JP3549707B2 - Cement admixture, cement composition, and chemical prestressed concrete using the same - Google Patents

Cement admixture, cement composition, and chemical prestressed concrete using the same Download PDF

Info

Publication number
JP3549707B2
JP3549707B2 JP15852997A JP15852997A JP3549707B2 JP 3549707 B2 JP3549707 B2 JP 3549707B2 JP 15852997 A JP15852997 A JP 15852997A JP 15852997 A JP15852997 A JP 15852997A JP 3549707 B2 JP3549707 B2 JP 3549707B2
Authority
JP
Japan
Prior art keywords
cement
weight
parts
caso
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15852997A
Other languages
Japanese (ja)
Other versions
JPH1112006A (en
Inventor
実 盛岡
章 七沢
敏夫 三原
正機 大門
悦郎 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP15852997A priority Critical patent/JP3549707B2/en
Publication of JPH1112006A publication Critical patent/JPH1112006A/en
Application granted granted Critical
Publication of JP3549707B2 publication Critical patent/JP3549707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations

Description

【0001】
【産業上の利用分野】
本発明は、主に、土木・建築業界において使用されるセメント混和材、セメント組成物、及びそれを用いたケミカルプレストレストコンクリートに関する。
【0002】
【従来技術とその課題】
セメント混和材として使用される膨張物質は、乾燥収縮の補償やケミカルプレストレスの導入を目的として古くから数多く提案されている(特公昭42−21840号公報、特公昭48−9448号公報、特公昭53− 13650号公報、及び特公昭53− 31170号公報等)。
また、膨張物質は、その粒度を粗く調製することにより膨張力を増大させることが知られている(特公昭42− 21840号公報や特公昭51−7171号公報など)。
そのため、膨張物質は、通常、セメントと同程度もしくはそれより粗く調製されている。
しかしながら、従来の膨張物質は、大きな膨張性を付与すればするほど、それを用いたセメント硬化体の空隙量が増加するので、機械的強度が低下するという宿命的な課題を有していた。
【0003】
ここで、セメント硬化体とは、セメントペーストの硬化体、モルタルの硬化体、及びコンクリートの硬化体を総称するものである。
【0004】
このような機械的強度発現性の低下は、例えば、土木・建築構造物においては、型枠の脱型が遅れることによって、工期が伸びたり、養生時間が長くなるために管理が困難になるばかりでなく、場合によっては構造物の耐久性に悪影響をおよぼすおそれもあった。
また、ヒューム管やボックスカルバートなどに代表されるコンクリート二次製品の製造においては、ケミカルプレストレスを導入する際、製品の外圧強度は膨張力を鉄筋によって拘束することにより増大することができるが、鉄筋の拘束がきかないコンクリートの端部は強度が弱く欠けやすいという課題があった。
コンクリート二次製品は、端部が少しなりとも欠けてしまえば、商品価値がなくなり、出荷することができないので端部の強度が弱く、欠けやすいことは大きな問題であった。
【0005】
一方、本発明者は、膨張物質をブレーン比表面積値で4,000cm/g以上になるよう微粉末化することによって無収縮性を付与できるグラウト材料を提案した(特開平 7−237951号公報)。
通常、粉砕機によって粉砕した粉体の粒度は正規分布を有するので、このように微粉末化した粉末でも粗い粒子を含有している。
そのため、膨張性状は低く、強度発現性もそれほど向上しないという課題があった。
【0006】
本発明者は種々努力を重ねた結果、特定の組成と、特定の最大粒径以下に粉砕した膨張物質を使用することにより、大きな膨張性を付与した場合にも、強度発現性が良好となり前述の課題が解決できる知見を得て本発明を完成するに至った。
【0007】
【課題を解決するための手段】
即ち、本発明は、CaO 原料と CaSO原料とを配合して熱処理してなり、 CaOと CaSOとを含有する鉱物からなり、該鉱物中のCaSOが、 CaOと CaSOの合計 100重量部中、10〜50重量部で、その最大粒径が100 μm以下である膨張物質を含有してなるセメント混和材であり、セメントと該セメント混和材とを含有してなるセメント組成物であり、該セメント組成物を配合してなるセメント混練物を、型枠内に打設充填し、養生してなるケミカルプレストレストコンクリートである。
【0008】
以下、本発明をさらに詳しく説明する。
【0009】
本発明のセメント混和材は特定の膨張物質を含有するものである。
本発明の膨張物質は、分級機能を付加した粉砕機によって粉砕することで、粒子群を特定範囲、例えば、最大粒径が 100μ以下の粒子の粒径に調製したものであり、従来技術の膨張物質とは大きく異っている。
