the compression strength at the age of 28 days was measured. The results are shown in Tables 1 and 2. The materials used are as follows.
[0018]
<Ingredients of solidification material>
Cement normal Portland cement clinker blended with dihydrate gypsum so as to be 2% as SO 3 , and with a vibration pot mill, various degrees of fineness (brane method, porosity 0.5), A blast furnace slag cement mixed with blast furnace granulated slag powder (pulverized to a fineness of 5050 cm 2 / g) mixed with dihydrate gypsum so as to be 2% as SO 3 was partially used.
a. 2090 cm 2 / g (ordinary cement)
b. 2500cm 2 / g (ordinary cement)
c. 3080 cm 2 / g (ordinary cement)
d. 4050 cm 2 / g (ordinary cement)
e. 5100cm 2 / g (blended 45% of blast furnace slag powder)
f. 6090 cm 2 / g (ordinary cement)
g. 7120cm 2 / g (ordinary cement)
h. 7990cm 2 / g (ordinary cement)
i. 9200cm 2 / g (ordinary cement)
[0019]
Gypsum A. Insoluble anhydrous gypsum generated with hydrofluoric acid (fineness 3010 cm 2 / g)
B. Product obtained by pulverizing industrial dihydrate gypsum (fineness 5300 cm 2 / g)
C. B is heat treated and ground as hemihydrate gypsum (powder degree 10000 cm 2 / g or more)
D. B is heat-treated and pulverized as soluble anhydrite (powder degree: 10,000 cm 2 / g
more than)
[0020]
Silica fume, etc. Silica fume (commercially available, fineness 23 m 2 / g)
B. Metakaolin (commercial product, fineness 8000 cm 2 / g)
C. Firewood ash (powder degree 1.2m 2 / g)
[0021]
[Table 1]
Figure 0003982907
[0022]
[Table 2]
Figure 0003982907
[0023]
From Tables 1 and 2, Experiment No. In the comparative example 1-1, only a low strength can be obtained even if the fineness of the cement is appropriate, whereas the strength of the solidified material of the present invention is greatly influenced by the fineness of the cement. When the fineness of the cement used for the solidification material is 2000 cm 2 / g (Experiment No. 1-2, Comparative Example), only a strength of 10 N / mm 2 or more can be obtained, whereas the strength is suddenly increased to 2500 cm 2 / g or more. Increases, and a strength of 20 N / mm 2 or more can be obtained, and the higher the fineness, the higher the value. Moreover, even if it is too high, the hydration of the cement becomes fast and the tamping becomes insufficient, and as a result, the strength sharply decreases (Experiment No. 1-10, Comparative Example).
[0024]
Then, in the present invention fineness of the cement is 2500 cm 2 / g or more, preferably 3000 cm 2 / g or more, more preferably, it is shown a 4000~8000cm 2 / g (Experiment No.1-3~1- 9).
[0025]
In addition, gypsum alone does not show a strength of 20 N / mm 2 or more regardless of the amount of the plaster (Experiment Nos. 11-11 to 1-19).
In the case of silica fume and the like, the strength of 20 N / mm 2 or more is not shown regardless of the amount of the compound (Experiment No. 1-20 to 1-26).
[0026]
The combined use of gypsum and silica fume synergistically increases the strength, and a combined strength of 1 part by weight, 2 parts by weight or more can provide a high strength of 20 N / mm 2 or more (Experiment No. 1-27 to 1-34).
And although it is each addition individually, gypsum is preferably 3 to 10 parts by weight, more preferably 4 to 8 parts by weight (Experiment No. 1-11 to 1-19), and silica fume and the like are 4 parts. More than parts by weight are preferable, and 5 to 10 parts by weight are more preferable (Experiment Nos. 1-20 to 1-26), but it is preferable to use both in these ranges.
[0027]
When the water-solidifying material ratio is 1.30 or less, a strength of 20 N / mm 2 or more can be obtained, and it is preferably about 1.0 or less. The strength increases as the water-solidifying material ratio decreases, but the strength decreases if it is too small. This is because if the amount of the solidified material is too large, the moldability is deteriorated, and it is preferably 0.25 or more (Experiment Nos. 1-35 to 1-42).
[0028]
The addition of fine aggregate increases the dispersibility of the solidified material in the clay and increases the strength. The greater the amount of fine aggregate, the higher the strength, but if too much, the moldability deteriorates and the strength decreases. . The effect of fine aggregate is 30 to 300 parts by weight, and the effect is preferably 50 to 200 parts by weight, more preferably 70 to 150 parts by weight (Experiment Nos. 1-49 to 1-55).
[0029]
Example 2
Experiment No. 1 of Example 1 1-1 and No.1. Use 1-52, change the blending amount of 25-5mm and 40-5mm coarse aggregate (crushed stone) with standard particle size and surface dry state, about 30 liters in total with a planetary forced kneading mixer with a capacity of 50 liters Min Clay, solidified material, fine aggregate and coarse aggregate were mixed for 5 minutes.
The specimen was molded into a mold of φ12.5 ± 25 cm to a height of about 23 cm. The forming method uses a φ12mm steel rod with a φ5x10cm cylinder welded to the tip, rammed into several layers, and finally presses the whole plate with a φ12x5cm steel plate at a pressure of 20 tons. did.
Curing was performed 4 hours after the specimen was prepared, raised to 75 ° C. over 3 hours, held for 5 hours, and then slowly cooled to the next day by closing the steam valve and demolding.
Thereafter, the room was air-dried and the compressive strength was measured at a material age of 7 days. The results are shown in Table 3.
[0030]
[Table 3]
Figure 0003982907
[0031]
From Table 3, addition of an appropriate amount of coarse aggregate not only means the bulking material, but also increases the strength. This is presumed that the pile of coarse aggregate contributes to the strength.
[0032]
【The invention's effect】
As explained above, by utilizing the present invention, it is possible to solidify fine sand and clayey fine particles having a high water content, which are the hardest to solidify among sludge generated by mining and construction work, and It can be increased to a strength that can be used for construction materials. Accordingly, it is not necessary to treat sludge as industrial waste, and it adds value to the sludge and prepares the environment.

Claims (9)

粉末度が 2,500 8,000cm 2 /g であるセメント100重量部と、石膏類を無水物換算で1〜15重量部と、シリカフューム、メタカオリン、ケイ化木の焼却灰の中の一種又は二種以上を2〜20重量部配合することを特徴とする汚泥の固化材。100 parts by weight of cement with a fineness of 2,500 to 8,000 cm 2 / g , 1 to 15 parts by weight of gypsum in terms of anhydride, one or more of incinerated ash from silica fume, metakaolin and silicified wood 2-20 parts by weight of sludge solidified material. 汚泥が、粒子径Sludge has a particle size 0.044mm0.044mm 以下の微砂や粘土を含有するものであることを特徴とする請求項1記載の汚泥の固化材。2. The sludge solidifying material according to claim 1, which contains the following fine sand or clay. 請求項1又は2記載の固化材を用いてなる汚泥の固化方法。A method for solidifying sludge using the solidifying material according to claim 1. 汚泥中の粒子径が0.044mm以下の微砂や粘土に含まれる水分量に対して、請求項2記載の固化材を、水固化材比で1.30以下となるように配合して練混ぜることを特徴とする汚泥の固化方法。Mixing and mixing the solidified material according to claim 2 to a water solidified material ratio of 1.30 or less with respect to the amount of water contained in fine sand or clay having a particle size of 0.044 mm or less in sludge. Characterized sludge solidification method. 汚泥、請求項1記載の固化材、及び細骨材を含有してなるモルタル又はコンクリート。A mortar or concrete containing sludge, the solidified material according to claim 1, and a fine aggregate. 汚泥が、粒子径Sludge has a particle size 0.044mm0.044mm 以下の微砂や粘土を含有するものであることを特徴とする請求項5記載のモルタル又はコンクリート。The mortar or concrete according to claim 5, which contains the following fine sand or clay. 細骨材が、汚泥中の粒子径がFine aggregate has a particle size in sludge 0.044mm0.044mm 以下の微砂や粘土The following fine sand and clay 100100 重量部に対して、For parts by weight 3030 ~ 300300 重量部であることを特徴とする請求項6記載のモルタル又はコンクリート。The mortar or concrete according to claim 6, which is a part by weight. 請求項5〜7のうちのいずれか一項記載のモルタル又はコンクリートを用いることを特徴とする汚泥の固化方法。A method for solidifying sludge, comprising using the mortar or concrete according to any one of claims 5 to 7. 請求項3、4、又は8記載の固化方法により固化した成形体。The molded object solidified by the solidification method of Claim 3, 4, or 8.
JP13510698A 1998-05-18 1998-05-18 Sludge solidification material, molded body using the same, and solidification method thereof Expired - Fee Related JP3982907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13510698A JP3982907B2 (en) 1998-05-18 1998-05-18 Sludge solidification material, molded body using the same, and solidification method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13510698A JP3982907B2 (en) 1998-05-18 1998-05-18 Sludge solidification material, molded body using the same, and solidification method thereof

