JP4679534B2 - Expandable material, cement composition, and cement concrete using the same - Google Patents

Expandable material, cement composition, and cement concrete using the same Download PDF

Info

Publication number
JP4679534B2
JP4679534B2 JP2007035862A JP2007035862A JP4679534B2 JP 4679534 B2 JP4679534 B2 JP 4679534B2 JP 2007035862 A JP2007035862 A JP 2007035862A JP 2007035862 A JP2007035862 A JP 2007035862A JP 4679534 B2 JP4679534 B2 JP 4679534B2
Authority
JP
Japan
Prior art keywords
raw material
less
expansion
particle size
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007035862A
Other languages
Japanese (ja)
Other versions
JP2008201592A (en
Inventor
健太郎 栖原
公伸 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007035862A priority Critical patent/JP4679534B2/en
Publication of JP2008201592A publication Critical patent/JP2008201592A/en
Application granted granted Critical
Publication of JP4679534B2 publication Critical patent/JP4679534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に土木・建築分野において使用される膨張材、セメント組成物、及びそれを用いたセメントコンクリートに関するものである。   The present invention relates to an expansion material, a cement composition, and cement concrete using the same, mainly used in the field of civil engineering and construction.

コンクリート構造物のひび割れ抑制は、耐久性の向上、美観、及び維持補修コストの低減等の面から重要である。   Inhibiting cracks in concrete structures is important from the standpoints of improving durability, aesthetics, and reducing maintenance and repair costs.

これまでに、コンクリートのひび割れを抑制する方法が種々提案されており、なかでも膨張材はその中心的な役割を担っている。   So far, various methods for suppressing cracks in concrete have been proposed, and in particular, the expandable material plays a central role.

コンクリート用の膨張材としては、例えば、遊離石灰−アウイン−無水石膏系膨張材や遊離石灰−カルシウムシリケート−無水石膏系膨張材が一般的に知られており、最近では、従来よりも少ない添加量でコンクリートのひび割れを低減できる高性能型膨張材も開発されている(特許文献1、特許文献2参照)。
また、特定の粒度構成に調整した生石灰粒を膨張材として使用することが提案されている(特許文献3、特許文献4、及び特許文献5参照)。
As expansion materials for concrete, for example, free lime-auin-anhydrite expansion material and free lime-calcium silicate-anhydrite expansion material are generally known. A high-performance expansion material that can reduce cracks in concrete has also been developed (see Patent Document 1 and Patent Document 2).
In addition, it has been proposed to use quick lime grains adjusted to a specific particle size configuration as an expansion material (see Patent Document 3, Patent Document 4, and Patent Document 5).

しかしながら、いずれも、最大粒径、90μm以上の粒子の量、及びブレーン比表面積を規定し、ポップアウトを防止することについては全く言及されていない。   However, none of them mentions the definition of the maximum particle size, the amount of particles of 90 μm or more, and the specific surface area of Blaine to prevent pop-out.

特開平07−232944号公報Japanese Patent Application Laid-Open No. 07-232944 特開平14−226243号公報JP-A-14-226243 特開2005−162564号公報JP 2005-162564 A 特開2005−213072号公報Japanese Patent Laid-Open No. 2005-213072 特開2006−181895号公報JP 2006-181895 A

近年では、耐久性の観点から、膨張コンクリートによるひび割れの低減が重要視されている。
一方、膨張コンクリートの表面は、膨張材粒子のポップアウトにより、大きさが10mm以下の微視的な凹凸が現れる場合があり、美観を損なうことがある。
特許文献2は、水酸化カルシウムを添加することで、膨張材の凝集による局所的なポップアウトの発生を防止するものであり、美観を損なう微視的な凹凸を防止するものではない。
また、単に粗い粒子を除去しただけでは微視的なポップアウトによる美観の低下を低減することは可能であるが、所定の膨張率を確保できないなどの課題があった。
In recent years, from the viewpoint of durability, reduction of cracks due to expanded concrete is regarded as important.
On the other hand, the surface of the expanded concrete may have microscopic irregularities with a size of 10 mm or less due to pop-out of the expanded material particles, which may impair the appearance.
Patent Document 2 prevents the occurrence of local pop-out due to the aggregation of the expansion material by adding calcium hydroxide, and does not prevent microscopic unevenness that impairs the aesthetic appearance.
In addition, it is possible to reduce a decrease in aesthetics due to microscopic pop-out simply by removing coarse particles, but there is a problem that a predetermined expansion rate cannot be secured.