【0010】
膨張物質の原料は、純度やコストにより任意に選択されうるものであり、特に限定されるものではないが、例えば、CaO 原料として、石灰石や消石灰などのCaCO質物質やCa(OH)質物質などが、CaSO原料として、無水セッコウ、半水セッコウ、及び二水セッコウ等が挙げられる。
原料中に存在するAl、SiO、Fe、CaF、MgO 、及びTiO等の不純物は、本発明の目的を実質的に阻害しない範囲では特に限定されるものではない。
本発明におけるCaO 原料やCaSO原料の配合割合は、膨張物質中のCaSOが、CaO とCaSOの合計(以下膨張成分という)100 重量部中、10〜50重量部となるようにすることが必要であり、20〜40重量部となるようにすることが好ましい。CaSOが10重量部未満では強度発現性が低下する場合があり、50重量部を越えると膨張性が低下する場合がある。
【0011】
本発明では、原料の配合割合や不純物の含有量により、セッコウの脱硫酸分解温度が大きく変化するため、焼成温度は特に限定されるものではないが、通常、1,000 〜1,600 ℃程度が好ましい。
原料の混合方法は特に限定されるものではなく、通常の方法が可能である。
【0012】
膨張物質を製造する熱処理方法は特に限定されるものではなく、例えば、ロータリーキルンによる焼成や電炉による溶融などのいずれの方法も可能である。
【0013】
膨張物質の粒径は、最大粒径が 100μm以下であり、75μm以下が好ましく、50μm以下がより好ましい。最大粒径が 100μmを超えると、高膨張率を付与した場合のセメント硬化体の機械的強度の低下を抑制する本発明の効果が得られない場合がある。
本発明において、最大粒径は、実質上、その粒径以上の大きさの粒子が存在しないことを意味するものであり、具体的には、 100μmを越える粒子の存在が3重量%以下であり、通常、1重量%以下である。
粒子の最大粒径や分布は、粒度分布測定装置を用いることにより簡便に確認することが可能である。
【0014】
本発明のセメント混和材の配合量は、使用する目的により異なるが、通常、セメント 100重量部に対して、3〜12重量部が好ましく、5〜9重量部がより好ましい。3重量部未満では膨張性が充分ではなく、12重量部を越えると異常膨張を起こす可能性がある。
【0015】
ここでセメントとしては、普通、早強、超早強、及び中庸熱等の各種ポルトランドセメント、これらポルトランドセメントにポゾラン物質を混合した各種混合セメント、並びに、アルミナセメント等が挙げられるが、特に混合セメントにおいてその効果が顕著である。
【0016】
本発明のセメント組成物を用いたセメント混練物を製造する際に、使用する混合装置としては、既存のいかなる撹拌装置も使用可能であり、例えば、傾胴ミキサー、オムニミキサー、V型ミキサー、ヘンシェルミキサー、及びナウターミキサー等が利用可能である。
また、混合は、それぞれの材料を施工時に混合してもよいし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。
【0017】
本発明のセメント混練物の養生方法は特に限定されるものではなく、一般に行われる常温・常圧養生、蒸気養生、高温・高圧蒸気養生、及び加圧養生等のいずれの養生方法も適用可能である。
また、混練方法であるが、一般に用いられる方法でよく、特に限定されるものではない。
【0018】
本発明では、さらに、砂や砂利などの骨材や、凝結調整剤、減水剤、高性能減水剤、AE剤、AE減水剤、高性能AE減水剤、増粘剤、セメント急硬材、防錆剤、防凍剤、水和熱抑制剤、高分子エマルジョン、ベントナイトやモンモリロナイトなどの粘土鉱物、ゼオライト、ハイドロタルサイト、及びハイドロカルマイト等のイオン交換体、硫酸アルミニウムや硫酸ナトリウムなどの硫酸塩、リン酸塩、並びに、ホウ酸等のうちの一種又は二種以上を本発明の目的を実質的に阻害しない範囲で併用することが可能である。
【0019】
【実施例】
以下、実施例により本発明を詳細に説明する。
【0020】
実施例1
CaO 原料とCaSO原料を配合し、ロータリーキルンを用い、最高焼成温度1,400 ℃で焼成してCaO とCaSOの合計の膨張成分 100重量部中の CaSOの量が異なる各種膨張物質のクリンカーを合成した。
合成したクリンカーをボールミルを用いて粉砕し、ブレーン値 3,000±200cm/gに調製し、さらに、開き目が50μmの篩で篩分けし最大粒径が50μmの膨張物質を調製した。
調製した膨張物質をセメント混和材とし、セメントαと該セメント混和材からなる結合材 100重量部中、セメント混和材の配合量を9重量部とし、水/結合材比=50%、結合材/砂比=1/3で、練り上がり温度20±2℃のモルタルを作製し、材齢7日における膨張率と圧縮強度を測定した。結果を表1に示す。
なお、比較のために、膨張物質として市販の膨張材を使用して同様の方法により測定を行った。結果を表1に併記する。
【0021】
<使用材料>
CaO 原料 :石灰石粉末、新潟県青海鉱山産石灰石
CaSO原料:セッコウ、新秋田化成社製無水セッコウ
膨張物質A:膨張成分100 重量部中のCaSO 0重量部
膨張物質B:膨張成分100 重量部中のCaSO10重量部
膨張物質C:膨張成分100 重量部中のCaSO20重量部
膨張物質D:膨張成分100 重量部中のCaSO30重量部
膨張物質E:膨張成分100 重量部中のCaSO40重量部
膨張物質F:膨張成分100 重量部中のCaSO50重量部
膨張物質G:膨張成分100 重量部中のCaSO60重量部
膨張材a :市販のカルシウムサルホアルミネート系膨張材
膨張材b :市販の生石灰系膨張材
セメントα:電気化学工業社製普通ポルトランドセメント
砂 :標準砂、ISO 679準拠
水 :水道水
【0022】
<測定方法>
膨張率 :JIS A 6202 (B法) に準じて材齢7日の膨張率を測定
圧縮強度 :JIS A 1108に準じて材齢7日の圧縮強度を測定
【0023】
【表1】

