JPS62235277A - Super lightweight cement set body and manufacture - Google Patents

Super lightweight cement set body and manufacture

Info

Publication number
JPS62235277A
JPS62235277A JP7952086A JP7952086A JPS62235277A JP S62235277 A JPS62235277 A JP S62235277A JP 7952086 A JP7952086 A JP 7952086A JP 7952086 A JP7952086 A JP 7952086A JP S62235277 A JPS62235277 A JP S62235277A
Authority
JP
Japan
Prior art keywords
ultra
light
cement
aggregate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7952086A
Other languages
Japanese (ja)
Other versions
JPH0674180B2 (en
Inventor
明夫 篠崎
憲一 内藤
忠彦 鈴木
中西 正俊
庄川 選男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP61079520A priority Critical patent/JPH0674180B2/en
Publication of JPS62235277A publication Critical patent/JPS62235277A/en
Publication of JPH0674180B2 publication Critical patent/JPH0674180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/16Minerals of vulcanic origin porous, e.g. pumice

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、建造物等の内外壁材や間仕切壁などとして
好適に用いられる超軽量でかつ機械的強度に優れた超軽
量セメント硬化体およびその製造方法に関する。
Detailed Description of the Invention "Field of Industrial Application" This invention relates to an ultra-light hardened cement body that is ultra-light and has excellent mechanical strength and is suitable for use as interior and exterior wall materials of buildings, partition walls, etc. It relates to its manufacturing method.

「従来技術とその問題点」 一般に、建造物等の内外壁材や間仕切壁などの建材とし
ては、軽量でかつ機械的強度に優れた軽量コンクリート
などが提供されている。このような軽重コンクリートに
は、コンクリート中に火山砂利、膨張スラグおよび炭殻
などの軽重骨材を混練してなる軽ffl t ’flコ
ンクリートとコンクリート中に気泡を含有してなる気泡
コンクリートとがある。
"Prior Art and Its Problems" In general, lightweight concrete, which is lightweight and has excellent mechanical strength, is provided as a building material such as interior and exterior wall materials and partition walls of buildings. Such light and heavy concrete includes light ffl t'fl concrete, which is made by mixing light and heavy aggregates such as volcanic gravel, expanded slag, and coal husks into concrete, and aerated concrete, which is made by containing air bubbles in concrete. .

しかしながら、前者の軽量骨材コンクリートにあっては
、建造物等の構造体としての機械的強度に優れているも
のの、比較的比重が1.3〜2と大きく、そのため軽く
する目的で骨材の添加量を多くすると相対的にセメント
債が減少して機賊的強[ff/パイ■下ナス(!9開り
くあうた〜また、後者の気泡コンクリートにあっては、
内部に多量の気泡を保持しているため、超軽量(比重0
.5〜!3)でかつ断熱効果に富むものの、内部の気泡
中に水分を保持し易く、そのため吸水性が大きくなるこ
とから、乾燥収縮量が増大し、よって品質安定性に欠け
るとと乙に、特に混練時にスランプ変化が大きくなり施
工性が悪化する問題かあっソこ。また、この気泡コンク
リートにあっては、内部に保持する水分量が多いことか
ら凍害を被り易くなり、よって機械的特性の低下を招く
問題もあ っ ノこ 。
However, although the former type of lightweight aggregate concrete has excellent mechanical strength as a structure for buildings, it has a relatively high specific gravity of 1.3 to 2. If the amount of addition is increased, the cement bond will be relatively reduced, making it strong like a pirate
Ultra-lightweight (specific gravity 0) due to the large amount of air bubbles held inside.
.. 5~! 3) Although it has a high heat insulating effect, it tends to retain moisture in the internal air bubbles, which increases water absorption, resulting in increased drying shrinkage and a lack of quality stability. At times, the slump change becomes large and the workability deteriorates. In addition, this aerated concrete has the problem of being susceptible to frost damage due to the large amount of water it retains inside, which leads to a decline in mechanical properties.

「目的」 この発明は、上記の事情に鑑みてなされたもので、その
目的とするところは、超軽量(比重0.9〜1.5)で
かつ機械的強度に浸れた非発泡系(骨材添加系)の超軽
量セメント硬化体を提供することにある。
"Purpose" This invention was made in view of the above circumstances, and its purpose is to provide a non-foamed material (boneless material) that is extremely lightweight (specific gravity 0.9 to 1.5) and has high mechanical strength. The purpose of the present invention is to provide an ultra-lightweight hardened cement material (additional material).

「問題点を解決するための手段」 かかる目的を達成するために、発明者らは検討を重ねた
結果、骨材として多孔質黒雲母流紋岩の微粉末を造粒し
これを焼成してなる超軽量骨オに着目した。上記の多孔
質黒雲母流紋岩は、産地により抗火石と呼ばれるもので
、このものは極めて入手し易い安価な材料であるとと乙
に耐火性能に浸れており、この流紋岩微粉末を造粒し焼
成してなる超軽量骨材は、軽重でかつ圧縮強度、吸水率
などにおいて特に優れた性能を有するものとなる。
``Means for Solving the Problems'' In order to achieve this objective, the inventors conducted repeated studies and found that they granulated fine powder of porous biotite rhyolite as an aggregate and fired it. We focused on the ultra-lightweight bone-o. The above-mentioned porous biotite rhyolite is called anti-firestone depending on where it is produced, and it is an extremely easily available and inexpensive material that is known for its fire-resistance properties. The ultra-light aggregate produced by granulation and firing is light and heavy, and has particularly excellent performance in terms of compressive strength, water absorption, etc.