本発明者は、特定の粒度構成を付与した膨張材を使用することによって、大きさが10mm以下の微視的な凹凸がコンクリート表面に現れるポップアウトを防止でき、かつ、所定の膨張率が確保できることを知見し、本発明を完成するに至った。   The present inventor can prevent the pop-out in which microscopic irregularities having a size of 10 mm or less appear on the concrete surface by using an expansion material having a specific particle size configuration, and ensure a predetermined expansion rate. As a result, the present invention has been completed.

即ち、本発明は、CaO原料、Al 2 O 3 原料、Fe 2 O 3 原料、SiO 2 原料、及びCaSO 4 原料を配合し、1,100〜1,600℃で熱処理することにより調製してなり、かつ、遊離石灰と無水石膏とを有効成分し、最大粒径が200μm以下、90μm以上の粒子が10%超、ブレーン比表面積が3,500cm2/g以下である膨張材であり、CaO原料、Al 2 O 3 原料、Fe 2 O 3 原料、SiO 2 原料、及びCaSO 4 原料を配合し、1,100〜1,600℃で熱処理することにより調製してなり、かつ、遊離石灰と、無水石膏と、アウイン、カルシウムシリケート、及びカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物とを有効成分とし、最大粒径が200μm以下、90μm以上の粒子が10%超、ブレーン比表面積が3,500cm2/g以下である膨張材であり、CaO原料、Al 2 O 3 原料、Fe 2 O 3 原料、SiO 2 原料、及びCaSO 4 原料を配合し、1,100〜1,600℃で熱処理することにより調製してなり、かつ、遊離石灰と、無水石膏と、アウインと、カルシウムシリケートと、カルシウムアルミノフェライトとを有効成分とし、最大粒径が200μm以下、90μm以上の粒子が10%超、ブレーン比表面積が3,500cm2/g以下である膨張材であり、ブレーン比表面積が3,000cm2/g以下である該膨張材であり、90μm以上の粒子が10.5%以上である該膨張材であり、最大粒径が、篩いでふるって、全量が通過せず、篩い残量が0.1%以下の場合の篩い目の大きさである該膨張材であり遊離石灰が、膨張材100部中、10〜70部である該膨張材であり、セメントと、該膨張材とを含有してなるセメント組成物であり、該セメント組成物を用いてなるセメントコンクリートでる。 That is, the present invention is prepared by blending a CaO raw material, an Al 2 O 3 raw material, an Fe 2 O 3 raw material, an SiO 2 raw material, and a CaSO 4 raw material, and heat-treating at 1,100 to 1,600 ° C. and active ingredients of lime and anhydrous gypsum, the maximum particle size of 200μm or less, 90 [mu] m or more of the particles greater than 10%, an expansion material Blaine specific surface area is less 3,500cm 2 / g, CaO material, Al 2 O 3 It is prepared by blending raw materials, Fe 2 O 3 raw materials, SiO 2 raw materials, and CaSO 4 raw materials, and heat-treating at 1,100 to 1,600 ° C., and free lime, anhydrous gypsum, auin, calcium silicate, and One or two or more hydraulic compounds selected from the group consisting of calcium aluminoferrites are used as active ingredients, the maximum particle size is 200 μm or less, the particle size of 90 μm or more exceeds 10%, and the specific surface area of Blaine is 3,500 cm 2 / g Expandable materials that are: CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and C It is prepared by blending aSO 4 raw materials and heat-treating at 1,100 to 1,600 ° C., and has free lime, anhydrous gypsum, auin, calcium silicate, and calcium aluminoferrite as active ingredients, and the maximum particle size 200 μm or less, 90 μm or more particles are more than 10%, Blaine specific surface area is 3,500 cm 2 / g or less, the Blaine specific surface area is 3,000 cm 2 / g or less, the expansion material is 90 μm or more In the expansion material, the maximum particle size of which is 10.5% or more, and the maximum particle size is sieved when the total amount does not pass through the sieve and the remaining amount of the sieve is 0.1% or less. Yes , free lime is the expansive material which is 10 to 70 parts in 100 parts of the expansive material, is a cement composition containing cement and the expansive material, and uses the cement composition Ru Oh cement concrete.

本発明の膨張材を使用することによって、大きさが10mm以下の微視的な凹凸がコンクリート表面に現れるポップアウトが生じず、従来の膨張材と同等以上の膨張性を付与できる。   By using the expandable material of the present invention, there is no pop-out in which microscopic irregularities having a size of 10 mm or less appear on the concrete surface, and an expandability equivalent to or higher than that of a conventional expandable material can be imparted.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定のない限り質量基準で示す。
また、本発明でいうセメントコンクリートとは、セメントペースト、モルタル、及びコンクリートを総称するものである。
Hereinafter, the present invention will be described in detail.
In the present invention, “part” and “%” are based on mass unless otherwise specified.
Moreover, the cement concrete as used in this invention is a general term for cement paste, mortar, and concrete.

本発明で使用する膨張材は、最大粒径が300μm以下で、90μm以上の粒子が10%超で、ブレーン比表面積が3,500cm2/g以下のものである。
膨張材の最大粒径は、300μm以下であり、250μm以下が好ましく、200μm以下がより好ましい。最大粒径が300μmを超えると、ポップアウトによりコンクリート表面に微視的な凹凸が形成され、美観上好ましくない。
また、本発明の膨張材は、その90μm以上の粒子が10%超である。90μm以上の粒子が10%以下では、膨張率が大きく低下するおそれがある。
そして、本発明の膨張材のブレーン比表面積は、3,500cm2/g以下であり、3,000cm2/g以下が好ましい。ブレーン比表面積が3,500cm2/gを超えると、所定の膨張が確保できなくなるおそれがある。
ここで、最大粒径とは、粒径の最大値であって、例えば、篩いでふるって、全量が通過せず、篩い残量が0.1%以下の場合の篩い目の大きさとすることが可能である。
The expansion material used in the present invention has a maximum particle size of 300 μm or less, particles having a particle size of 90 μm or more exceeding 10%, and a brain specific surface area of 3,500 cm 2 / g or less.
The maximum particle size of the expansion material is 300 μm or less, preferably 250 μm or less, and more preferably 200 μm or less. When the maximum particle size exceeds 300 μm, microscopic irregularities are formed on the concrete surface due to pop-out, which is not preferable in terms of aesthetics.
In addition, in the expandable material of the present invention, the particle size of 90 μm or more exceeds 10%. When the particle size of 90 μm or more is 10% or less, the expansion rate may be greatly reduced.
The Blaine specific surface area of the expansion material of the present invention is less 3,500cm 2 / g, preferably 3,000 cm 2 / g or less. If the Blaine specific surface area exceeds 3,500 cm 2 / g, there is a possibility that a predetermined expansion cannot be secured.
Here, the maximum particle size is the maximum value of the particle size. For example, the maximum particle size can be set to the size of the sieve when the entire amount does not pass through the sieve and the remaining amount of the sieve is 0.1% or less. is there.

膨張材のブレーン比表面積の測定は、JIS R 5201「セメントの物理試験方法」に従って測定することが可能である。また、粒度の測定は、社団法人セメント協会によるJCAS K-03-1996「エア・ジェット式ふるい装置によるセメントの粉末度試験方法」に従って測定することが可能である。なお、JIS R 5201「セメントの物理試験方法」に記載の網ふるい試験方法でも測定することが可能である。   The Blaine specific surface area of the expanded material can be measured according to JIS R 5201 “Cement physical test method”. The particle size can be measured according to JCAS K-03-1996 “Method of testing the fineness of cement using an air-jet sieve device” by the Japan Cement Association. It can also be measured by the mesh sieve test method described in JIS R 5201 “Cement physical test method”.

本発明で使用する膨張材は、CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料等を所定量配合して、熱処理し、遊離石灰と、無水石膏と、アウイン、カルシウムシリケート、及びカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物とを鉱物として含有するクリンカーを合成したものである。遊離石灰、無水石膏、及び水硬性化合物を単に混合しても、本発明の膨張材として使用可能ではあるが、優れた膨張性能を得るためには、熱処理して、遊離石灰、無水石膏、及び水硬性化合物が全部、一度にクリンカーとして生成するようにすることが好ましい。 The expansion material used in the present invention is a predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, CaSO 4 raw material, etc., heat treated, free lime, anhydrous gypsum and , A clinker containing one or more hydraulic compounds selected from the group consisting of Auin, calcium silicate, and calcium aluminoferrite as a mineral. Simply mixing free lime, anhydrous gypsum, and hydraulic compound can be used as the expansion material of the present invention, but in order to obtain excellent expansion performance, heat treatment is performed to obtain free lime, anhydrous gypsum, and It is preferred that all hydraulic compounds be produced as clinker at once.

本発明の膨張材に使用されるクリンカーを製造する際の熱処理温度は特に限定されるものではないが、1,100〜1,600℃が好ましく、1,200〜1,500℃がより好ましい。1,100℃未満では、得られた膨張材の膨張性能が充分ではなくなるおそれがあり、1,600℃を超えると無水石膏が分解するおそれがある。   The heat treatment temperature for producing the clinker used for the expansion material of the present invention is not particularly limited, but is preferably 1,100 to 1,600 ° C, more preferably 1,200 to 1,500 ° C. If it is less than 1,100 ° C., the resulting expansion material may not have sufficient expansion performance, and if it exceeds 1,600 ° C., anhydrous gypsum may be decomposed.

ここで、CaO原料としては石灰石や消石灰等が挙げられ、Al2O3原料としてはボーキサイトやアルミ残灰等が挙げられ、Fe2O3原料としては銅カラミ、鉄粉、及び市販の酸化鉄等が挙げられ、SiO2原料としては市販の二酸化ケイ素や珪石等が挙げられ、CaSO4原料としては二水石膏、半水石膏、及び無水石膏等が挙げられる。
これら原料中には各種の不純物が存在する。不純物の具体例としては、Na2O、K2O、MgO、TiO2、及びP2O5などが挙げられるが、本発明の目的を実質的に阻害しない範囲では特に問題とはならない。
Here, examples of the CaO raw material include limestone and slaked lime, examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash, and examples of the Fe 2 O 3 raw material include copper calami, iron powder, and commercially available iron oxide. Examples of the SiO 2 raw material include commercially available silicon dioxide and silica stone, and examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum.
Various impurities are present in these raw materials. Specific examples of the impurity include Na 2 O, K 2 O, MgO, TiO 2 , and P 2 O 5 , but there is no particular problem as long as the object of the present invention is not substantially inhibited.

本発明の膨張材は、遊離石灰と、無水石膏と、アウイン、カルシウムシリケート、及びカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物とを鉱物として含有するものが好ましい。   The expansion material of the present invention preferably contains free lime, anhydrous gypsum, one or more hydraulic compounds selected from the group consisting of Auin, calcium silicate, and calcium aluminoferrite as minerals.

本発明の膨張材中の無水石膏は特に限定されるものではなく、I型、II型、又はIII型のいずれの形態のものも使用可能である。   The anhydrous gypsum in the intumescent material of the present invention is not particularly limited, and any form of type I, type II, or type III can be used.

アウインとは、一般的に、3CaO・3Al2O3・CaSO4で表されるものである。
また、カルシウムシリケート(以下、C3Sという)とは、CaO−SiO2系を総称するものであり特に限定されるものではないが、一般的に、2CaO・SiO2や3CaO・SiO2がよく知られている。通常は、3CaO・SiO2として存在していると考えられる。
さらに、カルシウムアルミノフェライト(以下、C4AFという)とは、CaO−Al2O3−Fe2O3系を総称するものであり特に限定されるものではないが、一般的に、4CaO・Al2O3・Fe2O3や6CaO・Al2O3・2Fe2O3などの化合物がよく知られている。通常は、4CaO・Al2O3・Fe2O3として存在していると考えられる。
Auin is generally represented by 3CaO.3Al 2 O 3 .CaSO 4 .
Calcium silicate (hereinafter referred to as C 3 S) is a general term for CaO—SiO 2 system and is not particularly limited, but generally 2CaO · SiO 2 and 3CaO · SiO 2 are often used. Are known. Usually, it is considered to exist as 3CaO · SiO 2 .
Further, calcium aluminoferrite (hereinafter referred to as C 4 AF) is a generic term for the CaO—Al 2 O 3 —Fe 2 O 3 system and is not particularly limited, but generally 4CaO · Al compounds such as 2 O 3 · Fe 2 O 3 and 6CaO · Al 2 O 3 · 2Fe 2 O 3 are well known. Normally, it is considered to be present as 4CaO · Al 2 O 3 · Fe 2 O 3.

本発明では、膨張材100部中の、遊離石灰、無水石膏、アウイン、カルシウムシリケート、及びカルシウムアルミノフェライトの含有量は、用途によって異なるため特に限定されるものではないが、遊離石灰は、膨張材100部中、10〜70部が好ましく、30〜50部がより好ましい。70部を超えるとコンクリートの流動性が低下するおそれがある。
また、無水石膏は、膨張材100部中、10〜50部が好ましく、20〜40部がより好ましい。この範囲外では優れた膨張性能が得られなくなるおそれがある。
さらに、アウインは5〜50部が好ましく、10〜30部がより好ましい。そして、カルシウムシリケートやカルシウムアルミノフェライトは5〜20部が好ましく、10〜15部がより好ましい。この範囲より少ない場合には貯蔵安定性が悪くなるおそれがあり、この範囲より多いと膨張量が不足するおそれがある。
In the present invention, the content of free lime, anhydrous gypsum, Auin, calcium silicate, and calcium aluminoferrite in 100 parts of the expansion material is not particularly limited because it varies depending on the application. In 100 parts, 10 to 70 parts are preferable, and 30 to 50 parts are more preferable. If it exceeds 70 parts, the fluidity of the concrete may decrease.
The anhydrous gypsum is preferably 10 to 50 parts, more preferably 20 to 40 parts, in 100 parts of the expansion material. Outside this range, there is a possibility that excellent expansion performance cannot be obtained.
Furthermore, 5-50 parts are preferable, and 10-30 parts are more preferable. The calcium silicate and calcium aluminoferrite are preferably 5 to 20 parts, more preferably 10 to 15 parts. When the amount is less than this range, the storage stability may be deteriorated. When the amount is more than this range, the expansion amount may be insufficient.

本発明の膨張材に所定量の鉱物が含有量されているかどうかは、次に示すX線回折リートベルト法等よって定量可能である。
例えば、粉砕した膨張材に、酸化アルミニウムや酸化マグネシウムなどの内部標準物質を所定量添加し、めのう乳鉢で充分混合したのち、粉末X線回折測定を実施することで測定可能であり、測定結果を、例えば、Sietronics社の「SIROQUANT」を用いて解析することが可能である。
Whether or not a predetermined amount of mineral is contained in the expansion material of the present invention can be quantified by the following X-ray diffraction Rietveld method or the like.
For example, it can be measured by adding a predetermined amount of an internal standard substance such as aluminum oxide or magnesium oxide to the pulverized expansion material, mixing it well in an agate mortar, and then performing powder X-ray diffraction measurement. For example, it is possible to analyze using “SIROQUANT” of Sietronics.

本発明の膨張材の配合量は目的によって異なるため特に限定されるものではないが、通常、セメントと膨張材の合計100部中、3〜10部が好ましく、5〜7部がより好ましい。膨張材の配合量が多すぎると膨張量が大きすぎて強度低下を引き起こすおそれがあり、逆に、少なすぎると所定のひび割れ抑制効果が得られなくなるおそれがある。   The amount of the expansion material of the present invention is not particularly limited because it varies depending on the purpose, but usually 3 to 10 parts are preferable and 5 to 7 parts are more preferable in a total of 100 parts of cement and expansion material. If the amount of the expanding material is too large, the amount of expansion may be too large and the strength may be reduced. Conversely, if the amount is too small, the predetermined crack suppressing effect may not be obtained.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱等各種ポルトランドセメント、これらポルトランドセメントに、高炉水砕スラグ、高炉徐冷スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末等を混合したフィラーセメント、並びに、エコセメントなどが挙げられ、これらのうちの一種又は二種以上が使用可能である。   As the cement used in the present invention, various portland cements such as normal, early strength, ultra-early strength, low heat, and moderate heat, mixed with blast furnace granulated slag, blast furnace slow-cooled slag, fly ash, or silica are mixed with these Portland cements. Various mixed cements, filler cements mixed with limestone powder, and eco-cement can be used, and one or more of these can be used.

本発明では、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、AE減水剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、粉末ポリマー、凝結調整剤、デキストリンなどの糖類、セメント急硬材、ベントナイトやゼオライトなどの粘土鉱物、及びハイドロタルサイトなどのアニオン交換体等のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で使用することが可能である。   In the present invention, a water reducing agent, a high performance water reducing agent, an AE water reducing agent, a high performance AE water reducing agent, a fluidizing agent, an AE water reducing agent, an antifoaming agent, a thickener, a rust preventive, a defrosting agent, a shrinkage reducing agent, a high One or more of molecular emulsions, powder polymers, setting modifiers, sugars such as dextrin, cement hardeners, clay minerals such as bentonite and zeolite, and anion exchangers such as hydrotalcite, etc. It is possible to use in the range which does not inhibit substantially the objective of this.

本発明の膨張材をコンクリートと配合する際の混合装置としては、既存のいかなる装置も使用可能であり、例えば、強制二軸ミキサ、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどが挙げられる。   Any existing device can be used as a mixing device for blending the expandable material of the present invention with concrete. For example, a forced biaxial mixer, a tilting drum mixer, an omni mixer, a Henschel mixer, a V-type mixer, a nauta mixer, etc. Is mentioned.

本発明のコンクリートの養生方法は特に限定されるものではなく、屋外養生、水中養生、気中乾燥養生、蒸気養生、及びオートクレーブ養生等を採用することが可能である。   The concrete curing method of the present invention is not particularly limited, and outdoor curing, underwater curing, air drying curing, steam curing, autoclave curing, and the like can be employed.

以下、実施例、比較例をあげてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

実験例1
CaO原料として試薬1級炭酸カルシウムを、Al2O3原料として試薬1級酸化アルミニウムを、Fe2O3原料として試薬1級酸化第二鉄を、SiO2原料として試薬1級二酸化ケイ素を、及びCaSO4原料として試薬1級二水石膏を所定量配合して、混合粉砕した後、電気炉を用いて、1,350℃で3時間熱処理し、遊離石灰50部、無水石膏30部、アウイン10部、C3S5部、及びC4AF5部のクリンカーを合成し、表1に示す粒度構成に粉砕し、膨張材を調製した。
各材料の単位量を、水170kg/m3、セメント298kg/m3、膨張材20kg/m3、細骨材807kg/m3、及び粗骨材997kg/m3とし、水/(セメント+膨張材)比53.5%、細骨材率45%、及び空気量4.5%とし、減水剤をセメントと膨張材の合計100部に対して、0.4部配合してコンクリートを調製した。
調製したコンクリートの長さ変化率とポップアウトの有無とを評価した。結果を表1に併記する。
Experimental example 1
Reagent primary calcium carbonate as CaO raw material, Reagent primary aluminum oxide as Al 2 O 3 raw material, Reagent primary ferric oxide as Fe 2 O 3 raw material, Reagent primary silicon dioxide as SiO 2 raw material, and After mixing a predetermined amount of reagent grade 1 dihydrate gypsum as CaSO 4 raw material, mixing and pulverizing, heat treatment at 1,350 ° C for 3 hours using an electric furnace, free lime 50 parts, anhydrous gypsum 30 parts, Auin 10 parts, Clinkers of 5 parts of C 3 S and 5 parts of C 4 AF were synthesized and pulverized to the particle size constitution shown in Table 1 to prepare an expansion material.
The unit quantity of each material, water 170 kg / m 3, cement 298 kg / m 3, the expansion member 20 kg / m 3, the fine aggregate 807kg / m 3, and coarse aggregate 997kg / m 3, water / (cement + expansion The material was 53.5%, the fine aggregate ratio was 45%, and the amount of air was 4.5%. Concrete was prepared by blending 0.4 parts of the water reducing agent with respect to 100 parts of cement and expansion material in total.
The length change rate of the prepared concrete and the presence or absence of pop-out were evaluated. The results are also shown in Table 1.

<使用材料>
セメント :普通ポルトランドセメント、電気化学工業社製
細骨材 :姫川水系産川砂、比重2.62
粗骨材 :姫川水系産川砂利、比重2.65
減水剤 :市販ポリカルボン酸塩系高性能AE減水剤
水 :水道水
<Materials used>
Cement: Ordinary Portland cement, fine aggregate manufactured by Denki Kagaku Kogyo Co., Ltd .: River sand from Himekawa Water System, specific gravity 2.62
Coarse aggregate: Himekawa water system river gravel, specific gravity 2.65
Water reducing agent: Commercially available polycarboxylate-based high performance AE water reducing agent water: Tap water

<測定方法>
長さ変化率:JIS A 6202に準じて材齢7日の長さ変化率を測定。評価は、長さ変化率が200×10-6以上を良、150×10-6以上、200×10-6未満を可、150×10-6未満を不可とした。
ポップアウトの評価:コンクリートを幅20cm、長さ20cm、高さ10cmの型枠に詰め、表面観察により、ポップアウトの有無を確認した。評価は、ポップアウトの発生数が2個未満を優、2個以上、10個未満を良、10個以上、20個未満を可、20個以上を不可とした。
<Measurement method>
Length change rate: Measure the rate of change in length of 7 days of age according to JIS A 6202. In the evaluation, a length change rate of 200 × 10 −6 or more was judged good, 150 × 10 −6 or more, less than 200 × 10 −6 was allowed, and less than 150 × 10 −6 was not accepted.
Evaluation of pop-out: Concrete was packed in a 20 cm wide, 20 cm long and 10 cm high formwork, and the presence of pop-out was confirmed by surface observation. In the evaluation, the number of occurrences of pop-out was excellent when it was less than 2, excellent when 2 or more, and less than 10, good when 10 or less, but less than 20, allowed 20 or more.




実験例2
実験例1で合成したクリンカーを粉砕して、最大粒径が200μm、90μm以上の粒子(90μmの篩残分)が16%、ブレーン比表面積が3,300cm2/gの膨張材を調製した。
セメントと膨張材の合計100部中、表2に示す膨張材を使用したこと以外は、実験例1と同様に行った。結果を表2に併記する。
比較のため、従来市販の膨張材を使用して実験を行った。結果を表2に併記する。
Experimental example 2
The clinker synthesized in Experimental Example 1 was pulverized to prepare an expanded material having a maximum particle size of 200 μm, particles having a size of 90 μm or more (90 μm sieve residue) of 16%, and a Blaine specific surface area of 3,300 cm 2 / g.
The experiment was performed in the same manner as in Experimental Example 1 except that the expansion material shown in Table 2 was used in 100 parts of the cement and the expansion material. The results are also shown in Table 2.
For comparison, an experiment was conducted using a commercially available expansion material. The results are also shown in Table 2.

実験例3
CaO原料、Al2O3原料、Fe2O3原料、SiO2原料、及びCaSO4原料を所定量配合して表3に示す鉱物を有するクリンカーを合成し、粉砕して、最大粒径が200μm、90μmの篩残分が12%、ブレーン比表面積が2,900cm2/gの膨張材を調製したこと以外は実験例1と同様に行った。結果を表3に併記する。
Experimental example 3
A predetermined amount of CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material is blended, and a clinker having the minerals shown in Table 3 is synthesized, pulverized, and a maximum particle size of 200 μm. The same procedure as in Experimental Example 1 was conducted except that an expanded material having a sieve residue of 90 μm of 12% and a brain specific surface area of 2,900 cm 2 / g was prepared. The results are also shown in Table 3.

本発明の膨張材を用いることによって、大きさが10mm以下の微視的な凹凸がコンクリート表面に現れるポップアウトが生じにくく、コンクリート表面の仕上がりが良好で、従来の膨張材と同等以上の膨張性を付与することが可能であり、コンクリートを使用する土木・建築分野で利用できる。   By using the expandable material of the present invention, pop-outs with microscopic irregularities of 10 mm or less appearing on the concrete surface are unlikely to occur, the finish of the concrete surface is good, and the expandability is equal to or better than conventional expandable materials Can be applied, and can be used in the field of civil engineering and construction using concrete.

Claims (9)

CaO原料、Al 2 O 3 原料、Fe 2 O 3 原料、SiO 2 原料、及びCaSO 4 原料を配合し、1,100〜1,600℃で熱処理することにより調製してなり、かつ、遊離石灰と無水石膏とを有効成分し、最大粒径が200μm以下、90μm以上の粒子が10%超、ブレーン比表面積が3,500cm2/g以下である膨張材。 It is prepared by blending CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, and heat-treating at 1,100 to 1,600 ° C, and free lime and anhydrous gypsum. An expandable material which is an active ingredient and has a maximum particle size of 200 μm or less, 90 μm or more of particles over 10% and a Blaine specific surface area of 3,500 cm 2 / g or less CaO原料、Al 2 O 3 原料、Fe 2 O 3 原料、SiO 2 原料、及びCaSO 4 原料を配合し、1,100〜1,600℃で熱処理することにより調製してなり、かつ、遊離石灰と、無水石膏と、アウイン、カルシウムシリケート、及びカルシウムアルミノフェライトからなる群より選ばれた一種又は二種以上の水硬性化合物とを有効成分とし、最大粒径が200μm以下、90μm以上の粒子が10%超、ブレーン比表面積が3,500cm2/g以下である膨張材。 It is prepared by blending CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, and heat-treating at 1,100 to 1,600 ° C., and free lime, anhydrous gypsum and One or two or more hydraulic compounds selected from the group consisting of auin, calcium silicate, and calcium aluminoferrite are effective ingredients, and the maximum particle size is 200 μm or less, the particle size of 90 μm or more is more than 10%, and the brain ratio An expanding material having a surface area of 3,500 cm 2 / g or less. CaO原料、Al 2 O 3 原料、Fe 2 O 3 原料、SiO 2 原料、及びCaSO 4 原料を配合し、1,100〜1,600℃で熱処理することにより調製してなり、かつ、遊離石灰と、無水石膏と、アウインと、カルシウムシリケートと、カルシウムアルミノフェライトとを有効成分とし、最大粒径が200μm以下、90μm以上の粒子が10%超、ブレーン比表面積が3,500cm2/g以下である膨張材。 It is prepared by blending CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material, SiO 2 raw material, and CaSO 4 raw material, and heat-treating at 1,100 to 1,600 ° C., and free lime, anhydrous gypsum and An expanded material containing Auin, calcium silicate, and calcium aluminoferrite as active ingredients, having a maximum particle size of 200 μm or less, a particle size of 90 μm or more exceeding 10%, and a brain specific surface area of 3,500 cm 2 / g or less. ブレーン比表面積が3,000cm2/g以下である請求項1〜請求項3のうちのいずれか一項に記載の膨張材。 The expansion material according to any one of claims 1 to 3, wherein the specific surface area of the brain is 3,000 cm 2 / g or less. 90μm以上の粒子が10.5%以上である請求項1〜請求項4のうちのいずれか一項に記載の膨張材。 The expansion material according to any one of claims 1 to 4, wherein particles having a size of 90 µm or more are 10.5% or more. 最大粒径が、篩いでふるって、全量が通過せず、篩い残量が0.1%以下の場合の篩い目の大きさである請求項1〜請求項5のうちのいずれか一項に記載の膨張材。 The expansion according to any one of claims 1 to 5, wherein the maximum particle size is the size of the sieve mesh when the sieve is sieved so that the entire amount does not pass through and the remaining amount of the sieve is 0.1% or less. Wood. 遊離石灰が、膨張材100部中、10〜70部である請求項1〜請求項のうちのいずれか一項に記載の膨張材。 Free lime is 10-70 parts in 100 parts of expansion | swelling materials, The expansion | swelling material as described in any one of Claims 1-6 . セメントと、請求項1〜請求項のうちのいずれか一項に記載の膨張材とを含有してなるセメント組成物。 A cement composition comprising cement and the expansion material according to any one of claims 1 to 7 . 請求項に記載のセメント組成物を用いてなるセメントコンクリート。 Cement concrete using the cement composition according to claim 8 .
JP2007035862A 2007-02-16 2007-02-16 Expandable material, cement composition, and cement concrete using the same Active JP4679534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035862A JP4679534B2 (en) 2007-02-16 2007-02-16 Expandable material, cement composition, and cement concrete using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035862A JP4679534B2 (en) 2007-02-16 2007-02-16 Expandable material, cement composition, and cement concrete using the same

Publications (2)

Publication Number Publication Date
JP2008201592A JP2008201592A (en) 2008-09-04
JP4679534B2 true JP4679534B2 (en) 2011-04-27

Family

ID=39779489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035862A Active JP4679534B2 (en) 2007-02-16 2007-02-16 Expandable material, cement composition, and cement concrete using the same

Country Status (1)

Country Link
JP (1) JP4679534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105870A (en) * 2008-10-31 2010-05-13 Taiheiyo Materials Corp Expansive composition and expansive material
JP5768430B2 (en) * 2011-03-24 2015-08-26 宇部興産株式会社 High flow mortar composition
JP5785429B2 (en) * 2011-04-25 2015-09-30 電気化学工業株式会社 Cement admixture and cement composition
JP5940807B2 (en) * 2011-12-26 2016-06-29 太平洋マテリアル株式会社 Intumescent composition and concrete
JP2020055696A (en) * 2017-02-14 2020-04-09 デンカ株式会社 Geopolymer composition and mortar and concrete using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112006A (en) * 1997-06-16 1999-01-19 Denki Kagaku Kogyo Kk Cement admixture, cement composition and chemical prestressed concrete using the same
JP2001122649A (en) * 1999-10-22 2001-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2002293592A (en) * 2001-03-29 2002-10-09 Denki Kagaku Kogyo Kk Cement admixture ahd cement composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517171B1 (en) * 1971-06-26 1976-03-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112006A (en) * 1997-06-16 1999-01-19 Denki Kagaku Kogyo Kk Cement admixture, cement composition and chemical prestressed concrete using the same
JP2001122649A (en) * 1999-10-22 2001-05-08 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2002293592A (en) * 2001-03-29 2002-10-09 Denki Kagaku Kogyo Kk Cement admixture ahd cement composition

Also Published As

Publication number Publication date
JP2008201592A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP3894780B2 (en) Cement grout composition
JP4679534B2 (en) Expandable material, cement composition, and cement concrete using the same
JP4809278B2 (en) Intumescent material, cement composition, and hardened cement body using the same
JP3960718B2 (en) Cement admixture and cement composition
JP4937468B2 (en) Cement admixture and cement composition
JP3960717B2 (en) Cement admixture and cement composition
JP4244261B2 (en) Cement admixture and cement composition
JP2001163651A (en) Grouting cement admixture and cement composition
JP4567211B2 (en) Expandable material and cement composition
JP3747988B2 (en) Expandable material composition and expanded cement composition
JP2001122650A (en) Cement admixture and cement composition
JP4744678B2 (en) Cement admixture and cement composition
JP4131795B2 (en) Cement admixture and cement composition
JP4606631B2 (en) Cement admixture and cement composition
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
JP4459379B2 (en) Cement admixture and cement composition
JP4527269B2 (en) Cement admixture and cement composition
JP4459380B2 (en) Cement admixture and cement composition
JP4642201B2 (en) Cement admixture and cement composition
JP5744498B2 (en) Cement rapid hardwood manufacturing method
JP4514319B2 (en) Cement admixture and cement composition
JP4498592B2 (en) Cement admixture and cement composition
JP4335424B2 (en) Cement admixture and cement composition
JP4244264B2 (en) Cement admixture and cement composition
JP7260998B2 (en) Expansive composition, cement composition and cement-concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110201

R150 Certificate of patent or registration of utility model

Ref document number: 4679534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250