Figure 0003549707
【0024】
実施例2
膨張物質Dを使用し、結合材 100重量部中、表2に示すセメント混和材の配合量を用いたこと以外は実施例1と同様に行った。結果を表2に併記する。
なお、比較のために、市販品である膨張材についても同様に行った。結果を表2に併記する。
【0025】
【表2】
Figure 0003549707
【0026】
実施例3
セメントαの代わりにセメントβを用いたこと以外は実施例1と同様に行った。結果を表3に示す。
【0027】
<使用材料>
セメントβ:電気化学工業社製高炉セメント(B種)
【0028】
【表3】
Figure 0003549707
【0029】
実施例4
膨張物質Dを、表4に示す最大粒径となるように粉砕したこと以外は実施例1と同様に行った。結果を表4に併記する。
【0030】
【表4】
Figure 0003549707
【0031】
実施例5
表5に示す最大粒径に調製した膨張物質をセメント混和材とし、セメント混和材を結合材 100重量部中、9重量部配合し、各材料の単位量を、結合材430kg/m、細骨材685kg/m、粗骨材1,098kg/m、及び水167kg/mとして、減水剤を結合材100重量部に対して、1重量部配合し、水/結合材比=40%、細骨材率39%のコンクリートを調製した。
型枠内に、主筋としてPC鋼棒を、スパイラル筋としてPC鋼線を用い、鉄筋比を 0.4%とした耐張芯材を配置し、調製したコンクリートを打設して、遠心力により、直径20cm、長さ25cm、肉厚40mm±1mmのコンクリート管を成形した。
6時間放置した後、昇温速度15℃/hrで65℃まで昇温し、4時間保持した後、自然放冷し、材齢24時間で脱型する蒸気養生を行い、その後、20℃水中養生を行い、管端部の欠損状態を観察するとともに、プレストレス量を測定した。結果を表5に併記する。
【0032】
<使用材料>
細骨材 :新潟県姫川産川砂、5mm下
粗骨材 :新潟県姫川産川砂利、Gmax =25mm
【0033】
<測定方法>
管端部の欠損状態:コンクリート管を高さ1mから3回落下させた時のコンクリート管端部の欠損状態を観察、○は欠損なし、×は欠損あり
プレストレス量:養生後、コンクリート管の外圧を負荷し、あらかじめスパイラル筋にはったストレインゲージで歪みを測定して材齢7日におけるプレストレス量を測定
【0034】
【表5】
Figure 0003549707
【0035】
【発明の効果】
本発明のセメント混和材の使用により、膨張性と強度発現性が良好なセメント組成物とすることができ、これを用いたケミカルプレストレストコンクリートは外圧強度が大きく、コンクリート端部が欠けにくいなどの効果を奏する。[0001]
[Industrial applications]
The present invention relates to a cement admixture, a cement composition, and a chemical prestressed concrete using the same, mainly used in the civil engineering and construction industries.
[0002]
[Prior art and its problems]
Many expandable substances used as cement admixtures have long been proposed for the purpose of compensating for drying shrinkage and introducing chemical prestress (Japanese Patent Publication No. 42-21840, Japanese Patent Publication No. 48-9448, Japanese Patent Publication No. No. 53-13650 and Japanese Patent Publication No. 53-31170.
In addition, it is known that the swelling substance is increased in swelling force by adjusting its particle size to be coarse (JP-B-42-21840 and JP-B-51-7171).
For this reason, the intumescent material is usually prepared as coarse or coarser as cement.
However, the conventional expandable substance has a fatal problem that the greater the expandability, the greater the amount of voids in the cement-hardened body using the expandable substance, and the lower the mechanical strength.
[0003]
Here, the hardened cement is a generic term for hardened cement paste, hardened mortar, and hardened concrete.
[0004]
Such a decrease in mechanical strength manifestation, for example, in civil engineering and building structures, due to the delay of mold release, the construction period is extended, or the curing time becomes longer, so that it becomes difficult to manage. In addition, in some cases, the durability of the structure may be adversely affected.
In addition, in the production of concrete secondary products such as fume pipes and box culverts, when introducing chemical prestress, the external pressure strength of the product can be increased by restraining the expansion force with reinforcing steel, There was a problem that the end of the concrete where the reinforcing steel could not be restrained was weak and easily chipped.
Secondary concrete products, once lacking even the end is a little will, there is no commercial value, it is not possible to ship weakened the strength of the end, easy to missing it was a big problem.
[0005]
On the other hand, the present inventor has proposed a grout material capable of imparting non-shrinkage property by pulverizing an expansive substance so as to have a Blaine specific surface area value of 4,000 cm 2 / g or more (Japanese Patent Application Laid-Open No. 7-237951). ).
Usually, the particle size of the powder pulverized by the pulverizer has a normal distribution, so that even the finely pulverized powder contains coarse particles.
For this reason, there is a problem that the expandability is low and the strength expression is not so improved.
[0006]
The present inventor has made various efforts and, as a result of using a specific composition and an expandable substance pulverized to a specific maximum particle size or less, even when a large expandability is imparted, the strength developability becomes good, and The present invention has been completed based on the knowledge that can solve the above problem.
[0007]
[Means for Solving the Problems]
That is, the present invention is made by heat-treating by blending a CaO material and CaSO 4 material consists mineral containing a CaO and CaSO 4, is CaSO 4 in the mineral, total 100 weight of CaO and CaSO 4 Parts, 10 to 50 parts by weight, a cement admixture containing an expanding substance having a maximum particle size of 100 μm or less, and a cement composition containing cement and the cement admixture. A chemically prestressed concrete obtained by casting and kneading a cement kneaded product obtained by blending the cement composition into a mold and curing.
[0008]
Hereinafter, the present invention will be described in more detail.
[0009]
The cement admixture of the present invention contains a specific expanding substance.
The swelling substance of the present invention is obtained by crushing a particle group to a specific range, for example, particles having a maximum particle diameter of 100 μ or less by crushing with a crusher having a classification function. It is very different from substance.
[0010]
The raw material of the expanding substance can be arbitrarily selected depending on the purity and cost, and is not particularly limited. For example, as a CaO raw material, a CaCO 3 substance such as limestone or slaked lime or a Ca (OH) 2 substance Substances and the like, as the CaSO 4 raw material, anhydrous gypsum, hemihydrate gypsum, dihydrate gypsum and the like.
Impurities such as Al 2 O 3 , SiO 2 , Fe 2 O 3 , CaF 2 , MgO and TiO 2 present in the raw material are not particularly limited as long as the objects of the present invention are not substantially impaired. .
The mixing ratio of the CaO material and CaSO 4 material in the present invention, CaSO 4 in the inflation material is the sum of CaO and CaSO 4 (hereinafter referred to as expansion component) in 100 parts by weight, to be 10 to 50 parts by weight Is required, and it is preferable that the amount be 20 to 40 parts by weight. If the content of CaSO 4 is less than 10 parts by weight, the strength developability may decrease, and if it exceeds 50 parts by weight, the expandability may decrease.
[0011]
In the present invention, since the desulfurization decomposition temperature of gypsum greatly changes depending on the mixing ratio of the raw materials and the content of impurities, the firing temperature is not particularly limited, but is usually about 1,000 to 1,600 ° C. Is preferred.
The method of mixing the raw materials is not particularly limited, and an ordinary method can be used.
[0012]
The heat treatment method for producing the expanding material is not particularly limited. For example, any method such as firing using a rotary kiln or melting using an electric furnace is possible.
[0013]
The maximum particle diameter of the expanding material is 100 μm or less, preferably 75 μm or less, and more preferably 50 μm or less. If the maximum particle size exceeds 100 μm, the effect of the present invention of suppressing a decrease in mechanical strength of a cured cement body when a high expansion coefficient is provided may not be obtained.
In the present invention, the maximum particle size means that substantially no particles having a size larger than the particle size are present. Specifically, the presence of particles exceeding 100 μm is 3% by weight or less. , Usually 1% by weight or less.
The maximum particle size and distribution of the particles can be easily confirmed by using a particle size distribution measuring device.
[0014]
The amount of the cement admixture of the present invention varies depending on the purpose of use, but is usually preferably 3 to 12 parts by weight, more preferably 5 to 9 parts by weight, per 100 parts by weight of cement. If it is less than 3 parts by weight, the expandability is not sufficient, and if it exceeds 12 parts by weight, abnormal expansion may occur.
[0015]
Here, examples of the cement include ordinary, high-strength, ultra-high-strength, and various types of Portland cements such as moderate heat, various mixed cements obtained by mixing a pozzolanic substance with these Portland cements, and alumina cements. The effect is remarkable.
[0016]
When producing a cement kneaded product using the cement composition of the present invention, any existing stirring device can be used as a mixing device, for example, a tilting mixer, an omni mixer, a V-type mixer, a Henschel mixer A mixer, a Nauta mixer and the like can be used.
In addition, for mixing, the respective materials may be mixed at the time of construction, or some or all of them may be mixed in advance.
[0017]
The method for curing the cement kneaded material of the present invention is not particularly limited, and any curing method such as ordinary temperature / normal pressure curing, steam curing, high temperature / high pressure steam curing, and pressure curing can be applied. is there.
The kneading method may be a commonly used method, and is not particularly limited.
[0018]
In the present invention, further, aggregates such as sand and gravel, a setting modifier, a water reducing agent, a high performance water reducing agent, an AE agent, an AE water reducing agent, a high performance AE water reducing agent, a thickener, a cement hardened material, Rust agents, antifreeze agents, hydration heat inhibitors, polymer emulsions, clay minerals such as bentonite and montmorillonite, zeolite, hydrotalcite, ion exchangers such as hydrocalumite, sulfates such as aluminum sulfate and sodium sulfate, One or more of phosphate, boric acid, and the like can be used in combination as long as the object of the present invention is not substantially inhibited.
[0019]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
[0020]
Example 1
A CaO raw material and a CaSO 4 raw material are blended, and baked at a maximum sintering temperature of 1,400 ° C. using a rotary kiln and a total expansion component of CaO 4 and CaSO 4 A clinker of various expanded materials having different amounts of CaSO 4 in 100 parts by weight. Was synthesized.
The synthesized clinker was pulverized using a ball mill, adjusted to a Blaine value of 3,000 ± 200 cm 2 / g, and further sieved with a sieve having an opening of 50 μm to prepare an expanded material having a maximum particle size of 50 μm.
