JP4249176B2 - Determination method of primary water volume in split kneading method - Google Patents

Determination method of primary water volume in split kneading method Download PDF

Info

Publication number
JP4249176B2
JP4249176B2 JP2005364547A JP2005364547A JP4249176B2 JP 4249176 B2 JP4249176 B2 JP 4249176B2 JP 2005364547 A JP2005364547 A JP 2005364547A JP 2005364547 A JP2005364547 A JP 2005364547A JP 4249176 B2 JP4249176 B2 JP 4249176B2
Authority
JP
Japan
Prior art keywords
water
powder
cement
ratio
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005364547A
Other languages
Japanese (ja)
Other versions
JP2007168086A (en
Inventor
清一 櫻井
智 門倉
晃一 高野
Original Assignee
リブコンエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リブコンエンジニアリング株式会社 filed Critical リブコンエンジニアリング株式会社
Priority to JP2005364547A priority Critical patent/JP4249176B2/en
Publication of JP2007168086A publication Critical patent/JP2007168086A/en
Application granted granted Critical
Publication of JP4249176B2 publication Critical patent/JP4249176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Description

本発明は、コンクリート製造方法における分割練り混ぜ工法で得られるモルタルやコンクリートについて、トルク試験を行うことなく一次水量を決定するようにした一次水量決定方法に関する。   The present invention relates to a primary water amount determination method for determining a primary water amount without performing a torque test on mortar and concrete obtained by a divided kneading method in a concrete manufacturing method.

従来、モルタルやコンクリートは細骨材、粗骨材、セメント、水等からなり、これらの複合混合物は各種土木、建築工事等に広く利用されている。これら複合混合物の製造に際して、各種の材料を一度に投入して混合すると、製造された混合物の硬化までの間にブリーディングが生じたり、混合物の流動摩擦が大きくてポンプ圧送性が劣ったり、圧縮強度や付着強度の変動が大きくなる等の不具合があった。
このような欠点を改善したモルタルやコンクリートの製造方法として、例えば下記特許文献1、2、3に記載された分割練り混ぜ工法(SEC(登録商標)工法)が提案されている。この工法によれば、細骨材(粗骨材を含んでいてもよい)からなる骨材に一次水を加えて調整練りを行うことで各骨材の全周に水分を均等に付着させ、その後所要量のセメントを加えて練り混ぜることで骨材の周囲にセメントが付着して造粒される。
次に造殻された骨材に、投入すべき全水量から一次水量を除去した二次水量(と必要なら混和剤)を加えて練り混ぜすることで、セメントが良く分散して均質なコンクリートが得られることになる。
この工法で得られたコンクリートは保水性が高いためにブリーディングが少なく圧縮強度が大きく、流動抵抗が小さくポンプ圧送性が良い。特に近年では、トンネル内面での吹き付けコンクリートに使用され、コンクリートの跳ね返り率及び発生粉じんが少ないという利点がある。
なお、セメントに変えて混合粉体を用いてもよい。混合粉体とはセメントにシリカフューム、スラグ、石灰石粉末等の粉体を混合させたものをいい、これら粉体はセメントより粒子径の大小の差があり水和反応が良い。
Conventionally, mortar and concrete are made of fine aggregate, coarse aggregate, cement, water, etc., and these composite mixtures are widely used in various civil engineering and construction works. In the production of these composite mixtures, if various materials are added and mixed at the same time, bleeding occurs until the produced mixture is cured, the fluid friction of the mixture is large, the pumpability is poor, and the compressive strength In addition, there were problems such as fluctuations in adhesion strength.
As a method for producing mortar or concrete that has improved such drawbacks, for example, a divided kneading method (SEC (registered trademark) method) described in Patent Documents 1, 2, and 3 below has been proposed. According to this construction method, by adding primary water to the aggregate made of fine aggregate (which may contain coarse aggregate) and adjusting and kneading, moisture is uniformly attached to the entire circumference of each aggregate, Then, the required amount of cement is added and kneaded so that the cement adheres around the aggregate and is granulated.
Next, by adding secondary water (and admixture if necessary), which is obtained by removing the primary water from the total water to be added, to the shelled aggregate, the cement is well dispersed and homogeneous concrete is obtained. Will be obtained.
Since the concrete obtained by this method has high water retention, there is little bleeding, high compression strength, low flow resistance, and good pumpability. In particular, in recent years, it is used for sprayed concrete on the inner surface of a tunnel, and has the advantage that the concrete rebound rate and generated dust are small.
Note that mixed powder may be used instead of cement. The mixed powder refers to a mixture of cement powder such as silica fume, slag, limestone powder, etc. These powders have a larger and smaller particle diameter than cement and have a good hydration reaction.

このような分割練り混ぜ工法においては、特に一次水量の決定が重要であり、次に示す最適一次水量W1(kg/m)を決定する基本式(4)が採用されている。
W1=(α/100)×C+(βOH/100)×S (4)
但し、α:セメントまたは混合粉体の拘束水率(%)
C:単位セメント量(kg/m
βOH:細骨材の表面吸着水率(%)
S:単位細骨材量(kg/m
なお、本明細書において、セメントまたは混合粉体の拘束水率とは、セメントまたは混合粉体のキャピラリー状態を形成するために必要な水セメント比または水混合粉体比をいう。また、セメントまたは混合粉体を粉体ということがある。また、これらの水セメント比及び水混合粉体比を総称して水粉体比ということがある。
In such a divided kneading method, the determination of the primary water amount is particularly important, and the following basic formula (4) for determining the optimal primary water amount W1 (kg / m 3 ) is adopted.
W1 = (α / 100) × C + (β OH / 100) × S (4)
However, α: Restrained water ratio of cement or mixed powder (%)
C: Unit cement amount (kg / m 3 )
β OH : Surface adsorbed water ratio of fine aggregate (%)
S: Fine aggregate amount (kg / m 3 )
In the present specification, the constrained water ratio of the cement or mixed powder refers to a water cement ratio or a water mixed powder ratio necessary for forming a capillary state of the cement or mixed powder. Further, cement or mixed powder may be referred to as powder. Further, these water cement ratio and water mixed powder ratio may be collectively referred to as a water powder ratio.

ところで、キャピラリー状態における上述したセメントまたは混合粉体の拘束水率αを求めるには、細骨材の表面吸着水率βOHを求める遠心脱水試験(または遠心分離試験:以下、単に遠心試験という)とは別に、トルク試験を行う必要がある。トルク試験とは、セメントまたは混合粉体に水を徐々に添加しながらミキサで攪拌し、ミキサの負荷抵抗であるトルク値が最大になる水セメント比或いは水混合粉体比を求める。このようなトルク値が最大になる水セメント比或いは水混合粉体比の状態をキャピラリー状態といい、この最大トルク値を拘束水率αとしている。
セメントまたは混合粉体のキャピラリー状態とは、セメント粉や混入粉体の粉体粒子間における水などの液体による充填構造の違いによる相の一形態である。このときの粉体粒子は図10に示すように、水等の液体によって互いに接触せず不連続であり空気も存在しない状態であり、液体は粒子表面の活性によってその粒子表面に液膜を形成し、この液膜により隔てられて粒子は互いに不連続となっている。
By the way, in order to obtain the above-mentioned restricted water rate α of the cement or mixed powder in the capillary state, a centrifugal dehydration test (or a centrifugal test: hereinafter simply referred to as a centrifugal test) for obtaining the surface adsorbed water rate β OH of the fine aggregate. Apart from that, it is necessary to perform a torque test. In the torque test, water is gradually added to cement or mixed powder and stirred with a mixer, and the water cement ratio or water mixed powder ratio at which the torque value which is the load resistance of the mixer is maximized is obtained. Such a state of water cement ratio or water mixed powder ratio at which the torque value is maximized is referred to as a capillary state, and this maximum torque value is defined as a constrained water ratio α.
The capillary state of cement or mixed powder is one form of a phase due to a difference in the filling structure of liquid such as water between powder particles of cement powder or mixed powder. At this time, as shown in FIG. 10, the powder particles are not in contact with each other by a liquid such as water and are discontinuous and no air is present, and the liquid forms a liquid film on the particle surface by the activity of the particle surface. However, the particles are discontinuous from each other separated by the liquid film.

細骨材の周囲にキャピラリー状態のセメントまたは混合粉体からなる粉体ペーストを付着させて造殻することにより、分割練り混ぜ効果を十分発揮できる。セメントまたは混合粉体がキャピラリー状態となるための水量の測定は、以下の方法によって行われる。
(1)1kgのセメントまたは混合粉体を例えばホバート型モルタルミキサに入れる。
(2)セメントまたは混合粉体に対して水を徐々に添加して混練を行い、そのときのミキサのモーターにかかる負荷電流値を負荷抵抗として測定する。
(3)図11に示すようにセメントまたは混合粉体の重量に対する水の重量の比(水粉体比:水セメント比または水混合粉体比という)と負荷電流値との関係で、負荷電流値が最大となる水粉体比を求め、これをキャピラリー状態におけるセメントまたは混合粉体の拘束水率αとする。
このトルク試験によって得られたセメントまたは混合粉体からなる粉体の拘束水率αを上記式(4)に代入して一次水量W1を求めている。
By making a shell by attaching a powder paste made of cement or mixed powder in a capillary state around the fine aggregate, the effect of divided kneading can be sufficiently exhibited. The measurement of the amount of water for the cement or mixed powder to become a capillary state is performed by the following method.
(1) 1 kg of cement or mixed powder is put into, for example, a Hobart type mortar mixer.
(2) Water is gradually added to the cement or mixed powder and kneaded, and the load current applied to the motor of the mixer at that time is measured as the load resistance.
(3) As shown in FIG. 11, the load current is represented by the relationship between the ratio of the weight of water to the weight of the cement or mixed powder (water powder ratio: water cement ratio or water mixed powder ratio) and the load current value. The water powder ratio that maximizes the value is obtained, and this is defined as the restricted water ratio α of the cement or mixed powder in the capillary state.
The primary water amount W1 is obtained by substituting the constrained water rate α of the powder made of cement or mixed powder obtained by this torque test into the above equation (4).

また、細骨材にはその表面に吸着されている固有の量の表面吸着水が存在しており、これがモルタルやコンクリートのブリーディングや強度等の物性に大きく影響を及ぼしていることが知られている。そのため、この細骨材の表面吸着水率(拘束水率)βOHに基づいて一次水量W1を定めるようにしている。
一次水量W1を決定するために下記特許文献1、2、3等に記載された遠心試験が用いられている。次にこの遠心試験について説明する。
まず、細骨材の含水率(細骨材の内部空隙を満たしている水と表面に付着している表面吸着水との合計量の質量百分率)を例えば5%に調整する。これを調整含水率という。この細骨材を、バインダーとして普通セメントを用いて水セメント比(W/C)45%のセメントペーストと混合してモルタルとする。その後、所定量のモルタルを容器に計量して特許文献2に記載のような遠心分離機に設置して438Gで30分の遠心力を作用させて脱水させる。
そして、遠心脱水前の細骨材、水及びセメントからなる試料の重量をWs、遠心脱水後の試料の重量をWtとして、両者の差から脱水量Wd(=Ws−Wt)を求める。遠心試験前の試料の含水量をWpとして遠心脱水後の試料の残留含水量Wz(=Wp−Wd)を求める。遠心試験前の試料の含水量Wpは、セメントペーストの水セメント比W/Cに相当する水量Waと細骨材の調整含水率に相当する調整含水量Wbとを合わせた水量(Wp=Wa+Wb)である。
従って、試料の残留含水量Wzは、Wz=Wp−Wd=Wa+Wb−Wdとなる。
In addition, there is a specific amount of surface adsorbed water adsorbed on the surface of fine aggregate, which is known to have a great influence on physical properties such as mortar and concrete bleeding and strength. Yes. Therefore, the primary water amount W1 is determined based on the surface adsorbed water rate (restraint water rate) β OH of the fine aggregate.
In order to determine the primary water amount W1, the centrifugal test described in the following Patent Documents 1, 2, 3, etc. is used. Next, this centrifugal test will be described.
First, the moisture content of the fine aggregate (mass percentage of the total amount of the water that fills the internal voids of the fine aggregate and the surface adsorbed water attached to the surface) is adjusted to, for example, 5%. This is called adjusted water content. This fine aggregate is mixed with a cement paste having a water cement ratio (W / C) of 45% using ordinary cement as a binder to obtain a mortar. Thereafter, a predetermined amount of mortar is weighed in a container and placed in a centrifuge as described in Patent Document 2, and dehydrated by applying a centrifugal force of 438 G for 30 minutes.
Then, assuming that the weight of the sample made of fine aggregate, water and cement before centrifugal dehydration is Ws, and the weight of the sample after centrifugal dehydration is Wt, the dehydration amount Wd (= Ws−Wt) is obtained from the difference between the two. The residual water content Wz (= Wp−Wd) of the sample after centrifugal dehydration is determined with the water content of the sample before the centrifugal test as Wp. The water content Wp of the sample before the centrifugal test is the sum of the water content Wa corresponding to the water-cement ratio W / C of the cement paste and the adjusted water content Wb corresponding to the adjusted water content of the fine aggregate (Wp = Wa + Wb). It is.
Therefore, the residual water content Wz of the sample is Wz = Wp−Wd = Wa + Wb−Wd.

ここで、残留含水量Wzは、細骨材の重量をS、セメントの重量をCとした場合、重量比(モルタル配合比)S/Cを0,1,2,3に設定し、各重量比S/Cで上述した遠心試験を3回づつ繰り返し行って各平均値を算出する。なお、S/C=0とは細骨材が0を意味する。
次に各S/C毎に残留含水量Wzとセメントペースト(バインダ)分のセメント重量Cに対する割合Wz/Cの平均値を求める。このようにして得られた各S/CとWz/Cの関係を図12にプロットする。図中、S/Cを横軸、Wz/Cを縦軸にとる。図12において、これらの関係を直線回帰して、この近似直線の傾きをθとすると、細骨材の重量Sに対する残留含水量Wzの割合(Wz/S)を求めて下式(5)のように細骨材の吸着水率βoを得る。
この吸着水率βoは遠心試験によっても細骨材から分離しない水量を指し、細骨材の内部空隙を満たしている水と表面に付着している水との合計量の質量百分率を意味する。
tanθ=Wz/S=βo (5)
Here, when the weight of fine aggregate is S and the weight of cement is C, the residual water content Wz is set such that the weight ratio (mortar mixture ratio) S / C is 0, 1, 2, 3, Each average value is calculated by repeating the centrifugation test described above at a ratio S / C three times. S / C = 0 means that the fine aggregate is zero.
Next, an average value of the ratio Wz / C of the residual water content Wz and the cement paste (binder) to the cement weight C is obtained for each S / C. The relationship between each S / C and Wz / C thus obtained is plotted in FIG. In the figure, S / C is taken on the horizontal axis and Wz / C is taken on the vertical axis. In FIG. 12, when these relationships are linearly regressed and the slope of this approximate line is θ, the ratio (Wz / S) of the residual water content Wz to the weight S of the fine aggregate is obtained, and the following equation (5) is obtained. Thus, the adsorption water ratio βo of the fine aggregate is obtained.
This adsorbed water rate βo refers to the amount of water that does not separate from the fine aggregate even by a centrifugal test, and means the mass percentage of the total amount of water that fills the internal voids of the fine aggregate and water that adheres to the surface.
tan θ = Wz / S = βo (5)

このようにして得られた細骨材の吸着水率βoと別途別の試験で求められたJIS表乾状態における細骨材内部の吸水率Qとにより、下式(3)を用いて細骨材の表面吸着水率βOHを求める。
βOH =(βo−Q)/(1+Q/100) (3)
但し、βo:遠心試験で求められた細骨材の吸着水率(%)
Q:JISの試験で求められる細骨材内部の吸水率(%)
そして、得られた表面吸着水率βOHを上記(4)式に代入して一次水量W1を定めることができる。
特許第2597835号公報 特許第3318580号公報 特許第3448634号公報
By using the following formula (3), the fine water absorption βo of the fine aggregate obtained in this way and the water absorption Q inside the fine aggregate in the JIS surface dry state obtained in a separate test are obtained using the following formula (3). The surface adsorbed water ratio β OH of the material is determined.
β OH = (βo−Q) / (1 + Q / 100) (3)
However, βo: Adsorbed water ratio of fine aggregate obtained by centrifugal test (%)
Q: Water absorption rate (%) in fine aggregate required by JIS test
Then, the primary water amount W1 can be determined by substituting the obtained surface adsorbed water ratio β OH into the above equation (4).
Japanese Patent No. 2597835 Japanese Patent No. 3318580 Japanese Patent No. 3448634

ところで、従来は分割練り工法による最適な一次水量W1を決定するに当っては上述した2種類の試験を実施しなければ一次水量を決定できなかった。
しかしながら、トルク試験に関しては、乾いたセメントまたは混合粉体である粉体に徐々に水を加えて試験を行うことから、その途中工程において図10に示すようなベンデュラおよびファニュキュラの段階を通過することになり、図13に示すようにこれらの状態域で形成された粉体ダマ(水と混ざらない粉体の塊)が最後まで存在してしまう。そのため、ピーク値を得ても理想的なキャピラリー状態は作り出せず、セメントまたは混合粉体の正確な拘束水率αの値が求められないという欠点がある。
By the way, conventionally, in determining the optimum primary water amount W1 by the split kneading method, the primary water amount could not be determined unless the two types of tests described above were performed.
However, with regard to the torque test, water is gradually added to the dry cement or mixed powder, and the test is performed, so that the process passes through the Bendula and Funicular stages as shown in FIG. As a result, as shown in FIG. 13, powder lumps (a lump of powder that does not mix with water) formed in these state regions exist until the end. Therefore, even if the peak value is obtained, an ideal capillary state cannot be created, and there is a drawback that an accurate value of the restricted water ratio α of the cement or mixed powder cannot be obtained.

さらに、図11に示すようなトルク値が最大になる手前の領域Eでは、ミキサの負荷電流値がピーク値まで上昇する過程で一時的に略V字状に落ち込む現象を呈する。その原因は次の通りである。
図14に示すトルク試験において、試料粉体であるセメントまたは混合粉体を収容したミキサ容器2内でミキサ3によって試料粉体のペースト1を練り混ぜする工程で、試料粉体ペースト1がミキサ3のパドル3aに固着し、固着したペースト塊とミキサ容器2の内壁面とのせん断抵抗がペースト塊内のそれより小さくなる。この界面では水の薄い層が発生してこの部分でせん断すべりを起こすため、キャピラリー状態であってもせん断抵抗値が小さくなり、ミキサ3のトルク値が略V字状に小さく落ち込んでしまうのである。
その後、さらに水を加えることにより図15のように固着したペースト塊が流動性を得てミキサ容器2の内壁面との摩擦抵抗とペースト内部のせん断抵抗値が増大して、負荷電流値が上昇してピーク値に至る。
Furthermore, in a region E before the torque value reaches the maximum as shown in FIG. 11, a phenomenon that the load current value of the mixer temporarily drops to a substantially V shape in the process of increasing to the peak value is exhibited. The cause is as follows.
In the torque test shown in FIG. 14, the sample powder paste 1 is mixed with the mixer 3 in the step of kneading the sample powder paste 1 with the mixer 3 in the mixer container 2 containing the cement or mixed powder as the sample powder. And the shear resistance between the fixed paste lump and the inner wall surface of the mixer container 2 becomes smaller than that in the paste lump. Since a thin layer of water is generated at this interface and shear slip occurs in this portion, the shear resistance value becomes small even in the capillary state, and the torque value of the mixer 3 falls down substantially in a V shape. .
Thereafter, by further adding water, the paste mass fixed as shown in FIG. 15 obtains fluidity, and the friction resistance with the inner wall surface of the mixer container 2 and the shear resistance value inside the paste increase, and the load current value increases. To the peak value.

このような負荷抵抗の変動の過程で、ペースト中に粉体ダマが生成されたり、大気圧下で混練するためにセメント粒子間に微量な空気が混入して気泡や空気層等が生じたりする。この微量な空気泡や空気層は拘束水率α値検出の精度に少なからず影響を及ぼすという欠点がある。
また、粉体として、シリカフュームのような超微粒子をセメント粉に添加もしくはその一部を置換・混合した混合粉体においては、図16に示すようにその超微粒子5が比較的大きい粒子であるセメント粒子6の表面に付着し、セメント等の粉体に対してベアリング効果によりせん断抵抗を少なくする現象を生じる。そのため、トルク試験によってセメントまたは混合粉体の真のキャピラリー領域を判定することは難しかった。
In the process of changing the load resistance, powder lumps are generated in the paste, or a small amount of air is mixed between cement particles to knead under atmospheric pressure, resulting in bubbles or air layers. . This small amount of air bubbles or air layer has a drawback that it has a considerable influence on the accuracy of detection of the restricted water ratio α value.
In addition, in a mixed powder in which ultrafine particles such as silica fume are added to cement powder or a part of the powder is replaced / mixed as a powder, as shown in FIG. 16, the ultrafine particles 5 are relatively large particles. A phenomenon that adheres to the surface of the particles 6 and reduces the shear resistance due to a bearing effect on powder such as cement occurs. Therefore, it was difficult to determine the true capillary region of cement or mixed powder by a torque test.

本発明は、このような実情に鑑みて、種々の悪影響を与えるトルク試験を行うことなく一次水量を決定するようにした分割練り混ぜ工法における一次水量決定方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a primary water amount determination method in a divided kneading method in which a primary water amount is determined without performing a torque test that gives various adverse effects.

