JP3632033B2 - Concrete composition - Google Patents

Concrete composition Download PDF

Info

Publication number
JP3632033B2
JP3632033B2 JP29932095A JP29932095A JP3632033B2 JP 3632033 B2 JP3632033 B2 JP 3632033B2 JP 29932095 A JP29932095 A JP 29932095A JP 29932095 A JP29932095 A JP 29932095A JP 3632033 B2 JP3632033 B2 JP 3632033B2
Authority
JP
Japan
Prior art keywords
amount
water
aggregate
concrete composition
liters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29932095A
Other languages
Japanese (ja)
Other versions
JPH09118555A (en
Inventor
公一 谷川
徳明 曽根
昭裕 小谷中
将裕 加藤
宏一郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP29932095A priority Critical patent/JP3632033B2/en
Publication of JPH09118555A publication Critical patent/JPH09118555A/en
Application granted granted Critical
Publication of JP3632033B2 publication Critical patent/JP3632033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、砂などの細骨材を全く或いは殆ど含有せずに良好な流動性を有し、強度の発現にも優れるコンクリート組成物に関する。
【0002】
【従来の技術】
コンクリートはセメント、骨材、混和材料等の各材料に水を加え混練して製造され、このうち骨材は硬化反応を起こす材料ではないが、その良否は硬化後のコンクリートの性質に大きな影響を及ぼすので、コンクリートの製造時には骨材の粒度や配合量などが様々に調整される。
【0003】
骨材は粒径に基づいて細骨材と粗骨材に分類される。細骨材は5mm以下の粒子(5mmの篩目を通過する粒子が85wt%以上)であり、粗骨材はこれより粒径の大きな粒子である。一般に、粗骨材が多く細骨材の割合が少ない骨材を用いると、所要のスランプ値を得るのに必要な単位水量が減少するが、コンクリート自体は荒くなり、ワーカビリティも悪くなる。一方、細骨材が極端に多く粗骨材が少ないと混練可能な単位水量が大幅に増加し、強度の発現に悪影響を生じる。従って、通常のコンクリートでは細骨材と粗骨材が適度に混合した粒度の骨材が用いられる。細骨材としては、従来、川砂や山砂が用いられてきたが、良質な砂が入手し難いため最近では海砂や砕砂なども用いられている。
【0004】
【発明が解決しようとする課題】
従来のコンクリートには粗骨材と細骨材を適当に混合した骨材が用いられており、具体的には、細骨材率(s/a:全骨材の容量aに対する細骨材の容量s)が35〜50%程度の粒度分布を有する骨材が主に使用されている。ところが、近年、良質な細骨材を入手し難く、不連続な粒度分布の骨材を使用せざるを得ない現状にある。粒度分布が適切でない骨材をコンクリートに用いると、所要の流動性を得るための単位水量が増し、これが乾燥収縮を増大し、亀裂発生の原因となり、また、コンクリート強度も低下し、材料分離の傾向も増すなどの問題を招く。このような不都合を避けるため、従来、粒度分布の不適切な骨材に更に細粒子あるいは粗粒子を加えて粒度構成を調整する場合もあるが、調整に多大の労力と費用を要す。
【0005】
本発明は、従来の上記問題を克服したコンクリート組成物を提供するものであって、細骨材を全く含まないか又は殆ど含まない骨材を使用しながら、所要の流動性を得るのに必要な単位水量が少なく、良好なワーカビリティを有し、しかも硬化後の収縮が小さく、高強度のコンクリート組成物を提供するものである。
【0006】
【課題を解決するための手段】
本発明は、コンクリート組成物において、粗骨材としてフライアッシュの造粒焼結体を用い、粗骨材量、単位水量および水粉体比を限定することにより、細骨材を全く含まないか又は殆ど含まなくても、ワーカビリティに優れ、しかも硬化後の収縮が小さく、一般のコンクリートと同程度の強度を有するコンクリート組成物を得たものである。
【0007】
すなわち、本発明によれば以下の構成からなるコンクリート組成物が提供される。
(1) 含有される骨材がフライアッシュを造粒し焼結してなる非発泡性の焼結体であって、細骨材率が10%以下の粗骨材からなり、配合量が単位量あたり、粗骨材量650リットル以下、単位水量250リットル以下、水粉体比70〜140 vol%であるコンクリート組成物。
(2) 配合量が単位量あたり、粗骨材量550〜620リットル、単位水量200リットル以下、水粉体比70〜90 vol%である上記(1) に記載のコンクリート組成物。
(3) 平均粒径5mm以上、絶乾比重1.8以上、吸水率3.0%以下、圧縮強度400 kg/cm以上の非発泡性フライアッシュ造粒焼結体を粗骨材として用いる上記(1) または(2) に記載のコンクリート組成物。
(4) セメントが普通ポルトランドセメントまたは早強ポルトランドセメントである上記(1) 〜(3) のいずれかに記載のコンクリート組成物。
(5) 鉱物質微粉末を含む上記(1) 〜(4) のいずれかに記載のコンクリート組成物。
(6) 高性能減水剤を含む上記(1) 〜(5) のいずれかに記載のコンクリート組成物。
【0008】
【発明の実施の形態】
(I)フライアッシュ質粗骨材
本発明のコンクリート組成物は、粗骨材としてフライアッシュを造粒し焼結してなる非発泡性の造粒焼結体を用いる。該造粒焼結体は、平均粒径が5mm以上であればよく、粒径が5mm未満のものを多少含んでいてもよい。具体的には、細骨材率が10%以下であればよい。細骨材率が10%を越えるものは本発明の目的から外れる。なお、フライアッシュの種類は制限されない。また、上記造粒焼結体はフライアッシュを主体とするものであればよく、造粒剤の粘土などを少量含むものでもよい。
【0009】
上記フライアッシュ造粒焼結体は、絶乾比重1.8以上、吸水率3.0%以下および圧縮強度400 kg/cm以上の非発泡性のものが好ましい。発泡性すなわち含有気泡量の多い焼結体は絶乾比重が小さく、大部分が1.8未満である。絶乾比重が1.8未満では骨材としての緻密性が不足する。また、圧縮強度が400 kg/cm未満であると材料強度が不足し、いずれの場合も高強度のコンクリート組成物が得られない。
吸水率が3.0%を上回ると凍結融解抵抗性が減少するほか、フレッシュコンクリートにもスランプロス等の影響が生じるので好ましくない。
さらに、上記フライアッシュ造粒焼結体は実積率60%以上が適当であり、63〜70%が好ましい。実績率が60%未満ではペースト容積部分が大きくなり、耐久性が低下することになり好ましくない。
【0010】
粗骨材として用いるフライアッシュ造粒焼結体は上記物性を備えるものであれば製造方法は限定されない。なお、通常、フライアッシュは未燃カーボンを含むので、これを単に造粒して焼結したものは焼結時に未燃カーボンが燃焼して気泡を生じ、多孔質の発泡性焼結体となりやすいので本発明の粗骨材には適さないが、(イ) フライアッシュに石灰石粉末などを加えて造粒し、発泡温度を避けて焼成する方法、(ロ) 予め未燃カーボンを燃焼除去したものを造粒して低酸素濃度下で焼成する方法などにより上記物性を備えたフライアッシュ造粒焼結体を得ることができる。
【0011】
II )コンクリート組成物の成分
通常、コンクリート組成物の骨材には粗骨材と細骨材を混合したものが用いられるが、本発明のコンクリート組成物は粗骨材として上記フライアッシュ造粒焼結体を用い、細骨材を実質的に含まない。
【0012】
本発明の組成物に使用されるセメントには、普通、早強、超早強、中庸熱、耐硫酸塩、白色などの各種ポルトランドセメントが含まれるが、初期並びに長期強度発現性の改善に大きな効果を発揮するためには、望ましくは普通ポルトランドセメントあるいは早強ポルトランドセメントが適当である。
【0013】
本発明は通常のコンクリート組成物と同様に骨材の他に混和材としてフライアッシュや高炉スラグ微粉末、シリカ質微粉末などの鉱物質微粉末を含むことができる。これらの鉱物質微粉末はいわゆるポゾラン物質であり、それ自身には水硬性はないが、セメントの水和反応によって生じる水酸化カルシウムと反応して不溶性化合物を生成する。鉱物質微粉末を加えることによりワーカビリティが向上し、従って、所要のコンシステンシーを得るための単位水量を減少でき、また養生期間中にポゾラン反応が促進してコンクリート組織が緻密化し、長期強度が向上する。更には、水和発熱を緩和するなどの効果が得られる。
【0014】
鉱物質微粉末の種類としては、セメント粒子とほぼ同程度の粒径を有する各種岩石粉末、珪藻土、天然ポゾラン等の天然鉱物質微粉末あるいは、高炉スラグ微粉末やフライアッシュ、シリカ微粉末等の人工鉱物質微粉末のいずれでも用いることができる。粉末のフライアッシュは、JISで規定される範囲に限らず、原粉と称されるフライアッシュやシンダーアッシュをも含む広い範囲のものを用いることができる。
【0015】
さらに、本発明のコンクリート組成物には高性能減水剤を加えてもよい。高性能減水剤としては、従来用いられている、例えば、アルキルアリル系、ナフタリン系、メラミン系、トリアジン系のものなどを使用でき、このうちポリカルボン酸塩系の混和剤が良好である。空気連行性能を有する高性能AE減水剤ないし空気連行剤を加えてもよい。高性能減水剤の添加量は、使用するポルトランドセメント、骨材、鉱物質微粉末及び所用の減水効果などを勘案して調整されるが、一般には、ポルトランドセメント100重量部に対して、0.1〜10wt%が適当である。0.1wt%未満では減水効果が実質上なく、また10wt%越えて添加しても減水性、流動性の改善効果が頭打ちとなる。
【0016】
なお、本発明のコンクリート組成物には、以上の配合成分のほかに、通常、コンクリートにおいて用いられる急硬・急結材、高強度混和剤、水和促進剤、凝結調整剤などの各種コンクリート混和材料や補強材としての各種繊維、鋼等も使用することができる。
【0017】
III )上記成分の配合量
本発明のコンクリート組成物における各材料成分の単位量(m)あたりの配合量は、粗骨材量650リットル以下、単位水量250リットル以下、水粉体比70〜140 vol%が適当であり、好ましくは、粗骨材量550〜620リットル、単位水量200リットル以下、水粉体比70〜90 vol%が適当である。
【0018】
以上のように、粗骨材として用いる上記フライアッシュ焼結体の配合量は、実積率が60〜70%の焼結体において650リットルまで配合できる。好ましくは、550〜620リットルが適当である。従来のように粗骨材として砕石を用いた場合には、コンクリート中の骨材量が増加するにつれて骨材が相互に噛み合いがちになり、良好な粘度のセメントペーストを用いてもスランプ上部が崩れる傾向にあるので、その骨材容量の上限は550リットル程度である。一方、本発明においては、上記フライアッシュ造粒焼結体を骨材として用いるので、その形状が球状に近いために流動性に優れ、配合量を550リットル以上650リットル、すなわち、骨材の最大実績率近くまで増すことができる。
【0019】
単位水量は250リットル以下が適当である。250リットルより水量が多いと水密性が低下し、また乾燥収縮による亀裂を生じ易く、強度低下の原因となる。なお、単位水量は250リットル以下が適当であることから、水粉体比が70 vol%以上であるとき、後述の図1に示すように、粗骨材量の下限は約400リットルである。また、同様に図1から明らかなように、水粉体比70 vol%以上、粗骨材量620リットル以下のとき、単位水量は150リットル以上である。
【0020】
水粉体比はセメントと鉱物質微粉末の合計量Bに対する水量Wの容積比(W/B)で表されるが、この水粉体比は70〜140 vol%が適当である。水粉体比が60 vol%未満であると絶対的な水量不足のために高性能減水剤を添加しても混練不能であり、コンクリート組成物を得ることができない。水粉体比が60〜70 vol%未満の範囲では、セメントペーストの粘性および付着性が高く、鉱物質微粉末の添加効果によって、ある程度緩やかに流動するもののワーカビリティが非常に悪い。この場合、高性能減水剤の添加量を増すとペーストの流動性は向上するが、材料分離を引き起こす。一方、水粉体比が70〜140 vol%の範囲で良好なワーカビリティが得られる。
【0021】
水粉体比の上限は、砕石などの通常の粗骨材を用いた場合に比べて高く設定することができる。一般に水粉体比が大きくなればセメントペーストの粘性や付着性が低くなり、材料分離を起こし易くなるが、本発明においては、上記フライアッシュ造粒焼結体を粗骨材として用いるので、この配合量を増すことができる。上記フライアッシュ骨材の比重は砕石などの比重よりも小さく、セメントペーストの比重に近いので材料分離が生じ難い。従って、砕石を用いた場合より水量が多くても良好な性状のコンクリート組成物が得られる。なお、前述したように、単位水量は250リットル以下が妥当であることから、水粉体比の上限は140 vol%程度である。
【0022】
以上のように、本発明のコンクリート組成物は、その配合量が単位量あたり、粗骨材量650リットル以下、単位水量250リットル以下、水粉体比70〜140 vol%からなるが、粗骨材量550〜620リットル、単位水量150〜200リットル、水粉体比70〜90 vol%の範囲がより好ましい。後述の実施例に示すように、この好適な範囲の配合量を有するものは、高い圧縮強度と静弾性係数を発現し、強度特性に優れる。因みに、コンクリート中の単位セメント量を300kg/mとした場合、これらの圧縮強度、静弾性係数は3日材令で231〜322(kg/cm) 、2.23〜2.40(×10 kg/cm)、7日材令で325〜436(kg/cm) 、2.43〜2.85(×10 kg/cm)であり、それ以外の配合量のものに比べて格段に高い。
【0023】
上記各成分の混合および混練方法に制限は無く、均一に混練できれば良く、配合成分の添加順序にも特に制限されるものではない。更に、コンクリート打設後の養生は、各種の養生方法が適用可能であり、常温養生、高温養生、常圧蒸気養生、高温高圧養生のいずれの方法も採用でき、必要ならば、これらを組合わせても良い。
【0024】
なお、本発明のコンクリート組成物は、フライアッシュ造粒焼結体を骨材として用いているので、単位容積重量は砕石を用いた場合よりも200kg/m以上も軽く、2000kg/m以下であり、従って、概ね軽量コンクリートの部類に属する。
【0025】
【実施例および比較例】
以下に本発明の実施例を比較例と共に示す。なお本例は例示であり、本発明の範囲を限定するものではない。
【0026】
実施例および比較例
表1に示す材料を用い、セメント量:300kg/m、高性能AE減水剤の添加量:3.0wt%以下(セメントおよび鉱物質微粉末の合計量に対する重量比)とし、表2に示す配合量のコンクリート組成物を製造し、そのフレッシュコンクリートのスランプ値、空気量、単位容積重量、練上り温度を測定し、また硬化後に3日、7日、28日、91日の圧縮強度と静弾性係数を測定した。各試料の配合量を表2に示し、測定値を表3に示した。
また、この配合組成を単位水量(W) 、粗骨材量(G) および粉体量(C+CA)のダイヤグラムとして図1に示し、水粉体比(W/B) との関係から、その好適な範囲をグラフ中の斜線範囲で示した。
なお、混練方法は従来と同様の方法で行い、スランプが得られ、かつ材料分離のない範囲の高性能AE減水剤添加量が得られた時点で供試体を作製した。
【0027】
【表1】

Figure 0003632033
【0028】
【表2】
Figure 0003632033
【0029】
【表3】
Figure 0003632033
【0030】
表2、3の結果に示すように、水粉体比が70%未満のもの(比較試料B−1 )は流動性に乏しく、スランプ値の測定ができない。また水粉体比が140%を上回るもの(比較試料B−2 )は材料分離抵抗性が劣る。一方、水粉体比が70〜140%のものは好適なスランプ値を示し、また減水剤の使用によりスランプ値をコントロールすることもできるので良好なワーカビリティが得られる。従って、水粉体比は70〜140%が適当である。
400〜620リットルの範囲(試料A−1 〜A−11)では良好な流動性を有する。従って粗骨材量はこの範囲が適当である。
さらに、単位水量が250リットルを上回るもの(比較試料B−3 )は乾燥収縮による亀裂が発生し、強度が劣るので、250リットル以下が適当である。
【0031】
この配合量の範囲を図1に斜線部分として示した。なお、図中、斜線に斑点を加えた部分は、粗骨材として砕石を用いた場合の例であり、この対比から明らかなように、本発明のコンクリート組成物は配合量の適正範囲が砕石を用いたものより格段に大きい。
【0032】
さらに、表3に示すように、粗骨材量550〜620リットル、単位水量150〜200リットル、水粉体比70〜90 vol%の範囲のもの(試料A−1,A−4,A−6 )は、その圧縮強度、静弾性係数が3日材令で231〜322(kg/cm) 、2.23〜2.40(×10 kg/cm)、7日材令で325〜436(kg/cm) 、2.43〜2.85(×10 kg/cm)であり、それ以外の配合量のものに比べて格段に高い。また試料A−7,A−8 はペーストの粘性とペーストの容積、粗骨材容積の組合わせが良好で極めて作業性の良いものであった。
【0033】
【発明の効果】
以上のように、本発明のコンクリート組成物は、細骨材を実質的に含まないにもかかわらず、ワーカビリティに優れ、しかも硬化後の収縮が小く、硬化後も一般のコンクリートと同程度の強度を有する。従って、従来不可欠であった骨材の粒度調整が不要であり、良質なコンクリート製品を容易に、かつ安価に得ることができる。
【図面の簡単な説明】
【図1】本発明に係るコンクリート組成物の配合比と水粉体比の好適な範囲を示す三角ダイヤグラム。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete composition that has good fluidity and contains no fine aggregate such as sand and has excellent strength.
[0002]
[Prior art]
Concrete is manufactured by adding water to each material, such as cement, aggregate, and admixture, and kneading. Of these, aggregate is not a material that causes a curing reaction, but its quality greatly affects the properties of the concrete after curing. Therefore, the aggregate particle size and blending amount are variously adjusted during the production of concrete.
[0003]
Aggregates are classified into fine aggregates and coarse aggregates based on the particle size. The fine aggregate is a particle of 5 mm or less (the particle passing through a 5 mm sieve is 85 wt% or more), and the coarse aggregate is a particle having a larger particle diameter. In general, when an aggregate with a large amount of coarse aggregate and a small proportion of fine aggregate is used, the amount of unit water necessary to obtain a required slump value is reduced, but the concrete itself becomes rough and the workability also deteriorates. On the other hand, when the amount of fine aggregate is extremely large and the amount of coarse aggregate is small, the amount of unit water that can be kneaded is greatly increased, which adversely affects the development of strength. Therefore, in ordinary concrete, an aggregate having a particle size in which fine aggregate and coarse aggregate are appropriately mixed is used. Conventionally, river sand and mountain sand have been used as fine aggregates, but sea sand and crushed sand have recently been used because high-quality sand is difficult to obtain.
[0004]
[Problems to be solved by the invention]
In conventional concrete, an aggregate in which coarse aggregate and fine aggregate are appropriately mixed is used. Specifically, the ratio of fine aggregate (s / a: the amount of fine aggregate with respect to the capacity a of the total aggregate is Aggregates having a particle size distribution with a capacity s) of about 35-50% are mainly used. However, in recent years, it is difficult to obtain good quality fine aggregates, and there is no choice but to use aggregates with discontinuous particle size distribution. When aggregates with an inappropriate particle size distribution are used for concrete, the unit water volume for obtaining the required fluidity increases, which increases drying shrinkage, causes cracking, reduces concrete strength, and reduces material separation. It will cause problems such as an increasing trend. In order to avoid such an inconvenience, conventionally, fine particles or coarse particles may be further added to the aggregate having an inappropriate particle size distribution to adjust the particle size constitution, but the adjustment requires a great deal of labor and cost.
[0005]
The present invention provides a concrete composition that overcomes the above-mentioned conventional problems, and is necessary to obtain the required fluidity while using an aggregate that contains little or no fine aggregate. Therefore, the present invention provides a high-strength concrete composition having a small amount of unit water, good workability, and small shrinkage after curing.
[0006]
[Means for Solving the Problems]
The present invention uses a granulated sintered body of fly ash as the coarse aggregate in the concrete composition, and does not contain fine aggregate at all by limiting the amount of coarse aggregate, unit water amount and water powder ratio. Alternatively, a concrete composition having excellent workability, small shrinkage after curing, and strength comparable to that of general concrete is obtained even though it is hardly contained.
[0007]
That is, according to this invention, the concrete composition which consists of the following structures is provided.
(1) The aggregate contained is a non-foamed sintered body obtained by granulating and sintering fly ash, and is composed of coarse aggregate having a fine aggregate ratio of 10% or less, and the blending amount is in units. A concrete composition having a coarse aggregate amount of 650 liters or less, a unit water amount of 250 liters or less, and a water powder ratio of 70 to 140 vol% per unit amount.
(2) Concrete composition as described in said (1) whose compounding quantity is 550-620 liters of coarse aggregates per unit quantity, 200 liters or less of unit water volume, and 70-90 vol% of water powder ratio.
(3) A non-foaming fly ash granulated sintered body having an average particle diameter of 5 mm or more, an absolute dry specific gravity of 1.8 or more, a water absorption of 3.0% or less, and a compressive strength of 400 kg / cm 2 or more is used as a coarse aggregate. The concrete composition according to (1) or (2) above.
(4) The concrete composition according to any one of (1) to (3), wherein the cement is ordinary Portland cement or early-strength Portland cement.
(5) The concrete composition according to any one of (1) to (4) above, which contains fine mineral powder.
(6) The concrete composition according to any one of (1) to (5) above, which contains a high-performance water reducing agent.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
(I) Fly ash-like coarse aggregate The concrete composition of the present invention uses a non-foaming granulated sintered body obtained by granulating and sintering fly ash as the coarse aggregate. The granulated sintered body only needs to have an average particle size of 5 mm or more, and may contain some particles having a particle size of less than 5 mm. Specifically, the fine aggregate rate may be 10% or less. A fine aggregate ratio exceeding 10% falls outside the object of the present invention. The type of fly ash is not limited. Further, the granulated sintered body may be any material mainly containing fly ash, and may contain a small amount of a granulating agent such as clay.
[0009]
The fly ash granulated sintered body is preferably non-foaming having an absolute dry specific gravity of 1.8 or more, a water absorption of 3.0% or less, and a compressive strength of 400 kg / cm 2 or more. A sintered body having a foaming property, that is, containing a large amount of bubbles, has a low dry specific gravity, and is mostly less than 1.8. If the absolute dry specific gravity is less than 1.8, the denseness as an aggregate is insufficient. Further, if the compressive strength is less than 400 kg / cm 2 , the material strength is insufficient, and in any case, a high-strength concrete composition cannot be obtained.
If the water absorption rate exceeds 3.0%, the freeze-thaw resistance decreases, and the effect of slump loss or the like also occurs on fresh concrete, which is not preferable.
Further, the fly ash granulated sintered body suitably has an actual volume ratio of 60% or more, preferably 63 to 70%. If the actual rate is less than 60%, the paste volume portion becomes large and the durability is lowered, which is not preferable.
[0010]
As long as the fly ash granulation sintered body used as a coarse aggregate has the said physical property, a manufacturing method will not be limited. In general, fly ash contains unburned carbon, so if it is simply granulated and sintered, the unburned carbon burns during sintering and bubbles are formed, which tends to be a porous, foamable sintered body. Therefore, it is not suitable for the coarse aggregate of the present invention. (B) A method of granulating fly ash by adding limestone powder, etc., and firing it while avoiding the foaming temperature, (b) A method in which unburned carbon is previously removed by burning. A fly ash granulated sintered body having the above-mentioned physical properties can be obtained by a method of granulating and firing at a low oxygen concentration.
[0011]
( II ) Component of concrete composition Usually, the aggregate of the concrete composition is a mixture of coarse aggregate and fine aggregate, but the concrete composition of the present invention is used as the coarse aggregate as described above. A fly ash granulation sintered body is used, and a fine aggregate is not included substantially.
[0012]
The cement used in the composition of the present invention includes various portland cements such as normal, early strength, ultra-early strength, moderate heat, sulfate-resistant, white, etc., which are great for improving initial and long-term strength development. In order to exert the effect, desirably ordinary Portland cement or early-strength Portland cement is suitable.
[0013]
The present invention can contain fine mineral powders such as fly ash, blast furnace slag fine powder, and siliceous fine powder as an admixture in addition to the aggregate as in the case of a normal concrete composition. These fine mineral powders are so-called pozzolanic substances, which themselves are not hydraulic, but react with calcium hydroxide produced by cement hydration to produce insoluble compounds. By adding mineral fine powder, workability is improved, so the amount of unit water for obtaining the required consistency can be reduced, the pozzolanic reaction is promoted during the curing period, the concrete structure is densified, and the long-term strength is increased. improves. Furthermore, effects such as relaxation of hydration exotherm can be obtained.
[0014]
The types of mineral fine powders include various rock powders with particle sizes almost the same as cement particles, natural mineral fine powders such as diatomaceous earth and natural pozzolana, blast furnace slag fine powder, fly ash, silica fine powder, etc. Any of the artificial mineral fine powders can be used. The powder fly ash is not limited to the range defined by JIS, and a wide range including fly ash and cinder ash called raw powder can be used.
[0015]
Furthermore, you may add a high performance water reducing agent to the concrete composition of this invention. As the high-performance water reducing agent, for example, alkylallyl-based, naphthalene-based, melamine-based, and triazine-based agents that are conventionally used can be used, and among these, polycarboxylate-based admixtures are preferable. A high performance AE water reducing agent or air entraining agent having air entrainment performance may be added. The amount of the high-performance water reducing agent added is adjusted in consideration of the Portland cement used, the aggregate, the fine mineral powder, and the desired water reducing effect. 1-10 wt% is suitable. If it is less than 0.1 wt%, the water reducing effect is substantially absent, and even if it is added in excess of 10 wt%, the water reducing and fluidity improving effects reach a peak.
[0016]
The concrete composition of the present invention contains, in addition to the above-mentioned blending components, various concrete admixtures such as a rapid hardening / quick setting material, a high-strength admixture, a hydration accelerator, and a setting modifier that are usually used in concrete. Various fibers, steel, and the like as materials and reinforcing materials can also be used.
[0017]
(III) a unit amount of each material component in the concrete composition of the amount <br/> present invention the components (m 3) amount per is 650 liters coarse aggregate amount below, unit water 250 liters or less, water A powder ratio of 70 to 140 vol% is appropriate, preferably a coarse aggregate amount of 550 to 620 liters, a unit water volume of 200 liters or less, and a water powder ratio of 70 to 90 vol%.
[0018]
As mentioned above, the compounding quantity of the said fly ash sintered compact used as a coarse aggregate can mix | blend up to 650 liters in the sintered compact whose real volume ratio is 60 to 70%. Preferably, 550 to 620 liters is appropriate. When crushed stone is used as coarse aggregate as in the past, the aggregate tends to mesh with each other as the amount of aggregate in the concrete increases, and the upper part of the slump collapses even when cement paste with good viscosity is used. Because of this tendency, the upper limit of the aggregate capacity is about 550 liters. On the other hand, in the present invention, since the fly ash granulated sintered body is used as an aggregate, its shape is close to a spherical shape, so that the fluidity is excellent, and the blending amount is 550 liters to 650 liters, that is, the maximum of the aggregate. It can be increased to near the actual rate.
[0019]
The unit water volume is suitably 250 liters or less. If the amount of water is larger than 250 liters, the water tightness is lowered, and cracks due to drying shrinkage tend to occur, causing a reduction in strength. Since the unit water amount is suitably 250 liters or less, when the water powder ratio is 70 vol% or more, as shown in FIG. 1 described later, the lower limit of the coarse aggregate amount is about 400 liters. Similarly, as apparent from FIG. 1, when the water powder ratio is 70 vol% or more and the coarse aggregate amount is 620 liters or less, the unit water amount is 150 liters or more.
[0020]
The water powder ratio is represented by the volume ratio (W / B) of the water amount W to the total amount B of cement and mineral fine powder, and the water powder ratio is suitably 70 to 140 vol%. If the water powder ratio is less than 60 vol%, the absolute amount of water is insufficient, so even if a high-performance water reducing agent is added, kneading is impossible and a concrete composition cannot be obtained. When the water powder ratio is in the range of less than 60 to 70 vol%, the cement paste has high viscosity and adhesion, and the workability is very poor although it flows to some extent due to the addition effect of the fine mineral powder. In this case, increasing the amount of addition of the high-performance water reducing agent improves the fluidity of the paste, but causes material separation. On the other hand, good workability is obtained when the water powder ratio is in the range of 70 to 140 vol%.
[0021]
The upper limit of the water-powder ratio can be set higher than when a normal coarse aggregate such as crushed stone is used. In general, when the water-powder ratio is increased, the viscosity and adhesion of the cement paste is reduced, and material separation is likely to occur, but in the present invention, the fly ash granulated sintered body is used as a coarse aggregate. The amount can be increased. The specific gravity of the fly ash aggregate is smaller than the specific gravity of crushed stone and the like, and is close to the specific gravity of cement paste, so that material separation hardly occurs. Therefore, a concrete composition having good properties can be obtained even when the amount of water is larger than when crushed stone is used. As described above, it is appropriate that the unit water amount is 250 liters or less, so the upper limit of the water powder ratio is about 140 vol%.
[0022]
As described above, the concrete composition of the present invention comprises a coarse aggregate amount of 650 liters or less, a unit water amount of 250 liters or less, and a water powder ratio of 70 to 140 vol% per unit amount. More preferably, the material amount is 550 to 620 liters, the unit water amount is 150 to 200 liters, and the water powder ratio is 70 to 90 vol%. As shown in the examples described later, those having a blending amount in this suitable range express high compressive strength and static elastic modulus, and are excellent in strength characteristics. By the way, when the unit cement amount in the concrete is 300 kg / m 3 , these compressive strengths and static elastic modulus are 231 to 322 (kg / cm 2 ), 2.23 to 2.40 (× 10 5 kg / cm 2 ), 325 to 436 (kg / cm 2 ), 2.43 to 2.85 (× 10 5 kg / cm 2 ) at 7 days of age, and other amounts It is much higher than that.
[0023]
There is no limitation on the mixing and kneading method of the above components, and it is sufficient that the components can be uniformly kneaded, and the order of addition of the blended components is not particularly limited. Furthermore, various curing methods can be applied for curing after placing concrete, and any of normal temperature curing, high temperature curing, normal pressure steam curing, and high temperature high pressure curing can be adopted, and if necessary, these can be combined. May be.
[0024]
Incidentally, the concrete composition of the present invention, since it uses as aggregate fly ash granules sintered, unit volume weight is lighter 200 kg / m 3 or more even than with the crushed stone, 2000 kg / m 3 or less Therefore, it generally belongs to the class of lightweight concrete.
[0025]
Examples and Comparative Examples
Examples of the present invention are shown below together with comparative examples. In addition, this example is an illustration and does not limit the scope of the present invention.
[0026]
Examples and Comparative Examples Using materials shown in Table 1, cement amount: 300 kg / m 3 , addition amount of high-performance AE water reducing agent: 3.0 wt% or less (based on the total amount of cement and mineral fine powder) (Weight ratio), and a concrete composition having a blending amount shown in Table 2 was manufactured, and the slump value, air amount, unit volume weight, and kneading temperature of the fresh concrete were measured. The compression strength and the static elastic modulus were measured on the 91st day. The blending amount of each sample is shown in Table 2, and the measured values are shown in Table 3.
In addition, this blending composition is shown in FIG. 1 as a diagram of unit water amount (W), coarse aggregate amount (G) and powder amount (C + CA), and it is preferable from the relationship with the water-powder ratio (W / B). The range is indicated by the shaded area in the graph.
The kneading method was carried out in the same manner as before, and specimens were prepared when a slump was obtained and a high-performance AE water reducing agent addition amount in a range without material separation was obtained.
[0027]
[Table 1]
Figure 0003632033
[0028]
[Table 2]
Figure 0003632033
[0029]
[Table 3]
Figure 0003632033
[0030]
As shown in the results of Tables 2 and 3, a water powder ratio of less than 70% (Comparative Sample B-1) is poor in fluidity and cannot measure a slump value. Moreover, the water powder ratio exceeds 140% (Comparative Sample B-2) is inferior in material separation resistance. On the other hand, those having a water powder ratio of 70 to 140% exhibit a favorable slump value, and the slump value can be controlled by using a water reducing agent, so that good workability can be obtained. Accordingly, the water powder ratio is suitably 70 to 140%.
In the range of 400 to 620 liters (samples A-1 to A-11), it has good fluidity. Therefore, this range is appropriate for the amount of coarse aggregate.
Furthermore, since the unit water amount exceeds 250 liters (Comparative Sample B-3), cracks due to drying shrinkage occur and the strength is inferior, so 250 liters or less is suitable.
[0031]
The range of this blending amount is shown as a hatched portion in FIG. In the figure, the hatched portion is an example when crushed stone is used as the coarse aggregate. As is clear from this comparison, the concrete range of the concrete composition of the present invention has an appropriate range of crushed stone. It is much larger than the one using.
[0032]
Furthermore, as shown in Table 3, coarse aggregate amount 550-620 liters, unit water amount 150-200 liters, water powder ratio 70-90 vol% (samples A-1, A-4, A- 6) has a compressive strength and a static elastic modulus of 231 to 322 (kg / cm 2 ), 2.23 to 2.40 (× 10 5 kg / cm 2 ) at 3 days of age, and 325 at 7 days of age. ˜436 (kg / cm 2 ), 2.43 to 2.85 (× 10 5 kg / cm 2 ), which is much higher than those of other blending amounts. Samples A-7 and A-8 were excellent in workability because of a good combination of paste viscosity, paste volume, and coarse aggregate volume.
[0033]
【The invention's effect】
As described above, the concrete composition of the present invention is excellent in workability, has little shrinkage after curing, and has the same degree as general concrete after curing, even though it does not substantially contain fine aggregates. It has the strength of Therefore, it is not necessary to adjust the particle size of the aggregate, which is essential in the past, and a high-quality concrete product can be obtained easily and inexpensively.
[Brief description of the drawings]
FIG. 1 is a triangular diagram showing a preferable range of the mixing ratio and the water powder ratio of a concrete composition according to the present invention.

Claims (6)

含有される骨材がフライアッシュを造粒し焼結してなる非発泡性の焼結体であって、細骨材率が10%以下の粗骨材からなり、配合量が単位量あたり、粗骨材量650リットル以下、単位水量250リットル以下、水粉体比70〜140vol %であるコンクリート組成物。The aggregate contained is a non-foamed sintered body obtained by granulating and sintering fly ash, comprising a coarse aggregate having a fine aggregate ratio of 10% or less, and the blending amount per unit amount. A concrete composition having a coarse aggregate amount of 650 liters or less, a unit water amount of 250 liters or less, and a water powder ratio of 70 to 140 vol%. 配合量が単位量あたり、粗骨材量550〜620リットル、単位水量200リットル以下、水粉体比70〜90vol %である請求項1に記載のコンクリート組成物。2. The concrete composition according to claim 1, wherein the blending amount is 550 to 620 liters of coarse aggregate, 200 liters of unit water or less, and a water powder ratio of 70 to 90 vol% per unit amount. 平均粒径5mm以上、絶乾比重1.8以上、吸水率3.0%以下、圧縮強度400 kg/cm以上の非発泡性フライアッシュ造粒焼結体を粗骨材として用いる請求項1または2に記載のコンクリート組成物。A non-foamable fly ash granulated sintered body having an average particle diameter of 5 mm or more, an absolute dry specific gravity of 1.8 or more, a water absorption of 3.0% or less, and a compressive strength of 400 kg / cm 2 or more is used as the coarse aggregate. Or the concrete composition of 2. セメントが普通ポルトランドセメントまたは早強ポルトランドセメントである請求項1〜3のいずれかに記載のコンクリート組成物。The concrete composition according to any one of claims 1 to 3, wherein the cement is ordinary Portland cement or early-strength Portland cement. 鉱物質微粉末を含む請求項1〜4のいずれかに記載のコンクリート組成物。The concrete composition according to any one of claims 1 to 4, comprising fine mineral powder. 高性能減水剤を含む請求項1〜5のいずれかに記載のコンクリート組成物。The concrete composition according to any one of claims 1 to 5, comprising a high-performance water reducing agent.
JP29932095A 1995-10-25 1995-10-25 Concrete composition Expired - Fee Related JP3632033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29932095A JP3632033B2 (en) 1995-10-25 1995-10-25 Concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29932095A JP3632033B2 (en) 1995-10-25 1995-10-25 Concrete composition

Publications (2)

Publication Number Publication Date
JPH09118555A JPH09118555A (en) 1997-05-06
JP3632033B2 true JP3632033B2 (en) 2005-03-23

Family

ID=17871021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29932095A Expired - Fee Related JP3632033B2 (en) 1995-10-25 1995-10-25 Concrete composition

Country Status (1)

Country Link
JP (1) JP3632033B2 (en)

Also Published As

Publication number Publication date
JPH09118555A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
KR101948627B1 (en) High strength lightweight concrete composition including artificial lightweight aggregates
CN110950604A (en) SAP-based machine-made sand ultra-high-performance concrete and preparation method and application thereof
EP0092572A1 (en) Improvements in cements, mortars and concretes
CN109748554A (en) Lightweight aggregate concrete and its preparation process
JPH04124054A (en) Superhigh-strength concrete
JP3099166B2 (en) Hydraulic composition
JPH0952744A (en) Mortar and concrete composition
JP3974970B2 (en) Concrete production method
JP2545617B2 (en) Fly ash mortar for ironing the surface of structures
JPH08277153A (en) Light-weight high-strength concrete
JP3632033B2 (en) Concrete composition
JP3628064B2 (en) Concrete composition
JPH07232955A (en) Production of concrete composition and concrete
JPH06219809A (en) Production of self-packing concrete
JPH08188458A (en) Concrete composition inseparable in water
JP3662049B2 (en) Concrete composition
KR101861228B1 (en) Concrete composition with improved early strength
JP4028966B2 (en) Method for producing cement-based composition
JPH08277154A (en) Concrete composition
JPH01242445A (en) Hydraulic cement composition
JP4358359B2 (en) Low shrinkage concrete
JP2826373B2 (en) Highly filling, fluid concrete
JP7436153B2 (en) Manufacturing method of lightweight concrete
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2001206754A (en) Highly flowable concrete

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees