JP2004345889A - Cement composition - Google Patents

Cement composition Download PDF

Info

Publication number
JP2004345889A
JP2004345889A JP2003143221A JP2003143221A JP2004345889A JP 2004345889 A JP2004345889 A JP 2004345889A JP 2003143221 A JP2003143221 A JP 2003143221A JP 2003143221 A JP2003143221 A JP 2003143221A JP 2004345889 A JP2004345889 A JP 2004345889A
Authority
JP
Japan
Prior art keywords
cement
aggregate
parts
concrete
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143221A
Other languages
Japanese (ja)
Inventor
Tsutomu Kida
勉 木田
Takanori Yamagishi
隆典 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003143221A priority Critical patent/JP2004345889A/en
Publication of JP2004345889A publication Critical patent/JP2004345889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide cement concrete containing cement and fine glass spherical bodies to increase the durability of concrete. <P>SOLUTION: The cement concrete is produced by blending a cement composition containing 100 pts. cement and 0.5-15 pts. fine glass spherical body and has ≥2,000 kg/m<SP>3</SP>mass per unit volume. The average particle diameter of the fine glass spherical body is 5-300 μm. The cement composition contains an aggregate having ≥2.4 g/cm<SP>3</SP>absolute dry density. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、セメントと微小ガラス球状体とを含有するセメントコンクリートに関する。
なお、本発明で使用する部や%は特に規定のない限り質量基準である。
また、本発明のセメントコンクリートは、セメントペースト、モルタル、及びコンクリートを総称するものである。
【0002】
【従来の技術】
従来、寒冷地においては、凍結融解作用による劣化を防ぐ方法として、微細な連行空気を容積で3〜6%導入し、初期養生を充分にすることが行われている(非特許文献1参照)。
しかしながら、微細な連行空気を所定量導入して硬化体を得るには、不安定要因を多く生じ、構造物の美観や耐久性を損なう場合があった。
この不安定要因としては、一般的には、配合の相違によるセメント量、指定スランプの大小、混練り時間、ミキサ形式、並びに、温度、骨材粒度、及び骨材に含有する泥分の日内変動や季節の変化の他に、界面活性剤類や増粘剤の連行空気を押えるための消泡剤、ミキサに使用されるグリス類、及び油類等の混入等が挙げられる。
前記不安定要因が原因で連行空気量が変動し、その調整のためにAE剤の使用量を増減させ、連行空気量を3〜6%の所定量導入する作業が行われている。
また、所定の連行空気量が得られないと充分な耐久性が得られないが、必要以上の連行空気量は空気量に比例して強度低下や美観の低下を生じる。そのため、生コンプラントや二次製品製造プラントでは、日に何度か空気量を確認し、調整を行なっているが、日内変動や月内変動が大きな場合があり、大変な労力を必要としている。
この課題を解決するために、ポゾラン反応を呈する中空体を混和する方法や中空微小球を混和する方法が提案されている(特許文献1、特許文献2参照)。
【0003】
【非特許文献1】
セメント・コンクリート用混和材料、笠井芳夫、小林正几編、昭和61年5月15日、技術書院発行、第234〜243頁
【特許文献1】
特開平11−189454号公報
【特許文献2】
特開平08−188458号公報
【0004】
【発明が解決しょうとする課題】
これら従来の方法であるポゾラン反応を呈する中空体を混和する方法は、添加率が少ないことや水比が高いことなどがあると所定の効果が得られないという課題があり、中空微小球を混和する方法では、高価な中空微小球のために使用量を多くできないという課題があった。
また、非常に密度が小さいために、水で濡らしてあるが、そのため、練り混ぜ時に水分を別計量しなければならないし、セメントと長期の混和ができない、また、軽量化を目指したために、強度が低く構造材として利用できないという課題もあった。
【0005】
本発明者は、特定の方法よって前記課題を解消できるという知見を得て本発明を完成するに至った。
【0006】
【課題を解決するための手段】
即ち、本発明は、セメント100部と微小ガラス球状体0.5〜15部とを含有してなるセメント組成物を配合してなり、単位容積質量が2,000kg/m以上であるセメントコンクリートであり、微小ガラス球状体の平均粒径が5〜300μmであるセメント組成物を配合する該セメントコンクリートであり、セメント組成物が、さらに、絶乾密度2.4g/cm以上の骨材を含有してなる該セメントコンクリートである。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0008】
本発明で使用するセメントとしては、低熱、普通、早強、及び超早強等の各種ポルトランドセメント、これらのポルトランドセメントに、高炉スラグやフライアッシュなどを混合した各種混合セメントなどが挙げられる。
【0009】
本発明で使用する微小ガラス球状体(以下、ガラス球という)としては、ソーダ−石灰ガラス、ホウケイ酸ガラス、燐酸亜鉛ガラス、及びアルミノシリケートを主原料として焼成される中空品等が挙げられる。
ガラス球の平均粒子径は、5〜300μmが好ましく、10〜150μmがより好ましい。5μm未満は製造することが困難であり、300μmを超えると凍結融解に対する耐久性が減少する場合がある。
ガラス球の使用量は、セメント100部に対して、0.5〜15部が好ましい。0.5部より少ないと耐久性に対する効果がでにくい場合があり、15部を超えると強度低下が大きくなる場合がある。
【0010】
本発明で使用する骨材としては、天然河川や旧河川から採取されるもの、玉石や岩石を破砕したもの、スラグ骨材、再生骨材、及び人工軽量骨材等が使用可能であり、細骨材や粗骨材として使用するが、アルカリ骨材反応を起こさないものが好ましい。
骨材の密度は、絶乾密度で2.4g/cm以上が好ましく、2.5g/cm以上がより好ましい。死石や軽石等が多いと絶乾密度は低くなる。絶乾密度が2.4g/cm未満では凍結融解に対する耐久性が減少する場合がある。
また、骨材の吸水率は、細骨材の場合は3.5%以下、粗骨材の場合は3.0%以下が好ましい。
骨材の使用量は、セメント100部に対して、細骨材は50〜300部が好ましく、粗骨材は0〜400部が好ましい。細骨材が50部未満では乾燥収縮量が大きく、耐久性が悪化する場合があり、細骨材が300部を超えると、また、粗骨材が400部を超えるとフレッシュ性状が悪く、施工が完全に行われない場合がある。
【0011】
水は、セメントの水和反応を阻害しないのものであれば特に限定されるものではなく、その使用量は、セメント100部に対して、20〜60部が好ましい。20部未満では、骨材の表面水管理を厳しくしなければならない場合や特殊な減水剤を選定しなければならない場合があり、60部を超えると長期の耐久性が得られない場合や所定の構造物としての強度が得られない場合がある。
【0012】
使用材料の混合方法は、均一に分散できれば特に限定されるものではない。ガラウス球を投入する際に付着や飛散が生じる場合は、細骨材等と一緒に投入することが好ましい。全材料投入後、40秒以上混合することが好ましく、60秒以上混合することがより好ましい。
【0013】
単位容積質量は配合等によって異なるものではあるが、本発明においては、2,000kg/m以上であり、2,100kg/m以上が好ましい。2,000kg/m未満では耐久性が得られない場合がある。
【0014】
【実施例】
以下、本発明を実験例に基づいてさらに説明する。
【0015】
実験例1
セメント100部、表1に示すガラス球、細骨材230部、及び粗骨材345部をミキサに投入し、15秒間空練りし、その後、表1に示す量の水を添加し、90秒間練り混ぜ、表1に示す単位容積質量のコンクリートを調製した。
なお、細骨材は細骨材αを、粗骨材は粗骨材Aを使用した。
調製したコンクリートを用い、圧縮強度と相対的動弾性係数比を測定した。結果を表1に併記する。
【0016】
<使用材料>
セメント :普通ポルトランドセメント、三種混合品
細骨材α :川砂、5mm下、絶乾密度2.60、吸水率3.0%
粗骨材A :砕石 20mm以下、絶乾密度2.65、吸水率1.6%
ガラス球a:アルカリガラス、市販品、平均粒径500μm
ガラス球b:アルカリガラス、市販品、平均粒径300μm
ガラス球c:ホウケイ酸ガラス、市販品、平均粒径150μm
ガラス球d:アルミノシリケート、市販品、平均粒径150μm
ガラス球e:アルミノシリケート、市販品、平均粒径100μm
ガラス球f:アルミノシリケート、市販品、平均粒径20μm
ガラス球g:アルミノシリケート、市販品、平均粒径10μm
ガラス球h:アルミノシリケート、市販品、平均粒径5μm
【0017】
<測定方法>
骨材密度 :JIS A 1109「細骨材の密度及び吸水率試験方法」やJIS A 1110「粗骨材の密度及び吸水率試験方法」に準じ測定
単位容積質量:JIS A 1116「フレシュコンクリートの単位容積質量試験方法及び空気量の質量による試験方法」に準じ測定
圧縮強度 :JIS A 1108「コンクリ−トの圧縮強度試験方法」に準じて測定
相対的動弾性係数比:JIS A 1148「コンクリ−トの凍結融解試験方法」A法水中凍結水中融解試験方法に準じて測定
単位容積質量:JIS A 1116「フレシュコンクリートの単位容積質量試験方法及び空気量の質量による試験方法」に準じ測定
【0018】
【表1】

Figure 2004345889
【0019】
実験例2
表2に示す量のガラス球eと水を用い、表2に示す単位容積質量のコンクリートを調製したこと以外は実験例1と同様に行った。結果を表2に併記する。
【0020】
【表2】
Figure 2004345889
【0021】
実験例3
ガラス球e10部、水48部、及び表3に示す骨材を用い、表3に示す単位容積質量のコンクリートを調製したこと以外は実験例1と同様に行った。結果を表3に併記する。
【0022】
<使用材料>
細骨材β :川砂、5mm下、絶乾密度2.45g/cm、吸水率3.84%
細骨材γ :人工軽量骨材、5mm下、絶乾密度1.30g/cm、24時間吸水させた、表面乾燥品
粗骨材B :川砂利、25mm下、絶乾密度2.42、吸水率4.47%
【0023】
【表3】
Figure 2004345889
【0024】
実験例4
表4に示す量のガラス球eと表4に示す骨材を用い、水を47部添加し、表4に示す単位容積質量のコンクリートを調製したこと以外は実験例1と同様に行った。結果を表4に併記する。
【0025】
【表4】
Figure 2004345889
【0026】
【発明の効果】
本発明のセメントコンクリートを使用することによって、耐久性は高いものが得られた。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a cement concrete containing cement and fine glass spheres.
The parts and percentages used in the present invention are on a mass basis unless otherwise specified.
Further, the cement concrete of the present invention is a general term for cement paste, mortar, and concrete.
[0002]
[Prior art]
Conventionally, in a cold region, as a method of preventing deterioration due to freezing and thawing action, fine entrained air is introduced at a volume of 3 to 6% by volume to sufficiently initial cure (see Non-Patent Document 1). .
However, in order to obtain a hardened body by introducing a predetermined amount of fine entrained air, many factors of instability are generated, and the appearance and durability of the structure may be impaired.
This instability is generally caused by the difference in the amount of cement, the size of the specified slump, the mixing time, the mixer type, and the daily variation of temperature, aggregate particle size, and mud contained in the aggregate. In addition to changes in seasons and seasons, there may be mentioned defoaming agents for suppressing entrained air of surfactants and thickeners, greases used in mixers, and oils.
The amount of entrained air fluctuates due to the instability factor. To adjust the amount of entrained air, the amount of the AE agent used is increased or decreased to introduce a predetermined amount of entrained air of 3 to 6%.
Further, if the predetermined entrained air amount cannot be obtained, sufficient durability cannot be obtained. However, the entrained air amount that is more than necessary causes a decrease in strength and a reduction in aesthetic appearance in proportion to the air amount. Therefore, in a ready-mixed concrete plant or a secondary product manufacturing plant, the amount of air is checked and adjusted several times a day, but the daily fluctuation and the monthly fluctuation may be large, requiring great labor.
In order to solve this problem, a method of mixing a hollow body exhibiting a pozzolanic reaction and a method of mixing hollow microspheres have been proposed (see Patent Documents 1 and 2).
[0003]
[Non-patent document 1]
Cement / concrete admixture, Yoshio Kasai and Masamitsu Kobayashi, edited by Kougyo Shoin on May 15, 1986, pages 234 to 243 [Patent Document 1]
JP-A-11-189454 [Patent Document 2]
Japanese Patent Application Laid-Open No. 08-188458
[Problems to be solved by the invention]
The method of mixing a hollow body exhibiting a pozzolanic reaction, which is a conventional method, has a problem that a predetermined effect cannot be obtained if there is a small addition rate or a high water ratio, and the hollow microspheres are mixed. In this method, there is a problem that the amount used cannot be increased due to expensive hollow microspheres.
In addition, because of its very low density, it is wet with water.However, it is necessary to separately measure water when mixing, and it cannot be mixed with cement for a long period of time. However, there is also a problem that it cannot be used as a structural material because of its low quality.
[0005]
The present inventors have found that the above problem can be solved by a specific method, and have completed the present invention.
[0006]
[Means for Solving the Problems]
That is, the present invention provides a cement concrete comprising a cement composition containing 100 parts of cement and 0.5 to 15 parts of microscopic glass spheres, and having a unit volume mass of 2,000 kg / m 3 or more. Is a cement concrete containing a cement composition having an average particle size of a micro glass sphere of 5 to 300 μm, wherein the cement composition further comprises an aggregate having an absolute dry density of 2.4 g / cm 3 or more. The cement concrete is contained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
Examples of the cement used in the present invention include various portland cements having low heat, ordinary, fast strength, and very fast strength, and various mixed cements obtained by mixing blast furnace slag, fly ash, and the like with these portland cements.
[0009]
Examples of the fine glass spheres (hereinafter referred to as glass spheres) used in the present invention include soda-lime glass, borosilicate glass, zinc phosphate glass, and hollow products fired using aluminosilicate as a main raw material.
The average particle diameter of the glass sphere is preferably from 5 to 300 μm, more preferably from 10 to 150 μm. If it is less than 5 μm, it is difficult to produce, and if it exceeds 300 μm, the durability to freeze-thaw may decrease.
The amount of glass spheres used is preferably 0.5 to 15 parts with respect to 100 parts of cement. If the amount is less than 0.5 part, the effect on durability may be difficult to obtain, and if it exceeds 15 parts, the strength may be greatly reduced.
[0010]
Examples of the aggregate used in the present invention include those collected from natural rivers and old rivers, crushed cobblestones and rocks, slag aggregates, recycled aggregates, and artificial lightweight aggregates. Although used as aggregate or coarse aggregate, those which do not cause alkali-aggregate reaction are preferable.
The density of the aggregate is preferably 2.4 g / cm 3 or more, and more preferably 2.5 g / cm 3 or more in absolute dry density. If there are many dead stones or pumice stones, the absolute dry density will be low. If the absolute dry density is less than 2.4 g / cm 3 , the durability to freeze-thaw may decrease.
The water absorption of the aggregate is preferably 3.5% or less for fine aggregate and 3.0% or less for coarse aggregate.
The amount of aggregate used is preferably 50 to 300 parts of fine aggregate and 100 to 400 parts of coarse aggregate with respect to 100 parts of cement. If the fine aggregate is less than 50 parts, the drying shrinkage is large, and the durability may be deteriorated. If the fine aggregate exceeds 300 parts, and if the coarse aggregate exceeds 400 parts, the fresh properties are poor, and May not be performed completely.
[0011]
The water is not particularly limited as long as it does not inhibit the hydration reaction of the cement, and its use amount is preferably 20 to 60 parts with respect to 100 parts of the cement. If it is less than 20 parts, it may be necessary to strictly control the surface water of the aggregate, or it may be necessary to select a special water reducing agent. If it exceeds 60 parts, long-term durability may not be obtained, The strength as a structure may not be obtained.
[0012]
The method of mixing the used materials is not particularly limited as long as the materials can be uniformly dispersed. In the case where adhesion or scattering occurs when the galaus sphere is charged, it is preferable to put the ball together with fine aggregate. After all the materials have been charged, it is preferable to mix for 40 seconds or more, and it is more preferable to mix for 60 seconds or more.
[0013]
Although the unit volume mass varies depending on the composition and the like, in the present invention, it is 2,000 kg / m 3 or more, and preferably 2,100 kg / m 3 or more. If it is less than 2,000 kg / m 3 , durability may not be obtained.
[0014]
【Example】
Hereinafter, the present invention will be further described based on experimental examples.
[0015]
Experimental example 1
100 parts of cement, 230 parts of glass spheres, 230 parts of fine aggregate, and 345 parts of coarse aggregate shown in Table 1 were put into a mixer, kneaded for 15 seconds, and then water was added in an amount shown in Table 1 for 90 seconds. The mixture was kneaded to prepare a concrete having a unit volume mass shown in Table 1.
The fine aggregate was fine aggregate α, and the coarse aggregate was coarse aggregate A.
Using the prepared concrete, the compressive strength and the relative dynamic elastic modulus ratio were measured. The results are also shown in Table 1.
[0016]
<Material used>
Cement: ordinary Portland cement, tri-mixture fine aggregate α: river sand, 5 mm below, absolutely dry density 2.60, water absorption 3.0%
Coarse aggregate A: crushed stone 20 mm or less, absolute dry density 2.65, water absorption 1.6%
Glass sphere a: alkali glass, commercial product, average particle size 500 μm
Glass sphere b: alkali glass, commercial product, average particle size 300 μm
Glass sphere c: borosilicate glass, commercial product, average particle size 150 μm
Glass sphere d: aluminosilicate, commercial product, average particle size 150 μm
Glass ball e: aluminosilicate, commercial product, average particle size 100 μm
Glass ball f: aluminosilicate, commercial product, average particle size 20 μm
Glass ball g: aluminosilicate, commercial product, average particle size 10 μm
Glass ball h: aluminosilicate, commercial product, average particle size 5 μm
[0017]
<Measurement method>
Aggregate density: Measured in accordance with JIS A 1109 "Test method for density and water absorption of fine aggregate" and JIS A 1110 "Test method for density and water absorption of coarse aggregate" Unit mass: JIS A 1116 "Unit of fresh concrete Compressive strength measured in accordance with JIS A 1108 "Test method by volume and mass of air amount and test method based on mass of air amount" Relative dynamic elastic modulus ratio measured in accordance with JIS A 1108 "Concrete compressive strength test method": JIS A 1148 "Concrete Freeze-thaw test method ”Measured in accordance with Method A in water-freeze-in-water thaw test unit mass: Measured in accordance with JIS A 1116“ Test method for unit volume and mass of fresh concrete and test method by mass of air amount ”.
[Table 1]
Figure 2004345889
[0019]
Experimental example 2
The procedure was performed in the same manner as in Experimental Example 1 except that concrete having a unit volume mass shown in Table 2 was prepared using glass balls e and water in the amounts shown in Table 2. The results are also shown in Table 2.
[0020]
[Table 2]
Figure 2004345889
[0021]
Experimental example 3
The operation was performed in the same manner as in Experimental Example 1 except that concrete having a unit volume mass shown in Table 3 was prepared using 10 parts of a glass ball e, 48 parts of water, and an aggregate shown in Table 3. The results are also shown in Table 3.
[0022]
<Material used>
Fine aggregate β: river sand, 5 mm below, absolutely dry density 2.45 g / cm 3 , water absorption 3.84%
Fine aggregate γ: Artificial lightweight aggregate, 5 mm below, absolutely dry density 1.30 g / cm 3 , water-absorbed for 24 hours, surface-dried coarse aggregate B: River gravel, 25 mm below, absolutely dry density 2.42, 4.47% water absorption
[0023]
[Table 3]
Figure 2004345889
[0024]
Experimental example 4
The experiment was carried out in the same manner as in Experimental Example 1, except that 47 parts of water was added using the glass balls e in the amounts shown in Table 4 and the aggregates shown in Table 4 to prepare concrete having a unit volume mass shown in Table 4. The results are shown in Table 4.
[0025]
[Table 4]
Figure 2004345889
[0026]
【The invention's effect】
By using the cement concrete of the present invention, one having high durability was obtained.

Claims (3)

セメント100部と微小ガラス球状体0.5〜15部とを含有してなるセメント組成物を配合してなり、単位容積質量が2,000kg/m以上であることを特徴とするセメントコンクリート。A cement concrete comprising a cement composition containing 100 parts of cement and 0.5 to 15 parts of microscopic glass spheres, and having a unit volume mass of 2,000 kg / m 3 or more. 微小ガラス球状体の平均粒径が5〜300μmであるセメント組成物を配合することを特徴とする請求項1に記載のセメントコンクリート。The cement concrete according to claim 1, wherein a cement composition having an average particle diameter of the fine glass spheres is 5 to 300 µm. セメント組成物が、さらに、絶乾密度2.4g/cm以上の骨材を含有してなることを特徴とする請求項1又は請求項2に記載のセメントコンクリート。The cement concrete according to claim 1 or 2, wherein the cement composition further comprises an aggregate having an absolute dry density of 2.4 g / cm 3 or more.
JP2003143221A 2003-05-21 2003-05-21 Cement composition Pending JP2004345889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143221A JP2004345889A (en) 2003-05-21 2003-05-21 Cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143221A JP2004345889A (en) 2003-05-21 2003-05-21 Cement composition

Publications (1)

Publication Number Publication Date
JP2004345889A true JP2004345889A (en) 2004-12-09

Family

ID=33531069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143221A Pending JP2004345889A (en) 2003-05-21 2003-05-21 Cement composition

Country Status (1)

Country Link
JP (1) JP2004345889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979862A (en) * 2014-04-15 2014-08-13 吴春池 Energy-saving and environmental-protection material, preparation method and application of energy-saving and environmental-protection material in building system
CN104310833A (en) * 2014-10-07 2015-01-28 吉林建筑大学 Functional admixture for improving durability of concrete and cement products and preparation method of functional admixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979862A (en) * 2014-04-15 2014-08-13 吴春池 Energy-saving and environmental-protection material, preparation method and application of energy-saving and environmental-protection material in building system
CN103979862B (en) * 2014-04-15 2015-10-07 吴春池 A kind of energy-conserving and environment-protective material, preparation method and the application in building system thereof
CN104310833A (en) * 2014-10-07 2015-01-28 吉林建筑大学 Functional admixture for improving durability of concrete and cement products and preparation method of functional admixture

Similar Documents

Publication Publication Date Title
JP3272360B2 (en) Manufacturing method of cement
CN108558303A (en) A kind of regeneration concrete bulk and its production method
US20160289121A1 (en) High strength concrete composition and method
CN110040997B (en) Nano-nucleating early strength agent for metakaolin as well as preparation method and application of nano-nucleating early strength agent
JPH04124054A (en) Superhigh-strength concrete
Droll Influence of additions on ultra high performance concretes–grain size optimisation
JP5633044B2 (en) Fly ash concrete and manufacturing method thereof
JPH0680456A (en) Fluid hydraulic composition
JP4462854B2 (en) Method for reducing self-shrinkage of ultra high strength concrete
JP3267895B2 (en) Cement clinker and cement composition
JP3215516B2 (en) Hydraulic composition and method for producing concrete pile using the composition
JP2001261414A (en) Concrete having self-wetting/aging function and its executing method
JP2000281413A (en) Cement admixture and cement composition
JPH0952744A (en) Mortar and concrete composition
JP2004345889A (en) Cement composition
JPH08239249A (en) Cement composition
JPH10272618A (en) Manufacture of concrete
JPH07232955A (en) Production of concrete composition and concrete
JPH0832575B2 (en) Portland cement with controlled particle size
JP3628064B2 (en) Concrete composition
JPH1192200A (en) Low-shrinking concrete composition
CN111724869A (en) Shrinkage control-based machine-made sandstone aggregate cast-in-place concrete mix proportion design method
JP6983522B2 (en) Cement composition
Lekūnaitė-Lukošiūnė et al. Influence of micro additives on macrostructure of autoclaved aerated concrete
JP4358359B2 (en) Low shrinkage concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051031

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Effective date: 20081127

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090203

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20090223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090515