しかしながら、このような超軽量骨材を骨材として実用
化するあたっては、その粒度分布によって次のような問
題が生じた。すなわち、粒度分布が例えば粒径の大きい
方に偏ったり小さい方に偏ったりした場合には、得られ
る超軽量セメント硬化体の表面に骨材が浮いてしまい、
仕上げ面がffl mとなり、また機械的強度の低下を
招く。
However, when putting such ultra-light aggregate into practical use as an aggregate, the following problems arose due to its particle size distribution. In other words, if the particle size distribution is biased towards larger or smaller particle sizes, for example, the aggregate will float on the surface of the resulting ultra-light cement hardened body.
The finished surface becomes ffl m, which also causes a decrease in mechanical strength.

そこで、発明者らはさらに研究をすることにより、上記
の超軽量骨材を骨材として用いた場合に、その粒度が超
軽量セメント硬化体の圧縮強度および吸水率に大きく影
響を及ぼすことを見出だしfコ。
Therefore, the inventors conducted further research and found that when the above-mentioned ultra-light aggregate was used as an aggregate, the particle size greatly affected the compressive strength and water absorption rate of the ultra-light cement hardened body. Start f.

すなわち、この発明の超軽量セメント硬化体の特徴は、
多孔質黒雲母流紋岩微粉末を造粒し焼成してなる超軽量
骨材の粒度が0.6〜15zmの範囲であることにある
That is, the characteristics of the ultra-light cement hardened body of this invention are as follows:
The particle size of the ultra-lightweight aggregate made by granulating and firing porous biotite rhyolite fine powder is in the range of 0.6 to 15 zm.

また、この発明の超軽量セメント硬化体の製造方法の特
徴は、多孔質黒雲母流紋岩微粉末を造粒したのち、焼成
してなる超軽量骨材にセメントおよび水を混練し、この
混練物を硬化さUoるようにし、」1記の超軽量骨材の
粒度を0.6〜15mmの範囲とするとともに、この超
軽量骨材の含水量を上記の混練面に測定して超軽1セメ
ント硬化体中の水分含量を一定とするようにしたことに
ある。
In addition, the feature of the method for producing an ultra-light cement hardened body of the present invention is that after granulating porous biotite rhyolite fine powder, cement and water are kneaded into the ultra-light aggregate obtained by firing. The particle size of the ultra-light aggregate described in item 1 was set in the range of 0.6 to 15 mm, and the water content of this ultra-light aggregate was measured on the kneading surface. 1. The moisture content in the hardened cement is kept constant.

「作用 」 この発明の超軽量セメント硬化体にあっては、超軽量骨
材の吸水率が極めて小さいので、超軽量骨材中に保持す
る水分量ら極めて少なくなり、よって超軽量セメント硬
化体内に保持される水分量が少なくなるとともに、高い
機械的強度ら得られる。
"Function" In the ultra-light cement hardened body of the present invention, since the water absorption rate of the ultra-light aggregate is extremely low, the amount of water held in the ultra-light aggregate is extremely small, so that the ultra-light cement hardened body High mechanical strength is obtained while retaining less water.

また、この超軽量セメント硬化体にあっては、超軽量骨
材の粒度か06〜15Ruの範囲であるので、セメント
と水とからなる混練物中に超軽量骨材が〒I古rTンご
ツバ量JrJ−相プ また、この発明の超軽量セメント硬化体の製造方法にあ
っては、吸水率の極めて小さい超軽量骨材を用いたので
、超軽量骨材中に保持される水分量6極めて少なくなる
ことから、得られる超軽量セメント硬化体内の水分量を
少なくし一定とすることかできるとともに、高い機械的
強度を得ることらできる。
In addition, in this ultra-light cement hardened product, the particle size of the ultra-light aggregate is in the range of 06 to 15 Ru, so the ultra-light aggregate is included in the kneaded mixture of cement and water. In addition, in the method for producing an ultra-light cement hardened body of the present invention, since ultra-light aggregate with an extremely low water absorption rate is used, the amount of water retained in the ultra-light aggregate is 6. Since the amount of water is extremely small, the amount of water in the resulting ultra-light cement hardened body can be reduced and kept constant, and high mechanical strength can be obtained.

[実施例J 以下、この発明の超軽量セメント硬化体を詳しく説明す
る。
[Example J] Hereinafter, the ultra-light cement hardened body of the present invention will be explained in detail.

この発明の超軽量セメント硬化体(以下、硬化体と略称
する。)は、超軽量骨材と水とセメントとが混練され硬
化されてなる乙のである。
The ultra-light cement hardened body (hereinafter abbreviated as hardened body) of the present invention is obtained by kneading and hardening ultra-light aggregate, water, and cement.

上記の超軽量骨材は、多孔質黒雲母流紋岩微粉末を造粒
したのち、焼成してなるしのであって、超軽量細骨材と
超軽量粗骨材とからなる乙のである。
The above-mentioned ultra-light aggregate is made by granulating porous biotite rhyolite fine powder and then firing it, and is composed of ultra-light fine aggregate and ultra-light coarse aggregate.

