JP2019168207A - Liquefied gas manufacturing system - Google Patents

Liquefied gas manufacturing system Download PDF

Info

Publication number
JP2019168207A
JP2019168207A JP2018058689A JP2018058689A JP2019168207A JP 2019168207 A JP2019168207 A JP 2019168207A JP 2018058689 A JP2018058689 A JP 2018058689A JP 2018058689 A JP2018058689 A JP 2018058689A JP 2019168207 A JP2019168207 A JP 2019168207A
Authority
JP
Japan
Prior art keywords
liquefied
natural gas
gas
heat
liquefied natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018058689A
Other languages
Japanese (ja)
Other versions
JP7045896B2 (en
Inventor
健 金内
Takeshi Kaneuchi
健 金内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2018058689A priority Critical patent/JP7045896B2/en
Publication of JP2019168207A publication Critical patent/JP2019168207A/en
Application granted granted Critical
Publication of JP7045896B2 publication Critical patent/JP7045896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

To provide a liquefied gas manufacturing system that can improve economic performance by reducing energy used when cryogenic separation and liquefaction are performed for liquefaction objective gas, and is maintenance free.SOLUTION: A liquefied gas manufacturing system includes: a thermoacoustic engine 90 provided with at least one or more engines 70 and provided with at least one or more acoustic heat pump parts 80; a liquefaction objective gas flow passage La for leading a liquefaction objective gas to a heater 71 and a heat absorber 81 in this described order; and a liquefaction natural gas flow passage Lt for leading a liquefaction natural gas to a radiator 82 and a cooler 72 in this described order.SELECTED DRAWING: Figure 1

Description

本発明は、液化天然ガスの冷熱を利用して液化対象ガスを液化する液化ガス製造システムに関する。   The present invention relates to a liquefied gas production system for liquefying a liquefied gas by using the cold heat of liquefied natural gas.

従来、LNG基地において液化天然ガスの冷熱を利用して、窒素や酸素等の液化対象ガスを、深冷分離等により液化する液化ガス製造システムが知られている(特許文献1を参照)。当該深冷分離では、圧縮機による空気の圧縮と液化天然ガスの冷熱による冷却により、まず沸点の低い酸素を液化し、その後に、より沸点の低い窒素を液化することで、両者を分離しながら、液化する。   Conventionally, a liquefied gas production system is known in which liquefied gas such as nitrogen and oxygen is liquefied by cryogenic separation or the like using the cold heat of liquefied natural gas at an LNG terminal (see Patent Document 1). In the cryogenic separation, the low-boiling point oxygen is first liquefied by compressing the air with a compressor and cooling the liquefied natural gas with cold heat, and then the lower-boiling point nitrogen is liquefied, thereby separating the two. Liquefy.

特開2003−106723号公報JP 2003-106723 A

上記特許文献1に開示の技術にあっては、液化対象ガスへ与える冷熱は、熱交換効率も加味すると、液化天然ガスが気化する際に発生する冷熱未満となる。このため、液化対象ガスを液化する単位時間あたりの処理量は、単位時間に気化する液化天然ガスの冷熱量で液化できる量で制限されていた。
また、上記特許文献1に開示の技術は、液化天然ガスの沸点(−162℃)よりも低い沸点を持つ液化対象ガス(例えば、沸点−196℃の窒素)の液化を行う場合、液化対象ガスを昇圧させるため、必ず圧縮機を備える構成を採用する必要があり、当該圧縮機の作動に多くの電力(エネルギ)を消費するため、エネルギ効率及び経済性の観点から改善の余地があった。
In the technique disclosed in Patent Document 1, the cooling heat applied to the liquefied gas is less than the cooling heat generated when the liquefied natural gas is vaporized, considering the heat exchange efficiency. For this reason, the processing amount per unit time for liquefying the liquefied target gas is limited by the amount that can be liquefied by the cold energy of the liquefied natural gas vaporized per unit time.
Further, the technique disclosed in Patent Document 1 discloses that when liquefying a liquefied gas having a boiling point lower than the boiling point of liquefied natural gas (−162 ° C.) (for example, nitrogen having a boiling point of −196 ° C.), In order to increase the pressure of the compressor, it is necessary to adopt a configuration that always includes a compressor, and since much electric power (energy) is consumed for the operation of the compressor, there is room for improvement from the viewpoint of energy efficiency and economy.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、液化対象ガスの深冷分離及び液化に伴うエネルギを低減して経済性を改善でき、且つ、メンテナンスフリーの液化ガス製造システムを提供することにある。   The present invention has been made in view of the above-mentioned problems, and its object is to reduce the energy associated with the cryogenic separation and liquefaction of the liquefied gas and improve the economic efficiency, and also to produce maintenance-free liquefied gas. To provide a system.

上記目的を達成するための液化ガス製造システムは、
液化天然ガスの冷熱を利用して液化対象ガスを液化する液化ガス製造システムであって、
その特徴構成は、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する原動機側再生器とから成る原動機を少なくとも1つ以上設けると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する音響側再生器とから成る音響ヒートポンプ部を少なくとも1つ以上設ける熱音響機関と、
前記液化対象ガスを前記加熱器と前記吸熱器とに記載の順に導く液化対象ガス通流路と、
前記液化天然ガスを前記放熱器と前記冷却器とに記載の順に導く液化天然ガス通流路とを備える点にある。
A liquefied gas production system for achieving the above object is as follows.
A liquefied gas production system for liquefying a liquefied gas using the cold heat of liquefied natural gas,
Its characteristic configuration is
An acoustic cylinder filled with a working medium and in which sound waves propagate, a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the acoustic energy of sound waves between the heater and the cooler At least one prime mover comprising a prime mover side regenerator that amplifies the heat, a heat absorber that absorbs heat from the outside of the working medium, a radiator that dissipates heat from the working medium to the outside, the heat absorber, and the radiator A thermoacoustic engine provided with at least one acoustic heat pump unit composed of an acoustic-side regenerator that compresses and expands in a form in which sound waves consume acoustic energy,
A liquefaction target gas flow path for guiding the liquefaction target gas in the order described in the heater and the heat absorber;
It is in the point provided with the liquefied natural gas flow path which guides the liquefied natural gas to the radiator and the cooler in order of description.

上記特徴構成によれば、液化対象ガス通流路を通流する液化対象ガスは、原動機の加熱器にて冷却器からの冷熱を回収することで冷却されると共に音響ヒートポンプ部の吸熱器にて音響エネルギにより温熱が回収される形態で、冷却される。これにより、液化対象ガスが単位時間あたりに回収する冷熱量は、単位時間あたりで液化天然ガスが気化する際に発生する冷熱量よりも多くなり、単位時間当たりの液化天然ガスの流量が同一である場合、従来技術に比して、液化天然ガスの冷熱による液化の処理量を増加させることができる。
更には、音響ヒートポンプ部においては、原動機にて発生させた音響エネルギにより、吸熱器を通過する液化対象ガスから放熱器を通過する液化天然ガスへ熱を汲み上げるヒートポンプ効果により、液化対象ガスの温度を、液化天然ガスの沸点(−162℃)よりも大凡30℃程度低下させることができる。これにより、液化天然ガスの沸点より低い沸点の液化対象ガスについても、圧縮機による昇圧を行うことなく液化できるから、従来技術において消費電力の大部分を占めていた圧縮機の駆動電力を削減でき、エネルギ効率を高め、経済性を高めることができる。
また、機械的な可動部がないため、故障が発生するリスクを低減でき、メンテナンスフリーのシステムを実現できる。
According to the above characteristic configuration, the liquefaction target gas flowing through the liquefaction target gas passage is cooled by collecting the cold heat from the cooler with the heater of the prime mover and at the heat absorber of the acoustic heat pump unit. It is cooled in a form in which warm heat is recovered by acoustic energy. As a result, the amount of cold energy recovered per unit time by the gas to be liquefied is larger than the amount of cold heat generated when liquefied natural gas is vaporized per unit time, and the flow rate of liquefied natural gas per unit time is the same. In some cases, it is possible to increase the amount of liquefied natural gas liquefied by the cold as compared with the prior art.
Furthermore, in the acoustic heat pump unit, the temperature of the liquefied gas is increased by the heat pump effect that pumps heat from the liquefied gas passing through the heat absorber to the liquefied natural gas passing through the radiator by the acoustic energy generated by the prime mover. The boiling point of liquefied natural gas (−162 ° C.) can be lowered by about 30 ° C. As a result, the gas to be liquefied having a boiling point lower than that of the liquefied natural gas can be liquefied without increasing the pressure by the compressor, so that it is possible to reduce the driving power of the compressor that occupies most of the power consumption in the prior art. , Energy efficiency can be increased and economic efficiency can be increased.
Moreover, since there are no mechanical moving parts, the risk of failure can be reduced, and a maintenance-free system can be realized.

液化ガス製造システムの更なる特徴構成は、
前記液化対象ガスと前記液化天然ガスとを熱交換する第1熱交換器を備え、
前記液化対象ガス通流路は、前記加熱器と前記第1熱交換器と前記吸熱器とに記載の順に前記液化対象ガスを導く通流路であり、
前記液化天然ガス通流路は、前記放熱器と前記冷却器と前記第1熱交換器とに記載の順に前記液化天然ガスを導く通流路である点にある。
Further features of the liquefied gas production system
A first heat exchanger that exchanges heat between the liquefied gas and the liquefied natural gas;
The liquefaction target gas flow path is a flow path that guides the liquefaction target gas in the order described in the heater, the first heat exchanger, and the heat absorber,
The liquefied natural gas passage is a passage that guides the liquefied natural gas in the order described in the radiator, the cooler, and the first heat exchanger.

単位時間あたりの液化対象ガスの流量に対して、単位時間あたりの液化天然ガス流量が十分に多い場合、液化対象ガスを適切に液化することができる。
一方、単位時間あたりの液化対象ガスの流量が増加してくると、液化対象ガスが加熱器と吸熱器との双方を通過した後であっても、完全に液化されていない状況となることが想定される。
上記特徴構成によれば、液化対象ガスは、加熱器を通過した後に、第1熱交換器において、残留冷熱を保持する液化天然ガスにて予冷された後、吸熱器にて、液化対象ガスの沸点まで冷却されるから、液化天然ガスの残留冷熱を有効に利用しながらも、液化対象ガスの冷却による降温を促進できる。
結果、当該第1熱交換器を設けない構成に比して、単位時間あたりの液化対象ガスの処理量を増加できる。
When the flow rate of the liquefied natural gas per unit time is sufficiently larger than the flow rate of the liquefied target gas per unit time, the liquefied target gas can be appropriately liquefied.
On the other hand, when the flow rate of the liquefied target gas per unit time increases, the liquefied target gas may not be completely liquefied even after passing through both the heater and the heat absorber. is assumed.
According to the above characteristic configuration, after the liquefied gas passes through the heater, in the first heat exchanger, the liquefied gas is pre-cooled with the liquefied natural gas that retains the residual cold heat, and then the liquefied gas is Since it is cooled to the boiling point, it is possible to promote the temperature drop by cooling the liquefied target gas while effectively using the residual cold heat of the liquefied natural gas.
As a result, as compared with a configuration in which the first heat exchanger is not provided, the processing amount of the liquefaction target gas per unit time can be increased.

液化ガス製造システムの更なる特徴構成は、
前記液化対象ガスと前記液化天然ガスとを熱交換する第2熱交換器を備え、
前記液化対象ガス通流路は、前記加熱器と前記第1熱交換器と前記第2熱交換器と前記吸熱器とに記載の順に前記液化対象ガスを導く通流路であり、
前記液化天然ガス通流路は、前記放熱器と前記冷却器と前記第1熱交換器とに前記液化天然ガスを導く第1液化天然ガス通流路と、前記第2熱交換器に前記液化天然ガスを導く第2液化天然ガス通流路とを有する点にある。
Further features of the liquefied gas production system
A second heat exchanger for exchanging heat between the liquefied gas and the liquefied natural gas;
The liquefaction target gas flow path is a flow path that guides the liquefaction target gas in the order described in the heater, the first heat exchanger, the second heat exchanger, and the heat absorber,
The liquefied natural gas flow path includes a first liquefied natural gas flow path that guides the liquefied natural gas to the radiator, the cooler, and the first heat exchanger, and the liquefied natural gas to the second heat exchanger. It has a second liquefied natural gas passage for guiding natural gas.

上記特徴構成によれば、液化対象ガスは、加熱器と第1熱交換器とで冷却された後に、第2熱交換器により、第2液化天然ガス通流路を通流する液化天然ガスにより冷却されるから、より一層、十分に冷却された状態で、吸熱器へ導かれ、当該吸熱器にてより確実に沸点以下の液化状態へ状態変化することとなる。   According to the above characteristic configuration, the liquefied gas is cooled by the heater and the first heat exchanger, and then is liquefied natural gas flowing through the second liquefied natural gas flow path by the second heat exchanger. Since it is cooled, it is led to the heat absorber in a sufficiently cooled state, and the state is more reliably changed to a liquefied state below the boiling point by the heat absorber.

液化ガス製造システムの更なる特徴構成は、
前記第2液化天然ガス通流路の前記第2熱交換器の下流端は、少なくとも前記第1液化天然ガス通流路の前記放熱器よりも下流側に連通接続される点にある。
Further features of the liquefied gas production system
The downstream end of the second heat exchanger in the second liquefied natural gas passage is at least connected to the downstream side of the radiator in the first liquefied natural gas passage.

第2液化天然ガス通流路の第2熱交換器を通過した後の液化天然ガスは、第2熱交換器での熱交換量や液化対象ガスの処理量にもよるが、潜熱を保有している状態、即ち、温度としては液化天然ガスの沸点(−162℃)である可能性が高い。
そこで、当該第2液化天然ガス通流路の第2熱交換器を通過した後の液化天然ガスを、液化対象ガスを沸点まで冷却する放熱器よりも下流側に導いて、冷却器や第1熱交換器での液化対象ガスの冷却の用に供することができる。これにより、吸熱器では液化対象ガスを適切に沸点まで降温させて液化できると共に、より一層のエネルギ効率を高めることができる。
The liquefied natural gas after passing through the second heat exchanger of the second liquefied natural gas passage has latent heat, depending on the heat exchange amount in the second heat exchanger and the amount of liquefied target gas. In other words, the temperature is likely to be the boiling point (−162 ° C.) of liquefied natural gas.
Therefore, the liquefied natural gas after passing through the second heat exchanger of the second liquefied natural gas passage is led downstream from the radiator that cools the liquefied gas to the boiling point, and the cooler and the first It can be used for cooling the liquefied gas in the heat exchanger. Thereby, in the heat absorber, the temperature of the liquefying target gas can be appropriately lowered to the boiling point and liquefied, and further energy efficiency can be improved.

液化ガス製造システムの更なる特徴構成は、
前記原動機が複数設けられる構成において、
前記液化天然ガス通流路は、複数の前記冷却器に直列に前記液化天然ガスを導く通流路であり、
前記液化対象ガス通流路は、複数の前記加熱器に並列に前記液化対象ガスを導く通流路である点にある。
Further features of the liquefied gas production system
In a configuration in which a plurality of the prime movers are provided,
The liquefied natural gas flow path is a flow path that guides the liquefied natural gas in series to a plurality of the coolers,
The liquefaction target gas passage is a passage that guides the liquefaction target gas in parallel to the plurality of heaters.

熱音響機関では、発振温度の低温化を図りつつ、熱音響変換エネルギの増大化を図るべく、原動機の多段化に関する研究が進められている。
一方、液化天然ガスは、多くの潜熱を有するため、原動機の冷却器を通過して温熱を回収した後であっても、その温度は沸点に維持される可能性が高い。
そこで、原動機を複数備えたシステムにおいて、液化天然ガスを複数の冷却器に対して直列に導くことで、夫々の冷却器において、沸点に維持された液化天然ガスを導くことができるのに加えて、流路を分岐させることによる圧力低下を招く虞がないため、単一の圧送ポンプにて圧送することができる。
一方、液化対象ガスは、複数の加熱器を並列に通流することにより、処理量の増加を図ることができる。
In thermoacoustic engines, research on multi-stage prime movers is underway in order to increase the thermoacoustic conversion energy while lowering the oscillation temperature.
On the other hand, since liquefied natural gas has a lot of latent heat, the temperature is likely to be maintained at the boiling point even after the heat is recovered by passing through the cooler of the prime mover.
Therefore, in a system having a plurality of prime movers, in addition to being able to guide liquefied natural gas maintained at the boiling point in each cooler by guiding liquefied natural gas in series to a plurality of coolers. Since there is no risk of pressure drop due to branching of the flow path, it can be pumped with a single pump.
On the other hand, the liquefaction target gas can be increased in throughput by flowing a plurality of heaters in parallel.

第1実施形態に係る液化ガス製造システムの概略構成図である。It is a schematic block diagram of the liquefied gas manufacturing system which concerns on 1st Embodiment. 第2実施形態に係る液化ガス製造システムの概略構成図である。It is a schematic block diagram of the liquefied gas manufacturing system which concerns on 2nd Embodiment. シミュレーションの際の原動機及び音響ヒートポンプ部の配置条件を示す図である。It is a figure which shows the arrangement | positioning conditions of the motor | power_engine and the acoustic heat pump part in the case of simulation. シミュレーション結果を示すグラフ図である。It is a graph which shows a simulation result.

本発明の実施形態に係る液化ガス製造システム100は、液化対象ガスの深冷分離及び液化に伴うエネルギを低減し、経済性が高くメンテナンスフリーのシステムに関する。
以下、図面に基づいて、実施形態に係る液化ガス製造システム100について説明を加える。
The liquefied gas manufacturing system 100 according to the embodiment of the present invention relates to a system that is low in energy and is maintenance-free with low-temperature separation and liquefaction of the liquefied target gas.
Hereinafter, the liquefied gas production system 100 according to the embodiment will be described based on the drawings.

<第1実施形態>
〔熱音響機関に係る構成〕
熱音響機関90は、図1に示すように、作動媒体が充填され音波が伝播する第1ループ管T1と第2ループ管T2とが連結管にて連結されて構成された音響筒Tを備え、当該実施形態においては、第1ループ管T1に単一の原動機70が設けられると共に第2ループ管T2に単一の音響ヒートポンプ部80が設けられている。
<First Embodiment>
[Configuration related to thermoacoustic engine]
As shown in FIG. 1, the thermoacoustic engine 90 includes an acoustic cylinder T configured by connecting a first loop pipe T1 and a second loop pipe T2 through which a working medium is filled and a sound wave propagates through a connection pipe. In the present embodiment, a single prime mover 70 is provided in the first loop pipe T1, and a single acoustic heat pump unit 80 is provided in the second loop pipe T2.

以下、作動媒体を外部から加熱する加熱器71と作動媒体を外部から冷却する冷却器72と加熱器71と冷却器72との間で音波の音響エネルギを増幅する原動機側再生器73とから成る原動機70について説明を加える。   A heater 71 that heats the working medium from the outside, a cooler 72 that cools the working medium from the outside, and a motor-side regenerator 73 that amplifies the acoustic energy of sound waves between the heater 71 and the cooler 72. A description of the prime mover 70 will be added.

加熱器71は、詳細な図示は省略するが、液化対象ガスを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。加熱器71は、フィンがジャケット部を通流する液化対象ガスにて加熱され、当該フィンから音響筒Tの内部の作動流体へ温熱を伝導する形態で、作動流体を加熱する。
尚、液化対象ガスとしては、種々のものを採用できるが、当該実施形態にあっては、液化天然ガスの沸点(−162℃)よりも低い沸点を有するガスを好適に採用することができ、例えば、窒素が挙げられる。当該実施形態では、空気から窒素を液化と共に分離しながら液化対象ガスとして生産する構成が採用される。
Although not shown in detail, the heater 71 includes a jacket portion (not shown) through which the gas to be liquefied flows and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. The heater 71 is heated by the liquefaction target gas through which the fins flow through the jacket portion, and heats the working fluid in a form that conducts heat from the fins to the working fluid inside the acoustic cylinder T.
In addition, although various things can be employ | adopted as liquefaction object gas, in the said embodiment, the gas which has a boiling point lower than the boiling point (-162 degreeC) of liquefied natural gas can be employ | adopted suitably, An example is nitrogen. In this embodiment, a configuration is employed in which nitrogen is produced from the air as liquefaction target gas while being separated with liquefaction.

冷却器72は、液化天然ガスを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。冷却器72は、フィンがジャケット部を通流する液化天然ガスにて冷却され、当該フィンから音響筒Tの内部の作動流体へ冷熱を伝導する形態で、作動流体を冷却する。   The cooler 72 includes a jacket portion (not shown) through which liquefied natural gas flows and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. The cooler 72 is cooled by the liquefied natural gas in which the fin flows through the jacket portion, and cools the working fluid in such a manner that cold heat is conducted from the fin to the working fluid inside the acoustic cylinder T.

加熱器71と冷却器72との間に設けられる原動機側再生器73は、例えば、音響筒Tの筒軸心方向に直交する方向に板面を沿わせた状態で、当該筒軸心方向に沿って複数並べられる薄板状部材(図示せず)から構成されている。
当該薄板状部材は、例えば、厚さが50μm以上100μm以下で、300枚〜600枚程度設けられる。当該薄板状部材には、筒軸心方向に沿う方向に貫通する多数の貫通孔(図示せず)が、その直径が200μm〜300μm程度で、設けられる。
The prime mover side regenerator 73 provided between the heater 71 and the cooler 72 is, for example, in a state in which the plate surface is aligned in a direction orthogonal to the cylinder axis direction of the acoustic cylinder T in the cylinder axis direction. It is comprised from the thin plate-shaped member (not shown) arranged in a line along.
For example, the thin plate member has a thickness of 50 μm or more and 100 μm or less, and is provided with about 300 to 600 sheets. The thin plate-like member is provided with a large number of through holes (not shown) penetrating in a direction along the cylinder axis direction with a diameter of about 200 μm to 300 μm.

作動流体は、音響筒Tの内部において、その筒軸心方向で、微小な揺らぎを生じる状態で、存在している。換言すると、作動流体を伝搬する音波は、加熱器71と冷却器72との両者間において、一方側から他方側への進行波と、他方側から一方側への進行波とを形成する。
作動流体を伝搬する音波は、冷却器72から加熱器71の側への進行波を形成する場合、加熱器71近傍での原動機側再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して加熱されると共に、加熱器71のフィンにて直接加熱されることで、膨張する。一方、作動流体を伝搬する音波は、加熱器71から冷却器72の側への進行波を形成する場合、冷却器72の近傍での原動機側再生器73としての薄板状部材の複数の貫通孔を通過するときに当該貫通孔の内壁に接触して冷却されると共に、冷却器72のフィンにて直接冷却されることで、収縮する。
これにより、進行波としての音波が自己励起振動を起こし、その音響エネルギが増幅される形態で、熱エネルギが音波の音響エネルギに変換される。
The working fluid exists inside the acoustic cylinder T in a state in which minute fluctuations are generated in the cylinder axis direction. In other words, the sound wave propagating in the working fluid forms a traveling wave from one side to the other side and a traveling wave from the other side to the one side between the heater 71 and the cooler 72.
When forming a traveling wave from the cooler 72 to the heater 71, the sound wave propagating the working fluid passes through a plurality of through holes of a thin plate member as the prime mover side regenerator 73 in the vicinity of the heater 71. Sometimes it is heated in contact with the inner wall of the through-hole and is directly heated by the fins of the heater 71 to expand. On the other hand, when the sound wave propagating the working fluid forms a traveling wave from the heater 71 to the cooler 72 side, a plurality of through holes of the thin plate member as the prime mover side regenerator 73 in the vicinity of the cooler 72 When it passes through, it cools in contact with the inner wall of the through hole and contracts by being cooled directly by the fins of the cooler 72.
Thereby, the sound energy as the traveling wave causes self-excited vibration, and the thermal energy is converted into the acoustic energy of the sound wave in such a form that the acoustic energy is amplified.

作動媒体としては、音波を伝播する気体から構成することができる。ここで、原動機側再生器73での熱交換が迅速になされることが望ましいため、作動媒体としては、熱拡散係数の高いヘリウム、水素が望ましい。また、発電を目的とする場合には、分子量の高い気体が望ましいため、アルゴン等の気体を混合しても良い。尚、熱的に安定していることから、当該実施形態では、作動媒体としてヘリウムを用いている。   The working medium can be composed of a gas that propagates sound waves. Here, since it is desirable that heat exchange in the prime mover side regenerator 73 be performed quickly, helium and hydrogen having a high thermal diffusion coefficient are desirable as the working medium. For the purpose of power generation, since a gas having a high molecular weight is desirable, a gas such as argon may be mixed. In this embodiment, helium is used as the working medium because it is thermally stable.

原動機70にて増幅された音波の音響エネルギは、音響筒Tの第1ループ管T1から第2ループ管T2の音響ヒートポンプ部80へ伝搬する。
音響ヒートポンプ部80は、作動媒体が外部から吸熱する吸熱器81と作動媒体が外部へ放熱する放熱器82と吸熱器81と放熱器82との間で音波が音響エネルギを消費する形態で圧縮及び膨張する音響側再生器83とから成る。
The acoustic energy of the sound wave amplified by the prime mover 70 propagates from the first loop tube T1 of the acoustic cylinder T to the acoustic heat pump unit 80 of the second loop tube T2.
The acoustic heat pump unit 80 compresses and compresses the sound energy between the heat absorber 81 where the working medium absorbs heat from the outside, the heat sink 82 where the working medium radiates heat to the outside, the heat absorber 81 and the heat radiator 82 consuming acoustic energy. The sound side regenerator 83 expands.

詳細な図示は省略するが、吸熱器81は、液化対象ガスを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。吸熱器81では、フィンがジャケット部を通流する液化対象ガスから吸熱し、音響筒Tの内部の作動媒体がフィンから吸熱する。   Although not shown in detail, the heat absorber 81 includes a jacket portion (not shown) through which the liquefying target gas flows and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. In the heat absorber 81, the fin absorbs heat from the gas to be liquefied flowing through the jacket portion, and the working medium inside the acoustic cylinder T absorbs heat from the fin.

放熱器82は、外部から供給される液化天然ガスを通流するジャケット部(図示せず)と、当該ジャケット部から音響筒Tの内部に延びるフィン(図示せず)とから成る。放熱器82では、音響筒Tの内部の作動媒体がフィンに放熱し、当該放熱された熱がジャケット部を通流する液化天然ガスへ放熱される形態で、液化天然ガスが加熱される。   The radiator 82 includes a jacket portion (not shown) through which liquefied natural gas supplied from the outside flows, and fins (not shown) extending from the jacket portion to the inside of the acoustic cylinder T. In the radiator 82, the working medium inside the acoustic cylinder T radiates heat to the fins, and the liquefied natural gas is heated in such a form that the radiated heat is radiated to the liquefied natural gas flowing through the jacket portion.

吸熱器81と放熱器82との間に設けられる音響側再生器83は、その形状や材質については、原動機側再生器73と変わるところがない。
尚、音響筒Tの筒径、筒長さ、形状等は、特に、原動機側再生器73及び音響側再生器83の貫通孔の孔径に基づいて、原動機70の熱エネルギから音響エネルギへの変換効率、音響ヒートポンプ部80の音響エネルギから熱エネルギへの変換効率が高くなるように、適宜設定される。
The sound-side regenerator 83 provided between the heat absorber 81 and the heat radiator 82 is not different from the prime mover-side regenerator 73 in terms of shape and material.
The cylinder diameter, cylinder length, shape, and the like of the acoustic cylinder T are converted from thermal energy of the prime mover 70 to acoustic energy based on the diameters of the through holes of the prime mover side regenerator 73 and the acoustic regenerator 83, in particular. The efficiency is appropriately set so that the conversion efficiency from the acoustic energy of the acoustic heat pump unit 80 to the thermal energy becomes high.

ここで、音響ヒートポンプ部80は、作動流体を伝搬する音波が、吸熱器81から放熱器82の側への進行波を形成する場合に圧縮し、放熱器82から吸熱器81の側へ進行波を形成する場合に膨張するように、その吸熱器81と音響側再生器83と放熱器82とが音響筒Tにおける適切な位置に配置されている。尚、熱音響機関が発振するための音響ヒートポンプ部80及び原動機70の配置の一例については、後述するシミュレーション結果と共に図3に示している。
これにより、作動流体を伝搬する音波が吸熱器81から放熱器82の側への進行波を形成する場合、作動媒体が、音響側再生器83にて圧縮しながら吸熱して昇温し、放熱器82にて昇温して高温となった状態で放熱する。これにより、放熱器82ではジャケット部を通流する液化天然ガスが、吸熱器81のジャケット部を通流する液化対象ガスよりも高温の作動媒体と熱交換する形態で加熱される。
一方、作動流体を伝搬する音波が放熱器82から吸熱器81の側への進行波を形成する場合、作動媒体は、音響側再生器83にて膨張しながら放熱して降温し、吸熱器81にて降温して低温となった状態で吸熱する。これにより、吸熱器81ではジャケット部を通流する液化対象ガスから、放熱器82のジャケット部を通流する液化天然ガスよりも十分に低温となった作動媒体が良好に吸熱することとなる。
因みに、上述の如く、音響側再生器83にて圧縮しながら吸熱する工程、及び膨張しながら放熱する工程において、音波の音響エネルギが消費され、音波は減衰するが、音響エネルギは、原動機70から逐次補充されるので、音響ヒートポンプ部80のヒートポンプ機能が維持されることとなる。
Here, the acoustic heat pump unit 80 compresses when the sound wave propagating the working fluid forms a traveling wave from the heat absorber 81 to the radiator 82 side, and travels from the radiator 82 to the heat absorber 81 side. The heat absorber 81, the sound side regenerator 83, and the heat radiator 82 are disposed at appropriate positions in the acoustic cylinder T so that the heat absorber 81, and the sound side regenerator 83 and the radiator 82 are expanded. Note that an example of the arrangement of the acoustic heat pump unit 80 and the prime mover 70 for oscillation of the thermoacoustic engine is shown in FIG.
As a result, when the sound wave propagating in the working fluid forms a traveling wave from the heat absorber 81 to the heat radiator 82 side, the working medium absorbs heat while being compressed by the acoustic side regenerator 83 to raise the temperature and release heat. The heat is released in a state where the temperature is raised by the vessel 82 and becomes high. Thereby, in the heat radiator 82, the liquefied natural gas flowing through the jacket portion is heated in a form of heat exchange with the working medium having a temperature higher than that of the liquefied target gas flowing through the jacket portion of the heat absorber 81.
On the other hand, when the sound wave propagating in the working fluid forms a traveling wave from the radiator 82 toward the heat absorber 81, the working medium radiates and cools down while expanding in the acoustic side regenerator 83, and the heat absorber 81. The heat is absorbed in a state where the temperature is lowered at low temperature. As a result, in the heat absorber 81, the working medium that is sufficiently cooler than the liquefied natural gas flowing through the jacket portion of the radiator 82 from the liquefied target gas flowing through the jacket portion absorbs heat well.
Incidentally, as described above, in the step of absorbing heat while compressing by the acoustic side regenerator 83 and the step of releasing heat while expanding, the acoustic energy of the sound wave is consumed and the sound wave is attenuated, but the acoustic energy is received from the prime mover 70. Since the replenishment is performed sequentially, the heat pump function of the acoustic heat pump unit 80 is maintained.

これまで説明してきたように、原動機70の加熱器71及び冷却器72、音響ヒートポンプ部80の吸熱器81及び放熱器82の夫々には、液化天然ガス又は液化対象ガスが通流するのであるが、熱音響機関の効率を最適化して、単位流量あたりの液化天然ガスに対して生産される液化対象ガスの生産量を向上させるべく、両者の通流路及び流量調整弁V等が、以下のように配設されている。   As described so far, the liquefied natural gas or the liquefied target gas flows through the heater 71 and the cooler 72 of the prime mover 70 and the heat absorber 81 and the radiator 82 of the acoustic heat pump unit 80, respectively. In order to optimize the efficiency of the thermoacoustic engine and improve the production amount of the liquefied target gas produced with respect to the liquefied natural gas per unit flow rate, both the flow path and the flow rate adjusting valve V are as follows: It is arranged like this.

液化対象ガスを通流する液化対象ガス通流路Laは、圧送ポンプ(図示せず)により圧送される空気等の液化対象ガスを通流する流路であり、少なくとも加熱器71と吸熱器81とに記載の順に液化対象ガスを通流するように配設されている。
ここで、液化対象ガスが窒素(通常は、窒素を含む空気)の場合、液化対象ガスは、最終的には、顕熱が回収されて窒素の沸点(−196℃)まで降温する必要があり、更に、液化対象ガスが気体から液体へ状態変化する際の潜熱が回収されている必要がある。
当該実施形態にあっては、液化対象ガスは、音響ヒートポンプ部80の吸熱器81を通過した後に、最も熱が回収された製品(液体)とする必要がある。このため、吸熱器81へ導かれる液化対象ガスは、液化対象ガスの沸点(−196℃)に近い温度にまで降温させておく必要がある。
しかしながら、原動機70の加熱器71を通流する液化対象ガスの流量及び温度、及び冷却器72を通流する液化天然ガスの流量及び温度及び状態(液体又は気体)にもよるが、加熱器71を通過した後の液化対象ガスは、沸点に近い温度にまで十分に冷却されない場合がある。
そこで、当該実施形態にあっては、液化対象ガス通流路Laは、加熱器71を通過した後の液化対象ガスと液化天然ガスとを熱交換する第1熱交換器EX1と、当該第1熱交換器を通過した後の液化対象ガスと液化天然ガスとを熱交換する第2熱交換器EX2とに、記載の順に液化対象ガスを通流させるよう配設されている。
尚、当該実施形態では、液化対象ガスとして空気を液化対象ガス通流路Laに通流させるのであるが、冷却の過程で液体酸素が生成されることになる。当該酸素の沸点は−163℃であるので、吸熱器81を通過して−163℃未満で且つ窒素の沸点の−196℃より高い温度のときに、図示しない精留塔等により、深冷分離されることになる。
The liquefaction target gas flow path La through which the liquefaction target gas flows is a flow path through which the liquefaction target gas such as air fed by a pressure feed pump (not shown) flows, and at least the heater 71 and the heat absorber 81. And liquefying target gas is arranged in the order described in the above.
Here, when the gas to be liquefied is nitrogen (usually air containing nitrogen), the gas to be liquefied needs to be finally cooled to the boiling point of nitrogen (−196 ° C.) by recovering sensible heat. Furthermore, it is necessary to recover the latent heat when the gas to be liquefied changes state from gas to liquid.
In this embodiment, the liquefaction target gas needs to be a product (liquid) from which heat has been most recovered after passing through the heat absorber 81 of the acoustic heat pump unit 80. For this reason, it is necessary to lower the temperature of the liquefaction target gas led to the heat absorber 81 to a temperature close to the boiling point (−196 ° C.) of the liquefaction target gas.
However, although depending on the flow rate and temperature of the liquefied target gas flowing through the heater 71 of the prime mover 70 and the flow rate and temperature and state (liquid or gas) of the liquefied natural gas flowing through the cooler 72, the heater 71 The gas to be liquefied after passing through may not be sufficiently cooled to a temperature close to the boiling point.
Therefore, in the present embodiment, the liquefaction target gas flow path La includes the first heat exchanger EX1 that exchanges heat between the liquefaction target gas and the liquefied natural gas after passing through the heater 71, and the first heat exchanger EX1. The gas to be liquefied is passed through the second heat exchanger EX2 that exchanges heat between the gas to be liquefied and the liquefied natural gas after passing through the heat exchanger in the order described.
In this embodiment, air is circulated through the liquefaction target gas flow passage La as the liquefaction target gas, but liquid oxygen is generated during the cooling process. Since the boiling point of the oxygen is −163 ° C., when the temperature passes through the heat absorber 81 and is lower than −163 ° C. and higher than the boiling point of nitrogen −196 ° C., a cryogenic separation or the like is performed by a rectification tower (not shown). Will be.

液化天然ガス通流路Ltは、液化天然ガスを通流する流路であり、少なくとも放熱器82と冷却器72とに記載の順に液化天然ガスを通流するように配設されている。
当該液化天然ガス通流路Ltは、放熱器82と冷却器72と第1熱交換器EX1とに記載の順に液化天然ガスを導く第1液化天然ガス通流路Lt1と、第2熱交換器EX2に液化天然ガスを導いた後に冷却器72と第1熱交換器EX1との間の第1液化天然ガス通流路Lt1に連通接続する第2液化天然ガス通流路Lt2とから成る。
第1液化天然ガス通流路Lt1と第2液化天然ガス通流路Lt2との上流側分岐部には、第1液化天然ガス通流路Lt1の側と第2液化天然ガス通流路Lt2の側とへの液化天然ガスの流量比を制御自在な流量調整弁Vが設けられており、当該流量調整弁Vにより、流量比が適切な流量に制御される。
The liquefied natural gas passage Lt is a passage through which the liquefied natural gas flows, and is arranged so that the liquefied natural gas flows at least in the order described in the radiator 82 and the cooler 72.
The liquefied natural gas flow path Lt includes a first liquefied natural gas flow path Lt1 that guides liquefied natural gas in the order described in the radiator 82, the cooler 72, and the first heat exchanger EX1, and a second heat exchanger. After the liquefied natural gas is guided to EX2, the second liquefied natural gas flow path Lt2 is connected to the first liquefied natural gas flow path Lt1 between the cooler 72 and the first heat exchanger EX1.
At the upstream branch portion between the first liquefied natural gas flow path Lt1 and the second liquefied natural gas flow path Lt2, the first liquefied natural gas flow path Lt1 side and the second liquefied natural gas flow path Lt2 A flow rate adjustment valve V that can control the flow rate ratio of the liquefied natural gas to the side is provided, and the flow rate control valve V controls the flow rate ratio to an appropriate flow rate.

<第2実施形態>
さて、第1実施形態で説明した液化ガス製造システム100では、単一の原動機70及び単一の音響ヒートポンプ部80を備える構成例を示した。当該原動機70及び音響ヒートポンプ部80は複数設けられていても構わない。特に、原動機70を多段にすることで、一般に300℃〜700℃と高い熱音響機関の発振温度を低下させる研究が進められている。
当該第2実施形態に係る液化ガス製造システム100では2つの原動機70を、第1ループ管T1に備える構成例を示す。尚、当該第2実施形態に係る液化ガス製造システム100では、2つの原動機70を備える構成、及びそれに伴う流路構成が異なるものであり、それ以外の構成については、上記第1実施形態に係る液化ガス製造システム100と同一であるので、説明を割愛することになる。
Second Embodiment
Now, in the liquefied gas manufacturing system 100 demonstrated in 1st Embodiment, the structural example provided with the single motor | power_engine 70 and the single acoustic heat pump part 80 was shown. A plurality of the prime mover 70 and the acoustic heat pump unit 80 may be provided. In particular, research is being conducted to lower the oscillation temperature of a thermoacoustic engine, which is generally as high as 300 ° C. to 700 ° C., by making the prime mover 70 multistage.
In the liquefied gas manufacturing system 100 according to the second embodiment, a configuration example in which two prime movers 70 are provided in the first loop pipe T1 is shown. In the liquefied gas manufacturing system 100 according to the second embodiment, the configuration including the two prime movers 70 and the flow path configuration associated therewith are different, and other configurations are related to the first embodiment. Since it is the same as the liquefied gas manufacturing system 100, description will be omitted.

第2実施形態に係る液化ガス製造システム100は、図2に示すように、第1原動機70aと第2原動機70bとを第1ループ管T1に備えるものであり、第1原動機70aを構成する第1加熱器71a、第1冷却器72a、第1原動機側再生器73a、及び第2原動機70bを構成する第2加熱器71b、第2冷却器72b、第2原動機側再生器73bの夫々の構成は、第1実施形態の原動機70の加熱器71、冷却器72、原動機側再生器73の夫々の構成と変わるところがない。   As shown in FIG. 2, the liquefied gas production system 100 according to the second embodiment includes the first prime mover 70a and the second prime mover 70b in the first loop pipe T1, and the first prime mover 70a constituting the first prime mover 70a. 1 heater 71a, 1st cooler 72a, 1st prime mover side regenerator 73a, 2nd prime mover 70b which constitutes 2nd prime mover 70b, each composition of 2nd cooler 72b, 2nd prime mover side regenerator 73b Are the same as the configurations of the heater 71, the cooler 72, and the prime mover side regenerator 73 of the prime mover 70 of the first embodiment.

さて、音響ヒートポンプ部80の放熱器82を通流する液化天然ガスの流量、及び吸熱器81を通流する液化対象ガスの流量及び温度及び状態(液体又は気体)にもよるが、放熱器82を通過した後の液化天然ガスは、また潜熱を十分に保有している場合がある。
このような場合には、第1液化天然ガス通流路Lt1は、複数の冷却器(当該第2実施形態にあっては、第1冷却器72a及び第2冷却器72b)に対して直列に液化天然ガスを通流するよう配設することが好ましい。当該構成を採用することで、第1液化天然ガス通流路Lt1を分岐させる場合に比べ、複数の冷却器の夫々に対して十分な流量で、且つ沸点(−162℃)の十分に低温の液化天然ガスを導くことができる。
Now, depending on the flow rate of the liquefied natural gas that flows through the radiator 82 of the acoustic heat pump unit 80 and the flow rate, temperature, and state (liquid or gas) of the liquefied target gas that flows through the heat absorber 81, the radiator 82. The liquefied natural gas after passing through may also have sufficient latent heat.
In such a case, the first liquefied natural gas flow path Lt1 is in series with the plurality of coolers (in the second embodiment, the first cooler 72a and the second cooler 72b). It is preferable to arrange the liquefied natural gas to flow therethrough. By adopting this configuration, compared with the case where the first liquefied natural gas flow path Lt1 is branched, the flow rate is sufficient for each of the plurality of coolers and the boiling point (-162 ° C.) is sufficiently low. Liquefied natural gas can be guided.

一方、液化対象ガスを通流する液化対象ガス通流路Laは、複数の原動機(第1原動機70a及び第2原動機70b)の夫々で、加熱器71と冷却器72との間で略同程度の温度差をつけて、効率良く音響エネルギを発生させる意味で、第1加熱器71aと第2加熱器71bとの夫々に並列に液化対象ガスを導く構成を採用することが好ましい。即ち、当該第2実施形態に係る液化ガス製造システム100では、液化対象ガス通流路Laが、第1加熱器71aへ液化対象ガスを導く第1液化対象ガス通流路La1と、第2加熱器71bへ液化対象ガスを導く第2液化対象ガス通流路La2とを備える。   On the other hand, the liquefaction target gas flow path La through which the liquefaction target gas flows is approximately the same between the heater 71 and the cooler 72 in each of the plurality of prime movers (first prime mover 70a and second prime mover 70b). In order to efficiently generate acoustic energy, it is preferable to adopt a configuration in which the liquefying target gas is guided in parallel to each of the first heater 71a and the second heater 71b. That is, in the liquefied gas manufacturing system 100 according to the second embodiment, the liquefying target gas flow passage La has the first liquefying target gas flow passage La1 that guides the liquefied target gas to the first heater 71a, and the second heating. And a second liquefaction target gas passage La2 that guides the liquefaction target gas to the vessel 71b.

〔試算結果〕
上記第2実施形態に係る液化ガス製造システム100に関し、熱音響機関が発振し、且つ液化対象ガスを液化する場合の、及び当該第2実施形態に係る構成を採用した場合の原動機70と音響ヒートポンプ部80との形状・配置状態の一例、及びその状態における液化対象ガス及び液化天然ガスとの流量・温度バランスの一例を示すべく、シミュレーションを行った。
尚、当該シミュレーションでは、図2に示す液化ガス製造システムにおいて、音響筒Tの内径30mmとし、原動機側再生器73及び音響側再生器83の水力半径を0.019mm、空隙率を85%、再生器の薄板状部材としての金属メッシュの目開きを0.057mm、線径を0.016mm、作動媒体を6Mpaのヘリウムとした。また、第1原動機側再生器73aの軸方向長さを0.03m、第2原動機側再生器73bの軸方向長さを0.03m、音響側再生器83の軸方向項長さを0.25mとした。
[Estimated results]
Regarding the liquefied gas production system 100 according to the second embodiment, the motor 70 and the acoustic heat pump when the thermoacoustic engine oscillates and liquefyes the liquefied target gas and when the configuration according to the second embodiment is adopted. A simulation was performed to show an example of the shape / arrangement state with the unit 80 and an example of the flow rate / temperature balance between the liquefied target gas and the liquefied natural gas in that state.
In the simulation, in the liquefied gas production system shown in FIG. 2, the acoustic cylinder T has an inner diameter of 30 mm, the hydraulic radius of the prime mover side regenerator 73 and the acoustic side regenerator 83 is 0.019 mm, the porosity is 85%, The mesh of the metal mesh as the thin plate member of the vessel was 0.057 mm, the wire diameter was 0.016 mm, and the working medium was 6 Mpa helium. Further, the axial length of the first motor side regenerator 73a is 0.03 m, the axial length of the second motor side regenerator 73b is 0.03 m, and the axial length of the acoustic side regenerator 83 is .0. It was 25 m.

粒径に比べて波長が十分に長い(平面方向(軸径方向)での粒子速度が十分に小さいこと、音響筒の軸径方向での圧力、密度が一定であること、音響筒の内壁面からの距離に依存する熱拡散、粘性散逸を断面平均して一次元化することを条件として、連続の式〔数1〕と、ナビエ・ストークスの式〔数2〕と、熱輸送の一般式〔数3〕とから、〔数4〕を得た。   The wavelength is sufficiently long compared to the particle size (the particle velocity in the plane direction (axial direction) is sufficiently small, the pressure and density in the axial direction of the acoustic cylinder are constant, the inner wall surface of the acoustic cylinder On the condition that the thermal diffusion and viscosity dissipation depending on the distance from the cross section are averaged and made one-dimensional, the continuous equation [Equation 1], the Navier-Stokes equation [Equation 2], and the general equation for heat transport From [Equation 3], [Equation 4] was obtained.

Figure 2019168207
Figure 2019168207

Figure 2019168207
Figure 2019168207

Figure 2019168207
〔数1〕、〔数2〕、〔数3〕において、ρは密度、uは軸方向粒子速度、vは軸径方向粒子速度、Tは温度、Cpは定圧比熱、λは熱伝導率、xは軸方向座標、rは軸径方向座標、μは粘性係数である。
Figure 2019168207
In [Equation 1], [Equation 2], and [Equation 3], ρ is density, u is axial particle velocity, v is axial radial particle velocity, T is temperature, Cp is constant pressure specific heat, λ is thermal conductivity, x is an axial coordinate, r is an axial radial coordinate, and μ is a viscosity coefficient.

Figure 2019168207
ここで、Pは圧力振幅、〈u〉は断面平均体積流速振幅(粒子速度振幅)、jは虚数、ωは角周波数、ρは平均密度、Pは平均圧力、γは比熱比、σはプラントル数、Tは平均温度である。
また、χαは筒軸径方向での熱拡散分布の平均とし、χは筒軸径方向での粘性散逸分布の平均である。
Figure 2019168207
Here, P is a pressure amplitude, <u> r is a cross-sectional average volume flow velocity amplitude (particle velocity amplitude), j is an imaginary number, ω is an angular frequency, ρ m is an average density, P m is an average pressure, γ is a specific heat ratio, σ is the Prandtl number and T m is the average temperature.
Χ α is the average of the thermal diffusion distribution in the cylinder axis radial direction, and χ v is the average of the viscous dissipation distribution in the cylinder axis radial direction.

〔数4〕の行列Aの固有値と固有ベクトルを求め対角化を行うと、x=0(図3でx)におけるP(0)とU(0)を用いて、連続なx点の情報を得ることが可能な以下の〔数5〕を得る。 When the eigenvalues and eigenvectors of the matrix A in [Equation 4] are obtained and diagonalized, information on continuous x points is obtained using P (0) and U (0) at x = 0 (x 0 in FIG. 3). The following [Equation 5] is obtained.

Figure 2019168207
ただし、
Figure 2019168207
Figure 2019168207
However,
Figure 2019168207

更に、〔数5〕を連続空間毎に以下の〔数6〕のように連結することで、全体の音場を求める。   Further, the whole sound field is obtained by connecting [Equation 5] as shown in [Equation 6] below for each continuous space.

Figure 2019168207
Figure 2019168207

まず、図3における第1ループ管T1の始点のP(x)とU(x)と、第1ループ筒T1の終点のU(x)と、〔数5〕を連結して得られる第1ループ管T1の伝達マトリクスCとを用い、第1ループ管T1の始点と終点との接合点における圧力振幅が等しいという境界条件から、以下の〔数7〕が成立する。 First, P (x 0 ) and U (x 0 ) at the start point of the first loop tube T1 in FIG. 3, U (x 9 ) at the end point of the first loop cylinder T1, and [Equation 5] are obtained. using the transfer matrix C e of the first loop pipe T1 which is, from the boundary condition that the pressure amplitude equal at the junction point between the start and end points of the first loop pipe T1, the following [Equation 7] is satisfied.

Figure 2019168207
Figure 2019168207

同様に、図3における第2ループ管T2の始点のP(x10)とU(x10)と、第2ループ管T2の終点のU(x15)と、〔数5〕を連結して得られる第2ループ管T2の伝達マトリクスCとを用い、第2ループ管T2の始点と終点との接合点における圧力振幅が等しいという境界条件から、以下の〔数8〕が成立する。 Similarly, P (x 10 ) and U (x 10 ) at the start point of the second loop pipe T2 in FIG. 3 and U (x 15 ) at the end point of the second loop pipe T2 are connected to [Equation 5]. Using the obtained transfer matrix C f of the second loop tube T2, the following [Equation 8] is established from the boundary condition that the pressure amplitude at the junction between the start point and the end point of the second loop tube T2 is equal.

Figure 2019168207
Figure 2019168207

最後に、連結管と第1ループ管T1との接合点xr1、連結管と第2ループ管T2との接合点xr2における体積流速振幅を夫々U(xr1)、U(xr2)とすると、以下の〔数9〕〔数10〕の関係が存在する。 Finally, the volume flow velocity amplitudes at the junction x r1 between the connecting pipe and the first loop pipe T1 and at the junction x r2 between the connecting pipe and the second loop pipe T2 are U (x r1 ) and U (x r2 ), respectively. Then, the following relationships [Equation 9] [Equation 10] exist.

Figure 2019168207
Figure 2019168207

Figure 2019168207
Figure 2019168207

連結管の伝達マトリクスをCとし、〔数9〕、〔数10〕を用いると、以下の〔数11〕が得られる。 The transfer matrix of the connecting pipe and C r, the use of [number 9], [number 10], [Equation 11] is obtained.

Figure 2019168207
Figure 2019168207

〔数7〕、〔数8〕、〔数11〕を連立し、PとUを消去すると以下の〔数12〕が得られる。   When [Formula 7], [Formula 8], and [Formula 11] are connected and P and U are deleted, the following [Formula 12] is obtained.

Figure 2019168207
Figure 2019168207

〔数12〕には圧力振幅P及び断面平均体積流速振幅〈u〉の項が存在しないため、振動量の大きさに依存することなく、動作条件を決定できる。Aマトリクスに含まれる再生器温度、再生器流路径等と、Cマトリクスに含まれる装置形状情報を変更した場合に、〔数12〕を満たす条件が動作条件となる。 In [Equation 12], the terms of pressure amplitude P and cross-sectional average volume flow velocity amplitude <u> r do not exist, so that the operating condition can be determined without depending on the magnitude of the vibration amount. When the regenerator temperature, the regenerator channel diameter, etc. included in the A matrix and the apparatus shape information included in the C matrix are changed, the condition satisfying [Equation 12] is the operating condition.

〔数12〕を満たす条件として、本発明の発明者らは、図3において、x=0m、x=1.4m、x=1.43m、x=1.46m、x=1.49m、x=1.54m、x=1.57m、x=1.60m、x=1.63m、x=1.81m、x10=1.5.62m、x11=6.97m、x12=7.00m、x13=7.25m、x14=7.28m、x15=7.45mとして、原動機70、音響ヒートポンプ部80、音響筒Tの形状・配置状態を決定した。 As conditions satisfying [Equation 12], the inventors of the present invention in FIG. 3, x 0 = 0 m, x 1 = 1.4 m, x 2 = 1.43 m, x 3 = 1.46 m, x 4 = 1.49m, x 5 = 1.54m, x 6 = 1.57m, x 7 = 1.60m, x 8 = 1.63m, x 9 = 1.81m, x 10 = 1.5.62m, x 11 = 6.97 m, x 12 = 7.00 m, x 13 = 7.25 m, x 14 = 7.28 m, x 15 = 7.45 m, the shape and arrangement of the prime mover 70, the acoustic heat pump unit 80, and the acoustic cylinder T It was determined.

更に、第1液化天然ガス通流路Lt1を通流する液化天然ガスの初期状態を、液体100%、流量を1t/hとした場合、吸熱器81を−162℃で通過するときに、通過前の液体100%から通過後に液体50%気体50%に状態変化する形で69kWの熱を回収し、第1冷却器72aを−162℃で通過するときに、通過前の液体50%気体50%から通過後に液体29%気体71%に状態変化する形で30kWの熱を回収し、第2冷却器72bを−162℃で通過するときに、通過前の液体29%気体71%から通過後に液体19%気体81%に状態変化する形で13kWの熱を回収し、その後、第1熱交換器EX1を通過すると試算された。更に、第2液化天然ガス通流路Lt2を通流する液化天然ガスは、流量を1t/hとし、第2熱交換器EX2、第1熱交換器EX1を記載の順に通過するとした。   Furthermore, when the initial state of the liquefied natural gas flowing through the first liquefied natural gas passage Lt1 is 100% liquid and the flow rate is 1 t / h, it passes when passing through the heat absorber 81 at −162 ° C. When the heat of 69 kW is recovered in a state of changing from 100% of the previous liquid to 50% of the liquid after passage and passing through the first cooler 72a at −162 ° C., the liquid 50% of the liquid 50% before passage is 50%. 30% of the heat is recovered in a form that changes from 71% to 71% liquid 29% after passing, and when passing through the second cooler 72b at -162 ° C, after passing from 71% liquid 29% gas before passing. It was estimated that 13 kW of heat was recovered while changing the state to 19% liquid and 81% gas, and then passed through the first heat exchanger EX1. Furthermore, the liquefied natural gas flowing through the second liquefied natural gas passage Lt2 has a flow rate of 1 t / h and passes through the second heat exchanger EX2 and the first heat exchanger EX1 in the order described.

また、第1液化対象ガス通流路La1を通流する液化対象ガスとしての空気(窒素)の初期状態を、気体100%、流量を3.8t/hとした場合、第1加熱器71aを30℃で流入して−30℃で流出することで、65kWの熱を供給した。第2液化対象ガス通流路La2を通流する液化対象ガスは、流量を1.6t/hとし、第2加熱器71bを30℃で流入して−30℃で流出することで、27kWの熱を供給すると試算された。第1液化対象ガス通流路La1と第2液化対象ガス通流路La2を通流して合流した液化対象ガスは、第1熱交換器EX1及び第2熱交換器EX2で冷却された後、流量が2.7t/hの−162℃の窒素となり、放熱器82を通過して−196℃の沸点まで降温し液体100%となる形で、19kWを放熱すると試算された。
当該条件で上記〔数12〕を満たすことを確認し、第1原動機側再生器73aでは35kWの音響エネルギが生成され、第2原動機側再生器73bでは15kWの音響エネルギが生成され、音響側再生器83にて当該音響エネルギ50kWが消費される試算となった。
また、音響筒Tの筒軸心方向での各位置における圧力振幅、音響エネルギ、粒子速度振幅は、図4のように試算された。
Moreover, when the initial state of air (nitrogen) as the liquefaction target gas flowing through the first liquefaction target gas passage La1 is 100% gas and the flow rate is 3.8 t / h, the first heater 71a is By flowing in at 30 ° C. and flowing out at −30 ° C., 65 kW of heat was supplied. The liquefaction target gas flowing through the second liquefaction target gas passage La2 has a flow rate of 1.6 t / h, flows into the second heater 71b at 30 ° C., and flows out at −30 ° C. Estimated to supply heat. The liquefaction target gas that has flowed through the first liquefaction target gas passage La1 and the second liquefaction target gas passage La2 is cooled by the first heat exchanger EX1 and the second heat exchanger EX2, and then the flow rate is increased. It was estimated that 19 kW was dissipated in the form of 2.7 t / h of nitrogen at −162 ° C., passing through the radiator 82, falling to the boiling point of −196 ° C. and becoming 100% liquid.
It is confirmed that the above [Equation 12] is satisfied under the conditions, and 35 kW of acoustic energy is generated in the first prime mover side regenerator 73a, and 15 kW of acoustic energy is generated in the second prime mover side regenerator 73b. It was estimated that the acoustic energy of 50 kW was consumed by the device 83.
Further, the pressure amplitude, acoustic energy, and particle velocity amplitude at each position in the axial direction of the acoustic cylinder T were calculated as shown in FIG.

〔別実施形態〕
(1)上記実施形態においては、第1熱交換器EX1及び第2熱交換器EX2を備える構成を示したが、液化対象ガスの流量に対して液化天然ガスの流量が十分に確保できる場合等では、当該第1熱交換器EX1及び第2熱交換器EX2は設けない構成を採用しても構わないし、何れか一方を設ける構成を採用しても構わない。
また、第2熱交換器EX2を設けない場合、第2液化天然ガス通流路Lt2は設けない構成が採用される。
[Another embodiment]
(1) In the said embodiment, although the structure provided with the 1st heat exchanger EX1 and the 2nd heat exchanger EX2 was shown, when the flow volume of liquefied natural gas can fully ensure with respect to the flow volume of liquefaction object gas etc. Then, the structure which does not provide the said 1st heat exchanger EX1 and the 2nd heat exchanger EX2 may be employ | adopted, and the structure which provides either one may be employ | adopted.
Moreover, when not providing 2nd heat exchanger EX2, the structure which does not provide 2nd liquefied natural gas passage Lt2 is employ | adopted.

(2)上記第1実施形態において、第2熱交換器EX2の下流側の第2液化天然ガス通流路Lt2は、冷却器72と第1熱交換器EX1との間の第1液化天然ガス通流路Lt1に連通接続される構成を示した。
しかしながら、当該第2液化天然ガス通流路Lt2は、吸熱器81と冷却器72との間の第1液化天然ガス通流路Lt1に連通接続される構成を採用しても構わない。
これにより、第2熱交換器EX2を通過した後の液化天然ガスが有する冷熱を第1熱交換器EX1のみならず、冷却器72でも利用可能となる。
また、第2熱交換器EX2の下流側の第2液化天然ガス通流路Lt2は、冷熱を保有してない状態である場合、第1熱交換器EX1等の他の機器を通流することなく、下流の都市ガス通流路(図示せず)に導かれる構成を採用しても構わない。
(2) In the first embodiment, the second liquefied natural gas passage Lt2 on the downstream side of the second heat exchanger EX2 is the first liquefied natural gas between the cooler 72 and the first heat exchanger EX1. The configuration in which the communication channel Lt1 is connected in communication is shown.
However, the second liquefied natural gas flow path Lt2 may be configured to be connected to the first liquefied natural gas flow path Lt1 between the heat absorber 81 and the cooler 72.
As a result, the cold heat of the liquefied natural gas after passing through the second heat exchanger EX2 can be used not only in the first heat exchanger EX1 but also in the cooler 72.
In addition, when the second liquefied natural gas flow path Lt2 on the downstream side of the second heat exchanger EX2 is in a state where it does not hold cold, it passes other equipment such as the first heat exchanger EX1. Alternatively, a configuration that leads to a downstream city gas passage (not shown) may be employed.

尚、上記該実施形態では、空気は加圧せずに液化窒素を製造する例を示したが、空気を加圧する構成を採用しても構わない。例えば、空気を1MPa程度に加圧することで、酸素の液化温度は−155°程度となるため、第2熱交換器EX2において、図示しない精留塔等により、酸素を深冷分離する構成を採用できる。
当該加圧を行う構成における圧力は、熱音響機関を用いない従来の液化ガス製造設備での加圧圧力(例えば、3.7Mpa)に比べて、十分に低い圧力になる。このため、省費電力の低減を図ることができる。また、第2熱交換器EX2にて酸素を深冷分離できるため、上記実施形態に記載の構成に比して、簡素な構成を採用できる。
In the above-described embodiment, an example in which liquefied nitrogen is produced without pressurizing air is shown, but a configuration in which air is pressurized may be adopted. For example, by pressurizing the air to about 1 MPa, the liquefaction temperature of oxygen becomes about −155 °. Therefore, the second heat exchanger EX2 adopts a configuration in which oxygen is cryogenically separated by a rectification tower or the like (not shown). it can.
The pressure in the configuration for performing the pressurization is sufficiently lower than the pressurization pressure (for example, 3.7 MPa) in a conventional liquefied gas production facility that does not use a thermoacoustic engine. For this reason, it is possible to reduce power consumption. Moreover, since oxygen can be deep-cooled and separated by the second heat exchanger EX2, a simple configuration can be adopted as compared to the configuration described in the above embodiment.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明の液化ガス製造システムは、液化対象ガスの深冷分離及び液化に伴うエネルギを低減して経済性を改善でき、且つ、メンテナンスフリーの液化ガス製造システムとして、有効に利用可能である。   INDUSTRIAL APPLICABILITY The liquefied gas production system of the present invention can be used effectively as a maintenance-free liquefied gas production system that can improve the economy by reducing the energy associated with the cryogenic separation and liquefaction of the gas to be liquefied.

70 :原動機
71 :加熱器
72 :冷却器
73 :原動機側再生器
80 :音響ヒートポンプ部
81 :吸熱器
82 :放熱器
83 :音響側再生器
90 :熱音響機関
100 :液化ガス製造システム
EX1 :第1熱交換器
EX2 :第2熱交換器
La :液化対象ガス通流路
La1 :第1液化対象ガス通流路
La2 :第2液化対象ガス通流路
Lt :液化天然ガス通流路
T :音響筒
70: prime mover 71: heater 72: cooler 73: prime mover side regenerator 80: acoustic heat pump unit 81: heat absorber 82: radiator 83: acoustic side regenerator 90: thermoacoustic engine 100: liquefied gas production system EX1: first 1 heat exchanger EX2: second heat exchanger La: liquefaction target gas flow path La1: first liquefaction target gas flow path La2: second liquefaction target gas flow path Lt: liquefied natural gas flow path T: acoustic Tube

Claims (5)

液化天然ガスの冷熱を利用して液化対象ガスを液化する液化ガス製造システムであって、
作動媒体が充填され音波が伝播する音響筒に、前記作動媒体を外部から加熱する加熱器と前記作動媒体を外部から冷却する冷却器と前記加熱器と前記冷却器との間で音波の音響エネルギを増幅する原動機側再生器とから成る原動機を少なくとも1つ以上設けると共に、前記作動媒体が外部から吸熱する吸熱器と前記作動媒体が外部へ放熱する放熱器と前記吸熱器と前記放熱器との間で音波が音響エネルギを消費する形態で圧縮及び膨張する音響側再生器とから成る音響ヒートポンプ部を少なくとも1つ以上設ける熱音響機関と、
前記液化対象ガスを前記加熱器と前記吸熱器とに記載の順に導く液化対象ガス通流路と、
前記液化天然ガスを前記放熱器と前記冷却器とに記載の順に導く液化天然ガス通流路とを備える液化ガス製造システム。
A liquefied gas production system for liquefying a liquefied gas using the cold heat of liquefied natural gas,
An acoustic cylinder filled with a working medium and in which sound waves propagate, a heater that heats the working medium from the outside, a cooler that cools the working medium from the outside, and the acoustic energy of sound waves between the heater and the cooler At least one prime mover comprising a prime mover side regenerator that amplifies the heat, a heat absorber that absorbs heat from the outside of the working medium, a radiator that dissipates heat from the working medium to the outside, the heat absorber, and the radiator A thermoacoustic engine provided with at least one acoustic heat pump unit composed of an acoustic-side regenerator that compresses and expands in a form in which sound waves consume acoustic energy,
A liquefaction target gas flow path for guiding the liquefaction target gas in the order described in the heater and the heat absorber;
A liquefied gas production system comprising a liquefied natural gas passage for guiding the liquefied natural gas in the order of description to the radiator and the cooler.
前記液化対象ガスと前記液化天然ガスとを熱交換する第1熱交換器を備え、
前記液化対象ガス通流路は、前記加熱器と前記第1熱交換器と前記吸熱器とに記載の順に前記液化対象ガスを導く通流路であり、
前記液化天然ガス通流路は、前記放熱器と前記冷却器と前記第1熱交換器とに記載の順に前記液化天然ガスを導く通流路である請求項1に記載の液化ガス製造システム。
A first heat exchanger that exchanges heat between the liquefied gas and the liquefied natural gas;
The liquefaction target gas flow path is a flow path that guides the liquefaction target gas in the order described in the heater, the first heat exchanger, and the heat absorber,
2. The liquefied gas production system according to claim 1, wherein the liquefied natural gas flow path is a flow path that guides the liquefied natural gas in the order of the radiator, the cooler, and the first heat exchanger.
前記液化対象ガスと前記液化天然ガスとを熱交換する第2熱交換器を備え、
前記液化対象ガス通流路は、前記加熱器と前記第1熱交換器と前記第2熱交換器と前記吸熱器とに記載の順に前記液化対象ガスを導く通流路であり、
前記液化天然ガス通流路は、前記放熱器と前記冷却器と前記第1熱交換器とに前記液化天然ガスを導く第1液化天然ガス通流路と、前記第2熱交換器に前記液化天然ガスを導く第2液化天然ガス通流路とを有する請求項2に記載の液化ガス製造システム。
A second heat exchanger for exchanging heat between the liquefied gas and the liquefied natural gas;
The liquefaction target gas flow path is a flow path that guides the liquefaction target gas in the order described in the heater, the first heat exchanger, the second heat exchanger, and the heat absorber,
The liquefied natural gas flow path includes a first liquefied natural gas flow path that guides the liquefied natural gas to the radiator, the cooler, and the first heat exchanger, and the liquefied natural gas to the second heat exchanger. The liquefied gas manufacturing system according to claim 2, further comprising a second liquefied natural gas passage for guiding natural gas.
前記第2液化天然ガス通流路の前記第2熱交換器の下流端は、少なくとも前記第1液化天然ガス通流路の前記放熱器よりも下流側に連通接続される請求項3に記載の液化ガス製造システム。   The downstream end of the second heat exchanger of the second liquefied natural gas flow path is connected to at least a downstream side of the radiator of the first liquefied natural gas flow path. Liquefied gas production system. 前記原動機が複数設けられる構成において、
前記液化天然ガス通流路は、複数の前記冷却器に直列に前記液化天然ガスを導く通流路であり、
前記液化対象ガス通流路は、複数の前記加熱器に並列に前記液化対象ガスを導く通流路である請求項1〜4の何れか一項に記載の液化ガス製造システム。
In a configuration in which a plurality of the prime movers are provided,
The liquefied natural gas flow path is a flow path that guides the liquefied natural gas in series to a plurality of the coolers,
The liquefied gas production system according to any one of claims 1 to 4, wherein the liquefaction target gas passage is a passage through which the liquefaction target gas is guided in parallel to the plurality of heaters.
JP2018058689A 2018-03-26 2018-03-26 Liquefied gas production system Active JP7045896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018058689A JP7045896B2 (en) 2018-03-26 2018-03-26 Liquefied gas production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058689A JP7045896B2 (en) 2018-03-26 2018-03-26 Liquefied gas production system

Publications (2)

Publication Number Publication Date
JP2019168207A true JP2019168207A (en) 2019-10-03
JP7045896B2 JP7045896B2 (en) 2022-04-01

Family

ID=68106729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058689A Active JP7045896B2 (en) 2018-03-26 2018-03-26 Liquefied gas production system

Country Status (1)

Country Link
JP (1) JP7045896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805682A1 (en) * 2019-10-08 2021-04-14 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Device for the suppression of acoustic streaming in thermoacoustic systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234820A (en) * 2012-05-10 2013-11-21 Honda Motor Co Ltd Thermoacoustic engine
JP2016044549A (en) * 2014-08-19 2016-04-04 東邦瓦斯株式会社 Thermoacoustic device
CN105698430A (en) * 2016-02-03 2016-06-22 同济大学 Thermoacoustic refrigerating system and application thereof
JP2016183767A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Vaporization facility
JP2017180746A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Re-liquefaction facility for boil-off gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234820A (en) * 2012-05-10 2013-11-21 Honda Motor Co Ltd Thermoacoustic engine
JP2016044549A (en) * 2014-08-19 2016-04-04 東邦瓦斯株式会社 Thermoacoustic device
JP2016183767A (en) * 2015-03-26 2016-10-20 大阪瓦斯株式会社 Vaporization facility
CN105698430A (en) * 2016-02-03 2016-06-22 同济大学 Thermoacoustic refrigerating system and application thereof
JP2017180746A (en) * 2016-03-31 2017-10-05 大阪瓦斯株式会社 Re-liquefaction facility for boil-off gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805682A1 (en) * 2019-10-08 2021-04-14 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Device for the suppression of acoustic streaming in thermoacoustic systems
WO2021069618A1 (en) * 2019-10-08 2021-04-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Device for the suppression of acoustic streaming in thermoacoustic systems

Also Published As

Publication number Publication date
JP7045896B2 (en) 2022-04-01

Similar Documents

Publication Publication Date Title
Jin et al. Acoustic field characteristics and performance analysis of a looped travelling-wave thermoacoustic refrigerator
US9777951B2 (en) Thermoacoustic engine
Chi et al. Study of a gas-liquid-coupled heat-driven room-temperature thermoacoustic refrigerator with different working gases
WO2018137503A1 (en) Heat transfer method and heat transfer system based on heat-pressure conversion effect
Dong et al. The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine
CN107131784A (en) Soaking plate based on flat board loop circuit heat pipe
JP2019168207A (en) Liquefied gas manufacturing system
WO2018066250A1 (en) Energy conversion device
JP6604885B2 (en) Boil-off gas reliquefaction facility
US10415757B2 (en) System for exchanging heat between liquefied natural gas and a heat dissipation apparatus
JP2007530905A (en) Pulse tube refrigerator for changing average pressure
JP3216536U (en) Thermoacoustic engine
Sakamoto et al. Improvement in performance of stack as heat pump of thermoacoustic cooling system: Effect of thickness of heat boundary layer upon cooling effect
JP2018150899A (en) Gas cooling system
US11477918B2 (en) Heat exchange system
CN106568221B (en) A kind of acoustic power recovery scale-up version multi-stage cascade vascular refrigerator
JP6846940B2 (en) Steam generator
Hu et al. A displacer coupled thermoacoustic cooler driven by heat and electricity
JP2018091580A (en) Thermoacoustic engine
CN202381273U (en) Mobile energy supply device based on compressed natural gas
JP2022063448A (en) Thermoacoustic device
JP2008025973A (en) Heat exchange system
JP2010261688A (en) Thermoacoustic engine
Yu et al. Numerical analysis of a thermally driven thermoacoustic heat pump for low-grade heat recovery
JP6681815B2 (en) Methane recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220322

R150 Certificate of patent or registration of utility model

Ref document number: 7045896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150