本発明による分割練り混ぜ工法における一次水量決定方法は、骨材に一次水量(W1)を加えて調整練りを行い、その後セメントまたはセメントにセメント以外の粉体を混合した混合粉体等からなる粉体を加えて練り混ぜ、更に全水量から一次水量を除去した二次水量を加えて練り混ぜることでモルタルまたはコンクリートを製造するようにした分割練り混ぜ工法において、粉体をスラリー状態にして、遠心加速度400G以上による遠心脱水試験によって粉体の拘束水率(αG)と骨材の吸着水率(βo)とを求めて一次水量(W1)を決定するようにしたことを特徴とする。
本発明によれば、骨材の吸着水率(βo)だけでなく、粉体の拘束水率(αG)を遠心脱水試験によって求めるようにしたため、キャピラリー領域決定に種々の悪影響を与えるトルク試験を行うことなく粉体の拘束水率(αG)と骨材の吸着水率(βo)に基づいて一次水量(W1)を精度良く決定できる。
しかも、粉体をキャピラリー状態よりも含水率の高いスラリー状態にした後に遠心脱水試験にかけることで、粉体はスラリー状態の水分が徐々に脱水されてキャピラリー状態に近くなる。従来のトルク試験では、粉体について、キャピラリー状態よりも含水率の小さい状態から徐々に加水してキャピラリー状態に調整するようにしたが、本発明では粉体をキャピラリー状態よりも含水率の高いスラリー状態に調整しておくことで、粉体粒子が十分分散されて間隙に水が満された状態になるため、確実に粉体ダマのない状態にすることができ、しかもスラリー状態にするために大気圧下で混練してもセメント粒子間に微量な空気が混入して気泡や空気層等が生じることがなく、拘束水率αGの検出精度に影響を及ぼさない。
また、粉体として、シリカフュームのような超微粒子をセメント粉と混合した混合粉体であっても、スラリー状態にするために超微粒子が比較的大きい粒子であるセメント等の表面に付着することがなく、大小個々の粉体や超微粒子が互いに遊離状態に保持されるためにセメント等の粉体に対して超微粒子がベアリング効果を生じないし、せん断抵抗がベアリング効果で小さくなることはない。
The primary water amount determination method in the divided kneading method according to the present invention is a powder comprising a mixed powder obtained by adding primary water (W1) to an aggregate and adjusting and kneading, and then mixing cement or cement with a powder other than cement. In the divided kneading method in which mortar or concrete is produced by adding and kneading the body, and further adding the secondary water amount after removing the primary water amount from the total water amount and kneading, the powder is made into a slurry state and centrifuged The primary water amount (W1) is determined by obtaining the confined water rate (αG) of the powder and the adsorbed water rate (βo) of the aggregate by a centrifugal dehydration test at an acceleration of 400 G or more .
According to the present invention, not only the adsorption water rate (βo) of the aggregate but also the restricted water rate (αG) of the powder is obtained by the centrifugal dehydration test, and therefore the torque test that has various adverse effects on the capillary region determination is performed. The primary water amount (W1) can be accurately determined on the basis of the constrained water rate (αG) of the powder and the adsorbed water rate (βo) of the aggregate without being performed.
In addition, when the powder is subjected to a centrifugal dehydration test after being made into a slurry state having a higher water content than in the capillary state, the water in the slurry state is gradually dehydrated to approach the capillary state. In the conventional torque test, the powder is gradually added from the state having a lower water content than the capillary state to adjust to the capillary state. In the present invention, the powder is a slurry having a higher water content than the capillary state. By adjusting to the state, the powder particles are sufficiently dispersed and the gap is filled with water, so that it is possible to make sure that there is no powder lumps and to make a slurry state Even if kneading under atmospheric pressure, a minute amount of air is not mixed between cement particles, and bubbles and air layers are not generated, and the detection accuracy of the constrained water ratio αG is not affected.
Moreover, even if the powder is a mixed powder obtained by mixing ultrafine particles such as silica fume with cement powder, the ultrafine particles may adhere to the surface of cement or the like, which is a relatively large particle, in order to obtain a slurry state. In addition, since the individual powders and ultrafine particles are kept in a free state, the ultrafine particles do not cause a bearing effect on the powder such as cement, and the shear resistance is not reduced by the bearing effect.

本発明による分割練り混ぜ工法における一次水量決定方法は、骨材に一次水量(W1)を加えて調整練りを行い、その後セメントまたはセメントにセメント以外の粉体を混合した混合粉体からなる粉体を加えて練り混ぜ、更に全水量から一次水量を除去した二次水量を加えて練り混ぜることでモルタルまたはコンクリートを製造するようにした分割練り混ぜ工法において、粉体をスラリー状態にして、遠心加速度400G以上による遠心脱水試験によって粉体の拘束水率(αG)と骨材の吸着水率(βo)とを求め、該吸着水率(βo)から表面吸着水率βOHを求めて、下記(2)式により一次水量(W1)を決定するようにしたことを特徴とする。
W1={(αG×T)/100}×F+(βOH/100×S) (2)
但し、W1:一次水量(kg/m3)
αG:遠心力試験で求められた拘束水率(Y切片の値)(%)
T:係数(T=1.0〜1.5)
βOH:骨材の表面吸着水率(%)
F:単位粉体(kg/m3)
S:単位細骨材(繊維材を含む)重量(kg/m3)
本発明では、骨材の吸着水率(βo)だけでなく、従来トルク試験で求めていた粉体の拘束水率(αG)も遠心脱水試験で求めるようにしたため、トルク試験の際に生じる悪影響を生じることなく拘束水率(αG)を決定でき、また粉体の吸着水率(βo)から表面吸着水率βOHを求めて、(2)式によって一次水量(W1)を決定できる。特に遠心脱水試験で求めた拘束水率(αG)については1.0〜1.5の範囲内の係数Tを乗算することで、ブリーディング率の最も小さいコンクリートまたはモルタルを製造できる。また拘束水率(αG)を係数Tで補正して補正拘束水率(αo)を得ている。しかも、粉体をキャピラリー状態よりも含水率の高いスラリー状態にした後に遠心脱水試験にかけることで、粉体はスラリー状態の水分が徐々に脱水されてキャピラリー状態に近くなる。本発明では粉体をキャピラリー状態よりも含水率の高いスラリー状態に調整しておくことで、粉体粒子が十分分散されて間隙に水が満された状態になるため、確実に粉体ダマのない状態にすることができ、しかもスラリー状態にするために大気圧下で混練してもセメント粒子間に微量な空気が混入して気泡や空気層等が生じることがなく、拘束水率αGの検出精度に影響を及ぼさない。
なお、単位粉体Fとは、骨材に一次水量W1に加えた後で加える単位体積当たりの重量の粉体を意味し、粉体がセメントであれば単位セメントC(kg/m3)、後述の混合粉体A,B,Cであればそれぞれ単位混合粉体PA(kg/m3)、PB(kg/m3)、PC(kg/m3)を意味する。
The primary water amount determination method in the divided kneading method according to the present invention is a powder comprising a mixed powder obtained by adding primary water amount (W1) to an aggregate and adjusting and kneading, and then mixing powder other than cement into cement or cement. In the split kneading method in which mortar or concrete is produced by adding and mixing the secondary water amount after removing the primary water amount from the total water amount, the powder is made into a slurry state, centrifugal acceleration By determining the water retention rate (αG) of the powder and the adsorption water rate (βo) of the aggregate by a centrifugal dehydration test at 400 G or more, the surface adsorption water rate βOH is determined from the adsorption water rate (βo), and the following (2 ) To determine the primary water amount (W1).
W1 = {(αG × T) / 100} × F + (βOH / 100 × S) (2)
W1: Primary water volume (kg / m3)
αG: Restraint water ratio determined by centrifugal force test (Y intercept value) (%)
T: Coefficient (T = 1.0 to 1.5)
βOH: Aggregate surface adsorbed water rate (%)
F: Unit powder (kg / m3)
S: Unit fine aggregate (including fiber) weight (kg / m3)
In the present invention, not only the adsorption water rate (βo) of the aggregate but also the constrained water rate (αG) of the powder, which has been obtained in the conventional torque test, is obtained in the centrifugal dehydration test. The constrained water ratio (αG) can be determined without generating water, the surface adsorbed water ratio βOH can be determined from the adsorbed water ratio (βo) of the powder, and the primary water amount (W1) can be determined by equation (2). In particular, the constrained water ratio (αG) obtained in the centrifugal dehydration test can be multiplied by a coefficient T within a range of 1.0 to 1.5 to produce concrete or mortar having the smallest bleeding rate. In addition, the corrected constrained water rate (αo) is obtained by correcting the constrained water rate (αG) with the coefficient T. In addition, when the powder is subjected to a centrifugal dehydration test after being made into a slurry state having a higher water content than in the capillary state, the water in the slurry state is gradually dehydrated and becomes close to the capillary state. In the present invention, by adjusting the powder to a slurry state having a higher water content than the capillary state, the powder particles are sufficiently dispersed and the gap is filled with water. In addition, even when kneaded at atmospheric pressure to form a slurry state, a minute amount of air is not mixed between cement particles, and bubbles and air layers are not generated. Does not affect the detection accuracy.
The unit powder F means a powder having a weight per unit volume added to the aggregate after being added to the primary water amount W1, and a unit cement C (kg / m 3) if the powder is cement. Are mixed powders PA (kg / m3), PB (kg / m3), and PC (kg / m3).

なお、吸着水率βoから下記(3)式によって表面吸着水率βOHを求めることが好ましい。
βOH =(βo−Q)/(1+Q/100) (3)
但し、Q:JISの試験で求められる細骨材の内部の吸水率(%)
The surface adsorbed water ratio β OH is preferably obtained from the adsorbed water ratio βo by the following equation (3).
β OH = (βo−Q) / (1 + Q / 100) (3)
However, Q: Water absorption rate (%) inside the fine aggregate required by JIS test

上述のように本発明による分割練り混ぜ工法の一次水量決定方法によれば、粉体の拘束水率(αG)を遠心脱水試験によって求めることができ、キャピラリー領域決定に種々の悪影響を与えるトルク試験を行うことなく粉体の拘束水率(αG)と骨材の吸着水率(βo)に基づいて一次水量(W1)を精度良く決定できる。そのため、粉体の拘束水率(αG)と細骨材の吸着水率(βo)によってブリーディング率の小さいコンクリートまたはモルタルが得られる。   As described above, according to the primary water content determination method of the divided kneading method according to the present invention, the restricted water ratio (αG) of the powder can be obtained by a centrifugal dehydration test, and a torque test that has various adverse effects on capillary region determination. The primary water amount (W1) can be accurately determined based on the constrained water rate (αG) of the powder and the adsorbed water rate (βo) of the aggregate without performing the above. Therefore, concrete or mortar with a small bleeding rate can be obtained by the restricted water rate (αG) of the powder and the adsorbed water rate (βo) of the fine aggregate.

また、遠心脱水試験前の粉体をスラリー状態にしたから、粉体粒子が十分分散されて間隙に水が満された状態になるため、粉体ダマのない状態にすることができ、しかもスラリー状態にするために大気圧下で混練しても粉体粒子間に微量な空気が混入して気泡や空気層等が生じることがなく、拘束水率αGの検出精度に悪影響を及ぼさない。そして遠心脱水試験によって粉体はスラリー状態の水分が徐々に脱水されてキャピラリー状態に近くなる。粉体がシリカフュームのような超微粒子を粉体粒子と混合した混合粉体であっても、スラリー状態にするために超微粒子が比較的大きい粒子であるセメント等の表面に付着することがなく、粉体粒子や超微粒子が互いに遊離状態に保持されるためにセメント等の粉体に対して超微粒子がベアリング効果を生じないし、せん断抵抗がベアリング効果で小さくなることはない。   In addition, since the powder before the centrifugal dehydration test was made into a slurry state, the powder particles are sufficiently dispersed and the gap is filled with water, so that there can be no powder lumps and the slurry. Even if the mixture is kneaded under atmospheric pressure in order to obtain a state, a minute amount of air is not mixed between the powder particles to generate bubbles or an air layer, and the detection accuracy of the constrained water ratio αG is not adversely affected. The powder in the slurry state is gradually dehydrated by the centrifugal dehydration test so that the powder becomes close to the capillary state. Even if the powder is a mixed powder in which ultrafine particles such as silica fume are mixed with powder particles, the ultrafine particles do not adhere to the surface of cement or the like which is a relatively large particle in order to form a slurry state. Since the powder particles and the ultrafine particles are held free from each other, the ultrafine particles do not cause a bearing effect on the powder such as cement, and the shear resistance is not reduced by the bearing effect.

次に本発明の実施の形態について添付図面を参照して説明する。
図1乃至図7は実施の形態による分割練り混ぜ工法の一次水量決定方法を示すもので、図1はコンクリート・モルタルの練り混ぜ工程を示す工程図、図2は遠心試験による各種粉体について遠心加速度と拘束水率αG(Y切片)との関係を示す図、図3は遠心試験におけるモルタル配合比と遠心試験後の残留水粉体比との関係を一次回帰直線で示す図、図4、図5、図6はモルタル(粉体)配合比S/C,S/PA、S/PB毎に普通セメントと混合粉体A、Bとの補正拘束水率αoとコンクリート・モルタルのブリーディング率との関係を示す図、図7は遠心試験後のセメントまたは混合粉体の粉体粒子と水との構造を示す図である。
なお、本実施形態では、各種粉体として、例えばセメント粉のみ、またはセメントにセメント以外のシリカヒューム、スラグ、石灰石粉末等を適宜混合した混合粉体等を採用するものとし、これらを総称して粉体ということがある。
本実施形態による分割練り混ぜ工法は概略で図1に示すフロー図に沿って行われている。即ち、細骨材S(粗骨材を含んでいてもよい)からなる骨材に一次水量W1を添加して調整練りを行い、各細骨材の全周に水分を均等に付着させ、その後、分散材として所要量のセメントCまたは混合粉体を添加して一次練り混ぜを行い、各細骨材の周囲にキャピラリー状態のセメントまたは混合粉体が付着して造殻される。そして全水量から一次水量W1を除去した二次水量W2(及び必要なら混和剤)を添加して二次練り混ぜを行うことで、セメントや混合粉体が良く分散して均質なコンクリートが得られることになる。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 to FIG. 7 show the primary water amount determination method according to the embodiment of the divided kneading method. FIG. 1 is a process diagram showing the mixing process of concrete and mortar. FIG. FIG. 3 is a diagram showing the relationship between the acceleration and the constrained water ratio αG (Y intercept), FIG. 3 is a diagram showing the relationship between the mortar blending ratio in the centrifugal test and the residual water powder ratio after the centrifugal test in a linear regression line, FIG. 5 and 6 show the corrected restricted water ratio αo of ordinary cement and mixed powders A and B for each mortar (powder) compounding ratio S / C, S / PA and S / PB, and the bleeding ratio of concrete and mortar. FIG. 7 is a diagram showing the structure of cement particles or mixed powder particles and water after a centrifugal test.
In the present embodiment, as various powders, for example, cement powder alone, or mixed powder in which silica fume other than cement, slag, limestone powder or the like is appropriately mixed with cement, etc. are adopted, and these are collectively referred to. Sometimes called powder.
The divided kneading method according to the present embodiment is roughly performed according to the flowchart shown in FIG. That is, the primary water amount W1 is added to the aggregate made of the fine aggregate S (which may contain coarse aggregate), and the mixture is kneaded to allow water to uniformly adhere to the entire circumference of each fine aggregate. Then, a required amount of cement C or mixed powder is added as a dispersing agent and primary kneading is performed, and a cemented cement or mixed powder in a capillary state is attached around each fine aggregate to form a shell. Then, by adding the secondary water amount W2 (and admixture if necessary) from which the primary water amount W1 has been removed from the total water amount and performing the secondary mixing, the cement and the mixed powder are well dispersed and a homogeneous concrete is obtained. It will be.

このような良質なコンクリートを製造するためには、添加する全水量W(=W1+W2)のうち特に一次水量W1の決定が重要な要素となっていることが知られている。
ところで、従来、分割練り混ぜ工法で一次水量決定方法を実施するには、基本式(4)によって最適一次水量W1(kg/m)を決定していた。この場合、未知数であるβOHは遠心試験によって設定し、拘束水率αについてはトルク試験によって決定していた。
W1=(α/100)×C+(βOH/100)×S (4)
但し、α:粉体の拘束水率(%)
F:単位粉体(kg/m
βOH:細骨材の表面吸着水率(%)
S:単位細骨材量(kg/m
なお、単位粉体Fとは、骨材に一次水量W1に加えた後で加える単位体積当たりの重量の粉体を意味し、粉体がセメントであれば単位セメントC(kg/m3)、後述の混合粉体A,B,Cであればそれぞれ単位混合粉体PA(kg/m3)、PB(kg/m3)、PC(kg/m3)を意味する。
しかし、上述したようにトルク試験で得られた拘束水率αは、粉体ダマ、空気泡や空気層により、またベアリング効果等により、セメントや混合粉体の真のキャピラリー領域を判定する事が難しかった。
そのため、本実施形態による分割練り混ぜ工法における一次水量決定方法は、トルク試験を行わずに遠心試験のみによって各種粉体の拘束水率αGと細骨材の吸着水率βoとを決定して一次水量W1を設定するようにしたものである。
In order to produce such high-quality concrete, it is known that the determination of the primary water amount W1 is an important factor among the total water amount W (= W1 + W2) to be added.
By the way, conventionally, in order to carry out the primary water amount determination method by the divided kneading method, the optimum primary water amount W1 (kg / m 3 ) has been determined by the basic formula (4). In this case, the unknown β OH was set by a centrifugal test, and the restrained water ratio α was determined by a torque test.
W1 = (α / 100) × C + (β OH / 100) × S (4)
Where α: Restraint water ratio of powder (%)
F: Unit powder (kg / m 3 )
β OH : Surface adsorbed water ratio of fine aggregate (%)
S: Fine aggregate amount (kg / m 3 )
The unit powder F means a powder having a weight per unit volume added to the aggregate after being added to the primary water amount W1, and if the powder is cement, unit cement C (kg / m 3 ), The mixed powders A, B, and C described later mean unit mixed powders PA (kg / m 3 ), PB (kg / m 3 ), and PC (kg / m 3 ), respectively.
However, as described above, the constrained water ratio α obtained in the torque test can determine the true capillary region of cement or mixed powder by powder lumps, air bubbles or air layers, or by the bearing effect. was difficult.
Therefore, the primary water amount determination method in the divided kneading method according to the present embodiment is to determine the primary water content αG and the fine aggregate adsorbed water rate βo only by the centrifugal test without performing the torque test. The amount of water W1 is set.

次に、本実施形態による、遠心試験を用いた拘束水率αGの求め方について以下に説明する。
拘束水率αGを求めるための遠心試験について図1及び図2に沿って説明する。
先ずミキサ容器内に投入した所定量のセメントまたは混合粉体に水を徐々に加えながらミキサで攪拌して混練りする。この場合の水セメント比または水混合粉体比をセメントまたは混合粉体のキャピラリー状態よりも水量の多いスラリー状態に設定する。
ここでキャピラリー状態とは、セメント粉や混合粉体等における粉体と粉体とが互いに接触せず粒子表面の活性によって形成された液膜によって不連続であり且つ粉体間が水で満たされ空気が混入していない状態をいう。そのため、スラリー状態にするにはキャピラリー状態よりも水分を相当量多くし、例えばセメント(または混合粉体)の重量Cに対して30重量%程度以上の水分を加えた状態にする。スラリー状態ではセメントまたは混合粉体に対して水がしゃぶしゃぶの状態で含まれている。そのために粉体ダマは生じないし、セメント粉体やシリカヒューム等の超微粒子間に空気泡や空気層等の混入がなくベアリング効果等も生じない。
なお、図2に示す例では、粉体として下記表1に示す普通セメント、混合粉体A,B,Cの4種類を用意した。普通セメントは例えば普通ポルトランドセメント、混合粉体Aは普通セメントにシリカヒュームと石灰石微粉末を僅かに混合したもの、混合粉体Bは普通セメントに石灰石微粉末を僅かに混合したもの、混合粉体Cは普通セメントに高炉スラグ微粉末を僅かに混合したものである。粉体(モルタル)の配合について、単位体積当たりの普通ポルトランドセメントのセメント量(kg/m)をC,混合粉体Aの粉体量(kg/m)をPA、混合粉体Bの粉体量(kg/m)をPBとした。
また細骨材として表2に示すものを用いた。
Next, how to obtain the restricted water ratio αG using the centrifugal test according to the present embodiment will be described below.
A centrifugal test for obtaining the constrained water ratio αG will be described with reference to FIGS. 1 and 2.
First, water is gradually added to a predetermined amount of cement or mixed powder charged into the mixer container, and the mixture is stirred and kneaded. In this case, the water cement ratio or water mixed powder ratio is set to a slurry state in which the amount of water is larger than the capillary state of the cement or mixed powder.
Here, the capillary state means that the powder and the powder in cement powder or mixed powder are not in contact with each other and are discontinuous by the liquid film formed by the activity of the particle surface, and the powder is filled with water. The state where air is not mixed. For this reason, in order to obtain a slurry state, the amount of water is considerably larger than that in the capillary state, for example, about 30% by weight or more of water is added to the weight C of the cement (or mixed powder). In the slurry state, water is contained in the state of shabu-shabu to the cement or mixed powder. Therefore, no powder lumps occur, no air bubbles or air layers are mixed in between the ultrafine particles such as cement powder and silica fume, and the bearing effect does not occur.
In the example shown in FIG. 2, four types of powders of ordinary cement and mixed powders A, B, and C shown in Table 1 below were prepared as powders. Ordinary cement is, for example, ordinary Portland cement, mixed powder A is ordinary cement with a slight mixture of silica fume and fine limestone powder, mixed powder B is a plain cement with slightly mixed limestone fine powder, mixed powder C is a mixture of ordinary cement and blast furnace slag fine powder. Regarding the blending of powder (mortar), the cement amount (kg / m 3 ) of ordinary Portland cement per unit volume is C, the powder amount (kg / m 3 ) of mixed powder A is PA, and the mixed powder B The amount of powder (kg / m 3 ) was PB.
The fine aggregates shown in Table 2 were used.

Figure 0004249176
Figure 0004249176

Figure 0004249176
Figure 0004249176

スラリー状態の普通セメント、混合粉体A,B,Cを特許文献2等に記載された遠心分離機に収容して回転させて遠心力を作用させる遠心試験を行う。
この場合、図2において、各粉体を収容した遠心分離機の回転数を変えて、試料に作用する遠心力の大きさを最大1000G(Gは、重力加速度)まで変化させ、遠心力の作用時間30分間とした場合、スラリー状態の粉体中の水分が遠心力の増加とともに減少する。特に加速度Gが400Gを越えると各粉体は水分含有率即ち拘束水率αG(%)(Y切片ともいう)が徐々に各一定値に近づいて収束することになる。各粉体は拘束水率が一定値αG(%)に収束することによってスラリー状態からキャピラリー状態またはこれに近い領域になる。
遠心試験後における各粉体粒子のセメントまたは混合粉体のペーストの粉体粒子と水との構造状態は図7に示すものとなり、キャピラリー状態またはこれに近い。即ち、粉体粒子のダマが無く、空気の巻き込みも無い状態で粉体粒子同士または粉体粒子及び超微粒子が個々に存在し、最小の間隙量となり、その間隙に水が満たされた状態となっている。すなわち、最密充填に近い状態である。
The ordinary cement and mixed powders A, B, and C in a slurry state are housed in a centrifuge described in Patent Document 2 and the like, and rotated to perform a centrifugal test.
In this case, in FIG. 2, the centrifugal force acting on the sample is changed to a maximum of 1000 G (G is gravitational acceleration) by changing the rotation speed of the centrifuge containing each powder. When the time is 30 minutes, the moisture in the powder in the slurry state decreases as the centrifugal force increases. In particular, when the acceleration G exceeds 400 G, the moisture content of each powder, that is, the constrained water rate αG (%) (also referred to as Y intercept) gradually approaches each constant value and converges. Each powder changes from a slurry state to a capillary state or a region close to this when the constrained water ratio converges to a constant value αG (%).
The structure state of the powder particles of each powder particle cement or mixed powder paste and water after the centrifugal test is as shown in FIG. 7, and is in a capillary state or close to this. That is, there is no powder particle lumps and no air entrainment, and powder particles or powder particles and ultrafine particles exist individually, and the gap amount is minimum, and the gap is filled with water. It has become. That is, it is a state close to closest packing.

ここで、図2に示すように各粉体即ち普通セメント、混合粉体A,B,Cにおいて遠心加速度が400G以上であれば拘束水率αGはそれぞれ一定値に収束するが、各粉体の拘束水率αGは、シリカヒューム、石灰石粉末、高炉スラグ粉末等のセメント以外の粉体を含有するか否か、また混合する粉体の種類及び割合に応じて多少相違する固有の値を示す。   Here, as shown in FIG. 2, when the centrifugal acceleration is 400 G or more in each powder, that is, normal cement, mixed powder A, B, C, the restrained water ratio αG converges to a constant value. The constrained water ratio αG indicates a specific value that is slightly different depending on whether or not a powder other than cement such as silica fume, limestone powder, blast furnace slag powder, and the kind and ratio of the powder to be mixed are included.

本発明者らは、遠心試験を経た一次水量W1を決定するのに必要な拘束水率αG(%)に関し、更に所定量率の水分を追加すると各粉体の流動性が増して一層、真のキャピラリー状態になることを試験により見いだした。この追加すべき水分量率を係数Tとして、拘束水率αGに乗算することで補正拘束水率αoが得られる。この補正拘束水率αoによって決定した一次水量W1と二次水量W2によって、得られたコンクリートまたはモルタルのブリーディング率が拘束水率αGで一次水量W1と二次水量W2を決定した場合より減少して最小限になることがわかった。
この場合の係数Tは各種の粉体(モルタル)配合比S/C、S/PA、S/PB、S/PCの値にかかわらず、1.0〜1.5の範囲であることが好ましく、この範囲内であれば最小限のブリーディング率のコンクリートまたはモルタルが得られる。なお、係数Tが1.0の場合とは補正拘束水率αo=拘束水率αGであるから、一次水量W1の演算に拘束水率αGを補正拘束水率αoとして(2)式または(4)式に用いてもよいことになる。
The inventors of the present invention have further increased the flowability of each powder by adding a predetermined amount of water to the restricted water rate αG (%) necessary for determining the primary water amount W1 that has undergone the centrifugal test. It was found by a test that the capillary state of A corrected restricted water rate αo is obtained by multiplying the restricted water rate αG by using the moisture content rate to be added as a coefficient T. By the primary water amount W1 and the secondary water amount W2 determined by the corrected restricted water rate αo, the bleeding rate of the obtained concrete or mortar is smaller than when the primary water amount W1 and the secondary water amount W2 are determined by the restricted water rate αG. I found it to be minimal.
The coefficient T in this case is preferably in the range of 1.0 to 1.5 regardless of the values of various powder (mortar) mixing ratios S / C, S / PA, S / PB, and S / PC. Within this range, concrete or mortar with a minimum bleeding rate can be obtained. Since the case where the coefficient T is 1.0 is the corrected restricted water rate αo = the restricted water rate αG, the calculation of the primary water amount W1 uses the restricted water rate αG as the corrected restricted water rate αo (2) or (4 ) May be used in the equation.

次に係数Tについて図3乃至図6により説明する。
粉体として例えば普通ポルトランドセメント(以下、普通セメントという)と混合粉体A、B、Cのうち混合粉体A、Bを一例として選択して表1に示す物性で用いる。細骨材は表2に示す物性のものを用いる。拘束水率αGの決定に際して、各粉体に水をその30%以上添加してスラリー状態として遠心試験を行った。遠心試験では図2に示すように加速度Gを徐々に上昇させ、400G以上の加速度を30分間かけて収束した一定値の拘束水率αGは、普通セメントでは例えば16.3%、混合粉体Aでは17.7%、混合粉体Bでは14.9%であった(図3参照)。また参考例としてトルク試験により拘束水率αを求めると、25%であった。
さらに、骨材と粉体(モルタル)の配合比をS/C、S/PA、S/PBとして、S/C=S/PA=S/PB=1,2,3を横軸に、残留水粉体(セメント)比Wz/C、Wz/PA、Wz/PBを縦軸にとって遠心試験を行い、得られた細骨材の拘束水率βoは、普通セメントで3.88%、混合粉体Aで4.19%、混合粉体Bで3.73%であった(図3参照)。なお、JIS試験で求めた細骨材の内部の吸水率Qを1.29%として、(3)式で求めた吸着水率βOHは2.56%であった。
Next, the coefficient T will be described with reference to FIGS.
As powder, for example, ordinary powders of Portland cement (hereinafter referred to as ordinary cement) and mixed powders A, B, and C are selected as an example and used with the physical properties shown in Table 1. The fine aggregate has the physical properties shown in Table 2. When determining the constrained water ratio αG, 30% or more of water was added to each powder, and a centrifugal test was performed in a slurry state. In the centrifugal test, as shown in FIG. 2, the acceleration G is gradually increased, and the fixed water ratio αG obtained by converging the acceleration of 400 G or more over 30 minutes is 16.3% for ordinary cement, for example, mixed powder A Was 17.7% and mixed powder B was 14.9% (see FIG. 3). As a reference example, the restricted water ratio α was found to be 25% by a torque test.
Furthermore, the mixing ratio of aggregate and powder (mortar) is S / C, S / PA, and S / PB, and S / C = S / PA = S / PB = 1, 2, 3 on the horizontal axis. Centrifugal tests were conducted with the water powder (cement) ratios Wz / C, Wz / PA, and Wz / PB as the vertical axis. The resulting fine aggregate had a restricted water content βo of 3.88% for ordinary cement and mixed powder It was 4.19% for the body A and 3.73% for the mixed powder B (see FIG. 3). The water absorption Q inside the fine aggregate determined by the JIS test was 1.29%, and the water absorption β OH calculated by the equation (3) was 2.56%.

そして、表3に示すように、普通セメントに関し、S/C=1.0、2.0、3.0の3種類について、拘束水率αGに対して補正する係数Tを漸次変化させ、(2)式により一次水量W1を順次決定した。モルタルの流動性がフロー値(2000mm程度)となるよう、S/C=1.0の場合に予め定められた全水量W/C=45%、S/C=2.0の場合に全水量W/C=57%、S/C=3.0の場合に全水量W/C=65%とした。
次に重量Sの細骨材の配合比(S/C)にもとづき決定された一次水量W1で調整練りを行い、普通セメントを所定量C(kg/cm)加えて一次練り混ぜ混合し、更に二次水量W2を加えて二次練り混ぜしてモルタルを製造した。
Then, as shown in Table 3, with respect to the ordinary cement, the coefficient T to be corrected with respect to the restricted water ratio αG is gradually changed for three types of S / C = 1.0, 2.0, and 3.0, ( 2) The primary water amount W1 was sequentially determined by the equation. The total water amount W / C = 45% determined in advance when S / C = 1.0 and the total water amount when S / C = 2.0 so that the fluidity of the mortar becomes the flow value (about 2000 mm). In the case of W / C = 57% and S / C = 3.0, the total water amount W / C = 65%.
Next, adjustment kneading is performed with the primary water amount W1 determined based on the blending ratio (S / C) of the fine aggregate of weight S, normal cement is added in a predetermined amount C (kg / cm 3 ), and the primary kneading is mixed. Further, a secondary water amount W2 was added and secondary kneading was performed to produce a mortar.

Figure 0004249176
Figure 0004249176

同様に、表4に示すように、混合粉体Aに関し、セメントCに微量のシリカフュームSFと石灰石微粉末LSを加えたものとした。そして、S/PA=1.0、2.0、3.0の3種類について、拘束水率αGに対して補正する係数Tを漸次変化させ、(2)式により一次水量W1を順次決定した。モルタルの流動性がフロー値(2000mm程度)となるよう、S/PA=1.0の場合に予め定められた全水量W/P=43%、S/P=2.0の場合に全水量W/PA=52%、S/PA=3.0の場合に全水量W/PA=64%とした。
そして、重量Sの細骨材の配合比(S/PA)にもとづき決定された一次水量W1で調整練りを行い、混合粉体Aを所定量PA(kg/cm)加えて一次練り混ぜ混合し、更に二次水量W2を加えて二次練り混ぜしてモルタルを製造した。
Similarly, as shown in Table 4, regarding the mixed powder A, a small amount of silica fume SF and limestone fine powder LS were added to the cement C. Then, for the three types of S / PA = 1.0, 2.0, and 3.0, the coefficient T to be corrected with respect to the constrained water rate αG is gradually changed, and the primary water amount W1 is sequentially determined by the equation (2). . The total water amount W / P = 43% determined in advance when S / PA = 1.0 and the total water amount when S / P = 2.0 so that the flowability of the mortar becomes the flow value (about 2000 mm). In the case of W / PA = 52% and S / PA = 3.0, the total water amount was set to W / PA = 64%.
Then, adjustment kneading is performed with the primary water amount W1 determined based on the blending ratio (S / PA) of the fine aggregate of weight S, and the mixed powder A is added to the predetermined amount PA (kg / cm 3 ) and mixed by primary kneading. Further, a secondary water amount W2 was added and the mixture was secondarily kneaded to produce a mortar.

Figure 0004249176
Figure 0004249176

同様に、表5に示すように、混合粉体Bに関し、セメントCに微量の石灰石微粉末LSを加えたものとした。そして、S/PB=1.0、2.0、3.0の3種類について、拘束水率αGに対して補正する係数Tを漸次変化させ、(2)式により一次水量W1を順次決定した。モルタルの流動性がフロー値(2000mm程度)となるよう、S/PB=1.0の場合に予め定められた全水量W/PB=45%、S/PB=2.0の場合に全水量W/PB=55%、S/PB=3.0の場合に全水量W/PB=67%とした。
そして、重量Sの細骨材の配合比(S/PB)にもとづき決定された一次水量W1で調整練りを行い、混合粉体Bを所定量PB(kg/cm)加えて一次練り混ぜ混合し、更に二次水量W2を加えて二次練り混ぜしてモルタルを製造した。
Similarly, as shown in Table 5, regarding the mixed powder B, a small amount of fine limestone powder LS was added to the cement C. Then, for the three types of S / PB = 1.0, 2.0, and 3.0, the coefficient T to be corrected with respect to the constrained water rate αG is gradually changed, and the primary water amount W1 is sequentially determined by the equation (2). . The total water amount W / PB = 45% determined in advance when S / PB = 1.0, and the total water amount when S / PB = 2.0 so that the fluidity of the mortar becomes the flow value (about 2000 mm). When W / PB = 55% and S / PB = 3.0, the total water amount W / PB = 67%.
Then, adjustment kneading is performed with the primary water amount W1 determined based on the blending ratio (S / PB) of the fine aggregate of weight S, and a predetermined amount PB (kg / cm 3 ) of the mixed powder B is added to the primary kneading and mixing. Further, a secondary water amount W2 was added and the mixture was secondarily kneaded to produce a mortar.

Figure 0004249176
Figure 0004249176

普通セメントモルタルではS/C=1.0、2.0、3.0において、係数Tを変化させて各補正拘束水率αo(=αG×T)に応じた一次水量/普通セメント量W1/C(%)を演算し、得られたモルタルのブリーディング率(%)を測定すると表3に示す結果が得られた。
また、混合粉体AモルタルではS/PA=1.0、2.0、3.0において、係数Tを変化させて各補正拘束水率αo(=αG×T)に応じた一次水量/混合粉体A量W1/PA(%)を演算し、得られたモルタルのブリーディング率(%)を測定すると表4に示す結果が得られた。
また、混合粉体BモルタルではS/PB=1.0、2.0、3.0において、係数Tを変化させて各補正拘束水率αo(=αG×T)に応じた一次水量/混合粉体B量W1/PB(%)を演算し、得られたモルタルのブリーディング率(%)を測定すると表5に示す結果が得られた。
そして、比較例として、トルク試験で得た拘束水率α=25%に基づいて(4)式で一次水量W1を決定し、普通セメント及び混合粉体A、Bを用いた各モルタルのブリーディング率(%)を測定した。また、一次水量W1と二次水量W2に分割せず一括して全水量Wを骨材と普通セメントと混合粉体A、Bにそれぞれ混ぜ込んで一括練りして各モルタルを得て、そのブリーディング率(%)を測定した。
In ordinary cement mortar, when S / C = 1.0, 2.0, 3.0, the coefficient T is changed and the primary water amount / ordinary cement amount W1 / in accordance with each corrected restricted water ratio αo (= αG × T). When C (%) was calculated and the bleeding rate (%) of the obtained mortar was measured, the results shown in Table 3 were obtained.
In the case of the mixed powder A mortar, the primary water amount / mixing according to each corrected restricted water ratio αo (= αG × T) by changing the coefficient T at S / PA = 1.0, 2.0, 3.0. When the amount of powder A W1 / PA (%) was calculated and the bleeding rate (%) of the obtained mortar was measured, the results shown in Table 4 were obtained.
In the mixed powder B mortar, when S / PB = 1.0, 2.0, and 3.0, the coefficient T is changed and the primary water amount / mixing corresponding to each corrected restricted water ratio αo (= αG × T). When the powder B amount W1 / PB (%) was calculated and the bleeding rate (%) of the obtained mortar was measured, the results shown in Table 5 were obtained.
And as a comparative example, the primary water amount W1 is determined by the formula (4) based on the restricted water ratio α = 25% obtained in the torque test, and the bleeding rate of each mortar using ordinary cement and mixed powders A and B (%) Was measured. In addition, the total water amount W is not divided into the primary water amount W1 and the secondary water amount W2, but the total water amount W is mixed into the aggregate, ordinary cement, and the mixed powders A and B, respectively, and kneaded together to obtain each mortar. The rate (%) was measured.

