JP2004002124A - High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process - Google Patents

High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process Download PDF

Info

Publication number
JP2004002124A
JP2004002124A JP2002163739A JP2002163739A JP2004002124A JP 2004002124 A JP2004002124 A JP 2004002124A JP 2002163739 A JP2002163739 A JP 2002163739A JP 2002163739 A JP2002163739 A JP 2002163739A JP 2004002124 A JP2004002124 A JP 2004002124A
Authority
JP
Japan
Prior art keywords
aggregate
lightweight
water
freeze
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163739A
Other languages
Japanese (ja)
Inventor
Tadaaki Tamura
田村 忠昭
Hiroyasu Kitayama
北山 裕康
Seiichi Sakurai
櫻井 清一
Seiroku Miyama
深山 清六
Sadaaki Nakamura
中村 定明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIBUKON ENGINEERING KK
Ishikawajima Kenzai Kogyo Co Ltd
Ishikawajima Construction Materials Co Ltd
PC Bridge Co Ltd
Original Assignee
RIBUKON ENGINEERING KK
Ishikawajima Kenzai Kogyo Co Ltd
Ishikawajima Construction Materials Co Ltd
PC Bridge Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIBUKON ENGINEERING KK, Ishikawajima Kenzai Kogyo Co Ltd, Ishikawajima Construction Materials Co Ltd, PC Bridge Co Ltd filed Critical RIBUKON ENGINEERING KK
Priority to JP2002163739A priority Critical patent/JP2004002124A/en
Publication of JP2004002124A publication Critical patent/JP2004002124A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the durability of a preferable structure of concrete made lightweight by using a lightweight aggregate in relation to high strength lightweight concrete excellent in freeze-thaw resistance; to reduce the total cost and to secure favorable construction in relation to a process for producing the concrete; and to provide the process for producing the concrete. <P>SOLUTION: A coating layer 3a of slurry-like silica fume is formed at least on the peripheral surface of each particle of a coarse aggregate. High strength lightweight concrete excellent in freezing and thawing resistance, which is obtained by blending the coarse aggregate with a fine aggregate 4 and kneading materials such as cement, and mixing/forming them, is provided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は耐凍結融解抵抗性に優れた高強度軽量コンクリートおよびその製造方法に係り、軽量骨材を用いて軽量化を図ったコンクリートにおいて好ましい構造物の高耐久性およびトータルコストの低減を図った有利な施工性を確保し、またその適切な製造方法を提供しようとするものである。
【0002】
【従来の技術】
建築物や構築物においてコンクリートは不可欠な構造体であって、古くから各方面において種々に広く採用されているが、このようなコンクリートにあっては粗骨材と細骨材において強度を確保しようとすることが一般的技術方向である。
【0003】
ところで前記のようなコンクリートにあっては得られる構造体において強度を確保するためには相当量の骨材を配合することが不可欠であって、このことは軽量コンクリートにおいても耐凍結融解抵抗性に優れた高強度を得しめることが有用であることは明らかであり、そうした軽量性と対凍結融解条件下での高強度性を共に具備したコンクリートを得ることについては従来から各方面で種々に研究がなされているが、未だにそれらの要求を共に満足せしめた製品は勿論その製造方法も確立されるに到っていない。
【0004】
【発明が解決しようとする課題】
即ちコンクリートの強度を確保するためには骨材を配合することが不可欠であり、また軽量性を得るには高度の多孔組織をもった骨材(特に粗骨材)を採用すべきこととなるが、このような軽量性を得るための高度の多孔組織は該コンクリートの強度性を損うのが一般的であって、そうした強度性と軽量性をともに満足させることは基本的に相反する不合理な要求とならざるを得ないことが一般である。
【0005】
特に軽量コンクリートを得るための軽量骨材は吸水性の高いものとなり、そうした吸水性の高い軽量骨材を用いたコンクリートの場合には耐凍結融解抵抗性の如きが大きく低下することとならざるを得ない。また斯様な耐凍結融解抵抗性を向上させるためには絶乾状態の軽量骨材を用いることが考えられるが、そのような絶乾状態の軽量骨材を用いた場合には施工時において一般的に採用されるポンプ圧送により配合水分が骨材中に閉じ込められ、結果的に吸水率の高い軽量骨材を用いたことになり目的とするような高強度軽量コンクリートを得ることができない。
【0006】
また例えば海上などにおけるプラント船などの浮上構造物や水上などにおける橋梁上部構造物などにおいては軽量性と共に強度性の何れもが高度に要求され、如何に軽量であっても強度の低いものは殆ど無価値であり、反対に強度が充分に高いものであったとしても重量の大きいものは全く利用価値を有していない。即ち軽量性と強度性が共に満足されることが要求されるものであって、斯うした要求が共に満足されることにより始めて上記のような用途に提供することが可能である。
【0007】
なお上記のようなコンクリートを用いて得られる構造物の基礎部分や支持部分の如きもそれなりに高強度を必要とすることから高重量とならざるを得ず、必然的にこの基礎部分においても多量の資材と工数を必要とし、多額の費用を必要とする。従って近年においては軽量骨材を用いた高強度軽量コンクリートに対する必要性が高まっているが、その軽量化目的で採用される軽量骨材はその吸水性が高くなることから耐凍結融解抵抗性の如きが低下することとならざるを得ない。この耐凍結融解抵抗性を向上させるために絶乾状態の軽量骨材を用いることも行われるが、施工時におけるポンプ圧送により水分が骨材中に閉じ込められることとなり、結果的には吸水率の高い軽量骨材を用いたこととなって、好ましい結果を得難い不利がある。
【0008】
更に上記のように粗骨材や細骨材を用いて強度を確保しようとする従来の一般的技術方向によるものは、その本体部分や基礎部分の如きの何れにおいても重量の大きいコンクリートに対しては大量の資材を必要とし多額の費用を必要とする。しかも得られるコンクリートの重量が大であるから成程強度が得られたとしても例えば構造物床板ないし基礎構造部に採用される部材などにおいてはそれら基礎部材が損傷した場合などにおける取替え工作を困難且つ煩雑化する。具体的には近年における車輛の大型化および交通量の増加などにより鋼橋の鉄筋コンクリート床板などの損傷が著しいことは一般的に知られている通りである。
【0009】
【課題を解決するための手段】
本発明は上記したような従来のものにおける不利ないし課題を解消することについて研究を重ね創案されたものであって、軽量粗骨材の周面にシリカフューム含有水分層即ちスラリーシリカフュームを吸着させて目止めを形成し、シリカフュームを少なくとも該粗骨材の表面における多孔組織の目止めとなし、しかも上記したように造殻層の形成された軽量粗骨材の周面にスラリー状シリカフュームを形成し、次いでセメントをキャピラリー状とするための2次水とセメントを添加して混合成形するものであって以下の如くである。
【0010】
(1)少なくとも粗骨材の周面においてスラリー状シリカフュームによる被覆層が形成されたものであって、細骨材とセメント系その他の凝結性混練物が配合されて混合成形されたことを特徴とする耐凍結融解抵抗性に優れた高強度軽量コンクリート。
【0011】
(2)周面にスラリー状シリカフューム混練物による被覆層を形成した軽量粗骨材または細骨材に対しセメント系その他の凝結性混練物が添加され被覆成形されたことを特徴とする前記(1)項に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリート。
【0012】
(3)コンクリート成型体であって凍結融解サイクル回数が300回を超えても相対動弾性係数が70%以上であることを特徴とした前記(1)項または(2)項に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリート。
【0013】
(4)軽量粗骨材の周面にスラリー状シリカフューム層を附着形成し、このスラリー状シリカフューム層を形成した軽量骨材に対し1次水をセメントその他の凝結性成分の25〜40wt%とした1次混練をなし、次いで目的の流動成形性を得るための2次水を添加して混練した混練物を前記軽量骨材間に充填成形することを特徴とした耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
【0014】
(5)軽量粗骨材の表面にシリカフューム重量の1.2〜1.7倍とされた水量によるスラリー状シリカフュームの被覆層を形成することを特徴とした前記(4)項に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
【0015】
(6)混練前における含水率7%以下とされた軽量骨材を用いることを特徴とした前記(4)項または(5)項の何れか1つに記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
【0016】
(7)混練前における含水率5%以下とされた軽量骨材を用いることを特徴とした前記(6)項に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
【0017】
(8)1次水量Wを次式によって求めることを特徴とした前記(4)〜(7)項の何れか1つに記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
【数2】

Figure 2004002124
=1次水量(kgf/m
α=セメントのキャピラリー状態に必要な水セメント比(%)
βOH(S)=細骨材の拘束水率(%)
βOH(G)=粗骨材の拘束水率(%)
C=単位セメント量(kgf/m
S=単位細骨材量(kgf/m
G=単位粗骨材量(kgf/m
【0018】
(9)人工軽量粗骨材および細骨材に対し1次水とシリカフュームを含有せしめてスラリー状態として混練すると共に表面水を均斉化し、次いでセメントを添加した1次練りを行ってから2次水と所要の混和剤を添加して2次練りを行うことを特徴とした前記(1)〜(8)の何れか1つに記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
【0019】
【作用】
少なくとも粗骨材の周面においてスラリー状シリカフュームによる被覆層を形成したものに対し細骨材とセメント系その他の凝結性混練物が配合されて混合成形したことにより耐凍結融解抵抗性に優れた高強度軽量コンクリートが提供される。
【0020】
周面にスラリー状シリカフューム混練物による被覆層を形成した軽量粗骨材または細骨材に対しセメント系その他の凝結性混練物が添加され被覆成形されたことによりシリカフューム混練物によって周面を被覆された軽量粗骨材または細骨材がセメント系その他の凝結性混練物により凝結一体化した高強度コンクリートを適切に製造せしめ、前記シリカフューム混練物による被覆層によって耐凍結融解抵抗性を適切に向上せしめる。
【0021】
普通コンクリート成型体であって凍結融解サイクル回数が300回を超えても相対動弾性係数が70%以上であることにより凍結、融解が激しく繰返されるような寒冷地などにおける施工条件下においても好ましい耐用性(強度)を長期に亘って保持した高強度軽量コンクリートを提供せしめ、従来技術において求め得ない高度の耐凍結融解性をもった各種部体を得しめ、コンクリート構造物の軽量性と耐用性を確保せしめる。
【0022】
軽量骨材の周面にスラリー状シリカフューム層を附着形成し、このスラリー状シリカフューム層を形成した軽量骨材に対し1次水をセメントその他の凝結性成分の25〜40wt%とした1次混練をなすことにより、上記のようなシリカフューム層を介して軽量骨材粒子相互を有効且つ適切に結着一体化した高強度軽量コンクリートを製造せしめる。
【0023】
また上記に次いで目的の流動成形性を得るための2次水を添加して混練した混練物を前記軽量骨材間に充填成形することによって耐凍結融解抵抗性に優れた高強度軽量コンクリートを的確に製造し提供することを可能とする。
【0024】
混練前における軽量骨材の含水率を7%以下とした動弾性係数70%以上のような軽量骨材を用いることにより上記したようなスラリー状シリカフュームによる被覆層を利用した相対高強度レベルの骨材を準備し、該軽量骨材の周面にスラリー状シリカフューム層を附着形成したコンクリートの製造を的確に得しめる。
【0025】
混練前における含水率をシリカフューム含有条件下で5%以下とされた軽量骨材を用いることによってスラリー状シリカフュームによる被覆層を利用し相対動弾性係数が90%以上(少なくとも85%以上)のような製品を安定して高レベルに製造せしめ得、性能良好な製品を的確に提供することができる。
【0026】
上述したようにスラリー状シリカフュームを形成した軽量骨材に対する混練に当って1次水量W1をセメントのキャピラリー状態に必要な水セメント比と細骨材および粗骨材の拘束水率、単位セメント量、単位細骨材および単位粗骨材量に基いた特定計算式によって求めることにより与えられた配合組成条件下において的確な配合水量により合理的な高強度軽量コンクリートを得しめる。
【0027】
人工軽量粗骨材および細骨材に対し1次水とシリカフュームを含有せしめてスラリー状態として混練すると共に表面水を均斉化し、次いでセメントを添加した1次練りを行ってから2次水と所要の混和剤を添加して2次練りを行うことによって目的とする耐凍結融解抵抗性に優れた高強度軽量コンクリートを的確に製造せしめる。
【0028】
【発明の実施の形態】
上記したような本発明によるものの具体的な実施態様について説明すると、近年において高強度軽量コンクリートに対する需要が高まっており、使用する軽量骨材の吸水性が高い場合においては耐融解抵抗性が低下する傾向となり、この耐凍結融解抵抗性を向上させるために絶乾状態の軽量骨材を用いることが考えられるが、施工時のポンプ圧送を受けることにより水分が骨材中に閉じ込められ、結果的に吸水率の高い軽量骨材を用いたことになってしまうことは前記した通りである。
【0029】
そこで本発明においては連続した3段階(スリーステージ)練り法を採用して軽量粗骨材の周面に造殻層を形成し、即ち骨材の界面を改善するためシリカフュームをスラリー状として形成した目どめ効果を得しめるように1次水の適量を均一状に添加せしめてからシリカフュームを均等状に添加して均一状に添着せしめ、耐凍結融解性の高い高強度軽量コンクリートを形成せしめるものである。即ちこのようなシリカフュームの添着状態は図1、図2に示す如くであって粗骨材1または細骨材4における適度の加湿条件でシリカフューム3が添加付着せしめられることによってベース部材1または4の表面にシリカフュームの均一状被覆3が定着される。
【0030】
本発明者等が具体的に採用したコンクリート材料は次の表1に示す如くであって、セメントとしては強度発現の早い早強ポルトランドセメントを採用し、粗骨材についてはコンクリートの使用目的を考慮して絶乾状態の人工軽量骨材(メサライト)を採用した。
【0031】
【表1】
Figure 2004002124
【0032】
また本発明のような場合においては配合されるセメントを有効に分散させ、骨材の周面に充分に造殻させることが必要であり、その1次混練のための1次水量Wを次のWに関する式によって求めることとした。
【数3】
Figure 2004002124
=1次水量(kgf/m
α=セメントのキャピラリー状態に必要な水セメント比(%)
βOH=細骨材の拘束水率(%)
C=単位セメント量(kgf/m
S=単位細骨材量(kgf/m
G=単位粗骨材量(kgf/m
【0033】
上記したセメントのキャピラリー状態に必要な水セメント比αの試験については、ミキサーを攪拌しながら、試料セメントに所定のピッチで水を順次加え、それぞれの負荷電流値を測定することによりキャピラリー状態に必要な水セメント比αを求めた。また細骨材の拘束水率βOH(S)および軽量粗骨材の拘束水率βOH(G)の試験は試料細骨材および軽量粗骨材と分散材とで作成したモルタルを収納容器に詰め、一定の遠心力を作用させ、残留水セメント比から細骨材の拘束水率を求める。分散材は、水セメント比45%のセメントペーストとする。更にβ0(%)の試験は、上記したような試験の結果より以下の式により勾配β0を求める。
【数4】
Figure 2004002124
 =遠心脱水後の試料モルタル中の残留水量(%)
W=遠心脱水前の試料モルタル中における残留水率(%)
C=試料モルタル中のセメント量(%)
=遠心脱水前の試料モルタル中のセメント重量(g)
=遠心脱水前の試料モルタル重量(g)
=容器の風袋重量(g)
【0034】
なおβOH(%)と細骨材の吸水率との関係は以下のとおりである。
【数5】
Figure 2004002124
【0035】
また2次水量Wの決定方法については、2次水量に関する以下の式で求める。
なお、骨材の表面水量の補正は1次水で行い、混和剤(Ad)量の補正は2次水で行うこととした。
=W−(W1+SFW+Ad)
=単位水量(kgf/m
=1次水量(kgf/m
SFW=スラリーシリカフュームの水分量(kgf/m
=2次水量(kgf/m
Ad=b混和剤量(kgf/m
【0036】
また凍結融解試験抵抗性に関する検討試験は「目標値」および「コンクリートの配合」については以下の如くである。
本発明者等の実施した連続した3段階(スリーステージ)練りによる高強度軽量コンクリートの目標値は以下に示す如くである。
スランプ:10±2cm
空気量:5%
単位容積質量:1.9kg/リッタ以下
圧縮強度:50N/mm(設計)
60N/mm(目標)
【0037】
次にコンクリートの配合は、予備試験実施に当り配合(吸水補正水の計算を含む)は日本メサライト工業の参考資料である高強度軽量コンクリート(1種)試験結果報告を参考にしたが、コンクリートの配合条件および配合表は次の表2に示す如くである。
【0038】
【表2】
Figure 2004002124
【0039】
【実施例】
本発明によるものの具体的な実施例について説明すると、本発明者等は人工軽量粗骨材や細骨材と共に1次水、2次水とセメント及び混和剤を用いて以下に示す如く配合し混練調整した。
【0040】
粗骨材として人工軽量粗骨材である絶乾密度1.28g/cmで30分吸水率が4.8%のものを15mm以下に破砕したものとして準備し、また細骨材としては大井川水系産出の陸砂(表乾密度2.58g/cm)と千葉県産出の山砂(表乾密度2.64g/cm)と太平洋セメント社製造の早強ポルトランドセメントと高性能AE減水剤、AE助剤を準備し、次の表3に示すような配合条件および配合により連続3段階(スリーステージ)練り方式で調整した。
【0041】
【表3】
Figure 2004002124
【0042】
また、同様の連続3段階(スリーステージ)練り方式による調整ではあるが、シリカフュームを含まないものについては次ぎの表4に示すような配合条件および配合によって準備した。
【0043】
【表4】
Figure 2004002124
【0044】
さらに、比較例として、上記連続3段階(スリーステージ)練り方式と同じ時間(180秒)を従来技術方式により行ったもの(シリカフューム含む)についての配合条件および配合は次ぎの表5に示すとおりである。
【0045】
【表5】
Figure 2004002124
【0046】
なお、混練前における人工軽量骨材(粗骨材および細骨材)における含水率としては本発明によるものが1、5、7、10、26.5%の範囲で種々に変化したものを準備し、混練方法としては本発明によるものは骨材とシリカフューム溶液と1次水を添加した1次混練後にセメントを投入混練して2次混練し、次いで目的の流動成形性を得る2次水を添加して3次混練したものであるが、このようにして得られた各種資料についてJSCE−G501−1986によるコンクリートの凍結融解試験を行った結果は図3として示す如くであって、混練前の人工軽量粗骨材における含水率が7%以下のものは500サイクル後においても相対動弾性係数が70%以上(図3のものでは70%以上)であることが確認され、混練前粗骨材含水率が5%以下のものは90%以上が90%程度以上、混練前粗骨材含水率1%以下のものは100%近い相対動弾性係数を有していることが確認され、更に耐凍結融解抵抗性が大幅に改善向上されていて、耐候性に卓越していることが知られた。また、シリカフュームを含まないこと以外の条件は本発明の含水率7%と同様の条件とした場合についてを点線によって示しているが、この場合には本発明により達成されるべき特質は実現されていないことが理解される。
【0047】
即ちこのような本発明のものに対し、従来技術方式のものおよび混練前粗骨材含水率が10%や26.5%の資料(人工軽量粗骨材による製品)は何れも300サイクル以下で相対動弾性係数が60%以下となっているもので、本発明のものの耐凍結融解特性における技術的特段性は明確である。
【0048】
また、凍結融解試験510サイクル完了後の曲げ強度結果を表6に、圧縮強度結果を表7に示す。これらの表6、表7において、本発明1、2については510サイクル後の数値を示すが、比較例である従来技術方式のものは300サイクル完了後、相対動弾性係数が何れも80%に達したので(規格60%以上)、その時点での数値を記載している。また、強度比は、従来技術方式(シリカフューム5%)を100とした場合の比率を数値で表したものである。
【0049】
【表6】
Figure 2004002124
【0050】
【表7】
Figure 2004002124
【0051】
上記表6、7から明らかなように、凍結融解試験510サイクル完了後においても曲げ強度及び圧縮強度において本発明が非常に優れたものであることが理解される。
【0052】
【発明の効果】
以上説明したような本発明によるときは凍結融解抵抗性に優れた高強度性を確保し、構造物の軽量化と高強度性を共に満足せしめ、トータルコストの低減を充分に図らしめるなどの効果を有しており、工業的にその効果の大きい発明である。
【図面の簡単な説明】
【図1】本発明の軽量粗骨材に対するシリカフューム被覆の形成状態を示した部分切欠正面図である。
【図2】本発明における粗骨材と共に細骨材にもシリカフューム被覆の形成された状態を示す部分切欠正面図である。
【図3】本発明例とその比較例についての凍結融解サイクルによる相対動弾性係数変化状態を要約して示した図表である。
【符号の説明】
1 軽量粗骨材
2 その多孔組織部
3 シリカフューム被覆体
3a シリカフューム被覆層
4 細骨材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength lightweight concrete excellent in resistance to freezing and thawing and a method for producing the same, and aims at high durability and a reduction in the total cost of a preferable structure in a lightweight concrete using a lightweight aggregate. An object of the present invention is to secure advantageous workability and provide an appropriate manufacturing method thereof.
[0002]
[Prior art]
Concrete is an indispensable structure in buildings and structures, and it has been widely used in various fields since ancient times.However, in such concrete, it is necessary to secure the strength of coarse aggregate and fine aggregate. Is the general technical direction.
[0003]
By the way, in the concrete as described above, it is indispensable to mix a considerable amount of aggregate in order to secure the strength in the obtained structure. It is clear that it is useful to obtain excellent high strength, and various studies have been conducted in various fields on obtaining concrete with both such light weight and high strength under freeze-thaw conditions. However, as for the products satisfying both of these requirements, the production method has not yet been established.
[0004]
[Problems to be solved by the invention]
That is, it is indispensable to mix the aggregate in order to secure the strength of the concrete, and to obtain the lightweight property, the aggregate having a high porous structure (particularly, the coarse aggregate) must be adopted. However, a highly porous structure for obtaining such lightness generally impairs the strength of the concrete, and satisfying both such strength and lightness is basically contradictory. Generally, it must be a reasonable request.
[0005]
In particular, lightweight aggregates for obtaining lightweight concrete have high water absorption, and in the case of concrete using such highly water-absorbent lightweight aggregates, resistance to freezing and thawing will be greatly reduced. I can't get it. In order to improve such freeze-thaw resistance, it is conceivable to use a light-weight aggregate in a dry state. The mixed moisture is confined in the aggregate by the pumping that is typically adopted, and as a result, a lightweight aggregate having a high water absorption is used, so that it is impossible to obtain the desired high-strength lightweight concrete.
[0006]
For example, in the case of floating structures such as plant ships on the sea and bridge superstructures on the water, etc., both lightness and strength are required to be high. It is worthless, and on the contrary, even if the strength is sufficiently high, a heavy one has no utility value at all. That is, it is required that both the lightness and the strength are satisfied, and it is possible to provide the above-mentioned application only when the requirements are satisfied.
[0007]
In addition, the foundation and supporting parts of the structure obtained using concrete as described above also need to be reasonably high in strength, so they have to be heavy, and inevitably a large amount in this foundation. Requires a large amount of materials and man-hours, and requires a large amount of cost. Therefore, in recent years, there has been an increasing need for high-strength lightweight concrete using lightweight aggregates. However, lightweight aggregates used for the purpose of reducing the weight have high water absorption, and therefore have a high resistance to freeze-thaw. Inevitably decreases. In order to improve the resistance to freezing and thawing, light-weight aggregates in an absolutely dry state are also used.However, water is trapped in the aggregates by pumping during construction, and as a result, the water absorption rate is reduced. The use of high lightweight aggregates has the disadvantage that favorable results are difficult to obtain.
[0008]
Further, as described above, the conventional general technical direction of securing the strength by using coarse aggregate or fine aggregate does not apply to heavy concrete in any of its main body portion and foundation portion. Requires a lot of materials and a lot of money. Moreover, since the obtained concrete has a large weight, even if the strength of the concrete is obtained, for example, in the case of the members used for the structural floor plate or the foundation structure, it is difficult to perform replacement work when the foundation members are damaged and the like. It becomes complicated. Specifically, it is generally known that damage to reinforced concrete floorboards of steel bridges and the like is remarkable due to recent increase in size of vehicles and increase in traffic volume.
[0009]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made by studying to solve the disadvantages or problems of the conventional art described above, and has been made by adsorbing a silica fume-containing water layer, that is, slurry silica fume on the peripheral surface of a lightweight coarse aggregate. Forming a stopper, forming the silica fume at least as a filler of the porous structure on the surface of the coarse aggregate, and forming a slurry-like silica fume on the peripheral surface of the lightweight coarse aggregate having the shell-forming layer formed thereon as described above; Next, secondary water and cement are added to make the cement into a capillary, and the mixture is mixed and molded, as follows.
[0010]
(1) A coating layer made of slurry-like silica fume is formed on at least the peripheral surface of the coarse aggregate, and the fine aggregate is mixed with a cement-based or other coagulable kneaded material and mixed and formed. High-strength lightweight concrete with excellent freeze-thaw resistance.
[0011]
(2) A cement-based or other coagulable kneaded material is added to a lightweight coarse aggregate or fine aggregate having a coating layer of a slurry-like silica fume kneaded material formed on a peripheral surface thereof, and the mixture is coated and formed. The high-strength lightweight concrete excellent in the freeze-thaw resistance described in the above section).
[0012]
(3) The freezing resistance according to the above (1) or (2), wherein the concrete molded body has a relative dynamic elastic modulus of 70% or more even when the number of freeze-thaw cycles exceeds 300. High strength lightweight concrete with excellent melting resistance.
[0013]
(4) A slurry silica fume layer is attached to the peripheral surface of the lightweight coarse aggregate, and primary water is added to the lightweight aggregate having the slurry silica fume layer in an amount of 25 to 40% by weight of cement and other coagulable components. Excellent in freeze-thaw resistance, characterized by performing primary kneading and then filling the kneaded material kneaded by adding secondary water to obtain the desired flow moldability between the lightweight aggregates. Manufacturing method of high strength lightweight concrete.
[0014]
(5) The freezing resistance described in the above item (4), wherein a coating layer of slurry-like silica fume is formed on the surface of the lightweight coarse aggregate by a water amount 1.2 to 1.7 times the weight of silica fume. A method for producing high-strength lightweight concrete with excellent melting resistance.
[0015]
(6) An excellent freeze-thaw resistance according to any one of the above (4) or (5), wherein a lightweight aggregate having a water content of 7% or less before kneading is used. Manufacturing method of high strength lightweight concrete.
[0016]
(7) The method for producing a high-strength lightweight concrete excellent in freeze-thaw resistance according to the above (6), wherein a lightweight aggregate having a water content of 5% or less before kneading is used.
[0017]
(8) wherein the primary water W 1 was characterized in that obtained by the following equation (4) to (7) The method of manufacturing a high strength lightweight concrete having excellent freeze-thaw resistance according to any one of claim .
(Equation 2)
Figure 2004002124
W 1 = primary water volume (kgf / m 3 )
α = Water cement ratio required for the capillary state of cement (%)
βOH (S) = Restricted water rate of fine aggregate (%)
βOH (G) = Restricted water rate of coarse aggregate (%)
C = Amount of cement (kgf / m 3 )
S = Amount of fine aggregate (kgf / m 3 )
G = Amount of coarse aggregate (kgf / m 3 )
[0018]
(9) Primary water and silica fume are added to artificial lightweight coarse aggregate and fine aggregate and kneaded in a slurry state, and the surface water is homogenized. The method for producing a high-strength lightweight concrete excellent in resistance to freezing and thawing according to any one of the above (1) to (8), wherein secondary kneading is performed by adding a required admixture to the concrete. .
[0019]
[Action]
Highly superior in freeze-thaw resistance by mixing and forming fine aggregate and cement-based or other coagulable kneaded material to the one with a coating layer of slurry silica fume formed on at least the peripheral surface of coarse aggregate A light-weight concrete is provided.
[0020]
A cement-based or other coagulable kneaded material was added to the lightweight coarse aggregate or fine aggregate having a coating layer formed of slurry-like silica fume kneaded material on the peripheral surface, and the peripheral surface was coated with the silica fume kneaded material. Properly manufacture high-strength concrete in which lightweight coarse aggregate or fine aggregate is coagulated and integrated with a cement-based or other coagulable kneaded material, and appropriately improve freeze-thaw resistance by a coating layer of the silica fume kneaded material. .
[0021]
Even if the number of freeze-thaw cycles exceeds 300, the relative dynamic elastic modulus is 70% or more even when the concrete is a molded concrete body. To provide high-strength lightweight concrete that retains its strength (strength) over a long period of time, to obtain various parts with a high degree of freeze-thaw resistance that cannot be obtained by conventional technology, and to achieve the lightness and durability of concrete structures Let me secure.
[0022]
A slurry-like silica fume layer is attached to the peripheral surface of the lightweight aggregate, and primary kneading is performed on the lightweight aggregate on which the slurry-like silica fume layer is formed, with primary water being 25 to 40% by weight of cement and other coagulable components. By doing so, it is possible to produce a high-strength lightweight concrete in which lightweight aggregate particles are effectively and appropriately bound and integrated through the silica fume layer as described above.
[0023]
In addition to the above, high-strength lightweight concrete excellent in freeze-thaw resistance is obtained by filling and kneading a kneaded material obtained by adding secondary water for obtaining the desired flowability and kneading between the lightweight aggregates. Manufactured and provided to
[0024]
By using a lightweight aggregate having a kinematic elasticity coefficient of 70% or more with a water content of the lightweight aggregate of 7% or less before kneading, a bone having a relatively high strength level using the coating layer of the slurry-like silica fume as described above is used. A concrete is prepared, and the production of concrete in which a slurry-like silica fume layer is attached to the peripheral surface of the lightweight aggregate is accurately obtained.
[0025]
By using a lightweight silica aggregate having a water content of 5% or less under silica fume-containing conditions before kneading, a relative dynamic elastic modulus of 90% or more (at least 85% or more) is obtained by using a coating layer of slurry-like silica fume. Products can be manufactured stably at a high level, and products with good performance can be provided accurately.
[0026]
As described above, the primary water amount W1 in kneading the lightweight aggregate formed with the slurry-like silica fume is the water-cement ratio necessary for the capillary state of the cement and the constrained water rate of the fine aggregate and the coarse aggregate, the unit cement amount, A rational high-strength lightweight concrete can be obtained with a proper amount of water under a given compositional condition given by a specific calculation formula based on the amount of unit fine aggregate and unit coarse aggregate.
[0027]
The artificial lightweight coarse aggregate and fine aggregate are mixed with primary water and silica fume to be kneaded in a slurry state, and the surface water is evened out. By subjecting the mixture to secondary kneading with the addition of an admixture, a high-strength lightweight concrete having excellent resistance to freezing and thawing can be accurately produced.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Describing specific embodiments of the present invention as described above, the demand for high-strength lightweight concrete has been increasing in recent years, and the melting resistance decreases when the water-absorbing properties of the lightweight aggregate used are high. In order to improve the resistance to freezing and thawing, it is conceivable to use lightweight aggregates in an absolutely dry state.However, water is trapped in the aggregates by receiving pumping during construction, and as a result, As described above, a lightweight aggregate having a high water absorption is used.
[0029]
Accordingly, in the present invention, a shell-forming layer is formed on the peripheral surface of the lightweight coarse aggregate by employing a continuous three-stage (three-stage) kneading method, that is, silica fume is formed in a slurry state in order to improve the interface of the aggregate. A suitable amount of primary water is added uniformly to obtain an eye-catching effect, and then silica fume is added evenly and uniformly attached to form a high-strength lightweight concrete with high freeze-thaw resistance. It is. That is, the attached state of such silica fume is as shown in FIGS. 1 and 2, and the silica fume 3 is added and adhered to the coarse aggregate 1 or the fine aggregate 4 under appropriate humidification conditions, so that the base member 1 or 4 is attached. A uniform coating 3 of silica fume is fixed on the surface.
[0030]
Concrete materials adopted by the present inventors are as shown in Table 1 below. As cement, fast-strength Portland cement, which has a high strength, is used. For coarse aggregate, the purpose of concrete is considered. Then, an artificial lightweight aggregate (mesalite) in a dry state was adopted.
[0031]
[Table 1]
Figure 2004002124
[0032]
Also effectively disperse the cement to be blended in the case such as the present invention, it is necessary to sufficiently Zokara the peripheral surface of the aggregate, the primary water W 1 for the primary kneading next It was be determined by the equation for the W 1.
[Equation 3]
Figure 2004002124
W 1 = primary water volume (kgf / m 3 )
α = Water cement ratio required for the capillary state of cement (%)
βOH = water content of fine aggregate (%)
C = Amount of cement (kgf / m 3 )
S = Amount of fine aggregate (kgf / m 3 )
G = Amount of coarse aggregate (kgf / m 3 )
[0033]
For the above-mentioned test of the water cement ratio α required for the capillary state of the cement, the water is sequentially added at a predetermined pitch to the sample cement while stirring the mixer, and the load current value is measured to measure the required load current value. Water cement ratio α was determined. In addition, the test of the constrained water rate βOH (S) of fine aggregate and the constrained water rate βOH (G) of lightweight coarse aggregate was conducted by packing mortar made of sample fine aggregate, lightweight coarse aggregate and dispersant into a storage container. Then, a constant centrifugal force is applied to determine the restricted water content of the fine aggregate from the residual water cement ratio. The dispersing material is a cement paste having a water cement ratio of 45%. Further, in the test of β0 (%), a gradient β0 is obtained from the result of the above test by the following equation.
(Equation 4)
Figure 2004002124
W Z = Amount of residual water in sample mortar after centrifugal dehydration (%)
W = residual water content in sample mortar before centrifugal dehydration (%)
C = Amount of cement in sample mortar (%)
W A = before centrifugation dehydration cement weight of the sample in mortar (g)
W B = before centrifugation dehydration sample mortar weight (g)
W C = tare weight of container (g)
[0034]
The relationship between βOH (%) and the water absorption of the fine aggregate is as follows.
(Equation 5)
Figure 2004002124
[0035]
As for the method of determining the secondary water W 2, determined by the following equation for the secondary water.
The amount of surface water of the aggregate was corrected with the primary water, and the amount of the admixture (Ad) was corrected with the secondary water.
W 2 = W 0 - (W1 + SFW + Ad)
W 0 = unit water volume (kgf / m 3 )
W 1 = primary water volume (kgf / m 3 )
SFW = water content of slurry silica fume (kgf / m 3 )
W 2 = secondary water amount (kgf / m 3 )
Ad = b admixture amount (kgf / m 3 )
[0036]
In addition, the test for resistance to freeze-thaw test is as follows for "target value" and "mixing of concrete".
The target values of the high-strength lightweight concrete by continuous three-stage (three-stage) kneading performed by the present inventors are as follows.
Slump: 10 ± 2cm
Air volume: 5%
Unit volume mass: 1.9 kg / liter or less Compressive strength: 50 N / mm 2 (design)
60N / mm 2 (target)
[0037]
Next, the concrete mix (including the calculation of water absorption correction water) was used in the preliminary test, and the mix (including the calculation of water absorption correction water) was referred to the test result report of high-strength lightweight concrete (1 type) which was a reference material of Nippon Mesalite Industry. The mixing conditions and the mixing table are as shown in Table 2 below.
[0038]
[Table 2]
Figure 2004002124
[0039]
【Example】
The present invention will be described in detail with reference to the following examples. The present inventors knead and mix artificial water-based coarse aggregates and fine aggregates with primary water, secondary water, cement and admixture as shown below. It was adjusted.
[0040]
An artificial lightweight coarse aggregate having an absolutely dry density of 1.28 g / cm 3 and a water absorption of 4.8% for 30 minutes was prepared as crushed to 15 mm or less as a coarse aggregate. Land sand from the water system (surface dry density 2.58 g / cm 3 ), mountain sand from the Chiba prefecture (surface dry density 2.64 g / cm 3 ), early-strength Portland cement manufactured by Taiheiyo Cement Corporation, and a high-performance AE water reducing agent And an AE auxiliary were prepared and adjusted by a continuous three-stage (three-stage) kneading method according to the blending conditions and blending as shown in Table 3 below.
[0041]
[Table 3]
Figure 2004002124
[0042]
In addition, although the adjustment was carried out by the same continuous three-stage (three-stage) kneading method, those containing no silica fume were prepared under the mixing conditions and the mixing as shown in Table 4 below.
[0043]
[Table 4]
Figure 2004002124
[0044]
Further, as a comparative example, the blending conditions and blending (including silica fume) performed by the conventional technique for the same time (180 seconds) as in the continuous three-stage (three-stage) kneading scheme are as shown in Table 5 below. is there.
[0045]
[Table 5]
Figure 2004002124
[0046]
As the moisture content of the artificial lightweight aggregates (coarse aggregates and fine aggregates) before kneading, those having various changes in the range of 1, 5, 7, 10, and 26.5% according to the present invention were prepared. As the kneading method, the method according to the present invention employs an aggregate, a silica fume solution, and primary kneading, in which primary water is added, followed by cement kneading and kneading, followed by secondary kneading. The mixture was tertiarily kneaded, and the results of the freeze-thaw test of concrete according to JSCE-G501-1986 for the various materials thus obtained are as shown in FIG. The artificial lightweight coarse aggregate having a water content of 7% or less was confirmed to have a relative dynamic elastic modulus of 70% or more (70% or more in FIG. 3) even after 500 cycles. Moisture content %, 90% or more is about 90% or more, and that of the coarse aggregate before moisture kneading is 1% or less has a relative kinematic elasticity coefficient of nearly 100%. Has been significantly improved, and is known to have excellent weather resistance. The dotted line shows the case where the conditions other than the absence of silica fume are the same as those of the water content of 7% of the present invention. In this case, the characteristics to be achieved by the present invention are realized. It is understood that there is no.
[0047]
That is, in contrast to the above-mentioned material of the present invention, the materials of the prior art type and the materials having a water content of coarse aggregate before kneading of 10% or 26.5% (products using artificial lightweight coarse aggregate) are all 300 cycles or less. Since the relative kinematic elasticity coefficient is 60% or less, the technical specialty in freeze-thaw resistance of the product of the present invention is clear.
[0048]
Table 6 shows the bending strength results after completion of the 510 cycles of the freeze-thaw test, and Table 7 shows the compression strength results. In Tables 6 and 7, the values of the present inventions 1 and 2 after 510 cycles are shown. In the comparative example of the prior art system, after 300 cycles, the relative kinetic elasticity of each of the examples reached 80%. Since it has reached (standard 60% or more), the numerical value at that time is described. In addition, the strength ratio is a numerical value when the conventional technology (silica fume 5%) is set to 100.
[0049]
[Table 6]
Figure 2004002124
[0050]
[Table 7]
Figure 2004002124
[0051]
As is clear from Tables 6 and 7, it is understood that the present invention is extremely excellent in bending strength and compressive strength even after completion of 510 freeze-thaw tests.
[0052]
【The invention's effect】
According to the present invention as described above, effects such as securing high strength excellent in freeze-thaw resistance, satisfying both light weight and high strength of the structure, and sufficiently reducing the total cost can be obtained. This is an invention having a large industrial effect.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing a formation state of a silica fume coating on a lightweight coarse aggregate of the present invention.
FIG. 2 is a partially cutaway front view showing a state in which silica fume coating is formed on fine aggregate together with coarse aggregate in the present invention.
FIG. 3 is a table summarizing the relative dynamic modulus of elasticity change by freeze-thaw cycles for the inventive examples and comparative examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light weight coarse aggregate 2 Its porous tissue part 3 Silica fume coating 3a Silica fume coating layer 4 Fine aggregate

Claims (9)

少なくとも粗骨材の周面においてスラリー状シリカフュームによる被覆層が形成されたものであって、細骨材とセメント系その他の凝結性混練物が配合されて混合成形されたことを特徴とする耐凍結融解抵抗性に優れた高強度軽量コンクリート。A coating layer formed of slurry-like silica fume is formed on at least the peripheral surface of the coarse aggregate, and the fine aggregate is mixed with a cement-based or other coagulable kneaded material and mixed and molded. High strength lightweight concrete with excellent melting resistance. 周面にスラリー状シリカフューム混練物による被覆層を形成した軽量粗骨材または細骨材に対しセメント系その他の凝結性混練物が添加され被覆成形されたことを特徴とする請求項1に記載の耐凍結融解性に優れた高強度軽量コンクリート。The cement-based or other coagulable kneaded material is added to a lightweight coarse aggregate or a fine aggregate having a coating layer of a slurry-like silica fume kneaded material formed on a peripheral surface thereof, and is formed by coating. High-strength lightweight concrete with excellent freeze-thaw resistance. コンクリート成型体であって凍結融解サイクル回数が300回を超えても相対動弾性係数が70%以上であることを特徴とした請求項1または請求項2に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリート。3. The molded article according to claim 1, wherein the relative dynamic elastic modulus is 70% or more even when the number of freeze-thaw cycles exceeds 300. High strength lightweight concrete. 軽量骨材の周面にスラリー状シリカフューム層を附着形成し、このスラリー状シリカフューム層を形成した軽量骨材に対し1次水をセメントその他の凝結性成分の25〜40wt%とした1次混練をなし、次いで目的の流動成形性を得るための2次水を添加して混練した混練物を前記軽量骨材間に充填成形することを特徴とした耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。A slurry-like silica fume layer is attached to the peripheral surface of the lightweight aggregate, and primary kneading is performed on the lightweight aggregate on which the slurry-like silica fume layer is formed, with primary water being 25 to 40 wt% of cement and other coagulable components. None, and then, a high-strength lightweight concrete excellent in freeze-thaw resistance, characterized in that a kneaded product obtained by adding secondary water for obtaining a desired flow formability and kneading is filled between the lightweight aggregates. Manufacturing method. 軽量粗骨材の表面にシリカフューム重量の1.2〜1.7倍とされた水量によるスラリー状シリカフュームの被覆層を形成することを特徴とした請求項4に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。5. The freeze-thaw resistance according to claim 4, wherein a coating layer of slurry-like silica fume is formed on the surface of the light-weight coarse aggregate with a water amount 1.2 to 1.7 times the weight of silica fume. Method of manufacturing high-strength lightweight concrete. 混練前における含水率7%以下とされた軽量骨材を用いることを特徴とした請求項4または5の何れか1つに記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。The method for producing a high-strength lightweight concrete excellent in freeze-thaw resistance according to any one of claims 4 and 5, wherein a lightweight aggregate having a water content of 7% or less before kneading is used. 混練前における含水率5%以下とされた軽量骨材を用いることを特徴とした請求項6に記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。The method for producing a high-strength lightweight concrete excellent in freeze-thaw resistance according to claim 6, wherein a lightweight aggregate having a water content of 5% or less before kneading is used. 1次水量Wを次式によって求めることを特徴とした請求項4〜7の何れか1つに記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。
Figure 2004002124
=1次水量(kgf/m
α=セメントのキャピラリー状態に必要な水セメント比(%)
βOH(S)=細骨材の拘束水率(%)
βOH(G)=粗骨材の拘束水率(%)
C=単位セメント量(kgf/m
S=単位細骨材量(kgf/m
G=単位粗骨材量(kgf/m
High strength lightweight method for producing concrete having excellent freeze-thaw resistance according to the primary water W 1 any one of claims 4-7 which is characterized by obtained by the following equation.
Figure 2004002124
W 1 = primary water volume (kgf / m 3 )
α = Water cement ratio required for the capillary state of cement (%)
βOH (S) = Restricted water rate of fine aggregate (%)
βOH (G) = Restricted water rate of coarse aggregate (%)
C = Amount of cement (kgf / m 3 )
S = Amount of fine aggregate (kgf / m 3 )
G = Amount of coarse aggregate (kgf / m 3 )
人工軽量粗骨材および細骨材に対し1次水とシリカフュームを含有せしめてスラリー状態として混練すると共に表面水を均斉化し、次いでセメントを添加した1次練りを行ってから2次水と所要の混和剤を添加して2次練りを行うことを特徴とした請求項1〜8の何れか1つに記載の耐凍結融解抵抗性に優れた高強度軽量コンクリートの製造方法。The artificial lightweight coarse aggregate and fine aggregate are mixed with primary water and silica fume to be kneaded in a slurry state, and the surface water is evened out. The method for producing a high-strength lightweight concrete excellent in freeze-thaw resistance according to any one of claims 1 to 8, wherein secondary kneading is performed by adding an admixture.
JP2002163739A 2002-04-16 2002-06-05 High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process Pending JP2004002124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163739A JP2004002124A (en) 2002-04-16 2002-06-05 High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002113216 2002-04-16
JP2002163739A JP2004002124A (en) 2002-04-16 2002-06-05 High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process

Publications (1)

Publication Number Publication Date
JP2004002124A true JP2004002124A (en) 2004-01-08

Family

ID=30447054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163739A Pending JP2004002124A (en) 2002-04-16 2002-06-05 High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process

Country Status (1)

Country Link
JP (1) JP2004002124A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484034C1 (en) * 2012-02-09 2013-06-10 Юлия Алексеевна Щепочкина Crude mixture for making coarse aggregate coating
CN103755183A (en) * 2013-12-30 2014-04-30 北京新航建材集团有限公司 Surface coated ceramic particle for lightweight aggregate concrete and preparation method thereof
JP2017114697A (en) * 2015-12-21 2017-06-29 川田工業株式会社 Manufacturing method of high-early-strength light weight concrete

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484034C1 (en) * 2012-02-09 2013-06-10 Юлия Алексеевна Щепочкина Crude mixture for making coarse aggregate coating
CN103755183A (en) * 2013-12-30 2014-04-30 北京新航建材集团有限公司 Surface coated ceramic particle for lightweight aggregate concrete and preparation method thereof
JP2017114697A (en) * 2015-12-21 2017-06-29 川田工業株式会社 Manufacturing method of high-early-strength light weight concrete

Similar Documents

Publication Publication Date Title
US7641731B2 (en) Ultrahigh-performance, self-compacting concrete, preparation method thereof and use of same
Jo et al. Investigations on the development of powder concrete with nano-SiO 2 particles
Madandoust et al. An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene
CN113816643B (en) Concrete reinforcing agent for sponge city construction, preparation method thereof and pervious concrete
CN111763050B (en) High-strength high-throwing self-compacting micro-expansion concrete and preparation method thereof
JPH0345544A (en) Concrete blend composition
JP2004002124A (en) High strength light-weight concrete excellent in freeze-thaw resistance, and its producing process
JP6165447B2 (en) Method for producing concrete with reduced bleeding
JP2006083046A (en) Binder for porous concrete and method for producing porous concrete
JPH07277794A (en) Lightweight concrete aggregate
CN106966643A (en) Jacking concrete filled steel tube and preparation method thereof
JP5169368B2 (en) Self-healing hydrated cured product and low-reactivity active cement material
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2007176742A (en) Shearing strength-reinforced type lightweight concrete
JP3026406B2 (en) Manufacturing method and construction method of self-smoothing cement mortar composition
Soleymani Assessments of the effects of limewater on water permeability of TiO2 nanoparticles binary blended limestone aggregate-based concrete
JP2018158867A (en) Cement composition
JPS62235277A (en) Super lightweight cement set body and manufacture
JP3799955B2 (en) Mixture design method of short fiber reinforced high fluidity concrete.
JP2003003409A (en) Mixture for permeable concrete pavement, manufacturing method for mixture, and permeable concrete pavement
JP3875028B2 (en) Manufacturing method of centrifugal molded products
JPH06199560A (en) Super-workable concrete
JP3107656B2 (en) Concrete composition
JP2001089262A (en) Lightweight concrete usable for civil engineering construction and its hardened body
CN116444237A (en) Polymer sulphoaluminate cement repair mortar and preparation method and application thereof

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20020827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070821

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070821

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007