The prepared intumescent material was used as a cement admixture, and the mixing amount of the cement admixture was 9 parts by weight in 100 parts by weight of the binder composed of cement α and the cement admixture. A mortar having a sand ratio of 1/3 and a kneading temperature of 20 ± 2 ° C. was prepared, and the expansion rate and compressive strength at the age of 7 days were measured. Table 1 shows the results.
For comparison, measurement was performed in the same manner using a commercially available expanding material as the expanding material. The results are also shown in Table 1.
[0021]
<Material used>
CaO raw material: limestone powder, limestone CaSO 4 from Aomi mine, Niigata Prefecture Raw material: gypsum, anhydrous gypsum manufactured by Shin-Akita Kasei Co., Ltd. Expanding substance A: 0 parts by weight of CaSO 4 in expanding part 100 parts by weight Expanding substance B: expanding part 100 parts by weight CaSO 4 10 parts by weight expandable material C in: CaSO 4 20 parts by weight expandable material D in the expansion component 100 parts by weight: CaSO 4 30 parts by weight expandable material in the expansion component 100 parts by weight E: in the expansion 100 parts by weight of component 40 parts by weight of CaSO 4 swelling substance F: 50 parts by weight of CaSO 4 in 100 parts by weight of swelling ingredient G: 60 parts by weight of CaSO 4 in 100 parts by weight of swelling ingredient Expanding material a: Commercial calcium sulfoaluminate-based expanding material Expanding material b: Commercial quicklime-based expanding material cement α: Ordinary Portland cement sand manufactured by Denki Kagaku Kogyo Co., Ltd .: Standard sand, ISO 679 standard Water: tap water [0022]
<Measurement method>
Expansion coefficient: Measure the expansion coefficient at 7 days of age according to JIS A 6202 (Method B) Compressive strength: Measure the compressive strength at 7 days of age according to JIS A 1108
[Table 1]
Figure 0003549707
[0024]
Example 2
The procedure was performed in the same manner as in Example 1 except that the intumescent substance D was used and the blending amount of the cement admixture shown in Table 2 was used in 100 parts by weight of the binder. The results are also shown in Table 2.
For comparison, the same procedure was performed for a commercially available expandable material. The results are also shown in Table 2.
[0025]
[Table 2]
Figure 0003549707
[0026]
Example 3
Example 1 was repeated except that cement β was used instead of cement α. Table 3 shows the results.
[0027]
<Material used>
Cement β: Blast furnace cement manufactured by Denki Kagaku Kogyo Co., Ltd. (Class B)
[0028]
[Table 3]
Figure 0003549707
[0029]
Example 4
The procedure was performed in the same manner as in Example 1 except that the intumescent substance D was pulverized to have the maximum particle size shown in Table 4. The results are shown in Table 4.
[0030]
[Table 4]
Figure 0003549707
[0031]
Example 5
The expandable substance adjusted to the maximum particle size shown in Table 5 was used as a cement admixture, and 9 parts by weight of the cement admixture was mixed with 100 parts by weight of the binder, and the unit amount of each material was 430 kg / m 3 of the binder, aggregate 685kg / m 3, coarse aggregate 1,098kg / m 3, and the water 167 kg / m 3, relative to the binder 100 parts by weight of water reducing agent was blended 1 part by weight, water / binder ratio = 40 % And a fine aggregate rate of 39% were prepared.
Using a PC steel rod as the main reinforcement and a PC steel wire as the spiral reinforcement, place a tension-resistant core material with a reinforcement ratio of 0.4% in the formwork, place the prepared concrete, and cast the concrete by centrifugal force. A concrete tube having a length of 20 cm, a length of 25 cm, and a thickness of 40 mm ± 1 mm was formed.
After standing for 6 hours, the temperature was raised to 65 ° C. at a rate of 15 ° C./hr, maintained for 4 hours, allowed to cool naturally, and subjected to steam curing to remove the mold after 24 hours of age, and then to water at 20 ° C. After curing, the state of the tube end defect was observed, and the amount of prestress was measured. The results are also shown in Table 5.
[0032]
<Material used>
Fine aggregate: river sand from Himekawa, Niigata prefecture, 5 mm coarse aggregate: gravel from Himekawa river, Niigata prefecture, Gmax = 25 mm
[0033]
<Measurement method>
Missing condition of pipe end: Observation of missing condition of concrete pipe end when concrete pipe was dropped three times from a height of 1 m, ○: no missing, ×: missing Prestress: After curing, concrete pipe An external pressure is applied, and the strain is measured with a strain gauge previously attached to a spiral streak to measure the prestress amount at the age of 7 days.
[Table 5]
Figure 0003549707
[0035]
【The invention's effect】
By using the cement admixture of the present invention, it is possible to obtain a cement composition having good expandability and strength development properties, and the chemical prestressed concrete using the same has a large external pressure strength, and the effect that the concrete end is hardly chipped is obtained. To play.

Claims (3)

CaO原料と CaSO原料を配合し、熱処理してなり、 CaOと CaSOとを含有する鉱物からなり、CaOと CaSOの合計 100重量部中、10〜50重量部で、その最大粒径が100 μm以下である膨張物質を含有してなるセメント混和材。Blended CaO raw material and CaSO 4 material, it was heat-treated, made mineral containing a CaO and CaSO 4, in total 100 parts by weight of CaO and CaSO 4, 10 to 50 parts by weight, the maximum particle size A cement admixture containing an expanding substance having a particle size of 100 μm or less. セメントと請求項1記載のセメント混和材とを含有してなるセメント組成物。A cement composition comprising a cement and the cement admixture according to claim 1. 請求項2記載のセメント組成物を配合してなるセメント混練物を型枠内に打設充填し、成形し、養生してなるケミカルプレストレストコンクリート。A chemical prestressed concrete obtained by casting, kneading, molding, and curing a cement kneaded product containing the cement composition according to claim 2 in a mold.
JP15852997A 1997-06-16 1997-06-16 Cement admixture, cement composition, and chemical prestressed concrete using the same Expired - Lifetime JP3549707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15852997A JP3549707B2 (en) 1997-06-16 1997-06-16 Cement admixture, cement composition, and chemical prestressed concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15852997A JP3549707B2 (en) 1997-06-16 1997-06-16 Cement admixture, cement composition, and chemical prestressed concrete using the same

Publications (2)

Publication Number Publication Date
JPH1112006A JPH1112006A (en) 1999-01-19
JP3549707B2 true JP3549707B2 (en) 2004-08-04

Family

ID=15673732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15852997A Expired - Lifetime JP3549707B2 (en) 1997-06-16 1997-06-16 Cement admixture, cement composition, and chemical prestressed concrete using the same

Country Status (1)

Country Link
JP (1) JP3549707B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509339B2 (en) * 2000-09-18 2010-07-21 電気化学工業株式会社 Cement admixture and cement composition
JP4567211B2 (en) * 2001-01-29 2010-10-20 電気化学工業株式会社 Expandable material and cement composition
JP4937465B2 (en) * 2001-05-31 2012-05-23 電気化学工業株式会社 Cement admixture and cement composition
JP4559090B2 (en) * 2004-01-28 2010-10-06 太平洋マテリアル株式会社 Expandable admixture and method for producing the same
JP5052778B2 (en) * 2005-11-10 2012-10-17 電気化学工業株式会社 Expandable material, cement composition, and cement concrete using the same
JP4853619B2 (en) * 2005-11-29 2012-01-11 太平洋マテリアル株式会社 Expandable admixture for resin finish floor and its use
JP4679534B2 (en) * 2007-02-16 2011-04-27 電気化学工業株式会社 Expandable material, cement composition, and cement concrete using the same
JP4809278B2 (en) * 2007-03-27 2011-11-09 電気化学工業株式会社 Intumescent material, cement composition, and hardened cement body using the same

Also Published As

Publication number Publication date
JPH1112006A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP3549707B2 (en) Cement admixture, cement composition, and chemical prestressed concrete using the same
JP5271073B2 (en) Hardened concrete and concrete composition
JP5403496B2 (en) Hardened concrete and concrete composition
JP3747988B2 (en) Expandable material composition and expanded cement composition
JP3494238B2 (en) Cement admixture, cement composition, and chemical prestressed concrete using the same
JP3290790B2 (en) Cement admixture and cement composition
JP3549579B2 (en) Cement admixture and cement composition
JP3290781B2 (en) Chemical prestressed concrete
JP4567211B2 (en) Expandable material and cement composition
JP2001122650A (en) Cement admixture and cement composition
JP2515397B2 (en) Cement admixture and cement composition
JP4606632B2 (en) Cement admixture and cement composition
JP3390082B2 (en) Cement admixture and cement composition for grout
JPH1112009A (en) Cement admixture, cement composition and chemical prestressed concrete using the same
JP4606631B2 (en) Cement admixture and cement composition
JP3289855B2 (en) Cement admixture and cement composition
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
JP3390076B2 (en) Cement admixture and cement composition
JP3543274B2 (en) Concrete product and method for producing the same
JP3543272B2 (en) Concrete product and method for producing the same
JP3818808B2 (en) Cement admixture and cement composition
JP3289854B2 (en) Cement admixture and cement composition
JP3390080B2 (en) Cement admixture and cement composition for grout
JP3618117B2 (en) Static crushed material
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

EXPY Cancellation because of completion of term