Publications (2)

Publication Number Publication Date
JPH11319894A JPH11319894A (en) 1999-11-24
JP3982907B2 true JP3982907B2 (en) 2007-09-26

Family

ID=15143986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13510698A Expired - Fee Related JP3982907B2 (en) 1998-05-18 1998-05-18 Sludge solidification material, molded body using the same, and solidification method thereof

Country Status (1)

Country Link
JP (1) JP3982907B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4584630B2 (en) * 2004-06-04 2010-11-24 株式会社デイ・シイ Soil improvement material
FR2955320B1 (en) * 2010-01-20 2016-02-26 Commissariat Energie Atomique PROCESS FOR PREPARING COMPOSITE MATERIAL FROM WASTE AND MATERIAL THUS OBTAINED
JP5799585B2 (en) * 2010-05-31 2015-10-28 Jfeスチール株式会社 Manufacturing method of artificial stone
JP2012072301A (en) * 2010-09-29 2012-04-12 Tachibana Material Co Ltd Soil improving solidifying material
JP5540286B2 (en) * 2010-11-08 2014-07-02 王子ホールディングス株式会社 Roadbed material and method for manufacturing the same
JP2013121568A (en) * 2011-12-12 2013-06-20 Nakamichi Kankyo Kaihatsu:Kk Method of recycling construction sludge
CN106082903B (en) * 2016-06-17 2018-02-09 武汉大学 A kind of dredging silt composite curing agent

Also Published As

Publication number Publication date
JPH11319894A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
Ferdosian et al. High-volume fly ash paste for developing ultra-high performance concrete (UHPC)
US2564690A (en) Hydrated lime-fly ash-fine aggregate cement
KR0183536B1 (en) Highly durable cement products containing siliceous ashes
Garg et al. Some aspects of the durability of a phosphogypsum-lime-fly ash binder
Vanjare et al. Experimental investigation on self compacting concrete using glass powder
WO2008013694A2 (en) Slag concrete manufactured aggregate
EP2004568A1 (en) Matrix for masonry elements and method of manufacture thereof
JP3547268B2 (en) Cement admixture and cement composition
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
JP5975603B2 (en) High-strength porous concrete composition and high-strength porous concrete cured body
JP3982907B2 (en) Sludge solidification material, molded body using the same, and solidification method thereof
JPH0680456A (en) Fluid hydraulic composition
JPWO2007097435A1 (en) Hardened concrete and concrete composition
JP3108922B1 (en) Anhydrite produced from gypsum waste and method for producing the same
JP5403496B2 (en) Hardened concrete and concrete composition
JP6985177B2 (en) Hydraulic composition and concrete
JP2004155636A (en) Construction or building material using slag or fly ash as main material
JP3549707B2 (en) Cement admixture, cement composition, and chemical prestressed concrete using the same
JP2007131477A (en) Fly ash cement composition and concrete mold using it
JP4014400B2 (en) Soil treatment material composition and method for producing the same
JP5473811B2 (en) Cement additive and cement composition
JPH0676235B2 (en) Hydraulic cement composition
Oleng et al. Physical and Mechanical Experimental Investigation of Concrete incorporated with Ceramic and Porcelain Clay Tile Powders as Partial Cement Substitutes
JP2000335950A (en) Concrete for structure of civil engineering and construction for recycling
JP4358359B2 (en) Low shrinkage concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees