JP6846940B2 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
JP6846940B2
JP6846940B2 JP2017014574A JP2017014574A JP6846940B2 JP 6846940 B2 JP6846940 B2 JP 6846940B2 JP 2017014574 A JP2017014574 A JP 2017014574A JP 2017014574 A JP2017014574 A JP 2017014574A JP 6846940 B2 JP6846940 B2 JP 6846940B2
Authority
JP
Japan
Prior art keywords
heat
hot water
heater
boiler
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017014574A
Other languages
Japanese (ja)
Other versions
JP2018123982A (en
Inventor
健 金内
健 金内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2017014574A priority Critical patent/JP6846940B2/en
Publication of JP2018123982A publication Critical patent/JP2018123982A/en
Application granted granted Critical
Publication of JP6846940B2 publication Critical patent/JP6846940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置に関する。 The present invention relates to a steam generator provided with a boiler capable of storing hot water supplied from the outside and heating the hot water inside by the heat generated by a heat source to generate steam.

従来、蒸気発生装置としては、湯水源から湯水配管を介して供給される湯水を内部に貯留すると共に、燃焼装置による加熱により当該湯水を加熱して蒸気を発生させるボイラが知られている(特許文献1を参照)。
説明を加えると、当該ボイラは、ボイラドラムに一旦水を貯留しつつ、当該ボイラドラムに貯留された湯水を燃焼装置により加熱して蒸気を発生させる。当該ボイラドラム内の湯水には、脱酸素剤(防食剤)やスケール防止剤等の薬品が溶解しており、湯水の一部が蒸気となって蒸発することにより、その薬品が濃縮され、濃度が高くなる。当該濃縮された薬品は、ボイラドラム内の腐食を促進させたり、固形化してスケールとしてボイラドラム内や配管に付着したりするため、ボイラにおける蒸気発生を妨げる要因となる。このため、ボイラは、ボイラドラムに連通接続するブロー水排出配管を備えると共に、当該ブロー水排出配管を開閉可能な開閉弁を備えており、当該開閉弁を定期的に開放状態にする形態で、ブロー水をブロー水排出配管を介して定期的に排出する。
ここで、ボイラが稼働している場合、上記ブロー水は排熱を保有しているため、上記特許文献1に開示の技術にあっては、当該ブロー水が保有する排熱を回収するべく、ブロー水とボイラへ供給される前の湯水とを熱交換させるブロー水熱交換器を備えたものが知られている。
Conventionally, as a steam generator, a boiler is known in which hot water supplied from a hot water source via a hot water pipe is stored inside, and the hot water is heated by heating by a combustion device to generate steam (patented). See Document 1).
To add an explanation, the boiler temporarily stores water in the boiler drum and heats the hot water stored in the boiler drum by a combustion device to generate steam. Chemicals such as oxygen scavengers (corrosive inhibitors) and anti-scale agents are dissolved in the hot water in the boiler drum, and when a part of the hot water evaporates as steam, the chemicals are concentrated and concentrated. Will be higher. The concentrated chemicals promote corrosion in the boiler drum, or solidify and adhere to the inside of the boiler drum or pipes as scale, which is a factor that hinders the generation of steam in the boiler. For this reason, the boiler is provided with a blow water discharge pipe that communicates with the boiler drum, and is also provided with an on-off valve that can open and close the blow water discharge pipe. Blow water is discharged periodically through the blow water discharge pipe.
Here, when the boiler is operating, the blow water has exhaust heat. Therefore, in the technique disclosed in Patent Document 1, in order to recover the exhaust heat possessed by the blow water, the blow water has exhaust heat. It is known to have a blow water heat exchanger that exchanges heat between the blow water and the hot water before being supplied to the boiler.

特開2015−212583号公報Japanese Unexamined Patent Publication No. 2015-212583

一般的に、上述した蒸気発生装置においては、ボイラにて湯水を加熱する温熱源の排熱により、ボイラへ供給される湯水を予熱する構成が採用される。このため、上記特許文献1に開示の技術の如く、ブロー水が保有する排熱を回収する構成を採用したとしても、当該排熱を有効に利用できないことが多く、エネルギ効率向上の観点から、改善の余地があった。 Generally, in the steam generator described above, a configuration is adopted in which the hot water supplied to the boiler is preheated by the exhaust heat of the heat source that heats the hot water in the boiler. Therefore, even if a configuration for recovering the exhaust heat possessed by the blown water is adopted as in the technique disclosed in Patent Document 1, the exhaust heat is often not effectively used, and from the viewpoint of improving energy efficiency, the exhaust heat is often not used effectively. There was room for improvement.

本願に係る発明は、上述の課題に鑑みてなされたものであり、その目的は、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置を提供する点にある。 The invention according to the present application has been made in view of the above-mentioned problems, and an object thereof is to be able to satisfactorily recover thermal energy as exhaust heat from a boiler with a relatively simple configuration with high maintainability, and to recover the heat. The point is to provide a steam generator capable of appropriately converting the generated thermal energy into energy in demand such as cold energy.

上記目的を達成するための蒸気発生装置は、
外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置であって、その特徴構成は、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上有すると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器とから成る音響ヒートポンプ部を少なくとも1つ以上有する熱音響機関と、
前記ボイラからのブロー水を前記加熱器に通流させるブロー水通流路と、
湯水を前記冷却器に通流させた後に前記ボイラへ導く湯水通流路と、
冷媒が保有する冷熱が放熱され利用される冷熱利用部と前記吸熱器との間で冷媒を循環させる冷媒循環路とを備え
前記湯水通流路は、湯水を前記放熱器及び前記冷却器に記載の順に通流させた後に前記ボイラへ導くものである点にある。
The steam generator for achieving the above purpose is
It is a steam generator equipped with a boiler that can store hot water supplied from the outside and heats the hot water inside by the heat generated by the heat source to generate steam.
The acoustic energy of sound waves between a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the heater and the cooler in an acoustic cylinder filled with the working medium and propagating sound waves. A heat absorber in which the working medium absorbs heat from the outside, a radiator in which the working medium dissipates heat to the outside, a heat absorber, and the radiator, while having at least one prime mover including a first regenerator for amplifying the above. A thermoacoustic engine having at least one acoustic heat pump unit comprising a second regenerator that compresses and expands in a manner in which sound waves consume acoustic energy between them.
A blow water flow path that allows blow water from the boiler to flow through the heater, and
A hot water flow path that leads hot water to the boiler after flowing it through the cooler,
It is provided with a refrigerant circulation path for circulating the refrigerant between the heat absorber and the cold heat utilization unit in which the cold heat possessed by the refrigerant is dissipated and used .
The hot water flow path is a point in which hot water is passed through the radiator and the cooler in the order described, and then guided to the boiler .

上記特徴構成によれば、まずもって、ブロー水通流路を介して原動機の加熱器へブロー水を通流させると共に、湯水通流路を介して原動機の冷却器へ湯水を通流させる形態で、加熱器と冷却器との間で比較的大きい温度差を形成し、加熱器と冷却器との間の第1再生器から当該温度差に応じた音響エネルギを有する音波を発生することができる。
このように発生した音波は、音響筒を伝播して音響ヒートポンプ部に導かれ、第2再生器にて音響エネルギを消費する形態で、放熱器にて作動媒体から外部へ放熱させる温度よりも吸熱器にて外部から作動媒体へ吸熱させる温度を低くできるから、外部から供給される湯水(例えば、20℃程度)を放熱器へ通流させると共に冷媒を吸熱器へ通流させることで、当該冷媒を湯水よりも低い温度で冷却能力を発揮し得る温度にまで降温できる。
即ち、当該構成を採用することにより、蒸気発生装置において余剰となることが多い排熱(ブロー水が保有する排熱)を、冷熱に変換することができ、冷熱利用部で有効に利用することができるようになる。
因みに、上記特徴構成によれば、外部から供給される湯水は、冷却器へ通流して加熱器の熱をくみ上げた後に、ボイラへ供給されるため、十分に予熱された状態でボイラへ補給される。
また、本発明のような熱音響機関は、可動部のない簡易な構成のため故障等が発生する虞がほとんどなく、メンテナンスの必要がほとんどなく、経済性が高い装置を実現できる。
更に、上記特徴構成によれば、外部から供給される湯水は、冷却器へ通流して加熱器の熱をくみ上げる前に、放熱器を通流して冷媒の熱をくみ上げるため、より一層十分に昇温した湯水を、ボイラへ補給でき、熱効率の向上を図ることができる。
以上より、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱(特に、ブロー水の保有する排熱)としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置を実現できる。
According to the above characteristic configuration, first, the blow water is passed through the blow water flow path to the heater of the prime mover, and the hot water is passed through the hot water flow path to the cooler of the prime mover. , A relatively large temperature difference can be formed between the heater and the cooler, and a sound wave having acoustic energy corresponding to the temperature difference can be generated from the first regenerator between the heater and the cooler. ..
The sound generated in this way propagates through the acoustic cylinder and is guided to the acoustic heat pump section, and consumes acoustic energy in the second regenerator, and absorbs heat rather than the temperature at which the radiator dissipates heat from the operating medium to the outside. Since the temperature at which heat is absorbed from the outside to the operating medium can be lowered by the device, hot water (for example, about 20 ° C.) supplied from the outside can be passed through the radiator and the refrigerant can be passed through the heat absorber. Can be lowered to a temperature at which the cooling capacity can be exhibited at a temperature lower than that of hot water.
That is, by adopting this configuration, the exhaust heat (exhaust heat possessed by the blow water), which is often surplus in the steam generator, can be converted into cold heat, which can be effectively used in the cold heat utilization unit. Will be able to.
Incidentally, according to the above-mentioned characteristic configuration, the hot water supplied from the outside flows to the cooler to draw up the heat of the heater and then is supplied to the boiler, so that the hot water is supplied to the boiler in a sufficiently preheated state. To.
Further, since the thermoacoustic engine as in the present invention has a simple configuration without moving parts, there is almost no possibility of failure or the like, maintenance is hardly required, and a highly economical device can be realized.
Further, according to the above-mentioned feature configuration, the hot water supplied from the outside passes through the radiator to pump up the heat of the refrigerant before flowing to the cooler to pump up the heat of the heater, so that the temperature rises even more sufficiently. Warm hot water can be replenished to the boiler, and thermal efficiency can be improved.
From the above, it is possible to satisfactorily recover the thermal energy as exhaust heat from the boiler (particularly, the exhaust heat possessed by the blow water) with a relatively simple configuration with high maintainability, and the recovered thermal energy can be used as cold energy, etc. It is possible to realize a steam generator that can appropriately convert energy into demand.

蒸気発生装置の更なる特徴構成は、
前記ボイラは、温熱源にて発生する温熱を保有する熱媒を通流可能な伝熱部を内部に備え、
前記伝熱部と前記加熱器とに記載の順に熱媒を通流する熱媒通流路を備える点にある。
Further features of the steam generator are
The boiler is provided with a heat transfer portion inside which a heat medium that retains the heat generated by the heat source can flow.
The point is that the heat transfer section and the heater are provided with a heat medium passage flow path through which the heat medium flows in the order described.

上記特徴構成によれば、湯水を加熱する熱媒(例えば、燃焼排ガス)を、ボイラの伝熱部へ通流させた後に、熱音響機関の原動機の加熱部へ通流させるから、ボイラのブロー水の保有する排熱に加え、ボイラから排出される他の排熱についても熱音響機関にて音響エネルギへ変換することができ、当該音響エネルギを冷熱エネルギ等へ変換して有効に利用することで、蒸気発生装置の全体のエネルギ効率をより一層向上することができる。 According to the above characteristic configuration, a heat medium for heating hot water (for example, combustion exhaust gas) is passed through the heat transfer section of the boiler and then through the heating section of the prime mover of the thermoacoustic engine, so that the boiler is blown. In addition to the exhaust heat possessed by water, other exhaust heat discharged from the boiler can also be converted into acoustic energy by a thermoacoustic engine, and the acoustic energy can be converted into cold energy and used effectively. Therefore, the overall energy efficiency of the steam generator can be further improved.

蒸気発生装置の更なる特徴構成は、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度が、前記加熱器へブロー水を連続供給可能な開度に調整され、
前記湯水通流路を通流する湯水の流量を調整する第2流量調整弁を備え、
前記第2流量調整弁の開度が、前記放熱器へ湯水を連続供給可能な開度に調整される点にある。
Further features of the steam generator are
A first flow rate adjusting valve for adjusting the flow rate of blow water flowing through the blow water flow path is provided.
The valve opening degree of the first flow rate adjusting valve is adjusted to an opening degree capable of continuously supplying blow water to the heater.
A second flow rate adjusting valve for adjusting the flow rate of hot water flowing through the hot water flow path is provided.
The opening degree of the second flow rate adjusting valve is adjusted to an opening degree capable of continuously supplying hot water to the radiator.

通常、ボイラでは、ボイラ水に溶解している脱酸素剤やスケール防止剤等の薬品の濃度が一定以上となったときに、ブロー水を排出するように構成されており、このような構成にあっては間欠的にブロー水が排出されることとなる。
しかしながら、本願に係る発明において、加熱器を通流するブロー水が間欠的に供給されると、熱音響機関の原動機にて音響エネルギを安定して発生させることができなくなり、ひいては、音響ヒートポンプ部の吸熱器にて冷媒を安定的に冷却することができなくなる。
上記特徴構成によれば、ブロー水は加熱器を連続的に通流すると共に、湯水は冷却器を連続的に通流するから、熱音響機関の原動機にて音響エネルギを安定して発生でき、音響ヒートポンプ部の吸熱器にて冷媒を安定的に冷却できる。
特に、加熱器を通流するブロー水の流量、及び冷却器を通流する湯水の流量は、一定流量であることが好ましく、更には、所定の単位時間(例えば、数秒単位の時間)において、加熱器でブロー水から放熱される熱量と、冷却器で湯水に吸熱される熱量とは、略同等であることが好ましい。
Normally, the boiler is configured to discharge the blow water when the concentration of chemicals such as oxygen scavenger and anti-scale agent dissolved in the boiler water exceeds a certain level. If there is, blow water will be discharged intermittently.
However, in the invention according to the present application, if the blow water flowing through the heater is intermittently supplied, the prime mover of the thermoacoustic engine cannot stably generate acoustic energy, and eventually the acoustic heat pump unit. It becomes impossible to cool the refrigerant stably with the heat absorber.
According to the above characteristic configuration, the blow water continuously flows through the heater and the hot water continuously flows through the cooler, so that the prime mover of the thermoacoustic engine can stably generate acoustic energy. The refrigerant can be stably cooled by the heat absorber of the acoustic heat pump section.
In particular, the flow rate of blow water flowing through the heater and the flow rate of hot water flowing through the cooler are preferably constant, and further, in a predetermined unit time (for example, a time of several seconds). It is preferable that the amount of heat dissipated from the blow water by the heater and the amount of heat absorbed by the hot water by the cooler are substantially the same.

蒸気発生装置の更なる特徴構成は、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度は、前記加熱器へブロー水を間欠供給すべく、所定時間毎に開放状態と閉止状態とが切り替え制御される点にある。
Further features of the steam generator are
A first flow rate adjusting valve for adjusting the flow rate of blow water flowing through the blow water flow path is provided.
The valve opening degree of the first flow rate adjusting valve is controlled by switching between an open state and a closed state at predetermined time intervals in order to intermittently supply blow water to the heater.

上述したように、温熱源にて発生する温熱を保有する熱媒を加熱器へ供給する構成を採用する場合、ボイラが蒸気発生運転中であるときには、加熱器へは熱媒により常に熱が供給される構成が採用される。このため、加熱器へブロー水を連続的に供給しない場合であっても、熱音響機関の原動機にて音響エネルギを安定して発生させることができる。
即ち、上記特徴構成を有する蒸気発生装置にあっては、ボイラとして、間欠的にブロー水を排出する従来の蒸気発生ボイラであっても、その排熱から良好に冷熱を発生することができる。
更に、上記目的を達成するための蒸気発生装置は、
外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置であって、その特徴構成は、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上有すると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器とから成る音響ヒートポンプ部を少なくとも1つ以上有する熱音響機関と、
前記ボイラからのブロー水を前記加熱器に通流させるブロー水通流路と、
湯水を前記冷却器に通流させた後に前記ボイラへ導く湯水通流路と、
冷媒が保有する冷熱が放熱され利用される冷熱利用部と前記吸熱器との間で冷媒を循環させる冷媒循環路とを備え、
前記ボイラは、温熱源にて発生する温熱を保有する熱媒を通流可能な伝熱部を内部に備え、
前記伝熱部と前記加熱器とに記載の順に熱媒を通流する熱媒通流路を備え、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度は、前記加熱器へブロー水を間欠供給すべく、所定時間毎に開放状態と閉止状態とが切り替え制御される点にある。
上記特徴構成によれば、まずもって、ブロー水通流路を介して原動機の加熱器へブロー水を通流させると共に、湯水通流路を介して原動機の冷却器へ湯水を通流させる形態で、加熱器と冷却器との間で比較的大きい温度差を形成し、加熱器と冷却器との間の第1再生器から当該温度差に応じた音響エネルギを有する音波を発生することができる。
このように発生した音波は、音響筒を伝播して音響ヒートポンプ部に導かれ、第2再生器にて音響エネルギを消費する形態で、放熱器にて作動媒体から外部へ放熱させる温度よりも吸熱器にて外部から作動媒体へ吸熱させる温度を低くできるから、外部から供給される湯水(例えば、20℃程度)を放熱器へ通流させると共に冷媒を吸熱器へ通流させることで、当該冷媒を湯水よりも低い温度で冷却能力を発揮し得る温度にまで降温できる。
即ち、当該構成を採用することにより、蒸気発生装置において余剰となることが多い排熱(ブロー水が保有する排熱)を、冷熱に変換することができ、冷熱利用部で有効に利用することができるようになる。
因みに、上記特徴構成によれば、外部から供給される湯水は、冷却器へ通流して加熱器の熱をくみ上げた後に、ボイラへ供給されるため、十分に予熱された状態でボイラへ補給される。
また、本発明のような熱音響機関は、可動部のない簡易な構成のため故障等が発生する虞がほとんどなく、メンテナンスの必要がほとんどなく、経済性が高い装置を実現できる。
更に、上記特徴構成によれば、湯水を加熱する熱媒(例えば、燃焼排ガス)を、ボイラの伝熱部へ通流させた後に、熱音響機関の原動機の加熱部へ通流させるから、ボイラのブロー水の保有する排熱に加え、ボイラから排出される他の排熱についても熱音響機関にて音響エネルギへ変換することができ、当該音響エネルギを冷熱エネルギ等へ変換して有効に利用することで、蒸気発生装置の全体のエネルギ効率をより一層向上することができる。
更に、上述したように、温熱源にて発生する温熱を保有する熱媒を加熱器へ供給する構成を採用する場合、ボイラが蒸気発生運転中であるときには、加熱器へは熱媒により常に熱が供給される構成が採用される。このため、加熱器へブロー水を連続的に供給しない場合であっても、熱音響機関の原動機にて音響エネルギを安定して発生させることができる。
即ち、上記特徴構成を有する蒸気発生装置にあっては、ボイラとして、間欠的にブロー水を排出する従来の蒸気発生ボイラであっても、その排熱から良好に冷熱を発生することができる。
以上より、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱(特に、ブロー水の保有する排熱)としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置を実現できる。
As described above, when adopting a configuration in which a heat medium holding the heat generated by the heating source is supplied to the heater, heat is always supplied to the heater by the heat medium when the boiler is in the steam generation operation. The configuration to be used is adopted. Therefore, even when the blow water is not continuously supplied to the heater, the acoustic energy can be stably generated by the prime mover of the thermoacoustic engine.
That is, in the steam generator having the above-mentioned characteristic configuration, even a conventional steam generating boiler that intermittently discharges blow water as a boiler can satisfactorily generate cold heat from the exhaust heat.
Furthermore, the steam generator for achieving the above object is
It is a steam generator equipped with a boiler that can store hot water supplied from the outside and heats the hot water inside by the heat generated by the heat source to generate steam.
The acoustic energy of sound waves between a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the heater and the cooler in an acoustic cylinder filled with the working medium and propagating sound waves. A heat absorber in which the working medium absorbs heat from the outside, a radiator in which the working medium dissipates heat to the outside, a heat absorber, and the radiator, while having at least one prime mover including a first regenerator for amplifying the above. A thermoacoustic engine having at least one acoustic heat pump unit comprising a second regenerator that compresses and expands in a manner in which sound waves consume acoustic energy between them.
A blow water flow path that allows blow water from the boiler to flow through the heater, and
A hot water flow path that leads hot water to the boiler after flowing it through the cooler,
It is provided with a refrigerant circulation path for circulating the refrigerant between the heat absorber and the cold heat utilization unit in which the cold heat possessed by the refrigerant is dissipated and used.
The boiler is provided with a heat transfer portion inside which a heat medium that retains the heat generated by the heat source can flow.
A heat transfer channel for passing a heat medium in the order described in the heat transfer unit and the heater is provided.
A first flow rate adjusting valve for adjusting the flow rate of blow water flowing through the blow water flow path is provided.
The valve opening degree of the first flow rate adjusting valve is controlled by switching between an open state and a closed state at predetermined time intervals in order to intermittently supply blow water to the heater.
According to the above characteristic configuration, first, the blow water is passed through the blow water flow path to the heater of the prime mover, and the hot water is passed through the hot water flow path to the cooler of the prime mover. , A relatively large temperature difference can be formed between the heater and the cooler, and a sound wave having acoustic energy corresponding to the temperature difference can be generated from the first regenerator between the heater and the cooler. ..
The sound generated in this way propagates through the acoustic cylinder and is guided to the acoustic heat pump section, and consumes acoustic energy in the second regenerator, and absorbs heat rather than the temperature at which the radiator dissipates heat from the operating medium to the outside. Since the temperature at which heat is absorbed from the outside to the working medium can be lowered by the device, hot water (for example, about 20 ° C.) supplied from the outside can be passed through the radiator and the refrigerant can be passed through the heat absorber. Can be lowered to a temperature at which the cooling capacity can be exhibited at a temperature lower than that of hot water.
That is, by adopting this configuration, the exhaust heat (exhaust heat possessed by the blow water), which is often surplus in the steam generator, can be converted into cold heat, which can be effectively used in the cold heat utilization unit. Will be able to.
Incidentally, according to the above-mentioned characteristic configuration, the hot water supplied from the outside flows to the cooler to draw up the heat of the heater and then is supplied to the boiler, so that the hot water is supplied to the boiler in a sufficiently preheated state. To.
Further, since the thermoacoustic engine as in the present invention has a simple configuration without moving parts, there is almost no possibility of failure or the like, maintenance is hardly required, and a highly economical device can be realized.
Further, according to the above-mentioned characteristic configuration, the heat medium for heating the hot water (for example, combustion exhaust gas) is passed through the heat transfer part of the boiler and then through the heating part of the prime mover of the thermoacoustic engine. In addition to the exhaust heat possessed by the blow water, other exhaust heat discharged from the boiler can also be converted into acoustic energy by the thermoacoustic engine, and the acoustic energy can be converted into cold energy and effectively used. By doing so, the overall energy efficiency of the steam generator can be further improved.
Further, as described above, when adopting a configuration in which a heat medium holding the heat generated by the heating source is supplied to the heater, when the boiler is in the steam generation operation, the heater is always heated by the heat medium. Is supplied. Therefore, even when the blow water is not continuously supplied to the heater, the acoustic energy can be stably generated by the prime mover of the thermoacoustic engine.
That is, in the steam generator having the above-mentioned characteristic configuration, even a conventional steam generating boiler that intermittently discharges blow water as a boiler can satisfactorily generate cold heat from the exhaust heat.
From the above, it is possible to satisfactorily recover the thermal energy as exhaust heat from the boiler (particularly, the exhaust heat possessed by the blow water) with a relatively simple configuration with high maintainability, and the recovered thermal energy can be used as cold energy, etc. It is possible to realize a steam generator that can appropriately convert energy into demand.

蒸気発生装置の更なる特徴構成は、
音波の振動から電力を発生させる電力発生機を備える点にある。
Further features of the steam generator are
The point is that it is equipped with a power generator that generates electric power from the vibration of sound waves.

上記特徴構成によれば、熱音響機関にて発生した音響エネルギを冷熱エネルギのみならず、電力にも変換でき、需要に応じた多様な形態で、エネルギを出力できる。当該電力は、蒸気発生装置の補機等で利用できる。 According to the above-mentioned feature configuration, the acoustic energy generated by the thermoacoustic engine can be converted not only into cold energy but also into electric power, and energy can be output in various forms according to demand. The electric power can be used as an auxiliary machine of the steam generator.

実施形態に係る蒸気発生装置の概略構成図Schematic configuration diagram of the steam generator according to the embodiment 別実施形態に係る蒸気発生装置の概略構成図Schematic configuration diagram of the steam generator according to another embodiment 別実施形態に係る蒸気発生装置の概略構成図Schematic configuration diagram of the steam generator according to another embodiment

当該実施形態に係る蒸気発生装置100は、メンテナンス性が高く比較的簡易な構成で、ボイラ10からの排熱としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置に関する。 The steam generator 100 according to the embodiment has a relatively simple configuration with high maintainability, and can satisfactorily recover the thermal energy as exhaust heat from the boiler 10, and the recovered thermal energy can be used to meet the demand for cold energy and the like. It relates to a steam generator that can be appropriately converted into a certain energy.

以下、当該実施形態に係る蒸気発生装置100を、図1に基づいて説明する。
蒸気発生装置100は、図1に示すように、外部から供給される温水を内部に貯留可能であると共に、エンジン(図示せず、温熱源の一例)にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラ10を備え、更に、作動媒体(例えば、ヘリウム)が充填され音波が伝播する音響筒T(当該実施形態では、1つ)に、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する第1再生器73とから成る原動機70を少なくとも1つ以上(当該実施形態では、1つ)有すると共に、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器83とから成る音響ヒートポンプ部80を少なくとも1つ以上(当該実施形態では、1つ)有する熱音響機関90と、ボイラ10からのブロー水Bを加熱器71に通流させるブロー水通流路L1と、湯水Wを放熱器82及び冷却器72に記載の順に通流させた後にボイラへ導く湯水通流路L2と、冷媒が保有する冷熱が放熱され利用される冷熱利用部30と吸熱器81との間で冷媒を循環させる冷媒循環路L3とを備えている。
Hereinafter, the steam generator 100 according to the embodiment will be described with reference to FIG.
As shown in FIG. 1, the steam generator 100 can store hot water supplied from the outside inside, and heats the hot water inside by the heat generated by an engine (not shown, an example of a heat source). A heater 10 is provided with a boiler 10 for generating steam, and an acoustic cylinder T (one in the embodiment) filled with an operating medium (for example, helium) and propagating sound waves is heated from the outside. At least one or more prime movers 70 including a cooler 72 that cools the operating medium from the outside, and a first regenerator 73 that amplifies the acoustic energy of sound waves between the heater 71 and the cooler 72 (the embodiment). Then, in a form in which sound energy is consumed between the heater 81 in which the working medium absorbs heat from the outside, the radiator 82 in which the working medium dissipates heat to the outside, the heat absorber 81, and the radiator 82. A thermoacoustic engine 90 having at least one acoustic heat pump unit 80 including a second regenerator 83 that compresses and expands (in the embodiment, one) and blow water B from the boiler 10 are passed through the heater 71. The blow water flow path L1 to be flowed, the hot water flow path L2 to guide the hot water W to the boiler after passing the hot water W in the order described in the radiator 82 and the cooler 72, and the cold heat possessed by the refrigerant are dissipated and used. A refrigerant circulation path L3 for circulating a refrigerant between the cold heat utilization unit 30 and the heater 81 is provided.

〔ボイラに係る構成〕
ボイラ10は、湯水Wの流量を調整する第2流量調整弁V2を備える湯水通流路L2が接続され、且つエンジン(図示せず)からの燃焼排ガスE(熱媒の一例)を通流する排ガス通流路L4に連通接続される伝熱コイルEX1(伝熱部の一例)を内部に備え、且つ内部で伝熱コイルEX1により湯水Wが加熱されることにより発生した蒸気Stを外部へ導く蒸気通流路L5が接続されるボイラドラム10aを備える。
蒸気通流路L5は、負荷器20に連通接続され、負荷器20へ蒸気を供給する。負荷器20は、ドレン通流路L6を介してドレン貯留タンク22に連通接続されていると共に、当該ドレン通流路L6には、スチームトラップ21が設けられている。
更に、ドレン貯留タンク22は、ドレン還流路L7を介してボイラドラム10aと連通接続されており、当該ドレン還流路L7は、ドレン水を圧送する第1圧送ポンプP1を備えると共に、ドレン水と燃焼排ガスEとを熱交換する第2熱交換器EX2にドレン水を通流させる形態で配設されている。
因みに、第2熱交換器EX2は、燃焼排ガスEの通流方向で、伝熱コイルEX1の下流側に設けられている。
[Structure related to boiler]
The boiler 10 is connected to a hot water flow path L2 provided with a second flow rate adjusting valve V2 for adjusting the flow rate of hot water W, and passes through combustion exhaust gas E (an example of a heat medium) from an engine (not shown). A heat transfer coil EX1 (an example of a heat transfer unit) connected to the exhaust gas passage L4 is provided inside, and steam St generated by heating hot water W by the heat transfer coil EX1 is guided to the outside. A boiler drum 10a to which the steam flow path L5 is connected is provided.
The steam passage L5 is communicated with and connected to the load device 20 to supply steam to the load device 20. The loader 20 is communicatively connected to the drain storage tank 22 via the drain flow path L6, and the drain flow path L6 is provided with a steam trap 21.
Further, the drain storage tank 22 is communicatively connected to the boiler drum 10a via the drain return passage L7, and the drain return passage L7 includes a first pressure feed pump P1 for pumping drain water and burns with the drain water. It is arranged so that drain water flows through the second heat exchanger EX2 that exchanges heat with the exhaust gas E.
Incidentally, the second heat exchanger EX2 is provided on the downstream side of the heat transfer coil EX1 in the flow direction of the combustion exhaust gas E.

当該構成により、ボイラドラム10aにて発生した蒸気Stは、負荷器20に供給され、当該負荷器20からの蒸気混じりのドレン水が、スチームトラップ21にて蒸気が除去された後に、ドレン貯留タンク22へ貯留され、貯留されたドレン水が、第2熱交換器EX2により燃焼排ガスEの排熱を回収した後に、ボイラドラム10aへ戻されることとなる。 With this configuration, the steam St generated in the boiler drum 10a is supplied to the loader 20, and the drain water mixed with steam from the loader 20 is removed by the steam trap 21 and then the drain storage tank. The drain water stored in 22 is returned to the boiler drum 10a after the exhaust heat of the combustion exhaust gas E is recovered by the second heat exchanger EX2.

当該ボイラドラム10aに供給される湯水Wは、ボイラドラム10a等への腐食やスケール付着を防止するべく、脱酸素剤(防食剤)やスケール防止剤等のボイラ薬品が添加されている。ボイラドラム10a内の湯水Wにおいては、蒸気Stの発生に伴って、脱酸素剤(防食剤)やスケール防止剤が徐々に濃縮される。ボイラドラム10aの内部において、ボイラ薬品の濃度を一定以下に保つべく、ボイラドラム10aには、ボイラドラム10aからのブロー水Bを排出するブロー水通流路L1が設けられており、当該実施形態にあっては、ブロー水通流路L1には、ブロー水Bの流量を調整する第1流量調整弁V1が設けられている。 The hot water W supplied to the boiler drum 10a is added with a boiler chemical such as an oxygen scavenger (corrosion inhibitor) or a scale inhibitor in order to prevent corrosion and scale adhesion to the boiler drum 10a and the like. In the hot water W in the boiler drum 10a, the oxygen scavenger (corrosion inhibitor) and the scale inhibitor are gradually concentrated with the generation of steam St. In order to keep the concentration of the boiler chemicals below a certain level inside the boiler drum 10a, the boiler drum 10a is provided with a blow water flow path L1 for discharging the blow water B from the boiler drum 10a. In the blow water flow path L1, a first flow rate adjusting valve V1 for adjusting the flow rate of the blow water B is provided.

〔熱音響機関に係る構成〕
熱音響機関90は、図1に示すように、作動媒体が充填され音波が伝播する第1ループ管T1と第2ループ管T2とが連結管にて連結されて構成された音響筒Tを備え、当該実施形態においては、第1ループ管T1に単一の原動機70が設けられると共に第2ループ管T2に単一の音響ヒートポンプ部80が設けられている。
[Structure related to thermoacoustic engine]
As shown in FIG. 1, the thermoacoustic engine 90 includes an acoustic cylinder T formed by connecting a first loop pipe T1 and a second loop pipe T2, which are filled with an operating medium and propagate sound waves, with a connecting pipe. In this embodiment, the first loop pipe T1 is provided with a single prime mover 70, and the second loop pipe T2 is provided with a single acoustic heat pump unit 80.

以下、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する第1再生器73とから成る原動機70について説明を加える。 Hereinafter, it is composed of a heater 71 that heats the working medium from the outside, a cooler 72 that cools the working medium from the outside, and a first regenerator 73 that amplifies the acoustic energy of sound waves between the heater 71 and the cooler 72. The prime mover 70 will be described.

加熱器71は、詳細な図示は省略するが、ブロー水通流路L1を通流するブロー水Bを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。加熱器71は、フィンがジャケット部を通流するブロー水Bにて加熱され、当該フィンから音響筒Tの内部の作動流体へ温熱を伝導する形態で、作動流体を加熱する。 Although detailed illustration is omitted, the heater 71 extends from the jacket portion (not shown) through which the blow water B passing through the blow water flow path L1 to the inside of the acoustic cylinder T. It consists of fins (not shown). The heater 71 heats the working fluid in a form in which the fins are heated by the blow water B flowing through the jacket portion and heat is conducted from the fins to the working fluid inside the acoustic cylinder T.

冷却器72は、湯水通流路L2の湯水Wを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。冷却器72は、フィンがジャケット部を通流する湯水Wにて冷却され、当該フィンから音響筒Tの内部の作動流体へ冷熱を伝導する形態で、作動流体を冷却する。 The cooler 72 includes a jacket portion (not shown) through which the hot water W of the hot water passage path L2 passes, and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. The cooler 72 cools the working fluid in a form in which the fins are cooled by hot water W passing through the jacket portion and cold heat is conducted from the fins to the working fluid inside the acoustic cylinder T.

加熱器71と冷却器72との間に設けられる第1再生器73は、例えば、音響筒Tの筒軸心方向に直交する方向に板面を沿わせた状態で、当該筒軸心方向に沿って複数並べられる薄板状部材(図示せず)から構成されている。
当該薄板状部材は、例えば、厚さが50μm以上100μm以下で、300枚〜600枚程度設けられる。当該薄板状部材には、筒軸心方向に沿う方向に貫通する多数の貫通孔(図示せず)が、その直径が200μm〜300μm程度で、設けられる。
The first regenerator 73 provided between the heater 71 and the cooler 72 is, for example, in the direction of the cylinder axis in a state where the plate surface is aligned in the direction orthogonal to the cylinder axis direction of the acoustic cylinder T. It is composed of a plurality of thin plate-shaped members (not shown) arranged along the line.
The thin plate-shaped member is provided, for example, with a thickness of 50 μm or more and 100 μm or less, and about 300 to 600 sheets. The thin plate-shaped member is provided with a large number of through holes (not shown) penetrating in the direction along the axial direction of the cylinder, having a diameter of about 200 μm to 300 μm.

作動流体は、音響筒Tの内部において、その筒軸心方向で、微小な揺らぎを生じる状態で、存在している。換言すると、作動流体を伝搬する音波は、加熱器71と冷却器72との両者間において、一方側から他方側への進行波と、他方側から一方側への進行波とを形成する。
作動流体を伝搬する音波は、冷却器72から加熱器71の側への進行波を形成する場合、加熱器71近傍での第1再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して加熱されると共に、加熱器71のフィンにて直接加熱されることで、膨張する。一方、作動流体を伝搬する音波は、加熱器71から冷却器72の側への進行波を形成する場合、冷却器72の近傍での第1再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して冷却されると共に、冷却器72のフィンにて直接冷却されることで、収縮する。
これにより、進行波としての音波が自己励起振動を起こし、その音響エネルギが増幅される形態で、熱エネルギが音波の音響エネルギに変換される。
The working fluid exists inside the acoustic cylinder T in a state of causing minute fluctuations in the direction of the axis of the cylinder. In other words, the sound wave propagating in the working fluid forms a traveling wave from one side to the other side and a traveling wave from the other side to one side between both the heater 71 and the cooler 72.
The sound wave propagating in the working fluid passes through a plurality of through holes of the thin plate-shaped member as the first regenerator 73 in the vicinity of the heater 71 when forming a traveling wave from the cooler 72 to the side of the heater 71. Occasionally, it comes into contact with the inner wall of the through hole and is heated, and at the same time, it is directly heated by the fins of the heater 71 to expand. On the other hand, when the sound wave propagating in the working fluid forms a traveling wave from the heater 71 to the cooler 72 side, a plurality of through holes of the thin plate-shaped member as the first regenerator 73 in the vicinity of the cooler 72. When it passes through, it comes into contact with the inner wall of the through hole and is cooled, and at the same time, it is directly cooled by the fins of the cooler 72 to shrink.
As a result, the sound wave as a traveling wave causes self-excited vibration, and the thermal energy is converted into the acoustic energy of the sound wave in the form in which the acoustic energy is amplified.

作動媒体としては、音波を伝播する気体から構成することができる。ここで、第1再生器73での熱交換が迅速になされることが望ましいため、作動媒体としては、熱拡散係数の高いヘリウム、水素が望ましい。また、発電を目的とする場合には、分子量の高い気体が望ましいため、アルゴン等の気体を混合しても良い。尚、熱的に安定していることから、当該実施形態では、作動媒体としてヘリウムを用いている。 The working medium can be composed of a gas propagating sound waves. Here, since it is desirable that the heat exchange in the first regenerator 73 is performed quickly, helium and hydrogen having a high thermal diffusivity are desirable as the working medium. Further, for the purpose of power generation, a gas having a high molecular weight is desirable, so a gas such as argon may be mixed. Since it is thermally stable, helium is used as the working medium in the embodiment.

原動機70にて増幅された音波の音響エネルギは、音響筒Tの第1ループ管T1から第2ループ管T2の音響ヒートポンプ部80へ伝搬する。
音響ヒートポンプ部80は、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器83とから成る。
The acoustic energy of the sound wave amplified by the prime mover 70 propagates from the first loop tube T1 of the acoustic tube T to the acoustic heat pump section 80 of the second loop tube T2.
The acoustic heat pump unit 80 is compressed and compressed in a form in which sound waves consume acoustic energy between the endothermic 81 in which the working medium absorbs heat from the outside, the radiator 82 in which the working medium dissipates heat to the outside, and the heat absorber 81 and the radiator 82. It consists of a second regenerator 83 that expands.

詳細な図示は省略するが、吸熱器81は、冷媒循環路L3を循環する冷媒Cを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。吸熱器81では、フィンがジャケット部を通流する冷媒Cから吸熱し、音響筒Tの内部の作動媒体がフィンから吸熱する。
ここで、冷媒循環路L3は、第2圧送ポンプP2にて冷媒Cを圧送する形態で、吸熱器81と冷媒Cの保有する冷熱が放熱され利用される冷熱利用部30との間で冷媒を循環させるものである。
Although detailed illustration is omitted, the heat absorber 81 includes a jacket portion (not shown) through which the refrigerant C circulating in the refrigerant circulation path L3 passes, and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. It consists of. In the heat absorber 81, the fins absorb heat from the refrigerant C flowing through the jacket portion, and the operating medium inside the acoustic cylinder T absorbs heat from the fins.
Here, the refrigerant circulation path L3 is in a form in which the refrigerant C is pumped by the second pump P2, and the refrigerant is transferred between the heat absorber 81 and the cold heat utilization unit 30 in which the cold heat possessed by the refrigerant C is dissipated and used. It circulates.

放熱器82は、湯水通流路L2の湯水Wを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。放熱器82では、音響筒Tの内部の作動媒体がフィンに放熱し、当該放熱された熱がジャケット部を通流する湯水Wへ放熱される形態で、湯水Wが予熱される。
因みに、湯水通流路L2は、放熱器82と冷却器72とに記載の順に湯水Wを通流させた後に、ボイラドラム10aへ湯水Wを供給するように配設されている。
The radiator 82 includes a jacket portion (not shown) through which the hot water W of the hot water passage path L2 passes, and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. In the radiator 82, the working medium inside the acoustic cylinder T dissipates heat to the fins, and the dissipated heat is dissipated to the hot water W passing through the jacket portion, and the hot water W is preheated.
Incidentally, the hot water passage path L2 is arranged so as to supply the hot water W to the boiler drum 10a after passing the hot water W through the radiator 82 and the cooler 72 in the order described.

ここで、音響ヒートポンプ部80は、作動流体を伝搬する音波が、吸熱器81から放熱器82の側への進行波を形成する場合に圧縮し、放熱器82から吸熱器81の側へ進行波を形成する場合に膨張するように、その吸熱器81と第2再生器83と放熱器82とが音響筒Tにおける適切な位置に配置されている。
これにより、作動流体を伝搬する音波が吸熱器81から放熱器82の側への進行波を形成する場合、第2再生器83にて圧縮しながら吸熱して昇温し、放熱器82にて高温となった状態で放熱する。これにより、放熱器82ではジャケット部を通流する湯水Wが、吸熱器81のジャケット部を通流する冷媒Cよりも高温の作動媒体と熱交換する形態で予熱される。
一方、作動流体を伝搬する音波が放熱器82から吸熱器81の側への進行波を形成する場合、第2再生器83にて膨張しながら放熱して降温し、吸熱器81にて低温となった状態で吸熱する。これにより、吸熱器81ではジャケット部を通流する冷媒Cは、十分に低温となった作動媒体に吸熱される形態で、降温することとなる。
因みに、上述の如く、第2再生器83にて圧縮しながら吸熱する工程、及び膨張しながら放熱する工程において、音波の音響エネルギが消費され、音波は減衰するが、音響エネルギは、原動機70から逐次補充されるので、音響ヒートポンプ部80のヒートポンプ機能が維持されることとなる。
Here, the acoustic heat pump unit 80 compresses the sound waves propagating in the working fluid when forming a traveling wave from the heat absorber 81 to the heat absorber 82 side, and the sound wave propagating from the radiator 82 to the heat absorber 81 side. The heat absorber 81, the second regenerator 83, and the radiator 82 are arranged at appropriate positions in the acoustic cylinder T so as to expand when forming the above.
As a result, when the sound waves propagating in the working fluid form a traveling wave from the heat absorber 81 to the side of the radiator 82, the second regenerator 83 absorbs heat while compressing the temperature, and the radiator 82 raises the temperature. It dissipates heat when it is hot. As a result, in the radiator 82, the hot water W passing through the jacket portion is preheated in a form of exchanging heat with the working medium having a temperature higher than that of the refrigerant C flowing through the jacket portion of the heat absorber 81.
On the other hand, when the sound wave propagating in the working fluid forms a traveling wave from the radiator 82 to the endothermic 81 side, the second regenerator 83 dissipates heat while expanding and lowers the temperature, and the endothermic 81 lowers the temperature. It absorbs heat in the state of being in a state of being. As a result, in the heat absorber 81, the refrigerant C flowing through the jacket portion cools down in a form of being absorbed by the working medium that has become sufficiently low in temperature.
Incidentally, as described above, in the step of absorbing heat while compressing by the second regenerator 83 and the step of radiating heat while expanding, the acoustic energy of the sound wave is consumed and the sound wave is attenuated, but the acoustic energy is transferred from the prime mover 70. Since the energy is sequentially replenished, the heat pump function of the acoustic heat pump unit 80 is maintained.

吸熱器81と放熱器82との間に設けられる第2再生器83は、その形状や材質については、第1再生器73と変わるところがない。
尚、音響筒Tの筒径、筒長さ、形状等は、特に、第1再生器73及び第2再生器83の貫通孔の孔径に基づいて、原動機70の熱エネルギから音響エネルギへの変換効率、音響ヒートポンプ部80の音響エネルギから熱エネルギへの変換効率が高くなるように、適宜設定される。
The shape and material of the second regenerator 83 provided between the heat absorber 81 and the radiator 82 are the same as those of the first regenerator 73.
The cylinder diameter, cylinder length, shape, etc. of the acoustic cylinder T are converted from the thermal energy of the prime mover 70 to acoustic energy, particularly based on the hole diameters of the through holes of the first regenerator 73 and the second regenerator 83. The efficiency and the conversion efficiency of the acoustic energy of the acoustic heat pump unit 80 from the acoustic energy to the thermal energy are appropriately set so as to be high.

さて、当該実施形態にあっては、原動機70にて経時的に連続して音響エネルギを発生するべく、ブロー水通流路L1を通流するブロー水Bの流量を調整する第1流量調整弁V1の開度を、加熱器71へブロー水Bを連続供給可能な開度に調整され、更に、湯水通流路L2を通流する湯水Wの流量を調整する第2流量調整弁V2の開度を、冷却器72へ湯水Wを連続供給可能な開度に調整されている。
更には、加熱器71にてブロー水Bから放熱される熱量は、所定の単位時間(例えば、数秒単位の時間)で、冷却器72にて湯水Wが吸熱する熱量と略等しくなるように、ブロー水Bの流量と湯水Wの流量とが制御されることが好ましい。
尚、第1流量調整弁V1及び第2流量調整弁V2の弁開度は、人為操作により調整される構成を採用しても構わないし、制御装置(図示せず)による制御指令により、調整される構成を採用しても構わない。
By the way, in the embodiment, the first flow rate adjusting valve that adjusts the flow rate of the blow water B flowing through the blow water flow path L1 so that the prime mover 70 continuously generates acoustic energy over time. The opening degree of V1 is adjusted to an opening degree capable of continuously supplying blow water B to the heater 71, and further, the opening of the second flow rate adjusting valve V2 for adjusting the flow rate of the hot water W flowing through the hot water flow path L2. The degree is adjusted so that the hot water W can be continuously supplied to the cooler 72.
Further, the amount of heat radiated from the blow water B by the heater 71 is substantially equal to the amount of heat absorbed by the hot water W by the cooler 72 in a predetermined unit time (for example, a time of several seconds). It is preferable that the flow rate of the blow water B and the flow rate of the hot water W are controlled.
The valve opening degree of the first flow rate adjusting valve V1 and the second flow rate adjusting valve V2 may be adjusted by human operation, or may be adjusted by a control command by a control device (not shown). May be adopted.

次に、当該実施形態に係る蒸気発生装置100における冷熱利用部30へ供給できる冷熱量を試算したシミュレーション結果について説明する。
当該シミュレーションの試算条件として、作動媒体はヘリウムとし、音響筒Tの内部圧力は0.95MPaとし、原動機70での熱音変換効率はカルノー効率の30%とし、音響ヒートポンプ部80の音熱変換効率は5.4%とし、熱交換における損失、音響エネルギの損失は、考慮しないものとした。また、ブロー水Bは、300kg/hで排出され、加熱器71における入口温度が200℃で出口温度が60℃で、加熱器71での放熱量が50kWとした。湯水Wは、1000kg/hで供給され、放熱器82における入口温度が20℃で出口温度が37℃で、放熱器82での湯水Wの吸熱量が20kWとし、冷却器72における入口温度が37℃で出口温度が78℃で、冷却器72での湯水Wの吸熱量が47kWとし、ボイラドラム10aへは、78℃で1000kg/hで湯水Wを供給することとした。
この結果、冷媒Cに水を用いた場合は、冷媒循環路L3を循環する流量を3500kg/hとして、吸熱器81における入口温度が17℃で出口温度が13℃、吸熱器81での冷媒Cの放熱量を17kWとでき、同様に、冷熱利用部30での冷媒Cの吸熱量を17kWとできると試算した。
Next, a simulation result in which the amount of cold heat that can be supplied to the cold heat utilization unit 30 in the steam generator 100 according to the embodiment is calculated will be described.
As the estimation conditions of the simulation, the operating medium is helium, the internal pressure of the acoustic cylinder T is 0.95 MPa, the heat sound conversion efficiency of the prime mover 70 is 30% of the Carnot efficiency, and the sound heat conversion efficiency of the acoustic heat pump unit 80. Was set to 5.4%, and the loss in heat exchange and the loss of acoustic energy were not considered. Further, the blow water B was discharged at 300 kg / h, the inlet temperature in the heater 71 was 200 ° C., the outlet temperature was 60 ° C., and the amount of heat dissipated in the heater 71 was 50 kW. The hot water W is supplied at 1000 kg / h, the inlet temperature at the radiator 82 is 20 ° C., the outlet temperature is 37 ° C., the heat absorption amount of the hot water W at the radiator 82 is 20 kW, and the inlet temperature at the cooler 72 is 37. The temperature was 78 ° C., the outlet temperature was 78 ° C., the amount of heat absorbed by the hot water W in the cooler 72 was 47 kW, and the hot water W was supplied to the boiler drum 10a at 1000 kg / h at 78 ° C.
As a result, when water is used as the refrigerant C, the flow rate circulating in the refrigerant circulation path L3 is 3500 kg / h, the inlet temperature in the heat absorber 81 is 17 ° C., the outlet temperature is 13 ° C., and the refrigerant C in the heat absorber 81. It was estimated that the heat dissipation amount of the refrigerant C could be 17 kW, and similarly, the endothermic amount of the refrigerant C in the cold heat utilization unit 30 could be 17 kW.

〔別実施形態〕
(1)本願に係る蒸気発生装置100にあっては、図2に示すように、燃焼排ガスEを加熱器71へ通流するように構成しても構わない。
当該構成にあっては、排ガス通流路L4は、ボイラ10の伝熱コイルEX1、加熱器71、及び第2熱交換器EX2に記載の順に燃焼排ガスEを通流する状態で備えられる。
即ち、当該構成にあっては、加熱器71では、燃焼排ガスEの排熱と、ボイラ10のブロー水の排熱との双方により、作動媒体が加熱されることになる。
[Another Embodiment]
(1) As shown in FIG. 2, the steam generator 100 according to the present application may be configured to allow the combustion exhaust gas E to flow to the heater 71.
In this configuration, the exhaust gas flow path L4 is provided in a state of passing the combustion exhaust gas E in the order described in the heat transfer coil EX1, the heater 71, and the second heat exchanger EX2 of the boiler 10.
That is, in the above configuration, in the heater 71, the operating medium is heated by both the exhaust heat of the combustion exhaust gas E and the exhaust heat of the blow water of the boiler 10.

また、上記実施形態にあっては、第1流量調整弁V1の弁開度は、加熱器71へブロー水を連続供給可能な弁開度に調整される構成例を示した。
しかしながら、例えば、上述の如く、加熱器71へ燃焼排ガスE等の排熱供給媒体が通流する構成を採用する場合にあっては、燃焼排ガスEにより常に加熱器71へ排熱が供給されることになるから、第1流量調整弁V1の弁開度は、加熱器71へブロー水を間欠供給するような開度に調整されても構わない。換言すれば、第1流量調整弁V1は、所定時間毎に開放状態とお閉止状態とを切り換え制御されても構わない。
Further, in the above embodiment, a configuration example is shown in which the valve opening degree of the first flow rate adjusting valve V1 is adjusted to a valve opening degree capable of continuously supplying blow water to the heater 71.
However, for example, as described above, in the case of adopting a configuration in which the exhaust heat supply medium such as the combustion exhaust gas E flows through the heater 71, the exhaust gas E always supplies the exhaust heat to the heater 71. Therefore, the valve opening degree of the first flow rate adjusting valve V1 may be adjusted to an opening degree that intermittently supplies blow water to the heater 71. In other words, the first flow rate adjusting valve V1 may be controlled by switching between an open state and a closed state at predetermined time intervals.

(2)本願に係る蒸気発生装置100では、図3に示すように、音波の振動から電力を発生する電力発生機40を備える構成を採用しても構わない。
説明を追加すると、電力発生機40は、図3に示すように、音響筒Tの第2ループ管T2の筒内部において、一の回転翼40cと、当該回転翼40cを挟む状態で設けられる一対の固定翼40a、40bを備えている。当該構成においては、回転翼40cは、一方の固定翼40aにて旋回され回転翼40cへ向かう音波と、他方の固定翼40bにて旋回され回転翼40cへ向かう音波との双方により、回転力を付与されることとなるが、一対の固定翼40a、40bは、両者により旋回される音波が回転翼40cへ付与する回転力の回転方向が同一方向となるように設けられている。
更に、回転翼40cには、誘導発電機としての回転子(図示せず)が設けられると共に、音響筒Tの筒軸心方向で回転翼40cが設けられている部位で音響筒Tの筒外径部位には、誘導発電機としての固定子40dが設けられおり、回転翼40cと共に回転子が回転することで固定子40dとしてのコイルにて誘導起電力eを発生する。
当該構成を採用することにより、音響筒Tの内部で発生する音波の振動エネルギが、電気エネルギに変換される。
(2) As shown in FIG. 3, the steam generator 100 according to the present application may adopt a configuration including a power generator 40 that generates electric power from vibration of sound waves.
To add an explanation, as shown in FIG. 3, a pair of power generators 40 are provided inside a cylinder of the second loop tube T2 of the acoustic cylinder T, sandwiching a rotor blade 40c and the rotary blade 40c. The fixed wings 40a and 40b of the above are provided. In this configuration, the rotary wing 40c exerts a rotational force by both a sound wave swiveled by one fixed wing 40a and directed toward the rotary wing 40c and a sound wave swiveled by the other fixed wing 40b and directed toward the rotary wing 40c. The pair of fixed wings 40a and 40b are provided so that the rotational directions of the rotational forces applied to the rotary wings 40c by the sound waves swirled by both are the same.
Further, the rotary blade 40c is provided with a rotor (not shown) as an induction generator, and the outside of the acoustic cylinder T is provided at a portion where the rotary blade 40c is provided in the direction of the axial center of the acoustic cylinder T. A stator 40d as an induction generator is provided in the diameter portion, and the rotor rotates together with the rotor 40c to generate an induced electromotive force e in the coil as the stator 40d.
By adopting this configuration, the vibration energy of the sound wave generated inside the acoustic cylinder T is converted into electrical energy.

(3)上記実施形態では、温熱源として、エンジンを備える構成例を示したが、温熱源は、別にエンジン以外であっても構わない。
例えば、温熱源が工場の排熱であり、当該工場からの排熱を保有する熱媒にてボイラ10にて湯水を加熱する構成を採用しても構わない。
また、例えば、温熱源として、ボイラ10のボイラドラム10a内を直接加熱する燃焼装置を備える構成を採用しても構わない。
(3) In the above embodiment, a configuration example including an engine as a heat source is shown, but the heat source may be other than the engine.
For example, a configuration may be adopted in which the heat source is the exhaust heat of a factory and the boiler 10 heats hot water with a heat medium having the exhaust heat from the factory.
Further, for example, a configuration including a combustion device that directly heats the inside of the boiler drum 10a of the boiler 10 may be adopted as the heat source.

(4)上記実施形態にあっては、湯水Wは湯水通流路L2のみを介してボイラドラム10aへ供給される構成例を示した。
しかしながら、上記湯水通流路L2とは別に補助湯水通流路(図示せず)を備える構成を採用しても構わない。
当該構成を採用することにより、湯水通流路L2及び補助湯水通流路の双方にて供給される湯水の全量は、ボイラ10にて要求される蒸気発生量に追従する形態で制御し、湯水通流路L2を通流する湯水量については、原動機70において、ブロー水にて供給される温熱量と略等しい冷熱量を供給可能な湯水量に制御できる。
(4) In the above embodiment, a configuration example is shown in which the hot water W is supplied to the boiler drum 10a only through the hot water flow path L2.
However, a configuration having an auxiliary hot water flow path (not shown) in addition to the hot water flow path L2 may be adopted.
By adopting this configuration, the total amount of hot water supplied by both the hot water flow path L2 and the auxiliary hot water flow path is controlled in a form that follows the amount of steam generated in the boiler 10, and the hot water is controlled. Regarding the amount of hot water flowing through the flow path L2, the prime mover 70 can control the amount of hot water that can supply a cold heat amount that is substantially equal to the amount of heat supplied by the blow water.

(5)上記実施形態にあっては、音響筒Tは、第1ループ管T1と第2ループ管T2とを連結管にて連結する構成としたが、別に単一のループ管から構成しても構わない。即ち、単一のループ管から成る音響筒Tに対し、原動機70と音響ヒートポンプ部80との双方を備える構成を採用しても構わない。
また、本願の熱音響機関は、原動機70と音響ヒートポンプ部80とを有する音響筒Tが、複数設けられている構成も含むものである。
更に、一の音響筒Tに対して、原動機70と音響ヒートポンプ部80、更には電力発生機40とを複数設ける構成も含むものである。
(5) In the above embodiment, the acoustic tube T is configured to connect the first loop tube T1 and the second loop tube T2 with a connecting tube, but is separately composed of a single loop tube. It doesn't matter. That is, a configuration may be adopted in which both the prime mover 70 and the acoustic heat pump unit 80 are provided for the acoustic cylinder T composed of a single loop tube.
Further, the thermoacoustic engine of the present application also includes a configuration in which a plurality of acoustic cylinders T having a prime mover 70 and an acoustic heat pump unit 80 are provided.
Further, it also includes a configuration in which a plurality of prime movers 70, an acoustic heat pump unit 80, and a power generator 40 are provided for one acoustic cylinder T.

(6)上記実施形態において、ボイラ10としては、排ガスボイラを構成例として示したが、還流ボイラなどのボイラも好適に適用可能である。 (6) In the above embodiment, as the boiler 10, an exhaust gas boiler is shown as a configuration example, but a boiler such as a recirculation boiler can also be suitably applied.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in other embodiments as long as there is no contradiction. The embodiments disclosed in the present specification are examples, and the embodiments of the present invention are not limited thereto, and can be appropriately modified without departing from the object of the present invention.

本発明の蒸気発生装置は、メンテナンス性が高く比較的簡易な構成で、ボイラからの排熱としての温熱エネルギを良好に回収できると共に、回収した温熱エネルギを冷熱エネルギ等の需要のあるエネルギへ適切に変換できる蒸気発生装置として、有効に利用可能である。 The steam generator of the present invention has a relatively simple configuration with high maintainability, and can satisfactorily recover thermal energy as exhaust heat from the boiler, and the recovered thermal energy is suitable for energy in demand such as cold energy. It can be effectively used as a steam generator that can be converted into energy.

10 :ボイラ
30 :冷熱利用部
40 :電力発生機
70 :原動機
71 :加熱器
72 :冷却器
73 :第1再生器
80 :音響ヒートポンプ部
81 :吸熱器
82 :放熱器
83 :第2再生器
90 :熱音響機関
100 :蒸気発生装置
B :ブロー水
C :冷媒
E :燃焼排ガス
EX1 :伝熱コイル
L1 :ブロー水通流路
L2 :湯水通流路
L3 :冷媒循環路
St :蒸気
T :音響筒
V1 :第1流量調整弁
V2 :第2流量調整弁
W :湯水
10: Boiler 30: Cold heat utilization unit 40: Power generator 70: Motor 71: Heater 72: Cooler 73: First regenerator 80: Acoustic heat pump unit 81: Heat absorber 82: Dissipator 83: Second regenerator 90 : Thermo-acoustic engine 100: Steam generator B: Blow water C: Refrigerant E: Combustion exhaust gas EX1: Heat transfer coil L1: Blow water flow path L2: Hot water flow path L3: Refrigerant circulation path St: Steam T: Acoustic cylinder V1: First flow control valve V2: Second flow control valve W: Hot water

Claims (6)

外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置であって、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上有すると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器とから成る音響ヒートポンプ部を少なくとも1つ以上有する熱音響機関と、
前記ボイラからのブロー水を前記加熱器に通流させるブロー水通流路と、
湯水を前記冷却器に通流させた後に前記ボイラへ導く湯水通流路と、
冷媒が保有する冷熱が放熱され利用される冷熱利用部と前記吸熱器との間で冷媒を循環させる冷媒循環路とを備え
前記湯水通流路は、湯水を前記放熱器及び前記冷却器に記載の順に通流させた後に前記ボイラへ導くものである蒸気発生装置。
蒸気発生装置。
It is a steam generator equipped with a boiler that can store hot water supplied from the outside and heats the hot water inside by the heat generated by the heat source to generate steam.
The acoustic energy of sound waves between a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the heater and the cooler in an acoustic cylinder filled with the working medium and propagating sound waves. A heat absorber in which the working medium absorbs heat from the outside, a radiator in which the working medium dissipates heat to the outside, a heat absorber, and the radiator, while having at least one prime mover including a first regenerator for amplifying the above. A thermoacoustic engine having at least one acoustic heat pump unit comprising a second regenerator that compresses and expands in a manner in which sound waves consume acoustic energy between them.
A blow water flow path that allows blow water from the boiler to flow through the heater, and
A hot water flow path that leads hot water to the boiler after flowing it through the cooler,
It is provided with a refrigerant circulation path for circulating the refrigerant between the heat absorber and the cold heat utilization unit in which the cold heat possessed by the refrigerant is dissipated and used .
The hot water flow path is a steam generator that allows hot water to flow through the radiator and the cooler in the order described, and then guides the hot water to the boiler.
Steam generator.
前記ボイラは、温熱源にて発生する温熱を保有する熱媒を通流可能な伝熱部を内部に備え、
前記伝熱部と前記加熱器とに記載の順に熱媒を通流する熱媒通流路を備える請求項1に記載の蒸気発生装置。
The boiler is provided with a heat transfer portion inside which a heat medium that retains the heat generated by the heat source can flow.
The steam generator according to claim 1, further comprising a heat medium passage flow path through which the heat medium flows in the order described in the heat transfer unit and the heater.
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度が、前記加熱器へブロー水を連続供給可能な開度に調整され、
前記湯水通流路を通流する湯水の流量を調整する第2流量調整弁を備え、
前記第2流量調整弁の開度が、前記放熱器へ湯水を連続供給可能な開度に調整される請求項1又は2に記載の蒸気発生装置。
A first flow rate adjusting valve for adjusting the flow rate of blow water flowing through the blow water flow path is provided.
The valve opening degree of the first flow rate adjusting valve is adjusted to an opening degree capable of continuously supplying blow water to the heater.
A second flow rate adjusting valve for adjusting the flow rate of hot water flowing through the hot water flow path is provided.
The steam generator according to claim 1 or 2, wherein the opening degree of the second flow rate adjusting valve is adjusted to an opening degree capable of continuously supplying hot water to the radiator.
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度は、前記加熱器へブロー水を間欠供給すべく、所定時間毎に開放状態と閉止状態とが切り替え制御される請求項2に記載の蒸気発生装置。
A first flow rate adjusting valve for adjusting the flow rate of blow water flowing through the blow water flow path is provided.
The steam generator according to claim 2, wherein the valve opening degree of the first flow rate adjusting valve is controlled by switching between an open state and a closed state at predetermined time intervals in order to intermittently supply blow water to the heater.
外部から供給される湯水を内部に貯留可能であると共に、温熱源にて発生する温熱により内部の湯水を加熱して蒸気を発生させるボイラを備えた蒸気発生装置であって、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する第1再生器とから成る原動機を少なくとも1つ以上有すると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する第2再生器とから成る音響ヒートポンプ部を少なくとも1つ以上有する熱音響機関と、
前記ボイラからのブロー水を前記加熱器に通流させるブロー水通流路と、
湯水を前記冷却器に通流させた後に前記ボイラへ導く湯水通流路と、
冷媒が保有する冷熱が放熱され利用される冷熱利用部と前記吸熱器との間で冷媒を循環させる冷媒循環路とを備え、
前記ボイラは、温熱源にて発生する温熱を保有する熱媒を通流可能な伝熱部を内部に備え、
前記伝熱部と前記加熱器とに記載の順に熱媒を通流する熱媒通流路を備え、
前記ブロー水通流路を通流するブロー水の流量を調整する第1流量調整弁を備え、
前記第1流量調整弁の弁開度は、前記加熱器へブロー水を間欠供給すべく、所定時間毎に開放状態と閉止状態とが切り替え制御される蒸気発生装置。
It is a steam generator equipped with a boiler that can store hot water supplied from the outside and heats the hot water inside by the heat generated by the heat source to generate steam.
The acoustic energy of sound waves between a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the heater and the cooler in an acoustic cylinder filled with the working medium and propagating sound waves. A heat absorber in which the working medium absorbs heat from the outside, a radiator in which the working medium dissipates heat to the outside, a heat absorber, and the radiator, while having at least one prime mover including a first regenerator for amplifying the above. A thermoacoustic engine having at least one acoustic heat pump unit comprising a second regenerator that compresses and expands in a manner in which sound waves consume acoustic energy between them.
A blow water flow path that allows blow water from the boiler to flow through the heater, and
A hot water flow path that leads hot water to the boiler after flowing it through the cooler,
It is provided with a refrigerant circulation path for circulating the refrigerant between the heat absorber and the cold heat utilization unit in which the cold heat possessed by the refrigerant is dissipated and used.
The boiler is provided with a heat transfer portion inside which a heat medium that retains the heat generated by the heat source can flow.
A heat transfer channel for passing a heat medium in the order described in the heat transfer unit and the heater is provided.
A first flow rate adjusting valve for adjusting the flow rate of blow water flowing through the blow water flow path is provided.
The valve opening degree of the first flow rate adjusting valve is a steam generator in which the open state and the closed state are switched and controlled at predetermined time intervals in order to intermittently supply blow water to the heater.
音波の振動から電力を発生させる電力発生機を備える請求項1〜5の何れか一項に記載の蒸気発生装置。 The steam generator according to any one of claims 1 to 5, further comprising a power generator that generates electric power from vibration of sound waves.
JP2017014574A 2017-01-30 2017-01-30 Steam generator Active JP6846940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014574A JP6846940B2 (en) 2017-01-30 2017-01-30 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014574A JP6846940B2 (en) 2017-01-30 2017-01-30 Steam generator

Publications (2)

Publication Number Publication Date
JP2018123982A JP2018123982A (en) 2018-08-09
JP6846940B2 true JP6846940B2 (en) 2021-03-24

Family

ID=63111304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014574A Active JP6846940B2 (en) 2017-01-30 2017-01-30 Steam generator

Country Status (1)

Country Link
JP (1) JP6846940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019086176A (en) * 2017-11-02 2019-06-06 株式会社Soken Industrial furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505579Y2 (en) * 1989-10-12 1996-07-31 日本原子力発電株式会社 Blowdown heat recovery device for steam generator
JPH0441907U (en) * 1990-07-20 1992-04-09
JPH0821210A (en) * 1994-07-06 1996-01-23 Hitachi Zosen Corp Power generating facility in incinerator
JP2000065310A (en) * 1998-08-24 2000-03-03 Shinei Kk Clean steam generator
JP2010276304A (en) * 2009-05-29 2010-12-09 Ebara Corp Steam generation system
JP2016023807A (en) * 2014-07-16 2016-02-08 アズビル株式会社 Air-conditioning system and air-conditioning method using thermoacoustic refrigerating machine
JP6376895B2 (en) * 2014-08-19 2018-08-22 東邦瓦斯株式会社 Thermoacoustic device
FR3030701A1 (en) * 2014-12-17 2016-06-24 Sdmo Ind
JP6482350B2 (en) * 2015-03-26 2019-03-13 大阪瓦斯株式会社 Vaporization equipment
JP2016194381A (en) * 2015-03-31 2016-11-17 国立研究開発法人 海上・港湾・航空技術研究所 Thermoacoustic engine cold water manufacturing device and ship with thermoacoustic engine cold water manufacturing device

Also Published As

Publication number Publication date
JP2018123982A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP2007064048A (en) Waste heat recovery facility of power plant
US20200251644A1 (en) Thermoelectric generator comprising liquid metal heat exchange unit
JP2014034924A (en) Exhaust heat recovery device of internal combustion engine and cogeneration system
WO2017159138A1 (en) Cogeneration device
JP6846940B2 (en) Steam generator
JP2008501885A (en) Heat engine
JP2014231737A (en) Rankine cycle device
JP2018025340A (en) Thermoacoustic cooling device
WO2018066250A1 (en) Energy conversion device
JP5629341B2 (en) Tank heating system for ship engine room
TW201447201A (en) System and process of cooling an OTEC working fluid pump motor
JP4128054B2 (en) Fuel cell system and operating method thereof
JP6604885B2 (en) Boil-off gas reliquefaction facility
US20170241675A1 (en) Cooling system powered by thermal energy and related methods
US10202874B2 (en) Supercritical CO2 generation system applying plural heat sources
US10202873B2 (en) Supercritical CO2 generation system applying plural heat sources
JP2017155742A (en) Steam generator
KR102021901B1 (en) Supercritical CO2 generating system with parallel heater
CA2740203C (en) Combined circulation condenser
JP2019168207A (en) Liquefied gas manufacturing system
JP2003299710A (en) Steam sauna apparatus
JP2004257601A (en) Waste heat collecting system
JP2021088977A (en) Waste heat storage system
JP2012251516A (en) Waste heat recovery apparatus
JP2018150899A (en) Gas cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150