表3のS/C=1.0、2.0、3.0の場合において、補正拘束水率αoを横軸にとり、ブリーディング率(%)を縦軸にとって表3の結果を図4にプロットした。また、表4のS/PA=1.0、2.0、3.0の場合において、補正拘束水率αoを横軸にとり、ブリーディング率(%)を縦軸にとって表4の結果を図5にプロットした。また、表5のS/PB=1.0、2.0、3.0の場合において、補正拘束水率αoを横軸にとり、ブリーディング率(%)を縦軸にとって表5の結果を図6にプロットした。
図4に示す結果から、S/C=1.0、2.0、3.0の全ての場合に、係数T=1.0〜1.5の範囲内での補正拘束水率αoのブリーディング率が最も低く好ましい領域になるという結果が得られた。また図5、図6に示す結果から、S/PA=S/PB=1.0、2.0、3.0の全ての場合に、係数T=1.0〜1.5の範囲内でブリーディング率が最も低く好ましい領域になるという結果が得られた。
即ち、係数Tが1.0〜1.5の範囲内であればブリーディング率の低い良好なモルタルを得られる。
他方、トルク試験で検出した拘束水率αに基づいて決定した一次水量W1によるモルタルのブリーディング率は、普通セメント、混合粉体Aのいずれも場合も、実施形態による係数T=1.0〜1.5の範囲の好ましいブリーディング率に含まれていた。しかしながら、混合粉体Bの場合には、トルク試験で得た拘束水率αはブリーディング率が係数T=1.0〜1.5の領域より高く、係数Tの良好な範囲を外れた係数T=1.7〜1.8に相当する拘束水率であった。これは、負荷抵抗の変動の過程で、ペースト中に粉体ダマが生成されたりセメント粒子間に微量な空気が混入して気泡や空気層等が生じたりして、拘束水率α値検出の精度に悪影響を及ぼしたためと推測される。
また、一括練りによる場合のブリーディング率は実施形態の範囲(αo=αG×T)やトルク試験の場合(α)よりもかなり悪かった。
上述の表3、表4及び表5と図4、図5及び図6に示す結果から、遠心試験で得られた各拘束水率αG(Y切片)に対して重力加速度の場で脱水される水分量を係数Tによって補正することにより、キャピラリー状態の含有水分量である補正拘束水率αoとの相関関係が得られる。そして、トルク試験で得た拘束水率αより正確で安定した補正拘束水率αoが得られた。
In the case of S / C = 1.0, 2.0, and 3.0 in Table 3, the corrected constrained water rate αo is plotted on the horizontal axis and the bleeding rate (%) is plotted on the vertical axis, and the results in Table 3 are plotted in FIG. did. Further, in the case of S / PA = 1.0, 2.0, and 3.0 in Table 4, the corrected restraint water rate αo is taken on the horizontal axis and the bleeding rate (%) is taken on the vertical axis, and the results in Table 4 are shown in FIG. Plot to Further, in the case of S / PB = 1.0, 2.0, and 3.0 in Table 5, the corrected restraint water rate αo is taken on the horizontal axis and the bleeding rate (%) is taken on the vertical axis, and the results in Table 5 are shown in FIG. Plot to.
From the results shown in FIG. 4, in all cases of S / C = 1.0, 2.0, and 3.0, the bleeding of the corrected restricted water ratio αo within the range of the coefficient T = 1.0 to 1.5. The result is that the rate is the lowest and the preferred region. Further, from the results shown in FIG. 5 and FIG. 6, in all cases of S / PA = S / PB = 1.0, 2.0, 3.0, the coefficient T is within the range of 1.0 to 1.5. As a result, the bleeding ratio was the lowest and the preferred region was obtained.
That is, when the coefficient T is in the range of 1.0 to 1.5, a good mortar with a low bleeding rate can be obtained.
On the other hand, the bleeding rate of the mortar based on the primary water amount W1 determined based on the constrained water rate α detected in the torque test is the coefficient T = 1.0 to 1 in the case of both ordinary cement and the mixed powder A. It was included in the preferable bleeding rate in the range of .5. However, in the case of the mixed powder B, the constrained water rate α obtained in the torque test is higher than the region where the bleeding rate is a factor T = 1.0 to 1.5, and the factor T is outside the good range of the factor T. = Restrained water ratio corresponding to 1.7 to 1.8. This is because in the process of fluctuation of load resistance, powder lumps are generated in the paste, or a small amount of air is mixed between cement particles, resulting in bubbles and air layers. It is presumed that the accuracy was adversely affected.
Moreover, the bleeding rate in the case of batch kneading was considerably worse than the range of the embodiment (αo = αG × T) and the torque test (α).
Based on the results shown in Tables 3, 4 and 5 and FIGS. 4, 5 and 6, each dewatering rate αG (Y section) obtained in the centrifugal test is dehydrated in the field of gravitational acceleration. By correcting the water content by the coefficient T, a correlation with the corrected restricted water rate αo which is the water content in the capillary state is obtained. Then, the corrected restricted water ratio αo which is more accurate and stable than the restricted water ratio α obtained in the torque test was obtained.

次に、遠心試験によって上記4種類の粉体のうちの普通セメントと混合粉体A、Bについて細骨材の吸着水率βoを求め、細骨材の表面吸着水率βOHを上記(3)式によって求める。
一例として図3に示すように普通セメントと混合粉体A、Bについての吸着水率βoを求める。そのため、コンクリートまたはモルタルに含有される細骨材、水、普通セメントまたは混合粉体A、Bからなる各試料に関し、遠心試験後の残留含水量をWz、粉体である普通セメント、混合粉体A、Bの重量をC、PA、PBとすると残留水粉体比はWz/C、Wz/PA、Wz/PBとなる。また、細骨材の重量Sと普通セメント、混合粉体A、Bとの重量のモルタル配合比はS/C、S/PA、S/PBとなる。
ここで、細骨材と粉体の配合比S/C、S/PA、S/PBをそれぞれ0,1,2,3に設定し、各配合比S/C、S/PA,S/PBで上述した遠心試験を3回づつ繰り返し行って各平均値を算出する。次に各S/C、S/PA,S/PB毎にセメントペースト(バインダ)分の普通セメントまたは混合粉体A、Bの重量C、PA、PBに対する残留含水量Wzの割合Wz/C、Wz/PA、Wz/PBの平均値を求める。
Next, the adsorption rate βo of the fine aggregate is obtained for the ordinary cement and the mixed powders A and B among the above four types of powders by a centrifugal test, and the surface adsorption rate β OH of the fine aggregate is calculated as (3 ) Determined by the formula.
As an example, as shown in FIG. 3, the adsorbed water ratio βo for ordinary cement and mixed powders A and B is obtained. Therefore, for each sample consisting of fine aggregate, water, ordinary cement or mixed powder A, B contained in concrete or mortar, the residual water content after centrifugal test is Wz, ordinary cement as a powder, mixed powder When the weights of A and B are C, PA, and PB, the residual water powder ratio is Wz / C, Wz / PA, and Wz / PB. Moreover, the mortar compounding ratio of the weight S of the fine aggregate and the weight of the ordinary cement and the mixed powders A and B is S / C, S / PA, and S / PB.
Here, the blending ratios S / C, S / PA, and S / PB of the fine aggregate and powder are set to 0, 1, 2, and 3, respectively, and the blending ratios S / C, S / PA, and S / PB are set. Each of the average values is calculated by repeating the above-described centrifugation test three times. Next, for each S / C, S / PA, and S / PB, the cement paste (binder) ordinary cement or mixed powder A, B weight C, PA, PB residual water content Wz ratio Wz / C, Average values of Wz / PA and Wz / PB are obtained.

このようにして得られた各S/C、S/PA,S/PBとWz/C、Wz/PA,Wz/PBとの関係を図3にプロットする。図中、S/C、S/PA、S/PBを横軸、Wz/C、Wz/PA、Wz/PBを縦軸にとる。図3において、これらの関係を直線回帰して、この近似直線の傾きをθとすると、細骨材の重量Sに対する残留含水量Wzの割合(Wz/S)を求めて下式(5)のように細骨材の吸着水率βoを得る。この吸着水率βoは遠心試験によっても細骨材から分離しない水量を指し、細骨材の内部空隙を満たしている水と表面に付着している水との合計量の質量百分率を意味する。
tanθ=Wz/S=βo (5)
遠心脱水試験では、骨材及び粉体の配合比S/C、S/PA、S/PBと残留水及び粉体の比Wz/C、Wz/PA、Wz/PBとの関係で得られる一次回帰式の勾配から骨材の吸着水率βoを求めている。図3に示すように、一次回帰式のY切片は、Y軸上における骨材を含まない(S/C=S/PA=S/PB=0)粉体の拘束水率(水粉体比)αGを示す。
The relationship between each S / C, S / PA, S / PB and Wz / C, Wz / PA, Wz / PB thus obtained is plotted in FIG. In the figure, S / C, S / PA, and S / PB are on the horizontal axis, and Wz / C, Wz / PA, and Wz / PB are on the vertical axis. In FIG. 3, when these relationships are linearly regressed and the inclination of the approximate line is θ, the ratio (Wz / S) of the residual water content Wz to the weight S of the fine aggregate is obtained, and the following equation (5) is obtained. Thus, the adsorption water ratio βo of the fine aggregate is obtained. This adsorbed water rate βo refers to the amount of water that does not separate from the fine aggregate even by a centrifugal test, and means the mass percentage of the total amount of water that fills the internal voids of the fine aggregate and water that adheres to the surface.
tan θ = Wz / S = βo (5)
In the centrifugal dehydration test, the primary ratio obtained from the relationship between the aggregate ratio of aggregate and powder S / C, S / PA, S / PB and the ratio of residual water and powder Wz / C, Wz / PA, Wz / PB. The aggregate adsorbed water ratio βo is obtained from the slope of the regression equation. As shown in FIG. 3, the Y-intercept of the linear regression equation does not include aggregates on the Y-axis (S / C = S / PA = S / PB = 0). ) Indicates αG.

このようにして得られた細骨材の吸着水率βoと別の試験で求めたJIS表乾状態における吸水率Qとにより、下式(3)を用いて細骨材の表面吸着水率βOHを求める。
βOH =(βo−Q)/(1+Q/100) (3)
但し、Q:JISの試験で求められる細骨材の内部の吸水率(%)
遠心試験で求めた拘束水率αG,設定された係数T、そして細骨材の吸着水率βoから(3)式で求めた表面吸着水率βOH を(4)式に代入すると、(2)式が得られる。
W1={(αG×T)/100}×F+(βOH/100)×S (2)
なお、Fは単位体積(cm)当たりの普通セメント、混合粉体A,B,C等各種の粉体重量である。
Based on the water absorption rate βo of the fine aggregate obtained in this way and the water absorption rate Q in the dry state of JIS obtained in another test, the surface adsorbed water rate β of the fine aggregate using the following equation (3) Find OH .
β OH = (βo−Q) / (1 + Q / 100) (3)
However, Q: Water absorption rate (%) inside the fine aggregate required by JIS test
Substituting the surface adsorbed water rate β OH calculated by the equation (3) from the constrained water rate αG obtained by the centrifugal test, the set coefficient T, and the adsorbed water rate βo of the fine aggregate into the equation (4), (2 ) Formula is obtained.
W1 = {(αG × T) / 100} × F + (β OH / 100) × S (2)
Note that F is the weight of various powders such as ordinary cement, mixed powders A, B, and C per unit volume (cm 3 ).

このようにして決定された一次水量W1に基づいて分割練り混ぜ工法に用いると、細骨材からなる骨材に一次水量W1を加えて調整練りを行うことで各骨材の全周に水分を均等に付着させることができる。その後、所要量の普通セメントまたは混合粉体A、B(または混合粉体C)を加えて練り混ぜることで骨材の周囲にキャピラリー状態のセメントまたは混合粉体A、B(または混合粉体C)が付着して造殻される。
次に造粒された骨材に、投入すべき全水量Wから一次水量W1を除去した二次水量W2(と必要であれば混和材)を加えて練り混ぜすることで、セメントが良く分散して均質なコンクリートまたはモルタルが得られることになる。この工法で得られたコンクリートまたはモルタルは保水性が高いためにブリーディングが少ない。
なお、図2に示すように普通セメントだけでなく混合粉体A、B,Cでも遠心加速度が400G以上で30分間以上かければ拘束水率αG(Y切片)の値は一定に収束する。その場合、図2に示すように粉体種類ごとに拘束水率αGは異なり固有の値を示す。また、図3に示すように、同じ骨材を用いても遠心試験で得られる吸着水率βoは用いる粉体の種類により異なることとなる。
そのため、一次水量W1を求めるためのパラメータである普通セメントや混合粉体A,B,C等の粉体の拘束水率αGおよび骨材の拘束水率βOHは、練混ぜに用いる粉体の性質により決定される。
When used in the divided kneading method based on the primary water amount W1 determined in this way, the primary water amount W1 is added to the aggregate made of fine aggregate, and the mixture is adjusted and kneaded, so that moisture is added to the entire circumference of each aggregate. Can be attached evenly. After that, the required amount of ordinary cement or mixed powder A, B (or mixed powder C) is added and kneaded to make the cement or mixed powder A, B (or mixed powder C) in the capillary state around the aggregate. ) Is attached and shelled.
Next, by adding the secondary water volume W2 (and admixture if necessary) obtained by removing the primary water volume W1 from the total water volume W to be added to the granulated aggregate, the cement is well dispersed. A homogeneous concrete or mortar. The concrete or mortar obtained by this construction method has a high water retention and therefore has little bleeding.
As shown in FIG. 2, not only ordinary cement but also mixed powders A, B, and C have a constrained water ratio αG (Y intercept) that converges to a constant value if the centrifugal acceleration is 400 G or more and takes 30 minutes or more. In that case, as shown in FIG. 2, the constrained water ratio αG differs for each powder type and shows a unique value. Moreover, as shown in FIG. 3, even if the same aggregate is used, the adsorption water ratio βo obtained by the centrifugal test varies depending on the type of powder used.
Therefore, the restricted water ratio αG of powders such as ordinary cement and mixed powders A, B, and C and the restricted water ratio β OH of the aggregate, which are parameters for obtaining the primary water amount W1, are the parameters of the powder used for mixing. Determined by nature.

上述のように本実施形態による一次水量W1の決定方法によれば、トルク試験を行うことなく普通セメントまたは混合粉体A,B,C等の粉体をスラリー状態から遠心試験によってキャピラリー状態またはその近傍に調整する拘束水率αGを得ることができる。特にトルク試験を行わないために、ベアリング効果によるせん断抵抗を少なくする現象を生じない等トルク試験による種々の悪影響を受けることなく、セメントまたは混合粉体の真のキャピラリー領域を判定して一次水量を決定できる。
しかも、粉体をスラリー状態とするために、粉体粒子や超微粒子が十分分散されて間隙に水が満された状態になり、粉体ダマが生じない上に、大気圧下で混練してセメント粒子間に気泡や空気層等が生じることがなく、拘束水率αGの検出精度に悪影響を及ぼさない。また、粉体をスラリー状態にすることで、シリカフュームのような超微粒子をセメント粉に追加混合したり、一部置換して混合した混合粉体であっても、超微粒子がセメント粒子の表面に付着することがなく大小個々の粉体や超微粒子が互いに遊離状態に保持されるために、せん断抵抗がベアリング効果で小さくなることはない。
そして拘束水率αGを係数Tで補正した補正拘束水率αoを得ることで、コンクリートまたはモルタルのブリーディング率を最小にする最適な一次水量W1を決定できる。
As described above, according to the method for determining the primary water amount W1 according to the present embodiment, powder such as ordinary cement or mixed powders A, B, and C can be obtained from a slurry state by a centrifugal test or a capillary state without performing a torque test. A constrained water ratio αG that is adjusted in the vicinity can be obtained. In particular, since the torque test is not performed, the phenomenon of reducing shear resistance due to the bearing effect does not occur. Can be determined.
Moreover, in order to make the powder into a slurry state, the powder particles and ultrafine particles are sufficiently dispersed and the gap is filled with water, no powder lumps occur, and the mixture is kneaded at atmospheric pressure. Air bubbles and air layers are not generated between the cement particles, and the detection accuracy of the constrained water ratio αG is not adversely affected. In addition, by making the powder into a slurry state, even if it is a mixed powder in which ultrafine particles such as silica fume are additionally mixed with the cement powder or partly mixed, the ultrafine particles will remain on the cement particle surface. Since the individual powders and ultrafine particles are not adhered to each other and are kept free from each other, the shear resistance is not reduced by the bearing effect.
Then, by obtaining a corrected constrained water rate αo obtained by correcting the constrained water rate αG with a coefficient T, the optimum primary water amount W1 that minimizes the bleeding rate of concrete or mortar can be determined.

なお、上述の実施の形態では、各数値を用いて説明したが、本発明は上述の数値のものに限定されるものではなく説明の都合上、単なる一例を提示したにすぎないことはいうまでもない。
また細骨材を含む骨材には繊維材を含んでいてもよい。
In the above-described embodiment, each numerical value is used for explanation. However, the present invention is not limited to the above-described numerical value, and for the sake of explanation, it is merely an example. Nor.
Further, the aggregate including the fine aggregate may contain a fiber material.

次に本発明の別の実施例について述べる。
粉体として普通ポルトランドセメント(普通セメント)と混合粉体Aを用いてコンクリートを製造した。コンクリート中には細骨材と粗骨材と混和剤を混入することとした。普通セメントを用いたコンクリートの配合は下記表6に示す通りである。また、混合粉体Aを用いたコンクリートの配合は下記表7に示す通りである。なお、表7において、混合粉体Aの重量PAはセメントCにシリカヒュームSFと石灰石微粉末LSを混合した重量であり、重量BはそのうちセメントCにシリカヒュームSFを混合した重量である。
また、各コンクリートの配合中、細骨材と粗骨材の物性は下記表8に示す通りである。
Next, another embodiment of the present invention will be described.
Concrete was produced using ordinary Portland cement (ordinary cement) and mixed powder A as the powder. In concrete, fine aggregate, coarse aggregate and admixture were mixed. The composition of concrete using ordinary cement is as shown in Table 6 below. Further, the blending of the concrete using the mixed powder A is as shown in Table 7 below. In Table 7, the weight PA of the mixed powder A is the weight of the cement C mixed with the silica fume SF and the fine limestone powder LS, and the weight B is the weight of the cement C mixed with the silica fume SF.
Moreover, the physical properties of the fine aggregate and the coarse aggregate are as shown in Table 8 below during mixing of each concrete.

Figure 0004249176
Figure 0004249176

Figure 0004249176
Figure 0004249176

Figure 0004249176
Figure 0004249176

そして上述の実施形態に示す方法で説明したように、それぞれコンクリートを製造した。
各コンクリートの製造に際して、拘束水率αGは普通セメントと混合粉体Aに水をその30%以上添加してスラリー状態として遠心試験を行うことで得た。遠心試験では加速度Gを徐々に上昇させ、400G以上の加速度を30分間かけて収束させることで各拘束水率αGを得た。普通セメントコンクリートの拘束水率αG=16.3、混合粉体Aの拘束水率αG=17.7であった。参考例として求めたトルク試験による普通セメントコンクリートの拘束水率α=24.0、混合粉体Aの拘束水率α=22.0であった。
さらに、各粉体の配合に基づいて遠心試験を行い、得られた細骨材の拘束水率βoは、普通セメントで3.88%、混合粉体Aで4.19%であった。なお、JIS試験で求めた細骨材の内部の吸水率Qを1.29%として、(3)式で求めた吸着水率βOHは普通セメントコンクリートで2.56%、混合粉体Aコンクリートで2.86%であった。
And concrete was each manufactured as demonstrated by the method shown in the above-mentioned embodiment.
In the production of each concrete, the constrained water ratio αG was obtained by adding 30% or more of water to ordinary cement and mixed powder A and conducting a centrifugal test in a slurry state. In the centrifugal test, the acceleration G was gradually increased, and each constraint water ratio αG was obtained by converging an acceleration of 400 G or more over 30 minutes. The restricted water ratio αG = 16.3 of the ordinary cement concrete and the restricted water ratio αG = 17.7 of the mixed powder A. According to the torque test obtained as a reference example, the constrained water rate α of normal cement concrete was 24.0, and the constrained water rate α of the mixed powder A was 22.0.
Further, a centrifugal test was performed based on the blending of each powder, and the constrained water ratio βo of the obtained fine aggregate was 3.88% for ordinary cement and 4.19% for mixed powder A. The water absorption Q inside the fine aggregate determined in the JIS test is 1.29%, the water absorption β OH calculated by the formula (3) is 2.56% for ordinary cement concrete, and mixed powder A concrete. It was 2.86%.

そして、表9に示すように、普通セメントと混合粉体Aに関し、拘束水率αGに対して補正する係数Tを漸次変化させ、(2)式により一次水量W1を順次決定した。モルタルの流動性がフロー値(2000mm程度)となるよう、予め定められた全水量W/C=53%、W/PA=55%とした。
次に重量Sの細骨材の配合量(S/C、S/PA)にもとづき決定された一次水量W1で調整練りを行い、普通セメント、混合粉体Aを所定量C、PA加えて一次練り混ぜ混合し、更に二次水量W2を加えて二次練り混ぜして普通セメントコンクリートと混合粉体Aコンクリートを製造した。そして普通セメント及び混合粉体Aを用いた各コンクリートのブリーディング率(%)をそれぞれ測定した。
これに対し、トルク試験で検出した拘束水率αに基づいて決定した一次水量W1による各コンクリートのブリーディング率は、普通セメントで、1.60%、混合粉体Aで2.14%であり、いずれも場合も、係数T=1.0〜1.5の範囲の好ましいブリーディング率に含まれていた。また、一括練りによる場合のブリーディング率は実施形態の良好な範囲よりも悪かった。
Then, as shown in Table 9, with respect to the ordinary cement and the mixed powder A, the coefficient T to be corrected with respect to the constrained water ratio αG was gradually changed, and the primary water amount W1 was sequentially determined by the equation (2). The predetermined total water amount W / C = 53% and W / PA = 55% were set so that the flowability of the mortar became the flow value (about 2000 mm).
Next, adjustment kneading is performed with the primary water amount W1 determined based on the blending amount (S / C, S / PA) of the fine aggregate of weight S, and the primary cement and mixed powder A are added to the primary amount C and PA. The mixture was kneaded and mixed, and the secondary water amount W2 was further added and the mixture was secondarily kneaded to produce ordinary cement concrete and mixed powder A concrete. And the bleeding rate (%) of each concrete using normal cement and mixed powder A was measured, respectively.
On the other hand, the bleeding rate of each concrete based on the primary water amount W1 determined based on the constrained water rate α detected in the torque test is 1.60% for ordinary cement and 2.14% for the mixed powder A. In either case, the coefficient T was included in a preferable bleeding rate in the range of 1.0 to 1.5. Moreover, the bleeding rate in the case of batch kneading was worse than the favorable range of the embodiment.

Figure 0004249176
Figure 0004249176

これらのデータについて一次水量W1を決定する補正拘束水率αoを横軸に、各コンクリートのブリーディング率を縦軸にとって各測定値をプロットすると、普通セメントコンクリートについては図8、混合粉体Aについては図9に示す結果が得られた、各図中で、T=1〜1.5の範囲内でのブリーディング率が最も低かった。本発明の効果を裏付けられた。
なお、この第二実施例ではトルク試験で得た拘束水率αによっても同様な効果が得られたが、第一実施例における混合粉体Bの場合のように、トルク試験を用いると、負荷抵抗の変動の過程で、ペースト中に粉体ダマが生成されたりセメント粒子間に微量な空気が混入して気泡や空気層等が生じたりして、拘束水率αが好適な補正拘束水率αoの範囲を外れる場合があり、拘束水率α値検出の精度が不安定になる欠点がある。
When these measurements are plotted with the corrected restrained water rate αo for determining the primary water amount W1 on the horizontal axis and the bleeding rate of each concrete on the vertical axis, the measured values are plotted in FIG. The results shown in FIG. 9 were obtained. In each figure, the bleeding rate in the range of T = 1 to 1.5 was the lowest. The effect of the present invention was confirmed.
In the second embodiment, the same effect was obtained by the restrained water ratio α obtained in the torque test. However, when the torque test is used as in the case of the mixed powder B in the first embodiment, the load In the process of resistance fluctuation, powder lumps are generated in the paste, or a small amount of air is mixed between cement particles, resulting in bubbles, air layers, etc. There is a case in which the range of αo may be outside, and the accuracy of detection of the restricted water rate α value becomes unstable.

コンクリート・モルタルの分割練り混ぜ工程を示す工程図である。It is process drawing which shows the division | segmentation kneading process of concrete mortar. 遠心試験による各種粉体について遠心加速度と拘束水率αG(Y切片)との関係を示す図である。It is a figure which shows the relationship between centrifugal acceleration and restraint water rate (alpha) G (Y intercept) about various powder by a centrifugal test. 遠心試験におけるモルタル配合比と遠心試験後の残留水粉体比との関係を一次回帰直線で示す図である。It is a figure which shows the relationship between the mortar compounding ratio in a centrifuge test, and the residual water powder ratio after a centrifuge test with a linear regression line. 係数Tとの関係で、S/C毎に普通セメントの補正拘束水率αoとコンクリート・モルタルのブリーディング率との関係を示す図である。It is a figure which shows the relationship between the correction | amendment restraint water rate (alpha) o of a normal cement, and the bleeding rate of concrete mortar for every S / C by the relationship with the coefficient T. FIG. 係数Tとの関係で、S/PA毎に混合粉体Aの補正拘束水率αoとコンクリート・モルタルのブリーディング率との関係を示す図である。It is a figure which shows the relationship between the correction | amendment restricted water rate (alpha) o of the mixed powder A and the bleeding rate of concrete mortar for every S / PA by the relationship with the coefficient T. FIG. 係数Tとの関係で、S/PB毎に混合粉体Aの補正拘束水率αoとコンクリート・モルタルのブリーディング率との関係を示す図である。It is a figure which shows the relationship between the correction | amendment restraint water rate (alpha) o of the mixed powder A and the bleeding rate of concrete mortar for every S / PB by the relationship with the coefficient T. FIG. 遠心試験後のセメントまたは混合粉体の粉体粒子と水との構造を示す図である。It is a figure which shows the structure of the powder particle | grains and water of the cement or mixed powder after a centrifugal test. 実施例における普通セメントの補正拘束水率αoと普通セメントコンクリートのブリーディング率との関係を示す図である。It is a figure which shows the relationship between the correction | amendment restraint water rate (alpha) o of the normal cement in an Example, and the bleeding rate of a normal cement concrete. 実施例における混合粉体Aの補正拘束水率αoと混合粉体Aコンクリートのブリーディング率との関係を示す図である。It is a figure which shows the relationship between the correction | amendment restraint water rate (alpha) o of the mixed powder A in an Example, and the bleeding rate of mixed powder A concrete. 含水率を変化させた場合の粉体粒子と水との一般的構造概念図である。It is a general structural conceptual diagram of powder particles and water when the moisture content is changed. トルク試験における水セメント比(水混合粉体比)と負荷電流値との関係を示す図である。It is a figure which shows the relationship between the water cement ratio (water mixing powder ratio) and load current value in a torque test. 遠心試験結果によるモルタル配合比と残留水粉体比の関係で得る一次回帰式の勾配を示す図である。It is a figure which shows the gradient of the linear regression type obtained by the relationship between the mortar compounding ratio by the centrifuge test result, and a residual water powder ratio. 粉体ダマを形成した状態の粉体ペーストを示す概念図である。It is a conceptual diagram which shows the powder paste of the state which formed the powder dama. トルク試験においてミキサで粉体ペーストを練り混ぜる状態を示すものであって、トルクがピーク値になる手前のV字状に落ち込む状態を示す図である。It is a figure which shows the state which mixes a powder paste with a mixer in a torque test, Comprising: It is a figure which shows the state which falls in the V shape before the torque becomes a peak value. トルク試験においてミキサで粉体ペースとを練り混ぜる状態を示すものであって、トルクがピーク値になった状態を示す図である。It is a figure which shows the state which knead | mixes powder pace with a mixer in a torque test, Comprising: It is a figure which shows the state in which the torque became the peak value. セメントの粉体粒子の表面に超微粒子が付着した状態を示す図である。It is a figure which shows the state which the ultrafine particle adhered to the surface of the powder particle of cement.

Claims (1)

骨材に一次水量(W1)を加えて調整練りを行い、その後セメントまたはセメントに他の粉体を混合した混合粉体からなる粉体を加えて練り混ぜ、更に全水量から一次水量を除去した二次水量を加えて練り混ぜることでモルタルまたはコンクリートを製造するようにした分割練り混ぜ工法において、
前記粉体をスラリー状態にして、遠心加速度400G以上による遠心脱水試験によって前記粉体の拘束水率(αG)と前記骨材の吸着水率(βo)とを求めて一次水量(W1)を決定するようにしたことを特徴とする分割練り混ぜ工法における一次水量決定方法。
Add primary water (W1) to the aggregate and knead the mixture, then add the powder consisting of cement or a mixture of other powders to the cement and knead, and then remove the primary water from the total water. In the split kneading method, which produces mortar or concrete by adding secondary water and kneading,
The powder is made into a slurry state, and the primary water amount (W1) is determined by obtaining the constrained water rate (αG) of the powder and the adsorbed water rate (βo) of the aggregate by a centrifugal dehydration test with a centrifugal acceleration of 400G or more. A primary water content determination method in a divided kneading method characterized in that it is made to do.
JP2005364547A 2005-12-19 2005-12-19 Determination method of primary water volume in split kneading method Active JP4249176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364547A JP4249176B2 (en) 2005-12-19 2005-12-19 Determination method of primary water volume in split kneading method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364547A JP4249176B2 (en) 2005-12-19 2005-12-19 Determination method of primary water volume in split kneading method

Publications (2)

Publication Number Publication Date
JP2007168086A JP2007168086A (en) 2007-07-05
JP4249176B2 true JP4249176B2 (en) 2009-04-02

Family

ID=38295301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364547A Active JP4249176B2 (en) 2005-12-19 2005-12-19 Determination method of primary water volume in split kneading method

Country Status (1)

Country Link
JP (1) JP4249176B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747229B1 (en) * 2011-02-04 2011-08-17 リブコンエンジニアリング株式会社 Split kneading method
CN103792159A (en) * 2014-02-18 2014-05-14 长沙矿山研究院有限责任公司 Test method of bleeding rate and settlement shrinkage rate of filling slurry
JP5663683B1 (en) * 2014-02-19 2015-02-04 リブコンエンジニアリング株式会社 Batch mixing method and batch mixing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649780B2 (en) * 2008-12-25 2015-01-07 株式会社竹中工務店 Method for producing concrete composition and concrete molded body
JP7239922B2 (en) * 2019-06-04 2023-03-15 戸田建設株式会社 Method for producing shotcrete

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747229B1 (en) * 2011-02-04 2011-08-17 リブコンエンジニアリング株式会社 Split kneading method
CN103792159A (en) * 2014-02-18 2014-05-14 长沙矿山研究院有限责任公司 Test method of bleeding rate and settlement shrinkage rate of filling slurry
JP5663683B1 (en) * 2014-02-19 2015-02-04 リブコンエンジニアリング株式会社 Batch mixing method and batch mixing device
JP2015150880A (en) * 2014-02-19 2015-08-24 リブコンエンジニアリング株式会社 Bulk mix method and bulk mix device

Also Published As

Publication number Publication date
JP2007168086A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
RU2530140C2 (en) Concrete with low clinker content
JP4249176B2 (en) Determination method of primary water volume in split kneading method
CN105314938B (en) A kind of low drying shrinkage anti-crack concrete
Diederich et al. Simple tools for achieving self-compacting ability of concrete according to the nature of the limestone filler
Largeau et al. Effect of Iron Powder (Fe 2 O 3) on Strength, Workability, and Porosity of the Binary Blended Concrete
JP2004203733A (en) Method of producing mortar/concrete, and cement used for producing mortar/concrete
JP4477657B2 (en) Method for determining the proportion of finely divided powder in shotcrete, method for dividing and mixing the shotcrete obtained by this decision method and method for determining the proportion of thickener added to shotcrete
Kwan et al. Packing density and filling effect of limestone fines
CN112079604A (en) Permeable compression-resistant concrete and preparation method thereof
CN112142398B (en) Quantitative design method for mix proportion of machine-made sand self-compacting concrete based on aggregate particle shape
Chen et al. Packing density improvement through addition of limestone fines, superfine cement and condensed silica fume
CN114822727B (en) Design method for mixing proportion of large-flow-state multi-component cement-based pumping concrete
JP4249248B1 (en) A method for calculating the surface adsorbed water ratio of an aggregate in a centrifugal dehydration test, and a method for producing mortar or concrete using the aggregate obtained by this calculation method.
CN114702271B (en) Cemented sand gravel mix proportion design method based on critical sand rate
CN113912347A (en) Grading method of ultra-high performance concrete
US10221101B2 (en) Method for self-consolidating grout
JP5246562B2 (en) Quality evaluation method of silica fume for high strength concrete
JP3877562B2 (en) Coal ash concrete and its blending method
JP3211006B2 (en) Mixing or adjusting a mixture of powder, granules and water
JP2704251B2 (en) Method for determining the characteristics of a mixture using liquids, powders and granules, and method for adjusting the mixture
Mazhoud et al. Is hemp lime concrete a mix of hemp and lime?
JPH07277794A (en) Lightweight concrete aggregate
JP2006182645A (en) Binding material
Cwirzen et al. RPC mix optimization by determination of the minimum water requirement of binary and polydisperse mixtures
JP2597835B2 (en) Method for measuring relative water absorption of aggregate between powder and aggregate in the presence of liquid and method for adjusting kneaded material based on measurement results

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080609

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4249176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250