超軽量細骨(オは、その粒度が0.6〜5mmの範囲と
されろ。そして、この超軽量細骨材の粒径毎の釦[1し
1−トは  06〜1か1の節■の末、ν席のt、rハ
本■シし、1〜3mmの範囲の粒径のものを■とし、3
〜5mmの範囲の粒径のものを■とすると、I :n 
:II[=3:1:I程度であることが望ましいが、こ
れに限定されるものではない。また、超軽量粗骨材は、
その粒度が5〜15mmの範囲とされる。そして、この
超軽量粗骨材の粒径毎の組成比は、5〜LOxmの範囲
の粒径のものを■とし、10〜15mmの範囲の粒径の
ものを■とすると、■と■との混合物の単位容積重量お
よび実績率などを考慮して決められ、通常、[V:V=
l:4〜4:1程度の範囲とされ、望ましくはIV:V
=L:4とされるが、これに限定されるものではない。
The particle size of ultra-light fine aggregate (O) should be in the range of 0.6 to 5 mm.Then, click the button for each particle size of this ultra-light fine aggregate. At the end of ■, the t and r of the ν seat are classified as ■, and those with a particle size in the range of 1 to 3 mm are classified as ■, and 3
If the particle size in the range of ~5 mm is ■, then I:n
:II[=3:1:I or so, but it is not limited to this. In addition, ultra-light coarse aggregate is
The particle size is in the range of 5 to 15 mm. The composition ratio of each particle size of this ultra-light coarse aggregate is as follows: ``■'' is the particle size in the range of 5 to LOxm, and ``■'' is the particle size in the range of 10 to 15 mm. It is determined by considering the unit volume weight of the mixture and the actual rate, etc., and usually [V:V=
l:4 to about 4:1, preferably IV:V
=L:4, but is not limited to this.

そして、これら超軽量細骨材と超軽量粗骨材との混合比
は、得られる硬化体の比重に応じて適宜法められる。
The mixing ratio of these ultra-lightweight fine aggregates and ultra-lightweight coarse aggregates is determined as appropriate depending on the specific gravity of the resulting hardened material.

上記の超軽量骨材の硬化体中の配合量は、得られる硬化
体に要求される比重や圧縮強度などの機械的強度に応じ
て適宜法められ、通常、60〜80重量%程度の範囲と
される。60重量%未満のものでは、少な過ぎて硬化体
中のセメント量が増大して比重が大きくなる不都合が生
じる。また、80重量%を越えるものでは、硬化体の比
重が小さくなるものの、超軽量骨材の増量分だけ相対的
にセメンhmが減少するため、機械的強度が低下する不
都合が生じる。この超軽量骨材の吸水率は、通常、12
〜20重M%程度の範囲とされ、極めて小さいものであ
る。
The amount of the above-mentioned ultra-light aggregate in the cured product is determined as appropriate depending on the specific gravity and mechanical strength such as compressive strength required of the resulting cured product, and is usually in the range of about 60 to 80% by weight. It is said that If it is less than 60% by weight, it is too small and the amount of cement in the cured product increases, resulting in a disadvantage that the specific gravity becomes large. Moreover, if it exceeds 80% by weight, although the specific gravity of the hardened product becomes small, the cement hm is relatively reduced by the increased amount of ultra-light aggregate, resulting in a disadvantage that the mechanical strength decreases. The water absorption rate of this ultra-light aggregate is usually 12
The range is approximately 20% by weight, which is extremely small.

上記の水としては、湖沼水、河川水などの自然水および
水道水、井戸水などの上水などが用いられる。また、セ
メントとしては、通常のポルトランドセメントなどが使
われる。そして、これら水とセメントとの混合比、すな
わち水セメント比(W/C)は、硬化体の機械的強度を
考慮して決められ、通常35〜55%程度とされ、好ま
しくは40〜50%程度の範囲とされる。35%未満の
ものでは、セメントmが多くなるため、得られる硬化体
の機械的強度が増大するものの、比重が増大する不都合
が生じる。また、55%を越えるものでは、セメント量
が少なく水分量が相対的に増大してスランプ値が大きく
なり、そのため施工性が悪化する不都合が生じる。
As the above-mentioned water, natural water such as lake water and river water, and tap water such as tap water and well water are used. Also, as the cement, ordinary Portland cement is used. The mixing ratio of water and cement, that is, the water-cement ratio (W/C), is determined in consideration of the mechanical strength of the hardened material, and is usually about 35 to 55%, preferably 40 to 50%. It is said to be within a range of degrees. If it is less than 35%, the amount of cement m increases, and although the mechanical strength of the resulting cured product increases, the specific gravity increases. On the other hand, if it exceeds 55%, the amount of cement is small and the amount of water is relatively increased, resulting in a large slump value, resulting in the disadvantage that workability deteriorates.

このような構成からなる硬化体は、用いられる超軽量細
骨材、超軽量粗骨材、水、セメント、混和剤などの配合
材料の配合比に応じて絶乾比重が0.9〜1.5の範囲
のものとなる。そして、この硬化体のうち、特に絶乾比
重が1.1〜1,5の範囲のものには、硬化体中の微粒
分を補う目的で山砂や川砂などの天然細骨材を適量添加
することができる。
The hardened material having such a structure has an absolute dry specific gravity of 0.9 to 1.0 depending on the blending ratio of the ultra-light fine aggregate, ultra-light coarse aggregate, water, cement, admixture, and other ingredients used. It will be in the range of 5. Of this hardened material, especially those with an absolute dry specific gravity in the range of 1.1 to 1.5, an appropriate amount of natural fine aggregate such as mountain sand or river sand is added to compensate for the fine particles in the hardened material. can do.

この天然細骨材の粒径は、0.15〜2.51!Jl程
度の範囲とされ、この乙のの超軽量骨材量に対する混合
割合は、63〜65重爪%程度の範囲とされる。この場
合、この天然細骨材を添加することによって、硬化体中
に超軽量骨材より小径の微粒分を補うことかでき、よっ
て0.15〜15mm程度の範囲の粒径を有する軽量骨
材が硬化体全体に万遍なく分散、混合されるので、超軽
量でかつ機械的強度に優れたものとなる。
The particle size of this natural fine aggregate is 0.15 to 2.51! The mixing ratio of this B to the amount of ultra-light aggregate is approximately 63 to 65%. In this case, by adding this natural fine aggregate, it is possible to supplement the fine particles with a smaller diameter than the ultra-light aggregate in the hardened material. is evenly dispersed and mixed throughout the cured product, making it extremely lightweight and having excellent mechanical strength.

また、この硬化体には、曲げ強度や剪断耐力を増大する
目的でガラス繊維、カーボン繊維、金属繊維などの補強
材を混入することもできる。
Furthermore, reinforcing materials such as glass fibers, carbon fibers, and metal fibers can be mixed into this cured product for the purpose of increasing bending strength and shear strength.

硬化体の製造方法を詳しく説明する。まず、多孔質黒雲
母流紋岩微粉末を造粒したのち、焼成して超軽量骨材を
得る。次に、標準篩により 0.6〜15Hの範囲とな
るように超軽量骨材の粒度分布を揃えるとともに、超軽
量細骨材中の配合比、超軽量粗骨材中の配合比および超
軽量細骨材と超軽量粗骨材との混合比などを調整する。
The method for producing the cured product will be explained in detail. First, porous biotite rhyolite fine powder is granulated and then fired to obtain ultra-light aggregate. Next, the particle size distribution of the ultra-light aggregate was adjusted using a standard sieve to be in the range of 0.6 to 15H, and the blending ratio in the ultra-light fine aggregate, the blending ratio in the ultra-light coarse aggregate, and the ultra-light Adjust the mixing ratio of fine aggregate and ultra-light coarse aggregate.

このとき、上記の調整は、得られる硬化体の比重や機械
的強度などが考慮されて決められる。次いで、上記の超
軽量骨材の水分含量を測定しておく。
At this time, the above adjustment is determined in consideration of the specific gravity, mechanical strength, etc. of the obtained cured product. Next, the water content of the ultra-light aggregate is measured.

次に、所定量のセメント中に水を少なめに注入しながら
混練し、上記の超軽量骨材を添加するとともに、残りの
水を漸次滴下する。このとき、残りの水虫は、上記の超
軽量骨材の水分含量や硬化体の乾燥収縮量などに応じて
適宜加威されろ。すな4つち、超軽量骨材の水分含量が
少ない場合には、混練物中に添加される水分量を若干多
くし、逆に超軽量骨材の水分含量が多い場合には、添加
水分量を若干少なくする。このようにすることによっf
fIふl165sθ)舅し4S今ζIA−當?−−悩Y
シ+ス、−シフ1く1さる。また、この混練物には、必
要に応じて減水剤、空気量調整剤および増貼剤などの混
和剤を適宜の混合割合で添加することかできる。次に、
この混練物を所定の型枠中に打設したのち、パイブレー
クにより締固めを行なうとともに、混練物表面のコテ仕
上げを行なう。次いで、一定期間、蒸気養生を行なって
便化させたのち、上記の硬化体を型枠から外して目的の
硬化体を得ろ。
Next, a small amount of water is poured into a predetermined amount of cement while kneading it, and the ultra-light aggregate is added thereto, while the remaining water is gradually added dropwise. At this time, the remaining athlete's foot should be added as appropriate depending on the moisture content of the ultra-light aggregate, the amount of drying shrinkage of the hardened material, etc. In other words, if the water content of the ultra-light aggregate is low, the amount of water added to the kneaded mixture is slightly increased; Reduce the amount slightly. By doing this, f
fIfl165sθ) Father-in-law 4S now ζIA-to? --Anxiety Y
Si + s, - sif 1 x 1 monkey. Further, admixtures such as a water reducing agent, an air amount regulator, and a thickening agent may be added to this kneaded product at an appropriate mixing ratio, if necessary. next,
After pouring this kneaded material into a predetermined mold, it is compacted by pie-breaking and the surface of the kneaded material is finished with a trowel. Next, after steam curing for a certain period of time to make it easier to use, remove the cured product from the mold to obtain the desired cured product.

このようにして得られた硬化体にあっては、超軽量骨材
の吸水率が極めて小さいので、超軽量骨材中に保持する
水分量も極めて少なくなり、よって硬化体内に保持され
る水分量が少なくなるととムに、高い機械的強度ら得ら
れる。
In the hardened material obtained in this way, since the water absorption rate of the ultra-light aggregate is extremely low, the amount of water retained in the ultra-light aggregate is also extremely small, and therefore the amount of water retained within the hardened material is extremely low. As the amount decreases, higher mechanical strength can be obtained.

また、上記の硬化体の製造方法にあっては、吸水率の極
めて小さい超軽量骨材を用いたので、超軽量骨材中に保
持する水分量ら極めて少なくなることから、得られる超
軽量セメント硬化体内の水分量を少なくし一定とするこ
とができろとともに、高い機械的強度も得ることができ
る。
In addition, in the above method for producing a hardened product, since ultra-light aggregate with extremely low water absorption is used, the amount of water retained in the ultra-light aggregate is extremely small, so the ultra-light cement obtained The amount of water in the cured product can be reduced and kept constant, and high mechanical strength can also be obtained.

以下、実験例を示してこの発明の超軽量セメント硬化体
の作用効果を明6゛6:にする。
Hereinafter, experimental examples will be shown to clarify the effects of the ultra-lightweight hardened cement of the present invention.

(実験例1 ) 多孔質黒雲母流紋岩微粉末を造粒し、これを焼成したの
ち、標桑篩により粒度分布が0.6〜151程度の超軽
量骨材を得た。この超軽量骨材の吸水率を測定したとこ
ろ、超軽量骨材重量に対して12゜6〜198重量%程
度であった。そして、この超軽量骨材と水とセメントと
を第1表に示す配合割合で混練し、この混練物を1.O
cmX 10cmX 40cmの型枠内に打設して蒸気
養生を経て固化させて比重1.0のキュービック状の硬
化体(実施例1)を得た。この硬化体中の空気含量は1
0容量%であった。
(Experimental Example 1) After granulating porous biotite rhyolite fine powder and firing it, an ultra-light aggregate with a particle size distribution of about 0.6 to 151 was obtained by passing through a standard Mulberry sieve. When the water absorption rate of this ultra-light aggregate was measured, it was about 12.6 to 198% by weight based on the weight of the ultra-light aggregate. Then, this ultra-light aggregate, water, and cement were kneaded in the proportions shown in Table 1, and the kneaded product was mixed with 1. O
It was poured into a mold of cm x 10 cm x 40 cm and solidified through steam curing to obtain a cubic-shaped cured body (Example 1) with a specific gravity of 1.0. The air content in this cured product is 1
It was 0% by volume.

また、セラホールあるいはシラスを骨材とし、これらと
水およびセメントとをそれぞれ混練してなる市販の比重
10のキューピンク状の超軽↑セメント硬化体(比較例
1.2)を得た。
Further, a commercially available K-pink-shaped ultra-light hardened cement material (Comparative Example 1.2) having a specific gravity of 10 was obtained by using Cerahole or Shirasu as aggregate and kneading these with water and cement, respectively.

これら3種類の硬化体について、それぞれの吸水性能を
比較するために、試験開始時の重量を零として重量減少
傾向を調べた。この結果を第1図に示した。なお、第1
図は、縦軸に乾燥時の硬化体の重量減少量をとり、横軸
に材令をとった。
In order to compare the water absorption performance of these three types of cured bodies, the weight reduction tendency was investigated by setting the weight at the start of the test to zero. The results are shown in FIG. In addition, the first
In the figure, the vertical axis represents the weight loss of the cured product during drying, and the horizontal axis represents the age of the material.

第1表 ただし、第1表以下の6表において、 超軽量骨材1  :  0.6<粒径≦IIl!ff超
軽量骨材■ : 1 〈粒径53mm超軽量骨材■ :
 3 く粒径≦Eimz超軽量骨材■ : 5 く粒径
≦LOmm超軽量骨材V:10<粒径≦15zi である。
Table 1 However, in the 6 tables following Table 1, ultra-light aggregate 1: 0.6<particle size≦IIl! ff Ultra-light aggregate■: 1 <Particle size 53mm ultra-light aggregate■:
3 Particle size≦Eimz ultra-light aggregate ■: 5 Particle size≦LOmm ultra-light aggregate V: 10<particle size≦15zi.

第1図から明らかなように、実施例1は、比較Ml+I
I+−l上、+P(ノーレ1na−+−L1.一式一一
・hc謝り極めて少なく、また材令7日目で減少変化量
がほぼ零となっている。よって、実施例Iは、内部に保
持する水分量が極めて少ないので、乾燥条件下において
ら一定の品質を保つものとなる。この実施例1は、例え
ば間仕切壁などの非構造体の内壁として好適に使用でき
る。
As is clear from FIG. 1, in Example 1, the comparative Ml+I
On I+-l, +P (nore 1na-+-L1.1 set 11/hc) The amount of decrease is extremely small, and the amount of decrease is almost zero on the 7th day of wood age.Therefore, in Example I, Since the amount of water retained is extremely small, it maintains a constant quality even under dry conditions.This Example 1 can be suitably used as an inner wall of a non-structural body such as a partition wall.

(実験例2 ) 実験例Iとほぼ同様にして第2表に示す配合により比重
1.2の硬化体(実施例2)を製造した。
(Experimental Example 2) A cured product (Example 2) having a specific gravity of 1.2 was produced in substantially the same manner as in Experimental Example I using the formulation shown in Table 2.

また、市販の超軽量セメント硬化体のうち、比重1.3
.1.4のらのおよび2種軽量コンクリートをそれぞれ
比較例3.4.5とした。
In addition, among commercially available ultra-light cement hardened bodies, specific gravity 1.3
.. Comparative Examples 3.4.5 and 2nd type lightweight concrete of 1.4 were used as Comparative Examples 3.4.5, respectively.

そして、これら硬化体について凍結融解抵抗性能の試験
を行なった。すなわら、試験前に動弾性係数を測定して
基檗値の100とし、凍結融解試験によってその相対弾
性係数値が85まで低下ずろまての凍結融解サイクル数
で比較した。この結果を第3表に示した。
These cured products were then tested for freeze-thaw resistance performance. That is, before the test, the dynamic elastic modulus was measured and set to the base value of 100, and the relative elastic modulus value decreased to 85 in the freeze-thaw test, and then the number of freeze-thaw cycles was compared. The results are shown in Table 3.

なお、上記の実施例2および比較例3〜5は、1)=F
 h  f、フ ら ・ノボ姑九 〇 −−L−l  
  ↓シ J ・、  L  +、L ?50%とした
In addition, in the above Example 2 and Comparative Examples 3 to 5, 1)=F
h f, f ra ・Novo mother-in-law 〇 --L-l
↓Si J・, L +, L? It was set at 50%.

第2表 第3表 この第3表から明らかなように、実施例2は較例3〜5
に比べて凍結融解抵抗性能に優れていることがわかる。
Table 2 Table 3 As is clear from Table 3, Example 2 is the same as Comparative Examples 3 to 5.
It can be seen that it has superior freeze-thaw resistance performance compared to

(実験例3 ) 実験例1とほぼ同様にして比重が 0.9(実施例3) 1.0(実施例1) 1.1(実施例4) 1.2(実施例2) 1.3(実施例5) 1.4(実施例6) の各硬化体を製造した。そして、これらの硬化体につい
て比重と圧縮強度との関係を調べた。また、比較例とし
て実験例2で用いた比較例3.4を充てた。この結果を
第2図に示した。第2図は、縦軸に圧縮強度を、横軸に
絶乾比重をとった。
(Experimental Example 3) Similar to Experimental Example 1, the specific gravity was 0.9 (Example 3) 1.0 (Example 1) 1.1 (Example 4) 1.2 (Example 2) 1.3 (Example 5) 1.4 (Example 6) Each cured body was manufactured. Then, the relationship between specific gravity and compressive strength of these cured bodies was investigated. Moreover, Comparative Example 3.4 used in Experimental Example 2 was used as a comparative example. The results are shown in FIG. In FIG. 2, the vertical axis shows compressive strength, and the horizontal axis shows absolute dry specific gravity.

第2図から明らかなように、実施例1〜6は、比重0.
9〜1.4の範囲であるにも拘わらずその圧縮強度が約
100〜280に9/ cm2を示し、超軽量でかつ高
強度の性能を有することがわかる。そして、突出  施
例2.4は、例えばPCカーテンウオールなどの非構造
部材に好適であり、また実施例5.6は例えば外壁、床
などの構造体に好適である。
As is clear from FIG. 2, Examples 1 to 6 have a specific gravity of 0.
Although it is in the range of 9 to 1.4, its compressive strength is approximately 100 to 280 9/cm2, indicating that it is extremely lightweight and has high strength performance. Projection Example 2.4 is suitable for non-structural members such as PC curtain walls, and Example 5.6 is suitable for structural bodies such as external walls and floors.

(実験例4 ) 実験例3で用いた実施例1〜3.5.6について、圧縮
強度と引張強度との関係を調べた。そして、建設省の構
造強度基準を比較例とした。その結果を第3図に示した
(Experimental Example 4) Regarding Examples 1 to 3.5.6 used in Experimental Example 3, the relationship between compressive strength and tensile strength was investigated. The Ministry of Construction's structural strength standards were used as a comparison example. The results are shown in Figure 3.

第3図から明らかなように、実施例1〜3.5.6は、
いずれら基準値を上回っていることがわかる。よって、
これらの実施例1〜3.5.6は、建造物等の構造体で
ある内外壁材として好適に使用でさることがわかる。
As is clear from FIG. 3, Examples 1 to 3.5.6 are as follows:
It can be seen that both values exceed the standard values. Therefore,
It can be seen that these Examples 1 to 3, 5, and 6 can be suitably used as interior and exterior wall materials of structures such as buildings.

(実験例5 ) 実験例1で製造した比重1.0のキュービック状の硬化
体を板厚的150+u+となるように切断し、この板状
の硬化体について促進中性化試験を行なったところ、中
性化深さは推定36年相当で5次肩であった。
(Experimental Example 5) The cubic-shaped cured body with a specific gravity of 1.0 produced in Experimental Example 1 was cut to a thickness of 150+u+, and an accelerated neutralization test was conducted on this plate-shaped cured body. The neutralization depth was estimated to be equivalent to 36 years, which was the 5th shoulder.

(実験例6 ) 鉄[嗅す11す^へ−−υ 仏10八バーー鴫  ↓に
同情1Cバーー^櫂状の硬化体について2時間耐火試験
を行なったところ、完全にクリアーした。
(Experimental Example 6) Iron [Smell 11s^he--υ Buddha 108 Bars ↓ Sympathize with 1C bar-^ When a 2-hour fire resistance test was conducted on the paddle-shaped hardened body, it completely passed.

(実験例7 ) 実験例1で得られた超軽量粗骨材(5く粒径≦10xi
月V、 (10<粒径≦15ii)Vを第4表ニ示ス混
合割合で混合し、その混合物の単位容積重量および絶乾
比重を測定し、実績率(単位容積重量/絶乾比重)を算
出し、その結果を第2表、第4図および第5図に示した
。また、第4図は、超軽量粗骨材■、■の混合割合と単
位容積重量との関係を示すもので、第5図は、超軽量f
H骨材1v、■の混合割合と実績率との関係を示すもの
である。
(Experimental Example 7) Ultra-light coarse aggregate obtained in Experimental Example 1 (5 grain size≦10xi
Mix V, (10<particle size≦15ii) V at the mixing ratio shown in Table 4, measure the unit volume weight and bone dry specific gravity of the mixture, and measure the actual rate (unit volume weight/bone dry specific gravity). was calculated, and the results are shown in Table 2, Figures 4 and 5. In addition, Figure 4 shows the relationship between the mixing ratio of the ultra-light coarse aggregates ■ and ■ and the unit volume weight, and Figure 5 shows the relationship between the ultra-light coarse aggregates ■ and ■ and the unit volume weight.
It shows the relationship between the mixing ratio of H aggregate 1v, ■ and the actual rate.

(以下余白) 第4表 第2表、第4図および第5図から明らかなように、実績
率が高い水孕でほぼ一定となる超軽量粗骨材■と■との
混合割合は、4:1〜l:4の範囲であり、その範囲の
混合割合における単位容積重量は、375〜418に9
713のに囲であった。すなわち、軽量でかつ高い実績
率を満たす超軽q粗骨材の混合割合は、■・V=4・1
程度が最適であることがわかる。
(Leaving space below) As is clear from Table 4, Table 2, Figures 4 and 5, the mixing ratio of the ultra-light coarse aggregates ■ and ■, which is almost constant in water bearing with a high performance rate, is 4. :1 to 1:4, and the unit volume weight at the mixing ratio in that range is 375 to 418 to 9.
It was surrounded by 713. In other words, the mixing ratio of ultra-light q coarse aggregate that is lightweight and satisfies a high performance rate is ■・V=4・1
It turns out that the degree is optimal.

「発明の効果」 以上説明したように、この発明の超軽量セメント硬化体
は、超軽量骨材の吸水率が極めて小さいので、超軽量骨
材中に保持する水分mら極めて少なくなり、よって超軽
量せメント硬化体内に保持されろ水分量が少なくなると
とらに、高い機械的強度ら得られる。また、この超軽量
セメント硬化体にあっては、超軽量骨材の粒度が0.6
〜15xiの範囲であるので、硬化体中に超軽量骨材か
4遍なく分散される。よって硬化体表面上に骨材が浮く
ことがなく表面仕上げが良好なものとなる。
"Effects of the Invention" As explained above, in the ultra-light cement hardened body of the present invention, the water absorption rate of the ultra-light aggregate is extremely low, so the water m retained in the ultra-light aggregate is extremely small, and therefore the ultra-light cement hardened body is Lightweight cement retains less water in the hardened body and provides high mechanical strength. In addition, in this ultra-light cement hardened body, the particle size of the ultra-light aggregate is 0.6.
Since it is in the range of ~15xi, the ultra-light aggregate is evenly dispersed in the hardened material. Therefore, the aggregate does not float on the surface of the cured product, resulting in a good surface finish.

また、この発明の超軽量セメント硬化体の製造方法にあ
っては、吸水率の極めて小さい超軽量骨材を用いたので
、超軽量骨材中に保持される水分m t、)極めて少な
くなることから、得られる超軽量セメント硬化体内の水
分量を少なくし一定とずろことができるとともに、高い
機械的強度を得ることらできる。
In addition, in the method for producing an ultra-light cement hardened body of the present invention, ultra-light aggregate with an extremely low water absorption rate is used, so that the moisture retained in the ultra-light aggregate (m t ) is extremely reduced. Therefore, the amount of water in the ultra-light cement hardened body obtained can be reduced and kept constant, and high mechanical strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の超軽量セメント硬化体の重量AA
少傾向を示すグラフ、第2図は、この発明の超軽量セメ
ント硬化体の絶乾比重と圧縮強度との関係を示すグラフ
、第3図は、この発明の超軽量セメント硬化体の引張強
度と圧縮強度との関係を示すグラフ、第4図は、超軽量
粗骨材の混合割合と単位容積m−4との関係を示すグラ
フ、第5図は、超軽量骨材中の混合割合と実績率との関
係を示すグラフである。
Figure 1 shows the weight AA of the ultra-light cement hardened body of this invention.
FIG. 2 is a graph showing the relationship between absolute dry specific gravity and compressive strength of the ultra-light hardened cement of the present invention, and FIG. 3 is a graph showing the relationship between the tensile strength and compressive strength of the ultra-light hardened cement of the present invention. Graph showing the relationship with compressive strength. Figure 4 is a graph showing the relationship between the mixing ratio of ultra-light coarse aggregate and unit volume m-4. Figure 5 shows the mixing ratio in ultra-light aggregate and actual performance. It is a graph showing the relationship with the rate.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質黒雲母流紋岩微粉末を造粒し焼成してなる
超軽量骨材と水とセメントとからなる超軽量セメント硬
化体であって、 上記の超軽量骨材の粒度が0.6〜15mmの範囲であ
ることを特徴とする超軽量セメント硬化体。
(1) An ultra-light cement hardened body consisting of ultra-light aggregate made by granulating and firing porous biotite rhyolite fine powder, water, and cement, wherein the particle size of the ultra-light aggregate is 0. An ultra-lightweight hardened cement body characterized by having a thickness in the range of 6 to 15 mm.
(2)多孔質黒雲母流紋岩微粉末を造粒したのち、焼成
してなる超軽量骨材にセメントおよび水を混練し、この
混練物を硬化させるようにした超軽量セメント硬化体の
製造方法であって、 上記の超軽量骨材の粒度を0.6〜15mmの範囲とす
るとともに、この超軽量骨材の含水量を上記の混練前に
測定して超軽量セメント硬化体中の水分含量を一定とす
るようにしたことを特徴とする超軽量セメント硬化体の
製造方法。
(2) Production of an ultra-light cement hardened body by kneading cement and water into an ultra-light aggregate obtained by granulating and firing porous biotite rhyolite fine powder, and hardening the kneaded mixture. The method comprises: adjusting the particle size of the ultra-light aggregate to a range of 0.6 to 15 mm, and measuring the moisture content of the ultra-light aggregate before the above-mentioned kneading to determine the water content in the ultra-light cement hardened body. 1. A method for producing an ultra-light hardened cement material, characterized in that the content is kept constant.
JP61079520A 1986-04-07 1986-04-07 Ultra-light cement hardened body and method for producing the same Expired - Fee Related JPH0674180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079520A JPH0674180B2 (en) 1986-04-07 1986-04-07 Ultra-light cement hardened body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079520A JPH0674180B2 (en) 1986-04-07 1986-04-07 Ultra-light cement hardened body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62235277A true JPS62235277A (en) 1987-10-15
JPH0674180B2 JPH0674180B2 (en) 1994-09-21

Family

ID=13692252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079520A Expired - Fee Related JPH0674180B2 (en) 1986-04-07 1986-04-07 Ultra-light cement hardened body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0674180B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194539U (en) * 1987-12-15 1989-06-22
JPH0194513U (en) * 1987-12-15 1989-06-22
CN112341241A (en) * 2020-11-30 2021-02-09 浙江开元新型墙体材料有限公司 Ultra-low dry density autoclaved aerated concrete and production method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788063A (en) * 1980-11-21 1982-06-01 Taisei Corp Manufacture of perlite mortar and concrete
JPS58140365A (en) * 1982-02-17 1983-08-20 新島物産株式会社 Manufacture of super lightweght aggregate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788063A (en) * 1980-11-21 1982-06-01 Taisei Corp Manufacture of perlite mortar and concrete
JPS58140365A (en) * 1982-02-17 1983-08-20 新島物産株式会社 Manufacture of super lightweght aggregate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194539U (en) * 1987-12-15 1989-06-22
JPH0194513U (en) * 1987-12-15 1989-06-22
CN112341241A (en) * 2020-11-30 2021-02-09 浙江开元新型墙体材料有限公司 Ultra-low dry density autoclaved aerated concrete and production method thereof

Also Published As

Publication number Publication date
JPH0674180B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JPS62235277A (en) Super lightweight cement set body and manufacture
US5595598A (en) Method for adjusting consistency
JP3806420B2 (en) Low strength mortar filler using shirasu
JPH07291760A (en) Lightweight concrete for filling and lightweight hardened material thereof
JPH10194813A (en) Lightweight concrete
JPH06219809A (en) Production of self-packing concrete
JPH07277794A (en) Lightweight concrete aggregate
JPH08277157A (en) Concrete composition
JPH0797283A (en) Light-weight concrete
JP3790800B6 (en) Cement aquaculture
JP4069517B2 (en) Solidified material for hydrous soil and method for improving solidification of hydrous soil
JP3790800B2 (en) Cement aquaculture
JPH05139863A (en) Portland cement-based lightweight concrete composition
JP3632033B2 (en) Concrete composition
JPH08277154A (en) Concrete composition
JP3875028B2 (en) Manufacturing method of centrifugal molded products
JP2573532B2 (en) Manufacturing method of lightweight concrete
JP2004002124A (en) High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process
JPH07277855A (en) Lightweight concrete
JPH06279147A (en) Lightweight concrete
JP2002029814A (en) Concrete and method of manufacturing the same
JPH0210788B2 (en)
JP2004345889A (en) Cement composition
JP2001089262A (en) Lightweight concrete usable for civil engineering construction and its hardened body
EP1688400A2 (en) Additive for concrete, its preparation and use, and a method for manufacturing of concrete and a concrete containing said additive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees