JP2012251516A - Waste heat recovery apparatus - Google Patents

Waste heat recovery apparatus Download PDF

Info

Publication number
JP2012251516A
JP2012251516A JP2011126331A JP2011126331A JP2012251516A JP 2012251516 A JP2012251516 A JP 2012251516A JP 2011126331 A JP2011126331 A JP 2011126331A JP 2011126331 A JP2011126331 A JP 2011126331A JP 2012251516 A JP2012251516 A JP 2012251516A
Authority
JP
Japan
Prior art keywords
heat
flow path
refrigerant
expander
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011126331A
Other languages
Japanese (ja)
Inventor
Hidefumi Mori
英文 森
Masao Iguchi
雅夫 井口
Fuminobu Enoshima
史修 榎島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011126331A priority Critical patent/JP2012251516A/en
Priority to PCT/JP2012/063469 priority patent/WO2012169376A1/en
Publication of JP2012251516A publication Critical patent/JP2012251516A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid decrease in efficiency of waste heat recovery while reducing warm-up time of a heat engine.SOLUTION: A rankine cycle circuit 13 comprises an expander 31, a heat exchanger 47, a condenser 49, a pump 41, and a boiler 42. A high temperature and high pressure cooling medium heated by the boiler 42 is introduced into the expander 31 via a supply flow path 46. A heat exchanger 47 is provided downstream of the expander 31. The condenser 49 is provided downstream of the heat exchanger 47. The low-pressure cooling medium expanded by the expander 31 is sent to the condenser 49 via the heat exchanger 47. The heat exchanger 47 comprises a heat dissipation part 471 and a heat absorption part 472. A discharge flow path 48 and a connection flow path 50 are connected via the heat dissipation part 471. A heat absorption part 422 is provided at a branch flow path 521 of a cooling water circulation passage 52 connected to an engine 12.

Description

本発明は、熱機関の廃熱を回収する廃熱回収装置に関する。   The present invention relates to a waste heat recovery apparatus that recovers waste heat of a heat engine.

この種の廃熱回収装置が特許文献1に開示されている。特許文献1に開示の廃熱回収装置では、エンジンから排出された排気ガスの熱を作動流体に伝達する蒸気発生器と、作動流体の熱をエンジン冷却水に伝達する熱交換器とが備えられている。作動流体を膨張機へ送ると、発電機が発電し、発電された電気がバッテリに蓄えられる。   This type of waste heat recovery apparatus is disclosed in Patent Document 1. The waste heat recovery apparatus disclosed in Patent Document 1 includes a steam generator that transmits the heat of exhaust gas discharged from the engine to the working fluid, and a heat exchanger that transfers the heat of the working fluid to the engine coolant. ing. When the working fluid is sent to the expander, the generator generates electricity, and the generated electricity is stored in the battery.

このような構成によれば、排気ガスの熱を利用して発電することができ、しかも排気ガスの熱を冷却水に伝達してエンジンの暖機運転を短縮することができる、という効果の開示がなされている。   According to such a configuration, it is possible to generate power using the heat of the exhaust gas, and to disclose the effect that the heat of the exhaust gas can be transmitted to the cooling water to shorten the engine warm-up operation. Has been made.

特開2005−42618号公報JP 2005-42618 A

しかし、特許文献1の構成であると、エンジン冷却水の温度が上昇した場合には
熱交換器(凝縮器)の凝縮圧が高くなってしまう。そうすると、膨張機から流出した作動流体(気体)を熱交換器(凝縮器)において液化することが困難になり、廃熱回収の効率低下をもたらす。
However, with the configuration of Patent Document 1, when the temperature of the engine coolant increases, the condensation pressure of the heat exchanger (condenser) becomes high. If it does so, it will become difficult to liquefy the working fluid (gas) which flowed out from the expander in a heat exchanger (condenser), and will bring about a reduction in the efficiency of waste heat recovery.

本発明は、熱機関の暖機時間の短縮化を図りつつ廃熱回収の効率低下を回避することを目的とする。   An object of the present invention is to avoid a reduction in the efficiency of waste heat recovery while shortening the warm-up time of a heat engine.

本発明は、熱機関の廃熱を熱源とするボイラと、前記ボイラで熱を与えられた冷媒を導入して廃熱を回収するための膨張機と、前記膨張機から流出した冷媒を凝縮する凝縮器と、前記凝縮器から流出した冷媒を前記ボイラへ送るポンプと、前記ボイラ、前記膨張機、前記凝縮器及び前記ポンプを接続する冷媒流路とを備える廃熱回収装置を対象とし、請求項1の発明では、前記膨張機及び前記凝縮器間の前記冷媒流路と前記熱機関を冷却する冷却液が流れる冷却流路との間で熱交換を行なうための熱交換器が設けられている。   The present invention contemplates a boiler that uses waste heat of a heat engine as a heat source, an expander for recovering waste heat by introducing a refrigerant that is heated by the boiler, and a refrigerant that flows out of the expander Intended for a waste heat recovery apparatus comprising a condenser, a pump for sending refrigerant flowing out of the condenser to the boiler, and a refrigerant flow path connecting the boiler, the expander, the condenser and the pump, In the invention of Item 1, a heat exchanger is provided for heat exchange between the refrigerant flow path between the expander and the condenser and a cooling flow path through which a cooling liquid for cooling the heat engine flows. Yes.

熱交換器における冷却液の温度が膨張機から流出した冷媒の温度より低い場合には、膨張機から流出した冷媒の熱が熱交換器を介して冷却流路内の冷却液に伝達される。これは、熱機関の暖機時間の短縮化をもたらす。熱交換器における冷却液の温度が膨張機から流出した冷媒の温度より高い場合には、膨張機から流出した冷媒は、凝縮器にて放熱する。凝縮器での冷媒の放熱は、冷媒の液化をもたらし、凝縮圧が高くなり熱効率が悪化することはない。これは、廃熱回収の効率低下の回避をもたらす。   When the temperature of the coolant in the heat exchanger is lower than the temperature of the refrigerant that has flowed out of the expander, the heat of the refrigerant that has flowed out of the expander is transferred to the coolant in the cooling channel via the heat exchanger. This leads to a shortening of the warm-up time of the heat engine. When the temperature of the coolant in the heat exchanger is higher than the temperature of the refrigerant that has flowed out of the expander, the refrigerant that has flowed out of the expander radiates heat in the condenser. The heat radiation of the refrigerant in the condenser causes liquefaction of the refrigerant, so that the condensation pressure is increased and the thermal efficiency is not deteriorated. This results in avoiding a reduction in the efficiency of waste heat recovery.

好適な例では、前記熱交換器と並列なバイパス流路が前記膨張機と前記凝縮器との間で設けられており、前記膨張機から流出した冷媒を前記バイパス流路へ供給する割合を調整する調整手段と、前記冷却液の温度を検出する液温度検出手段とが設けられており、前記調整手段は、前記液温度検出手段によって検出された温度に基づいて、前記割合を調整する。   In a preferred example, a bypass flow path parallel to the heat exchanger is provided between the expander and the condenser, and the ratio of supplying the refrigerant flowing out of the expander to the bypass flow path is adjusted. Adjusting means for detecting the temperature of the cooling liquid, and adjusting means for adjusting the ratio based on the temperature detected by the liquid temperature detecting means.

冷却液の温度が低い場合には冷媒を熱交換器へ流し、冷却液の温度が高い場合には冷媒をバイパス流路へ流すことにより、熱機関の暖機時間の短縮化がもたらされると共に、廃熱回収の効率向上が得られる。   When the temperature of the cooling liquid is low, the refrigerant flows to the heat exchanger, and when the temperature of the cooling liquid is high, the refrigerant flows to the bypass flow path, thereby shortening the warm-up time of the heat engine, Increased efficiency of waste heat recovery.

好適な例では、前記ポンプより下流の前記冷媒流路と前記バイパス流路との間で熱交換を行なう内部熱交換器が設けられている。
冷却液の温度が低い場合には冷媒を熱交換器へ流すことにより、熱機関の暖機時間の短縮化が図られる。冷却液の温度が高い場合には冷媒をバイパス流路(つまり内部熱交換器)へ流すことにより、ポンプより下流の冷媒に熱エネルギーが付与され、熱効率が向上する。
In a preferred example, an internal heat exchanger that performs heat exchange between the refrigerant flow path and the bypass flow path downstream from the pump is provided.
When the temperature of the coolant is low, the warm-up time of the heat engine can be shortened by flowing the refrigerant to the heat exchanger. When the temperature of the coolant is high, by flowing the refrigerant to the bypass channel (that is, the internal heat exchanger), thermal energy is imparted to the refrigerant downstream from the pump, and the thermal efficiency is improved.

好適な例では、前記熱交換器と前記凝縮器との間の前記冷媒流路には内部熱交換器が設けられている。
冷却液の温度が低い場合には冷媒を熱交換器へ流すことにより、熱機関の暖機時間の短縮化が図られる。冷却液の温度が高い場合には冷媒をバイパス流路へ流す(つまり熱交換器を迂回させる)ことにより、膨張機から流出した冷媒の熱エネルギーの多くがポンプより下流の冷媒に付与され、熱効率が向上する。
In a preferred example, an internal heat exchanger is provided in the refrigerant flow path between the heat exchanger and the condenser.
When the temperature of the coolant is low, the warm-up time of the heat engine can be shortened by flowing the refrigerant to the heat exchanger. When the temperature of the coolant is high, the refrigerant flows into the bypass flow path (that is, bypasses the heat exchanger), so that most of the heat energy of the refrigerant flowing out of the expander is given to the refrigerant downstream from the pump, and the thermal efficiency Will improve.

本発明は、熱機関の暖機時間の短縮化を図りつつ廃熱回収の効率低下を回避することができるという優れた効果を奏する。   The present invention has an excellent effect of reducing the efficiency of waste heat recovery while shortening the warm-up time of the heat engine.

第1の実施形態の廃熱回収装置を示す模式図。The schematic diagram which shows the waste-heat recovery apparatus of 1st Embodiment. 第2の実施形態の廃熱回収装置を示す模式図。The schematic diagram which shows the waste-heat recovery apparatus of 2nd Embodiment. 第3の実施形態の廃熱回収装置を示す模式図。The schematic diagram which shows the waste heat recovery apparatus of 3rd Embodiment. 第4の実施形態の廃熱回収装置を示す模式図。The schematic diagram which shows the waste-heat recovery apparatus of 4th Embodiment.

以下、本発明を具体化した第1の実施形態を図1に基づいて説明する。
図1に示すように、廃熱回収装置11は、廃熱源としてのエンジン12(熱機関)と、ランキンサイクル回路13とを備えている。
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the waste heat recovery apparatus 11 includes an engine 12 (heat engine) as a waste heat source and a Rankine cycle circuit 13.

ランキンサイクル回路13では、エンジン12からの廃熱によって加熱される冷媒が循環する。廃熱回収装置11を構成する回転電機14は、ランキンサイクル回路13の一部を構成している。   In the Rankine cycle circuit 13, the refrigerant heated by the waste heat from the engine 12 circulates. The rotating electrical machine 14 constituting the waste heat recovery device 11 constitutes a part of the Rankine cycle circuit 13.

次に、廃熱回収装置11におけるランキンサイクル回路13について説明する。
図1に示すように、ランキンサイクル回路13は、回転電機14を構成する膨張機31、熱交換器47、凝縮器49、回転電機14を構成するポンプ41、及びボイラ42によって構成されている。
Next, the Rankine cycle circuit 13 in the waste heat recovery apparatus 11 will be described.
As shown in FIG. 1, the Rankine cycle circuit 13 includes an expander 31 that constitutes the rotating electrical machine 14, a heat exchanger 47, a condenser 49, a pump 41 that constitutes the rotating electrical machine 14, and a boiler 42.

ボイラ42は、放熱部421と吸熱部422とを備える。ポンプ41の吐出側にはボイラ42の吸熱部422が第1流路43を介して接続されている。
放熱部421は、エンジン12に接続された排気通路44上に設けられている。エンジン12からの排気は、放熱部421で放熱した後、マフラ45から排気される。ポンプ41から吐出された冷媒は、ボイラ42の吸熱部422と放熱部421との間での熱交換によりエンジン12からの廃熱によって加熱される。
The boiler 42 includes a heat radiating part 421 and a heat absorbing part 422. A heat absorption part 422 of the boiler 42 is connected to the discharge side of the pump 41 via a first flow path 43.
The heat radiating portion 421 is provided on the exhaust passage 44 connected to the engine 12. The exhaust from the engine 12 is exhausted from the muffler 45 after radiating heat at the heat radiating portion 421. The refrigerant discharged from the pump 41 is heated by the waste heat from the engine 12 by heat exchange between the heat absorbing portion 422 and the heat radiating portion 421 of the boiler 42.

ボイラ42の吸熱部422の吐出側には膨張機31が供給流路46を介して接続されている。ボイラ42で加熱された高温高圧の冷媒は、供給流路46を介して膨張機31に導入されるようになっている。膨張機31には熱交換器47が排出流路48を介して接続されている。熱交換器47には凝縮器49が接続流路50を介して接続されている。膨張機31で膨張した低圧の冷媒は、熱交換器47を経由して凝縮器49へ送られる。凝縮器49の下流側にはポンプ41が第2流路51を介して接続されている。ポンプ41の吸入側には第2流路51が接続されており、ポンプ41の吐出側には第1流路43が接続されている。   The expander 31 is connected to the discharge side of the heat absorption part 422 of the boiler 42 via a supply flow path 46. The high-temperature and high-pressure refrigerant heated by the boiler 42 is introduced into the expander 31 via the supply channel 46. A heat exchanger 47 is connected to the expander 31 via a discharge channel 48. A condenser 49 is connected to the heat exchanger 47 via a connection channel 50. The low-pressure refrigerant expanded by the expander 31 is sent to the condenser 49 via the heat exchanger 47. A pump 41 is connected to the downstream side of the condenser 49 via the second flow path 51. A second flow path 51 is connected to the suction side of the pump 41, and a first flow path 43 is connected to the discharge side of the pump 41.

第2流路51、第1流路43、供給流路46、排出流路48及び接続流路50は、ランキンサイクル回路の冷媒流路を構成する。
熱交換器47は、放熱部471と吸熱部472とを備える。排出流路48と接続流路50とは、放熱部471を介して接続されている。吸熱部472は、エンジン12に接続された冷却流路である冷却水循環経路52の分岐流路521上に設けられている。冷却水循環経路52の分岐流路522にはラジエータ53が設けられている。車両のエンジン12を冷却した冷却水は、温度切換弁54の作用により、水温が高い場合には冷却水循環経路52の分岐流路522を循環してラジエータ53で放熱する。一方、水温が低い場合には冷却水循環経路52の分岐流路521に冷却水が流される。
The second flow path 51, the first flow path 43, the supply flow path 46, the discharge flow path 48, and the connection flow path 50 constitute a refrigerant flow path of the Rankine cycle circuit.
The heat exchanger 47 includes a heat radiating part 471 and a heat absorbing part 472. The discharge flow path 48 and the connection flow path 50 are connected via a heat radiating portion 471. The heat absorption part 472 is provided on the branch flow path 521 of the cooling water circulation path 52 which is a cooling flow path connected to the engine 12. A radiator 53 is provided in the branch flow path 522 of the cooling water circulation path 52. The cooling water that has cooled the engine 12 of the vehicle circulates through the branch flow path 522 of the cooling water circulation path 52 and dissipates heat by the radiator 53 when the water temperature is high due to the action of the temperature switching valve 54. On the other hand, when the water temperature is low, the cooling water flows through the branch flow path 521 of the cooling water circulation path 52.

次に、第1の実施形態の作用を説明する。
ポンプ41のポンプ作用により、第2流路51内の冷媒は、第1流路43、ボイラ42の吸熱部422を通過して供給流路46へ送られる。
Next, the operation of the first embodiment will be described.
Due to the pumping action of the pump 41, the refrigerant in the second flow path 51 passes through the first flow path 43 and the heat absorption part 422 of the boiler 42 and is sent to the supply flow path 46.

ボイラ42で加熱された高圧の冷媒は、膨張機31に導入されて膨張する。この冷媒の膨張により膨張機31が機械的エネルギー(回転付与力)を出力する。つまり、膨張機31は、冷媒を利用して膨張機31の回転軸〔図示略〕及びオルタネータ24の駆動軸〔図示略〕に回転力を付与する。膨張して圧力が低下した冷媒は、排出流路48へ排出される。   The high-pressure refrigerant heated by the boiler 42 is introduced into the expander 31 and expands. The expander 31 outputs mechanical energy (rotation imparting force) by the expansion of the refrigerant. That is, the expander 31 applies a rotational force to the rotation shaft (not shown) of the expander 31 and the drive shaft (not shown) of the alternator 24 using the refrigerant. The refrigerant whose pressure has decreased due to expansion is discharged to the discharge channel 48.

冷却水循環経路52内の水温が排出流路48へ排出された冷媒の温度よりも低い場合、排出流路48へ排出された冷媒の熱が熱交換器47にて冷却水循環経路52の分岐流路521内の冷却水に伝達される。この熱伝達により、冷却水循環経路52内の水温が高められる。従って、エンジン12始動直後の冷却水の温度が熱交換器47における熱伝達によっても高められ、エンジン12の暖機運転の時間が短縮される。   When the water temperature in the cooling water circulation path 52 is lower than the temperature of the refrigerant discharged to the discharge flow path 48, the heat of the refrigerant discharged to the discharge flow path 48 is branched by the heat exchanger 47 in the cooling water circulation path 52. It is transmitted to the cooling water in 521. By this heat transfer, the water temperature in the cooling water circulation path 52 is increased. Therefore, the temperature of the cooling water immediately after the engine 12 is started is also increased by heat transfer in the heat exchanger 47, and the warm-up operation time of the engine 12 is shortened.

熱交換器47にて熱を奪われた冷媒は、凝縮器49を通過してポンプ41へ還流する。凝縮器49を通過して第2流路51を流れる冷媒は、冷却されて液化している。
熱交換器47における冷却水の温度が膨張機31から流出した冷媒の温度より高い場合にも、膨張機31から流出した冷媒は、凝縮器49にて冷却されて液化する。
The refrigerant deprived of heat in the heat exchanger 47 passes through the condenser 49 and returns to the pump 41. The refrigerant passing through the condenser 49 and flowing through the second flow path 51 is cooled and liquefied.
Even when the temperature of the cooling water in the heat exchanger 47 is higher than the temperature of the refrigerant flowing out from the expander 31, the refrigerant flowing out from the expander 31 is cooled by the condenser 49 and liquefied.

第1の実施形態では以下の効果が得られる。
(1)熱交換器47における冷却水の温度(冷却水循環経路52の分岐流路521内の水温)が膨張機31から流出した冷媒の温度より低い場合には、膨張機31から流出した冷媒の熱が熱交換器47を介して冷却水循環経路52に伝達される。これは、エンジン12の暖機時間の短縮化をもたらす。
In the first embodiment, the following effects can be obtained.
(1) When the temperature of the cooling water in the heat exchanger 47 (water temperature in the branch flow path 521 of the cooling water circulation path 52) is lower than the temperature of the refrigerant flowing out from the expander 31, the refrigerant flowing out from the expander 31 Heat is transferred to the cooling water circulation path 52 through the heat exchanger 47. This shortens the warm-up time of the engine 12.

熱交換器47における冷却水の温度が膨張機31から流出した冷媒の温度より高い場合には、膨張機31から流出した冷媒は、凝縮器49にて放熱する。つまり、膨張機31から流出した冷媒は、熱交換器47における冷却水の温度の高低に関わりなく凝縮器49にて液化される。従って、凝縮器49での凝縮圧が高くなって熱効率が悪化することはなく、廃熱回収の効率低下が回避される。   When the temperature of the cooling water in the heat exchanger 47 is higher than the temperature of the refrigerant flowing out from the expander 31, the refrigerant flowing out from the expander 31 dissipates heat in the condenser 49. That is, the refrigerant flowing out of the expander 31 is liquefied in the condenser 49 regardless of the temperature of the cooling water in the heat exchanger 47. Therefore, the condensing pressure in the condenser 49 is not increased and the thermal efficiency is not deteriorated, and a reduction in the efficiency of waste heat recovery is avoided.

次に、図2の第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
熱交換器47と並列なバイパス流路55が膨張機31と凝縮器49との間で設けられている。バイパス流路55は、排出流路48から分岐して接続流路50に合流する。バイパス流路55と排出流路48との分岐部には電磁三方弁56が設けられている。電磁三方弁56は、制御部57の励消磁制御を受ける。
Next, a second embodiment of FIG. 2 will be described. The same reference numerals are used for the same components as those in the first embodiment, and detailed description thereof is omitted.
A bypass passage 55 in parallel with the heat exchanger 47 is provided between the expander 31 and the condenser 49. The bypass channel 55 branches from the discharge channel 48 and joins the connection channel 50. An electromagnetic three-way valve 56 is provided at a branch portion between the bypass passage 55 and the discharge passage 48. The electromagnetic three-way valve 56 receives excitation / demagnetization control of the control unit 57.

制御部57には水温検出器58が信号接続されている。水温検出器58は、温度切換弁54より下流、且つ熱交換器47の吸熱部472より上流の分岐流路521内の冷却水の温度を検出する。水温検出器58によって得られた水温検出情報は、制御部57へ送られる。制御部57は、水温検出器58から得られる水温検出情報に基づいて、電磁三方弁56の励消磁を制御する。   A water temperature detector 58 is connected to the controller 57 as a signal. The water temperature detector 58 detects the temperature of the cooling water in the branch flow path 521 downstream from the temperature switching valve 54 and upstream from the heat absorption part 472 of the heat exchanger 47. The water temperature detection information obtained by the water temperature detector 58 is sent to the control unit 57. The controller 57 controls excitation and demagnetization of the electromagnetic three-way valve 56 based on the water temperature detection information obtained from the water temperature detector 58.

水温検出器58によって検出された水温が予め設定された基準温度以上の場合、制御部57は、電磁三方弁56を励磁する。これにより、膨張機31から流出した冷媒がバイパス流路55へ送られる。水温検出器58によって検出された水温が前記基準温度に満たない場合、制御部57は、電磁三方弁56を消磁する。これにより、膨張機31から流出した冷媒が熱交換器47へ送られ、排出流路48を流れる冷媒の熱が熱交換器47を介して冷却水循環経路52内の冷却水へ伝達される。   When the water temperature detected by the water temperature detector 58 is equal to or higher than a preset reference temperature, the control unit 57 excites the electromagnetic three-way valve 56. Thereby, the refrigerant that has flowed out of the expander 31 is sent to the bypass channel 55. When the water temperature detected by the water temperature detector 58 is less than the reference temperature, the control unit 57 demagnetizes the electromagnetic three-way valve 56. As a result, the refrigerant that has flowed out of the expander 31 is sent to the heat exchanger 47, and the heat of the refrigerant flowing through the discharge passage 48 is transmitted to the cooling water in the cooling water circulation path 52 via the heat exchanger 47.

水温検出器58は、冷却水の温度を検出する液温度検出手段である。電磁三方弁56及び制御部57は、液温度検出手段によって検出された温度に基づいて、膨張機31から流出した冷媒をバイパス流路55へ供給する割合を調整する調整手段を構成する。   The water temperature detector 58 is a liquid temperature detecting means for detecting the temperature of the cooling water. The electromagnetic three-way valve 56 and the control unit 57 constitute an adjusting unit that adjusts the ratio of supplying the refrigerant that has flowed out of the expander 31 to the bypass passage 55 based on the temperature detected by the liquid temperature detecting unit.

第2の実施形態では、水温が高い場合(冷媒の熱によって水温を上げる必要がない暖機完了の状態)には、冷媒がバイパス流路55へ送られるため、エンジン12の暖機が完了した後の熱効率が向上する。   In the second embodiment, when the water temperature is high (warm-up completion state in which it is not necessary to raise the water temperature due to the heat of the refrigerant), the refrigerant is sent to the bypass passage 55, so that the engine 12 has been warmed up. Later thermal efficiency is improved.

次に、図3の第3の実施形態を説明する。第2の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
バイパス流路55には内部熱交換器59が設けられている。内部熱交換器59は、放熱部591と吸熱部592とを備える。放熱部591は、バイパス流路55上に設けられており、吸熱部592は、第1流路43上に設けられている。
Next, a third embodiment of FIG. 3 will be described. The same reference numerals are used for the same components as those in the second embodiment, and detailed description thereof is omitted.
An internal heat exchanger 59 is provided in the bypass channel 55. The internal heat exchanger 59 includes a heat radiating part 591 and a heat absorbing part 592. The heat dissipating part 591 is provided on the bypass channel 55, and the heat absorbing part 592 is provided on the first channel 43.

水温検出器58によって検出された水温が予め設定された基準温度以上の場合、制御部57は、電磁三方弁56を励磁する。これにより、膨張機31から流出した冷媒は、バイパス流路55へ送られ、バイパス流路55を流れる冷媒の熱が内部熱交換器59を介して第1流路43内の冷媒へ伝達される。   When the water temperature detected by the water temperature detector 58 is equal to or higher than a preset reference temperature, the control unit 57 excites the electromagnetic three-way valve 56. As a result, the refrigerant that has flowed out of the expander 31 is sent to the bypass channel 55, and the heat of the refrigerant flowing through the bypass channel 55 is transmitted to the refrigerant in the first channel 43 via the internal heat exchanger 59. .

水温検出器58によって検出された水温が前記基準温度に満たない場合、制御部57は、電磁三方弁56を消磁する。これにより、膨張機31から流出した冷媒は、熱交換器47へ送られ、排出流路48を流れる冷媒の熱が熱交換器47を介して冷却水循環経路52内の冷却水へ伝達される。   When the water temperature detected by the water temperature detector 58 is less than the reference temperature, the control unit 57 demagnetizes the electromagnetic three-way valve 56. Thereby, the refrigerant that has flowed out of the expander 31 is sent to the heat exchanger 47, and the heat of the refrigerant flowing through the discharge flow path 48 is transmitted to the cooling water in the cooling water circulation path 52 via the heat exchanger 47.

第3の実施形態では、第1の実施形態と同様の効果が得られる。又、冷却水の水温が高い場合には冷媒を内部熱交換器59へ流すことにより、ポンプ41より下流の冷媒に熱エネルギーが付与され、熱効率が向上する。   In the third embodiment, the same effect as in the first embodiment can be obtained. In addition, when the coolant temperature is high, by flowing the refrigerant to the internal heat exchanger 59, thermal energy is given to the refrigerant downstream from the pump 41, and the thermal efficiency is improved.

次に、図4の第4の実施形態を説明する。第3の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
第4の実施形態では、内部熱交換器59の放熱部591が第2流路51上に設けられており、内部熱交換器59の吸熱部592が第1流路43上に設けられている。
Next, a fourth embodiment of FIG. 4 will be described. The same components as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
In the fourth embodiment, the heat dissipation part 591 of the internal heat exchanger 59 is provided on the second flow path 51, and the heat absorption part 592 of the internal heat exchanger 59 is provided on the first flow path 43. .

水温検出器58によって検出された水温が予め設定された基準温度以上の場合、制御部57は、電磁三方弁56を励磁する。これにより、膨張機31から流出した冷媒は、バイパス流路55を経由して内部熱交換器59へ送られ、バイパス流路55を流れてきた冷媒の熱が内部熱交換器59を介して第1流路43内の冷媒へ伝達される。   When the water temperature detected by the water temperature detector 58 is equal to or higher than a preset reference temperature, the control unit 57 excites the electromagnetic three-way valve 56. As a result, the refrigerant that has flowed out of the expander 31 is sent to the internal heat exchanger 59 via the bypass flow path 55, and the heat of the refrigerant that has flowed through the bypass flow path 55 passes through the internal heat exchanger 59. It is transmitted to the refrigerant in one flow path 43.

水温検出器58によって検出された水温が前記基準温度に満たない場合、制御部57は、電磁三方弁56を消磁する。これにより、膨張機31から流出した冷媒は、熱交換器47へ送られ、排出流路48を流れる冷媒の熱が熱交換器47を介して冷却水循環経路52内の冷却水へ伝達される。熱交換器47を通過した冷媒は、内部熱交換器59へ送られ、熱交換器47を流れてきた冷媒の熱が内部熱交換器59を介して第1流路43内の冷媒へ伝達される。   When the water temperature detected by the water temperature detector 58 is less than the reference temperature, the control unit 57 demagnetizes the electromagnetic three-way valve 56. Thereby, the refrigerant that has flowed out of the expander 31 is sent to the heat exchanger 47, and the heat of the refrigerant flowing through the discharge flow path 48 is transmitted to the cooling water in the cooling water circulation path 52 via the heat exchanger 47. The refrigerant that has passed through the heat exchanger 47 is sent to the internal heat exchanger 59, and the heat of the refrigerant that has flowed through the heat exchanger 47 is transmitted to the refrigerant in the first flow path 43 via the internal heat exchanger 59. The

熱交換器47を通ってきた冷媒の熱が内部熱交換器59を介して第1流路43内の冷媒へ伝達されるため、ポンプ41より下流の冷媒に熱エネルギーが付与され、熱効率が向上する。   Since the heat of the refrigerant that has passed through the heat exchanger 47 is transmitted to the refrigerant in the first flow path 43 via the internal heat exchanger 59, thermal energy is given to the refrigerant downstream from the pump 41, and thermal efficiency is improved. To do.

本発明では以下のような実施形態も可能である。
○バイパス流路55と排出流路48との分岐部より下流の排出流路48に開閉弁を、設けると共に、バイパス流路55に別の開閉弁を設け、両開閉弁の開閉を制御して電磁三方弁56と同じ役割を行なわせるようにしてもよい。
In the present invention, the following embodiments are also possible.
○ An opening / closing valve is provided in the discharge flow path 48 downstream from the branch portion between the bypass flow path 55 and the discharge flow path 48, and another open / close valve is provided in the bypass flow path 55 to control the opening / closing of both open / close valves. The same role as the electromagnetic three-way valve 56 may be performed.

○バイパス流路55と熱交換器47とへの冷媒配分流量を任意に調整できる流量分配器を用いてもよい。
○冷却液は、水以外の液体でもよい。
A flow distributor that can arbitrarily adjust the refrigerant distribution flow rate to the bypass channel 55 and the heat exchanger 47 may be used.
○ The coolant may be a liquid other than water.

11…廃熱回収装置。12…熱機関であるエンジン。31…膨張機。41…ポンプ。42…ボイラ。47…熱交換器。48…冷媒流路を構成する排出流路。49…凝縮器。50…冷媒流路を構成する接続流路。52…冷却流路である冷却水循環経路。53…ラジエータ。55…バイパス流路。56…調整手段を構成する電磁三方弁。57…調整手段を構成する制御部。58…液温度検出手段としての水温検出器。59…内部熱交換器。   11 ... Waste heat recovery device. 12 ... An engine that is a heat engine. 31 ... Expander. 41 ... Pump. 42 ... Boiler. 47 ... Heat exchanger. 48: Discharge flow path constituting the refrigerant flow path. 49 ... Condenser. 50: Connection flow path constituting the refrigerant flow path. 52: A cooling water circulation path which is a cooling flow path. 53 ... Radiator. 55: Bypass channel. 56: An electromagnetic three-way valve constituting adjusting means. 57... Control unit constituting adjustment means. 58: A water temperature detector as a liquid temperature detecting means. 59 ... Internal heat exchanger.

Claims (4)

熱機関の廃熱を熱源とするボイラと、前記ボイラで熱を与えられた冷媒を導入して廃熱を回収するための膨張機と、前記膨張機から流出した冷媒を凝縮する凝縮器と、前記凝縮器から流出した冷媒を前記ボイラへ送るポンプと、前記ボイラ、前記膨張機、前記凝縮器及び前記ポンプを接続する冷媒流路とを備える廃熱回収装置において、
前記膨張機及び前記凝縮器間の前記冷媒流路と前記熱機関を冷却する冷却液が流れる冷却流路との間で熱交換を行なうための熱交換器が設けられている廃熱回収装置。
A boiler that uses waste heat of a heat engine as a heat source, an expander for introducing a refrigerant that has been heated by the boiler to recover waste heat, a condenser that condenses the refrigerant that has flowed out of the expander, In a waste heat recovery apparatus comprising a pump that sends the refrigerant that has flowed out of the condenser to the boiler, and a refrigerant flow path that connects the boiler, the expander, the condenser, and the pump.
A waste heat recovery apparatus provided with a heat exchanger for exchanging heat between the refrigerant flow path between the expander and the condenser and a cooling flow path through which a cooling liquid for cooling the heat engine flows.
前記熱交換器と並列なバイパス流路が前記膨張機と前記凝縮器との間で設けられており、前記膨張機から流出した冷媒を前記バイパス流路へ供給する割合を調整する調整手段と、前記冷却液の温度を検出する液温度検出手段とが設けられており、前記調整手段は、前記液温度検出手段によって検出された温度に基づいて、前記割合を調整する請求項1に記載の廃熱回収装置。   A bypass passage in parallel with the heat exchanger is provided between the expander and the condenser, and adjusting means for adjusting a ratio of supplying the refrigerant flowing out of the expander to the bypass passage; 2. The waste according to claim 1, further comprising: a liquid temperature detecting unit configured to detect a temperature of the cooling liquid, wherein the adjusting unit adjusts the ratio based on a temperature detected by the liquid temperature detecting unit. Heat recovery device. 前記ポンプより下流の前記冷媒流路と前記バイパス流路との間で熱交換を行なう内部熱交換器が設けられている請求項2に記載の廃熱回収装置。   The waste heat recovery apparatus according to claim 2, wherein an internal heat exchanger that performs heat exchange between the refrigerant flow path and the bypass flow path downstream from the pump is provided. 前記ポンプより下流の前記冷媒流路と、前記熱交換器と前記凝縮器との間の前記冷媒流路との間で熱交換を行なう内部熱交換器が設けられている請求項1及び請求項2のいずれか1項に記載の廃熱回収装置。   The internal heat exchanger which performs heat exchange between the said refrigerant | coolant flow path downstream from the said pump, and the said refrigerant | coolant flow path between the said heat exchanger and the said condenser is provided. The waste heat recovery apparatus according to any one of 2.
JP2011126331A 2011-06-06 2011-06-06 Waste heat recovery apparatus Withdrawn JP2012251516A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011126331A JP2012251516A (en) 2011-06-06 2011-06-06 Waste heat recovery apparatus
PCT/JP2012/063469 WO2012169376A1 (en) 2011-06-06 2012-05-25 Waste heat recovery apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011126331A JP2012251516A (en) 2011-06-06 2011-06-06 Waste heat recovery apparatus

Publications (1)

Publication Number Publication Date
JP2012251516A true JP2012251516A (en) 2012-12-20

Family

ID=47295944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011126331A Withdrawn JP2012251516A (en) 2011-06-06 2011-06-06 Waste heat recovery apparatus

Country Status (2)

Country Link
JP (1) JP2012251516A (en)
WO (1) WO2012169376A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047669A1 (en) * 2015-09-17 2017-03-23 いすゞ自動車株式会社 Thermal energy recovery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003908A (en) * 2016-06-29 2018-01-11 アイシン精機株式会社 Clutch connection/disconnection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089539B2 (en) * 2003-07-22 2008-05-28 株式会社デンソー Rankine cycle
JP2009097391A (en) * 2007-10-15 2009-05-07 Toyota Motor Corp Waste heat recovery device and engine provided with same
JP2009167994A (en) * 2008-01-21 2009-07-30 Sanden Corp Waste heat using device of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047669A1 (en) * 2015-09-17 2017-03-23 いすゞ自動車株式会社 Thermal energy recovery system
CN108026791A (en) * 2015-09-17 2018-05-11 五十铃自动车株式会社 Heat reclaiming system
CN108026791B (en) * 2015-09-17 2020-08-18 五十铃自动车株式会社 Heat energy recovery system

Also Published As

Publication number Publication date
WO2012169376A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP6377645B2 (en) Method and apparatus for heating an expander of a waste heat recovery device
JP4089619B2 (en) Rankine cycle system
JP4908383B2 (en) System with organic Rankine cycle circulation for driving at least one expansion device, heat exchanger for driving the expansion device and method for operating at least one expansion device
JP5338730B2 (en) Waste heat regeneration system
JP5621721B2 (en) Rankine cycle
JP4738222B2 (en) Power system
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
JP2011208525A (en) Waste heat regeneration system
WO2013046853A1 (en) Waste heat regeneration system
JP2010174848A (en) Waste heat regeneration system
JP2013180625A (en) Exhaust heat recovery type ship propulsion device, and operation method therefor
JP2013238131A (en) Waste heat using device
JP5325038B2 (en) System and method applied to combined cycle power plant or Rankine cycle power plant using air-cooled steam condenser
JP2013113192A (en) Waste heat regeneration system
JP4140543B2 (en) Waste heat utilization equipment
US10378391B2 (en) Waste heat recovery device
JP2012251516A (en) Waste heat recovery apparatus
JP5012588B2 (en) Waste heat recovery device
JP2019007379A (en) Heat energy recovery system and ship equipped with the same
EP3074613B1 (en) Supplemental heating in waste heat recovery
JP2013160076A (en) Rankine cycle device
KR102021901B1 (en) Supercritical CO2 generating system with parallel heater
JP2011106475A (en) Power system
CN213711133U (en) Back pressure type ORC combined heat and power generation system
JP2013194926A (en) Steam generating system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902