JP2004257601A - Waste heat collecting system - Google Patents

Waste heat collecting system Download PDF

Info

Publication number
JP2004257601A
JP2004257601A JP2003046709A JP2003046709A JP2004257601A JP 2004257601 A JP2004257601 A JP 2004257601A JP 2003046709 A JP2003046709 A JP 2003046709A JP 2003046709 A JP2003046709 A JP 2003046709A JP 2004257601 A JP2004257601 A JP 2004257601A
Authority
JP
Japan
Prior art keywords
water
heat
waste heat
boiler
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046709A
Other languages
Japanese (ja)
Inventor
Giichi Suzuki
義一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003046709A priority Critical patent/JP2004257601A/en
Publication of JP2004257601A publication Critical patent/JP2004257601A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste heat collecting system capable of collecting and using a collectable amount of heat generated in a heat source more than before. <P>SOLUTION: When the heat amount collectable from the heat source surpasses the usable heat amount of a waste heat boiler 16 when steam is generated by collecting waste heat from an engine 10 used as a heat source in the waste heat boiler 16, the system is switched from a water supply tank side preheat circulation system for waste heat boiler to a water supply tank side preheat circulation system, water is passed therethrough, and excess heat is collected on the water supply tank 34 side. As a result, a heat amount surpassing the usable heat amount in the waste heat boiler 16 among the heat amount collectable from the heat source can be collected on the water supply tank 34 side for effective use. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、工場等で利用される熱併給発電(コジェネレイション)システムとして利用可能な排熱回収システムに関する。
【0002】
【従来の技術】
一般に、排熱回収システムとしての熱併給発電(コジェネレイション)システムでは、ディーゼル発電機等から出る排出ガスから保有熱を回収する廃熱ボイラを設置し、蒸気を発生させ、これを暖房などに利用することで、総合熱効率の向上を図っている。
【0003】
このような従来のディーゼル発電機コジェネレイションのシステムには、エンジンの排気ガスを廃熱ボイラによって蒸気として回収し、ボイラ室に供給してエネルギを捨てることなく利用すると共に、エンジン冷却水が温水であるため、この温水から回収したエネルギを冬の暖房用のエネルギとして活用するものが実施されている。
【0004】
このディーゼル発電機コジェネレイションのシステムでは、工場に供給される暖房用温水の戻り温水である40℃〜42℃の温水と、約60℃のエンジン冷却水との間で熱交換している。この熱交換されたエンジン冷却水は、クーリングタワで40℃に冷却されてから、ディーゼル発電機の冷却水として再利用される。なお、このディーゼル発電機コジェネレイションのシステムは、暖房の必要の無い冬以外の季節に、エンジン冷却水の有する回収可能熱量を放熱している。
【0005】
【非特許文献1】
財団法人 省エネルギーセンター 住所 東京都中央区八丁堀3−19−9ジオ八丁堀 平成5年9月28日発行
第19回省エネルギー推進全国大会省エネルギー実施事例発表関東地区大会事例集 255頁から262頁
【0006】
【発明が解決しようとする課題】
前述のような従来のディーゼル発電機コジェネレイションのシステムでは、エンジン冷却水の有する回収可能熱量を冬の暖房に利用しているため、冬以外の季節にエンジン冷却水の有する回収可能熱量を無駄に放熱することになる。これと共に、エンジン冷却水は、ディーゼル発電機の冷却水として再利用するため、クーリングタワで40℃に冷却されるので、エンジン冷却水の有する回収可能熱量の一部がクーリングタワから無駄に放熱されることになる。
【0007】
本発明は上記事実を考慮し、熱源となるエンジンで発生する熱量をより多く回収して利用できる排熱回収システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の請求項1に記載の排熱回収システムは、熱源となるエンジンから排出される高温排気ガスから排熱回収を行う廃熱ボイラと、エンジンの冷却水から熱交換器を介して熱回収をする廃熱ボイラ用給水タンク側予熱循環系に通水することにより得られた温水を、廃熱ボイラへ供給する廃熱ボイラ用給水タンクと、エンジンの冷却水から熱交換器を介して熱回収をするため別途設けられた給水タンク側予熱循環系に通水することにより貯留水を温水として利用可能とする給水タンクと、熱交換器で熱交換された温水を、廃熱ボイラ用給水タンク側予熱循環系又は給水タンク側予熱循環系へ通水する流路切替え手段と、廃熱ボイラ用給水タンクに貯留された温水の温度を測定する温度センサと、温度センサの検出温度に基づき、流路切替え手段を操作して廃熱ボイラ用給水タンク側予熱循環系又は給水タンク側予熱循環系の流路に切り換える制御手段と、を有することを特徴とする。
【0009】
上述のように構成することにより、この排熱回収システムでは、廃熱ボイラ用給水タンク内の貯留水を廃熱ボイラ用給水タンク側予熱循環系に通水しエンジンの冷却水から熱交換器を介して熱回収をして得られた温水を廃熱ボイラへ供給すると共に、この廃熱ボイラでエンジンから排出される高温排気ガスから排熱回収をして蒸気発生を行う。そして、温度センサが、廃熱ボイラ用給水タンク内の貯留水が所定温度まで昇温して熱源となるエンジンから回収可能な熱量が廃熱ボイラの使用熱量を上回るような場合になることを検知した際に、制御手段によって流路切替え手段を操作して廃熱ボイラ用給水タンク側予熱循環系と給水タンク側予熱循環系とを切り換えて通水させることにより、給水タンク側で余熱回収を行う。これにより、熱源となるエンジンから回収可能な熱量のうち、廃熱ボイラで使用しきれず無駄に放熱していた熱量を、給水タンク側で回収して有効利用を図り、総合熱効率を向上させることができる。
【0010】
本発明の請求項2に記載の排熱回収システムは、熱源となるエンジンから排出される高温排気ガスから排熱回収を行う廃熱ボイラと、廃熱ボイラに温水を供給する廃熱ボイラ用給水タンクと、熱源となるエンジンの冷却水から熱回収をする熱交換器と、廃熱ボイラ用給水タンク内の貯留水を第1循環ポンプで送水するよう設けられた出水管に、入水切り換え用の三方弁を介して接続された供給管路で熱交換器に通水し、熱交換器で昇温された温水を通す排出管路に出水切り換え用の三方弁を介して接続された第1の復帰水管で、廃熱ボイラ用給水タンク内へ温水を循環させる廃熱ボイラ用給水タンク側予熱循環系と、廃熱ボイラ用給水タンクへ供給可能な水を貯留する給水タンクと、給水タンク内の貯留水を第2循環ポンプで送水するよう設けられた出水管路から分岐し、開閉弁を介して廃熱ボイラ用給水タンク内に送水可能に設けられた給水用配管と、出水管路の出口に、入水切り換え用の三方弁を介して接続された供給管路で熱交換器に通水し、熱交換器で昇温された温水を通す排出管路に出水切り換え用の三方弁を介して接続された第2の復帰水管で、給水タンク内へ温水を循環させる給水タンク側予熱循環系と、廃熱ボイラ用給水タンク内の貯留水の温度に対応して入水切り換え用の三方弁及び出水切り換え用の三方弁と第1、第2循環ポンプの切り換え操作を行うことにより、熱交換器に対して通水する、廃熱ボイラ用給水タンク側予熱循環系と、給水タンク側予熱循環系とを、切り換える制御行う制御手段と、を有することを特徴とする。
【0011】
上述のように構成することにより、この排熱回収システムでは、廃熱ボイラ用給水タンク内の貯留水を廃熱ボイラ用給水タンク側予熱循環系に通水しエンジンの冷却水から熱交換器を介して熱回収をして得られた温水を廃熱ボイラへ供給すると共に、この廃熱ボイラでエンジンから排出される高温排気ガスから排熱回収をして蒸気発生を行う。そして、温度センサが、廃熱ボイラ用給水タンク内の貯留水が所定温度まで昇温して熱源となるエンジンから回収可能な熱量が廃熱ボイラの使用熱量を上回るような場合になることを検知した際に、制御手段によって、入水切り換え用の三方弁及び出水切り換え用の三方弁と第1、第2循環ポンプの切り換え操作を行い、廃熱ボイラ用給水タンク側予熱循環系と給水タンク側予熱循環系とを切り換えて通水させることにより、給水タンク側で余熱回収を行う。これにより、熱源となるエンジンから回収可能な熱量のうち、廃熱ボイラで使用しきれず無駄に放熱していた熱量を、給水タンク側で回収して有効利用を図り、総合熱効率を向上させることができる。
【0012】
さらに、給水タンク側予熱循環系の管路は、廃熱ボイラ用給水タンク側予熱循環系の管路の一部である供給管路及び排出管路を部分的に利用しているから新たに作る管路の長さを短縮することができ、さらに入水切り換え用の三方弁と出水切り換え用の三方弁とを新たに追加するだけで足りるので、全体としてコストの削減を図ることができる。
【0013】
また、廃熱ボイラ用給水タンク側予熱循環系で廃熱ボイラ用給水タンク内の貯留水を循環させるときは出水管の第1循環ポンプを使用でき、給水タンク側予熱循環系で給水タンク内の貯留水を循環させるときは出水管路の第2循環ポンプを使用できるから、新たに循環ポンプを追加して設置する必要がないので、構成を簡素化して設備を作る際のコストを削減できる。
【0014】
請求項3に記載の発明は、請求項1又は請求項2に記載の排熱回収システムにおいて、給水タンク側予熱循環系の流路上に減圧弁が設けられていることを特徴とする。
【0015】
上述のように構成することにより、前述した請求項1又は請求項2に記載の発明における作用、効果に加えて、給水タンク側予熱循環系に配置された第2循環ポンプの圧力が高くても、減圧弁で廃熱ボイラ用給水タンク側予熱循環系の圧力まで下げて支障無く送水できる。
【0016】
請求項4に記載の発明は、請求項1乃至請求項3のいずれかに記載の排熱回収システムにおいて、給水タンク側予熱循環系に、ボイラから出る余熱回収用の連続ブロー熱回収装置を設置して、給水タンク側予熱循環系の流路を流れる水が昇温されるように構成したことを特徴とする。
【0017】
上述のように構成することにより、前述した請求項1乃至請求項3のいずれかに記載の発明における作用、効果に加えて、ボイラから出る余熱を回収するための連続ブロー熱回収装置により、ボイラから出る余熱で給水タンク側予熱循環系の流路を流れる水を昇温させるようにし、熱エネルギをより有効に利用できるようにする。
【0018】
【発明の実施の形態】
本発明の熱併給発電(コジェネレイション)システムに係わる実施の形態について、図1及び図2により説明する。
【0019】
図1及び図2に示す排熱回収システムとしての熱併給発電システムでは、熱併給発電用の熱源となる複数(ここでは2台)のディーゼル発電機10(ここでは、585kW)におけるエンジンを冷却する冷却水(80℃から90℃の温水)用のプレート型熱交換器12で余熱を回収して温水を発生させ、この温水を廃熱ボイラ16又は大型ボイラ18に給水して利用することで、総合熱効率の向上を図るよう構成されている。
【0020】
この廃熱ボイラ16は、ディーゼル発電機10(回収可能熱量240Mcal/h)のディーゼルエンジンから排出される排出ガスの保有熱を利用して蒸気発生(発生蒸気量1400kg/h、廃熱回収熱量98Mcal/h)を行うように構成されている。このため、図1及び図2に一点鎖線で示すように、各ディーゼル発電機10から排出ガスを廃熱ボイラ16へ供給する通気路が設けられている。
【0021】
さらに、廃熱ボイラ16は、ディーゼル発電機10の高温の排気ガスによって発生した水蒸気を、蒸気主管60によって図示しない所定の水蒸気利用部所へ送給するよう構成されている。
【0022】
熱併給発電システムでは、各ディーゼル発電機10におけるエンジンを冷却する冷却水(温水)用に各々対応した熱交換器12を設置する。なお、各ディーゼル発電機10には、それぞれディーゼルエンジン冷却用のラジエータ10Aを設ける。
【0023】
そして、各ディーゼル発電機10と対応する熱交換器12との間には、ディーゼル発電機10から引き出された高温の流体(ディーゼル発電機10から取り出された80℃から90℃といった高温の液体である冷却水)を熱交換器12の伝熱部に通してから排出するための管路14を設ける。
【0024】
これらの各熱交換器12には、それぞれ熱交換器12の伝熱部で高温の流体から熱量を吸収して回収するための流体である水(なお、その他の液体又は気体によって、コジェネレイションシステムを構築しても良い)を熱交換器12の伝熱部に供給する供給管路20と、熱交換器12の伝熱部で加熱された温水を引き出す排出管路22とを設ける。
【0025】
この供給管路20は、その各熱交換器12へ向けて分岐する分岐点20Aより上流側の始端部に配置した入水切り換え用の三方弁24(流路切替え手段)における第1の管口部を接続する。この入水切り換え用の三方弁24(流路切替え手段)における第2の管口部には、廃熱ボイラ用給水タンク26の出水管28を接続する。この出水管28には、その管路上に第1循環ポンプ30を設置する。
【0026】
この第1循環ポンプ30は、制御手段としての温度コントローラ32で駆動制御される。この制御手段としての温度コントローラ32は、廃熱ボイラ用給水タンク26内に貯留されている水の温度を温度センサ32Aで計測(測定)して、貯留水が所定の温度(ここでは70℃)未満のときに第1循環ポンプ30を駆動し、貯留水が所定の温度(ここでは70℃)となったときに第1循環ポンプ30を停止させる自動制御を実行可能に構成されている。
【0027】
このため、温度コントローラ32は、廃熱ボイラ用給水タンクの温度センサ32Aによって廃熱ボイラ用給水タンク26内に貯留されている水の温度を計測するように構成されている。
【0028】
この入水切り換え用の三方弁24(流路切替え手段)における第3の管口部には、大型ボイラ用給水タンク34(容量70m、給水量30t/h)の出水管路36の出口を接続する。この入水切り換え用の三方弁24(流路切替え手段)は、制御手段としての温度コントローラ32により、送水方向を切り換える自動制御が行われるように構成されている。
【0029】
すなわち、この入水切り換え用の三方弁24は、制御手段としての温度コントローラ32の自動制御により、大型ボイラ用給水タンク34の出水管路36から送水された水が供給管路20を通じて熱交換器12へ送水される方向と、廃熱ボイラ用給水タンク26の出水管28から送水された水が供給管路20を通じて熱交換器12へ送水される方向とに切り換えられる。
【0030】
また、廃熱ボイラ用給水タンク26内に貯留されている廃熱ボイラ供給用の水が所定レベル以下となったときに水を大型ボイラ用給水タンク34の出水管路36から給水するために、出水管路36から分岐し開閉弁38を介して廃熱ボイラ用給水タンク26内に臨む給水用配管40を設ける。
【0031】
さらに廃熱ボイラ用給水タンク26には、その内部に貯留されている廃熱ボイラ供給用の水量(貯留水位)を計測し、この水量が不足する所定量以下となったときに自動的に開閉弁38を開いて満水まで給水してから開閉弁38を閉じる制御を行う給水コントローラ42を設ける。
【0032】
排出管路22には、2個の熱交換器12から合流する合流点22Aより下流側に配置した出水切り換え用の三方弁46(流路切替え手段)における第1の管口部を接続する。この出水切り換え用の三方弁46(流路切替え手段)における第2の管口部には、廃熱ボイラ用給水タンク26内へ温められた水を循環させるための第1の復帰水管44を接続する。
【0033】
この出水切り換え用の三方弁46(流路切替え手段)における第3の管口部には、大型ボイラ用給水タンク34内へ温められた水を循環させるための第2の復帰水管48を接続する。
【0034】
この出水切り換え用の三方弁46(流路切替え手段)は、制御手段としての温度コントローラ32により、送水方向を切り換える自動制御が行われるように構成されている。すなわち、この出水切り換え用の三方弁46は、制御手段としての温度コントローラ32の自動制御により、排出管路22を通じて送水されてきた温水が第1の復帰水管44を通じて廃熱ボイラ用給水タンク26内へ送水される方向と、排出管路22を通じて送水されてきた温水が第2の復帰水管48を通じて大型ボイラ用給水タンク34内へ送水される方向とに切り換えられる。
【0035】
この廃熱ボイラ用給水タンク26側では、前述のように配管された第1循環ポンプ30を備えた出水管28、入水切り換え用の三方弁24、供給管路20、排出管路22及び第1の復帰水管44によって、廃熱ボイラ用給水タンク側予熱循環系が構成される。
【0036】
廃熱ボイラ用給水タンク26と廃熱ボイラ16との間には、廃熱ボイラ給水用管路50が配管されている。この廃熱ボイラ給水用管路50の一部には、廃熱ボイラ給水ポンプ52が設置されている。
【0037】
この廃熱ボイラ用給水タンク26内に貯留されている予熱された温水は、廃熱ボイラ給水ポンプ52を駆動することにより廃熱ボイラ給水用管路50内を送水されて、廃熱ボイラ16へ供給される。
【0038】
図2に示すように、大型ボイラ用給水タンク34と、入水切り換え用の三方弁24との間に配管された出水管路36には、大型ボイラ用給水タンク34側から順に、第2循環ポンプ54と、連続ブロー熱回収装置56と、大型ボイラへ送水するよう分岐された送水管路62と、減圧弁58とが設置されている。
【0039】
この第2循環ポンプ54は、大型ボイラ用給水タンク34内に貯留されている水を、出水管路36を通じて送水するためのポンプであり、ここでは、30kW、1.9Mpaの出力を有する。
【0040】
また、連続ブロー熱回収装置56には、大型ボイラ18から出る排ガスを導入するための送気管74が接続されている。この連続ブロー熱回収装置56は、その内部で排ガスの保有熱を出水管路36を通じて送られる水との間で熱交換して熱エネルギを回収する、一般に用いられている熱回収用の装置として構成する。
【0041】
減圧弁58は、第2循環ポンプ54により比較的高い圧力(ここでは1.9Mpa)に加圧されて、出水管路36内を送水されてきた水の圧力を、第1循環ポンプ30で比較的低い圧力に加圧されて廃熱ボイラ用給水タンク側予熱循環系を循環する水の圧力(ここでは0.3Mpa)まで減圧させる機能を有する。
【0042】
この大型ボイラ用給水タンク34側では、前述のように配管された出水管路36、入水切り換え用の三方弁24、供給管路20、排出管路22、出水切り換え用の三方弁46及び第2の復帰水管48によって、大型ボイラ用給水タンク側予熱循環系が構成される。
【0043】
この大型ボイラ用給水タンク側予熱循環系における出水管路36には、連続ブロー熱回収装置56と減圧弁58との間に大型ボイラへ送水する為の送水管路62が分岐するように接続されている。
【0044】
この送水管路62は、熱交換器64と、給水制御弁66とを介して大型ボイラ18に接続されている。この熱交換器64は、熱源となる別途設置されたディーゼル発電機68におけるエンジンを冷却する冷却水用のプレート型熱交換器12として構成されている。なお、ディーゼル発電機68には、それぞれディーゼルエンジン冷却用のラジエータ70を設ける。
【0045】
このディーゼル発電機68と熱交換器64との間には、ディーゼル発電機68から引き出された高温の冷却水を熱交換器64の伝熱部に通してから排出するための管路72を設ける。
【0046】
そして、ディーゼル発電機68を冷却する冷却水を管路72で循環させ、熱交換器64によって送水管路62で送水されてきた水との間で熱交換させ余熱を回収してより高い温度の温水を発生させ、このより高い温度の温水を大型ボイラ18に給水して利用することで、総合熱効率の向上を図るよう構成されている。
【0047】
次に、本実施の形態に係わる排熱回収システムとしての熱併給発電(コジェネレイション)システムにおいて、余熱を回収する際の作用及び動作について説明する。
【0048】
この熱併給発電システムでは、例えば周囲温度が比較的低いときに運転したときに、ディーゼル発電機10から回収可能な熱量が廃熱ボイラ16使用熱量以下となる場合がある。
【0049】
この場合には、熱併給発電システムの配管系を、図1に実線で示す廃熱ボイラ用給水タンク側予熱循環系に切り換えた状態で運転する。この切換制御では、制御手段としての温度コントローラ32が入水切り換え用の三方弁24を出水管28から供給管路20側へ水が流れるように切り換えると共に、温度コントローラ32が出水切り換え用の三方弁46を排出管路22から第1の復帰水管44側へ水が流れるように切り換える。
【0050】
さらに、制御手段としての温度コントローラ32は、第1循環ポンプ30を駆動し、廃熱ボイラ用給水タンク26内に貯留されている水を出水管28、入水切り換え用の三方弁24及び供給管路20を通じて各熱交換器12へ送水し、ディーゼル発電機10のディーゼルエンジン冷却水との間で熱交換し、排出管路22、出水切り換え用の三方弁46及び第1の復帰水管44を通じて廃熱ボイラ用給水タンク26内へ戻す廃熱ボイラ用給水タンク側予熱循環動作を行わせる。
【0051】
この廃熱ボイラ用給水タンク側予熱循環動作により、廃熱ボイラ用給水タンク26内に貯留されている貯留水は、廃熱ボイラ16の水管にストレスを与えない所定温度に昇温し、廃熱ボイラ16に供給するのに適した温水となる。
【0052】
廃熱ボイラ用給水タンク26では、その内部の貯留水が所定温度に昇温されると、廃熱ボイラ給水ポンプ52が駆動されて、廃熱ボイラ用給水タンク26に貯留されていた温水が廃熱ボイラ16へ供給され、ディーゼル発電機10の高温の排気ガスによって水蒸気に変えられ、蒸気主管60によって図示しない所定の水蒸気利用部所へ送給される。
【0053】
また、廃熱ボイラ用給水タンク26では、その内部に貯留されている廃熱ボイラ供給用の水量(貯留水位)を計測し、この水量が不足する所定量以下となったときに、給水コントローラ42が自動的に開閉弁38を開いて満水まで給水してから開閉弁38を閉じる動作を行う。
【0054】
この熱併給発電システムの配管系を、図1に実線で示す廃熱ボイラ用給水タンク側予熱循環系に切り換えた状態で運転する場合には、ディーゼル発電機10のディーゼルエンジンの冷却水から回収した熱量と、ディーゼル発電機10の排出ガスから回収した熱量とを合わせた廃熱回収熱量は、98Mcal/hとなる。
【0055】
次に、熱併給発電システムで、例えば周囲温度が比較的高いときに運転したとき、又は廃熱ボイラ用給水タンク26内の貯留水の温度が70℃以上となってディーゼルエンジン冷却用のラジエータ10Aから放熱する場合等のようにディーゼル発電機10から回収可能な熱量が廃熱ボイラ16使用熱量以上となる場合の作用及び動作について説明する。
【0056】
この場合には、熱併給発電システムの配管系を、図2に実線で示す大型ボイラ用給水タンク側予熱循環系に切り換えた状態で運転する。この切換制御では、温度コントローラ32が、廃熱ボイラ用給水タンクの温度センサ32Aによって廃熱ボイラ用給水タンク26内に貯留されている水温が70℃となったことを検知したときに、入水切り換え用の三方弁24を出水管路36から供給管路20側へ水が流れるように切り換えると共に、制御手段としての温度コントローラ32が出水切り換え用の三方弁46を排出管路22から第2の復帰水管48側へ水が流れるように切り換える。さらに、制御手段としての温度コントローラ32は、第1循環ポンプ30を停止させる。
【0057】
なお、制御手段としての温度コントローラ32は、廃熱ボイラ用給水タンク26内に貯留されている水の温度を計測する廃熱ボイラ用給水タンクの温度センサ32Aを利用するように構成されているから、温度コントローラ32が入水切り換え用の三方弁24と出水切り換え用の三方弁46とを制御するためのセンサを新たに設ける必要がなく、追加設備の費用を削減できる。
【0058】
この制御手段としての温度コントローラ32の制御動作に伴なって大型ボイラ用給水タンク側予熱循環系では、出水管路36に設けた第2循環ポンプ54が制御手段により駆動され、大型ボイラ用給水タンク34内に貯留されている水を出水管路36の連続ブロー熱回収機56と減圧弁58とを介して送水し、入水切り換え用の三方弁24及び供給管路20を通じて各熱交換器12へ送水し、ディーゼル発電機10のディーゼルエンジン冷却水との間で熱交換し、排出管路22、出水切り換え用の三方弁46及び第2の復帰水管48を通じて大型ボイラ用給水タンク34内へ戻す大型ボイラ用給水タンク側予熱循環動作を行わせる。
【0059】
この大型ボイラ用給水タンク34内へ戻す大型ボイラ用給水タンク側予熱循環動作により、大型ボイラ用給水タンク34内に貯留されている貯留水は、昇温し温水となる。なお、この大型ボイラ用給水タンク側予熱循環動作は、大型ボイラ用給水タンク34における他の用途(大型ボイラ18への給水用)で設置が不可欠な第2循環ポンプ54を利用して行うことができるので、大型ボイラ用給水タンク側予熱循環系専用の循環ポンプを新たに設ける場合に比べて設備費を削減できる。さらに、第2循環ポンプ54と大型ボイラ用給水タンク側予熱循環系専用の循環ポンプとを設け、これらを同時に駆動する場合に比べて、第2循環ポンプ54を駆動する電力が必要なだけであるから、省電力化を図ることができる。
【0060】
大型ボイラ用給水タンク34は、その内部の貯留水が昇温されて温水となっている状態で、給水制御弁66に対する給水制御動作に連動して第2循環ポンプ54を駆動し、出水管路36及び送水管路62の配管系を通じて大型ボイラ18に温水を給水する。
【0061】
よって、大型ボイラ18では、連続ブロー熱回収装置56と熱交換器64とでより高い温度に予熱された温水を加熱して水蒸気(熱水でも良い)を発生させることになるので、冷水を加熱するのに比べて、エネルギを省略し、コストダウンを図り、二酸化炭素の発生量を削減することができる。
【0062】
なお、大型ボイラ18では、発生した水蒸気を図示しない蒸気主管によって蒸気溜へ送給してから、水蒸気利用部所で利用する。また、大型ボイラ用給水タンク34では、その内部に貯留されている供給用の水量(貯留水位)を計測し、この水量が不足する所定量以下となったときに、自動的に外部から満水まで給水される。
【0063】
このように、大型ボイラ用給水タンク側予熱循環系を利用して廃熱回収を行う場合には、廃熱ボイラ用給水タンク26内に貯留されている貯留水の水温が設定温度(例えば70℃)となり廃熱ボイラ用給水タンク側予熱循環系ではディーゼル発電機10の廃熱を回収しきれなくなったときにディーゼル発電機10のディーゼルエンジン冷却用のラジエータ10Aで放熱させていた熱を、略70%回収可能となった。
【0064】
このことより、図2に示す熱併給発電システムでは、大型ボイラ用給水タンク側予熱循環系を利用した廃熱回収熱量の増加分が、下記の式から求められる238Mcal/hとなることが実際の運転で確認できた。
【0065】
式 {(240×2)×0.7}−98=238(Mcal/h)
また、この熱併給発電システムでは、制御手段としての温度コントローラ32が、廃熱ボイラ用給水タンクの温度センサ32Aによって廃熱ボイラ用給水タンク26内に貯留されている水温が70℃未満の所定低温度となったことを検知したときに、入水切り換え用の三方弁24と出水切り換え用の三方弁46とを制御して、大型ボイラ用給水タンク側予熱循環系から廃熱ボイラ用給水タンク側予熱循環系へ切り換えて、廃熱ボイラ用給水タンク26内に貯留されている貯留水を循環させて水温が70℃以上となるように制御動作させる。
【0066】
このように制御することにより、廃熱ボイラ用給水タンク26内の貯留水の水温変動幅を所定の枠内で維持できる。
【0067】
また、上述の実施の形態では、大型ボイラ用給水タンク34内の貯留水を、大型ボイラ用給水タンク側予熱循環系を循環させることにより、直接に熱交換器12で加熱する手段について説明したが、廃熱ボイラ用給水タンク26内の貯留水と、大型ボイラ用給水タンク34内の貯留水とを循環させて、大型ボイラ用給水タンク34内の貯留水で熱回収を行うようにしても良い。
【0068】
この場合には、廃熱ボイラ用給水タンク26と大型ボイラ用給水タンク34との間で、それぞれの内部に貯留されている貯留水を循環させる循環管路系を新たに設け、この循環管路系に新たにポンプを設け、さらに廃熱ボイラ用給水タンク26側に設けたポンプ発停用レベルスイッチによってポンプを駆動制御することにより、循環管路系を通じて廃熱ボイラ用給水タンク26と大型ボイラ用給水タンク34との間で、それぞれの内部に貯留されている貯留水を循環させ、大型ボイラ用給水タンク34内の貯留水で熱回収を行うようにできる。
【0069】
【発明の効果】
本発明の排熱回収システムによれば、発電のための熱源で発生する熱量をより多く回収して利用できるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る排熱回収システムにおける廃熱ボイラ用給水タンク側予熱循環系を実線で示した配管系要部の概略構成図である。
【図2】本発明の実施の形態に係る排熱回収システムにおける大型ボイラ用給水タンク側予熱循環系を実線で示した配管系要部の概略構成図である。
【符号の説明】
10 ディーゼル発電機
12 熱交換器
16 廃熱ボイラ
18 大型ボイラ
20 供給管路
22 排出管路
24 入水切り換え用の三方弁(流路切替え手段)
26 廃熱ボイラ用給水タンク
28 出水管
30 第1循環ポンプ
32 温度コントローラ(制御手段)
34 大型ボイラ用給水タンク
36 出水管路
44 第1の復帰水管
46 出水切り換え用の三方弁(流路切替え手段)
48 第2の復帰水管
50 廃熱ボイラ給水用管路
52 廃熱ボイラ給水ポンプ
54 第2循環ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust heat recovery system that can be used as a cogeneration system used in factories and the like.
[0002]
[Prior art]
Generally, in a cogeneration system as an exhaust heat recovery system, a waste heat boiler that recovers retained heat from exhaust gas emitted from diesel generators, etc. is installed, steam is generated, and this is used for heating, etc. By doing so, the overall thermal efficiency is improved.
[0003]
In such a conventional diesel generator cogeneration system, the exhaust gas of the engine is recovered as steam by a waste heat boiler, supplied to the boiler room without being thrown away, and the engine cooling water is warm water. For this reason, there is an implementation that uses the energy recovered from this hot water as energy for heating in winter.
[0004]
In this diesel generator cogeneration system, heat is exchanged between warm water of 40 ° C. to 42 ° C., which is the return warm water of heating hot water supplied to the factory, and engine cooling water of approximately 60 ° C. The heat-exchanged engine cooling water is cooled to 40 ° C. by a cooling tower and then reused as cooling water for the diesel generator. Note that this diesel generator cogeneration system dissipates the recoverable heat amount of the engine cooling water in seasons other than winter when heating is not necessary.
[0005]
[Non-Patent Document 1]
Energy Conservation Center Foundation Address Hatchobori 3-19-9 Hatchobori, Chuo-ku, Tokyo Issued on September 28, 1993
19th Energy Conservation Promotion National Convention Energy Conservation Implementation Case Announcements Kanto Regional Convention Case Collection Pages 255-262
[0006]
[Problems to be solved by the invention]
In the conventional diesel generator cogeneration system as described above, the recoverable heat quantity of the engine coolant is used for winter heating, so the recoverable heat quantity of the engine coolant is wasted in seasons other than winter. It will dissipate heat. At the same time, since the engine cooling water is reused as cooling water for the diesel generator, it is cooled to 40 ° C. by the cooling tower, so that a part of the recoverable heat quantity of the engine cooling water is wasted from the cooling tower. Will be.
[0007]
In view of the above facts, an object of the present invention is to provide an exhaust heat recovery system that can recover and use a larger amount of heat generated in an engine as a heat source.
[0008]
[Means for Solving the Problems]
The exhaust heat recovery system according to claim 1 of the present invention includes a waste heat boiler that recovers exhaust heat from high-temperature exhaust gas that is discharged from an engine serving as a heat source, and heat recovery from the engine coolant through a heat exchanger. The waste water boiler feed water tank side preheat circulation system is used to heat the hot water from the waste water boiler water tank that supplies the waste heat boiler to the waste heat boiler and the engine cooling water through the heat exchanger. A water tank that makes the stored water available as hot water by passing it through a preheating circulation system that is separately provided for recovery, and a hot water that is heat-exchanged by a heat exchanger Flow switching means for passing water to the side preheating circulation system or the water tank side preheating circulation system, a temperature sensor for measuring the temperature of the hot water stored in the water tank for the waste heat boiler, Road switching hand And having a control means for switching the flow path of the waste heat boiler feed water tank preheating circulation or supply tank side preheating circulation by operating the.
[0009]
By configuring as described above, in this exhaust heat recovery system, the stored water in the waste heat boiler feed water tank is passed through the waste heat boiler feed tank side preheating circulation system, and the heat exchanger is installed from the engine cooling water. Then, hot water obtained through heat recovery is supplied to the waste heat boiler, and steam is generated by recovering exhaust heat from the high-temperature exhaust gas discharged from the engine by the waste heat boiler. And the temperature sensor detects that the amount of heat that can be recovered from the engine that becomes the heat source when the water stored in the water tank for the waste heat boiler rises to a predetermined temperature exceeds the amount of heat used by the waste heat boiler. In this case, the residual heat recovery is performed on the feed water tank side by operating the flow path switching means by the control means and switching between the water heating tank side preheating circulation system for the waste heat boiler and the water heating tank side preheating circulation system. . As a result, out of the amount of heat that can be recovered from the engine that is the heat source, the amount of heat that was not used in the waste heat boiler and was dissipated wastefully can be recovered on the water supply tank side for effective use and improved overall thermal efficiency. it can.
[0010]
The exhaust heat recovery system according to claim 2 of the present invention is a waste heat boiler that recovers exhaust heat from high-temperature exhaust gas discharged from an engine that is a heat source, and a feed water for a waste heat boiler that supplies hot water to the waste heat boiler. A tank, a heat exchanger that recovers heat from the engine coolant that serves as a heat source, and a drain pipe that is provided to feed the water stored in the water tank for the waste heat boiler with the first circulation pump, A first pipe connected through a three-way valve for switching water flow to a discharge pipe through which water is passed through the heat exchanger through a supply line connected via a three-way valve and warm water heated by the heat exchanger is passed. In the return water pipe, the preheat circulation system for the waste heat boiler water tank that circulates the hot water into the feed water tank for the waste heat boiler, the feed water tank for storing the water that can be supplied to the feed water tank for the waste heat boiler, Set up to pump the stored water with the second circulation pump Branches out from the drainage pipe, and is connected via an on-off valve to the water supply pipe that can be fed into the water tank for the waste heat boiler, and to the outlet of the drainage pipe through a three-way valve for switching water The water supply tank is a second return water pipe connected through a three-way valve for switching water to a discharge pipe for passing warm water heated by the heat exchanger through the supplied supply line. A water supply tank-side preheating circulation system for circulating hot water into the interior, a three-way valve for switching water input and a three-way valve for switching water discharge, and first and second circulations corresponding to the temperature of stored water in the water tank for waste heat boiler Control means for controlling switching between the feed water tank side preheating circulation system for the waste heat boiler and the feed water tank side preheating circulation system that conducts water to the heat exchanger by performing the switching operation of the pump. It is characterized by.
[0011]
By configuring as described above, in this exhaust heat recovery system, the stored water in the waste heat boiler feed water tank is passed through the waste heat boiler feed tank side preheating circulation system, and the heat exchanger is installed from the engine cooling water. Then, hot water obtained through heat recovery is supplied to the waste heat boiler, and steam is generated by recovering exhaust heat from the high-temperature exhaust gas discharged from the engine by the waste heat boiler. And the temperature sensor detects that the amount of heat that can be recovered from the engine that becomes the heat source when the water stored in the water tank for the waste heat boiler rises to a predetermined temperature exceeds the amount of heat used by the waste heat boiler. In this case, the control means performs the switching operation of the three-way valve for switching water and the three-way valve for switching water and the first and second circulation pumps, so that the water tank side preheating circulation system for the waste heat boiler and the water tank side preheating are switched. Residual heat is recovered on the water supply tank side by switching between the circulation system and passing water. As a result, out of the amount of heat that can be recovered from the engine that is the heat source, the amount of heat that was not used in the waste heat boiler and was dissipated wastefully can be recovered on the water supply tank side for effective use and improved overall thermal efficiency. it can.
[0012]
Furthermore, the water supply tank side preheating circulation system pipeline is newly created because it partially uses the supply pipeline and the exhaust pipeline that are part of the waste heat boiler water tank side preheating circulation system pipeline. The length of the pipe line can be shortened, and furthermore, it is only necessary to newly add a three-way valve for switching water and a three-way valve for switching water, so that the cost can be reduced as a whole.
[0013]
In addition, when circulating the stored water in the waste heat boiler water tank in the waste heat boiler feed tank side preheating circulation system, the first circulation pump of the drain pipe can be used, and in the feed water tank side preheating circulation system, When the stored water is circulated, the second circulation pump in the outlet pipe can be used, so that it is not necessary to newly install a circulation pump, so that the configuration can be simplified and the cost for making equipment can be reduced.
[0014]
A third aspect of the present invention is the exhaust heat recovery system according to the first or second aspect, wherein a pressure reducing valve is provided on the flow path of the water tank preheating circulation system.
[0015]
By configuring as described above, in addition to the operation and effect of the invention according to claim 1 or 2 described above, even if the pressure of the second circulation pump arranged in the feed water tank-side preheating circulation system is high. The pressure reducing valve can reduce the pressure to the pressure of the preheating circulation system on the side of the water tank for the waste heat boiler and supply water without any problem.
[0016]
According to a fourth aspect of the present invention, in the exhaust heat recovery system according to any one of the first to third aspects, a continuous blow heat recovery device for recovering residual heat from the boiler is installed in the water tank side preheating circulation system. And it comprised so that the water which flows through the flow path of the feed water tank side preheating circulation system might be heated.
[0017]
By configuring as described above, in addition to the functions and effects of the invention according to any one of claims 1 to 3 described above, the continuous blow heat recovery device for recovering the residual heat from the boiler provides a boiler. The temperature of the water flowing through the flow path of the feed water tank side preheating circulation system is raised by the residual heat from the heat supply so that the heat energy can be used more effectively.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment relating to a cogeneration system according to the present invention will be described with reference to FIGS.
[0019]
In the combined heat and power generation system as the exhaust heat recovery system shown in FIGS. 1 and 2, the engines in a plurality (here, two) of diesel generators 10 (here, 585 kW) serving as heat sources for the combined heat generation are cooled. By collecting the residual heat with the plate heat exchanger 12 for cooling water (warm water of 80 ° C. to 90 ° C.) to generate warm water, supplying this warm water to the waste heat boiler 16 or the large boiler 18 and using it, It is configured to improve the overall thermal efficiency.
[0020]
The waste heat boiler 16 generates steam by using the retained heat of exhaust gas discharged from the diesel engine of the diesel generator 10 (recoverable heat amount 240 Mcal / h) (generated steam amount 1400 kg / h, waste heat recovery heat amount 98 Mcal). / H). For this reason, as shown with a dashed-dotted line in FIG.1 and FIG.2, the ventilation path which supplies exhaust gas from each diesel generator 10 to the waste heat boiler 16 is provided.
[0021]
Further, the waste heat boiler 16 is configured to supply the steam generated by the high-temperature exhaust gas of the diesel generator 10 to a predetermined steam utilization section (not shown) through the steam main pipe 60.
[0022]
In the combined heat and power generation system, heat exchangers 12 respectively corresponding to cooling water (hot water) for cooling the engine in each diesel generator 10 are installed. Each diesel generator 10 is provided with a radiator 10A for cooling the diesel engine.
[0023]
Between each diesel generator 10 and the corresponding heat exchanger 12, a high-temperature fluid drawn from the diesel generator 10 (a high-temperature liquid such as 80 ° C. to 90 ° C. taken out from the diesel generator 10 is used). A pipe 14 is provided for discharging a certain cooling water) through the heat transfer section of the heat exchanger 12.
[0024]
Each of these heat exchangers 12 includes water (which is a fluid for absorbing and recovering heat from a high-temperature fluid in the heat transfer section of the heat exchanger 12 (with other liquid or gas, a cogeneration system). Are provided) and a discharge pipe 22 for drawing out hot water heated in the heat transfer section of the heat exchanger 12 is provided.
[0025]
This supply pipe line 20 is a first pipe port part in a three-way valve 24 (flow path switching means) for switching water that is arranged at the start end part upstream of the branch point 20A branching toward each heat exchanger 12. Connect. The outlet pipe 28 of the water supply tank 26 for the waste heat boiler is connected to the second pipe opening portion of the three-way valve 24 (flow path switching means) for switching the incoming water. A first circulation pump 30 is installed on the drain pipe 28 on the pipe line.
[0026]
The first circulation pump 30 is driven and controlled by a temperature controller 32 as control means. The temperature controller 32 as the control means measures (measures) the temperature of the water stored in the waste heat boiler feed water tank 26 with the temperature sensor 32A, and the stored water has a predetermined temperature (here, 70 ° C.). The first circulation pump 30 is driven when the temperature is lower than the value, and automatic control for stopping the first circulation pump 30 when the stored water reaches a predetermined temperature (here, 70 ° C.) can be executed.
[0027]
Therefore, the temperature controller 32 is configured to measure the temperature of the water stored in the waste heat boiler feed water tank 26 by the temperature sensor 32A of the waste heat boiler feed water tank.
[0028]
A large boiler feed tank 34 (capacity 70 m) is provided in the third pipe port portion of the three-way valve 24 (flow path switching means) for switching the incoming water. 3 , The outlet of the outlet pipe 36 with a water supply amount of 30 t / h) is connected. The three-way valve 24 (flow path switching means) for switching the incoming water is configured such that automatic control for switching the water feeding direction is performed by a temperature controller 32 as a control means.
[0029]
That is, the three-way valve 24 for switching water is automatically controlled by a temperature controller 32 serving as a control means, and the water sent from the outlet pipe 36 of the large boiler feed tank 34 is supplied to the heat exchanger 12 through the supply pipe 20. And the direction in which the water fed from the outlet pipe 28 of the waste heat boiler feed water tank 26 is fed to the heat exchanger 12 through the supply pipe 20.
[0030]
Further, in order to supply water from the outlet pipe 36 of the large boiler feed water tank 34 when the waste heat boiler supply water stored in the waste heat boiler feed tank 26 falls below a predetermined level, A water supply pipe 40 branched from the water discharge pipe 36 and facing the inside of the waste heat boiler water supply tank 26 through an on-off valve 38 is provided.
[0031]
Furthermore, the waste heat boiler feed water tank 26 measures the amount of waste heat boiler supply water (reserved water level) stored therein, and automatically opens and closes when the amount of water falls below a predetermined amount. A water supply controller 42 is provided for controlling to close the on-off valve 38 after opening the valve 38 to supply water up to full water.
[0032]
A first pipe port portion of a three-way valve 46 (flow path switching means) for switching water discharge disposed downstream of a junction 22A that merges from the two heat exchangers 12 is connected to the discharge pipeline 22. A first return water pipe 44 for circulating the warmed water into the waste heat boiler feed tank 26 is connected to the second pipe port of the three-way valve 46 (flow path switching means) for switching out water. To do.
[0033]
A second return water pipe 48 for circulating the warmed water into the large boiler feed tank 34 is connected to the third pipe port portion of the three-way valve 46 (flow path switching means) for switching out water. .
[0034]
The three-way valve 46 (flow path switching means) for switching out water is configured so that automatic control for switching the water feeding direction is performed by a temperature controller 32 as control means. That is, the three-way valve 46 for switching out water is supplied to the waste heat boiler feed tank 26 through the first return water pipe 44 through which the hot water fed through the discharge pipe 22 is automatically controlled by the temperature controller 32 as control means. The hot water supplied through the discharge pipe 22 is switched to the direction in which the hot water is supplied into the large boiler feed tank 34 through the second return water pipe 48.
[0035]
On the waste heat boiler water supply tank 26 side, a water discharge pipe 28 having the first circulation pump 30 piped as described above, a three-way valve 24 for switching water input, a supply pipe line 20, a discharge pipe line 22, and a first pipe. The return water pipe 44 constitutes a waste heat boiler water tank side preheating circulation system.
[0036]
Between the waste heat boiler feed water tank 26 and the waste heat boiler 16, a waste heat boiler feed water conduit 50 is piped. A waste heat boiler feed water pump 52 is installed in a part of the waste heat boiler feed water pipe 50.
[0037]
The preheated hot water stored in the waste heat boiler feed water tank 26 is fed through the waste heat boiler feed water pipe 50 by driving the waste heat boiler feed water pump 52, to the waste heat boiler 16. Supplied.
[0038]
As shown in FIG. 2, the second circulation pump is arranged in order from the large boiler feed tank 34 side to the outlet water pipe 36 piped between the feed water tank 34 for the large boiler and the three-way valve 24 for switching the incoming water. 54, a continuous blow heat recovery device 56, a water supply pipe 62 branched to supply water to a large boiler, and a pressure reducing valve 58 are installed.
[0039]
The second circulation pump 54 is a pump for feeding water stored in the large boiler feed tank 34 through the water discharge pipe 36, and has an output of 30 kW and 1.9 Mpa here.
[0040]
The continuous blow heat recovery device 56 is connected to an air supply pipe 74 for introducing exhaust gas discharged from the large boiler 18. The continuous blow heat recovery device 56 is a heat recovery device that is generally used to recover heat energy by exchanging heat with the water sent through the outlet pipe 36 inside the exhaust gas. Constitute.
[0041]
The pressure reducing valve 58 is pressurized to a relatively high pressure (here, 1.9 Mpa) by the second circulation pump 54, and the pressure of the water sent through the outlet pipe 36 is compared by the first circulation pump 30. The pressure is reduced to the pressure of water circulating in the preheating circulation system of the waste heat boiler feed water tank (0.3 Mpa in this case).
[0042]
On the large boiler feed tank 34 side, the water discharge pipe 36, the three-way valve 24 for switching water input, the supply pipe 20, the discharge pipe 22, the three-way valve 46 for switching water, and the second pipe, which are piped as described above. The return water pipe 48 constitutes a large boiler water tank side preheating circulation system.
[0043]
A water supply pipe 62 for supplying water to the large boiler is branched between the continuous blow heat recovery device 56 and the pressure reducing valve 58 to the water discharge pipe 36 in the large boiler feed tank side preheating circulation system. ing.
[0044]
The water supply pipe 62 is connected to the large boiler 18 via a heat exchanger 64 and a water supply control valve 66. This heat exchanger 64 is configured as a plate-type heat exchanger 12 for cooling water that cools the engine in a separately installed diesel generator 68 serving as a heat source. Each diesel generator 68 is provided with a radiator 70 for cooling the diesel engine.
[0045]
Between the diesel generator 68 and the heat exchanger 64, a pipe line 72 is provided for discharging the high-temperature cooling water drawn from the diesel generator 68 through the heat transfer section of the heat exchanger 64. .
[0046]
And the cooling water which cools the diesel generator 68 is circulated in the pipe line 72, heat exchange is carried out with the water which has been sent in the water supply pipe line 62 by the heat exchanger 64, and the residual heat is recovered to obtain a higher temperature. It is configured to improve the overall thermal efficiency by generating hot water and supplying the hot water having a higher temperature to the large boiler 18 for use.
[0047]
Next, in the cogeneration system as a waste heat recovery system according to the present embodiment, the operation and operation when recovering residual heat will be described.
[0048]
In this combined heat and power generation system, for example, when operated when the ambient temperature is relatively low, the amount of heat that can be recovered from the diesel generator 10 may be less than or equal to the amount of heat used by the waste heat boiler 16.
[0049]
In this case, the operation is performed in a state where the piping system of the cogeneration system is switched to the waste heat boiler feed water tank side preheating circulation system shown by a solid line in FIG. In this switching control, the temperature controller 32 as a control means switches the incoming water switching three-way valve 24 so that water flows from the outlet pipe 28 to the supply pipe line 20 side, and the temperature controller 32 switches the incoming water switching three-way valve 46. Is switched so that water flows from the discharge pipe 22 to the first return water pipe 44 side.
[0050]
Further, the temperature controller 32 as a control means drives the first circulation pump 30 to discharge the water stored in the waste heat boiler feed water tank 26, the water discharge pipe 28, the incoming water switching three-way valve 24, and the supply pipe line. 20 to each heat exchanger 12, exchange heat with the diesel engine cooling water of the diesel generator 10, and waste heat through the discharge pipe 22, the three-way valve 46 for switching water discharge, and the first return water pipe 44. The waste heat boiler feed water tank side preheating circulation operation to be returned to the boiler feed water tank 26 is performed.
[0051]
By this preheating circulation operation on the waste heat boiler feed water tank side, the stored water stored in the waste heat boiler feed water tank 26 is heated to a predetermined temperature that does not give stress to the water pipe of the waste heat boiler 16, and the waste heat The hot water is suitable for supplying to the boiler 16.
[0052]
In the waste heat boiler feed water tank 26, when the stored water in the waste heat boiler is heated to a predetermined temperature, the waste heat boiler feed water pump 52 is driven, and the hot water stored in the waste heat boiler feed water tank 26 is discarded. The steam is supplied to the heat boiler 16, converted into steam by the high-temperature exhaust gas of the diesel generator 10, and sent to a predetermined steam utilization section (not shown) by the steam main pipe 60.
[0053]
Further, in the waste heat boiler feed water tank 26, the amount of water for waste heat boiler supply (stored water level) stored in the waste heat boiler 26 is measured, and when the amount of water falls below a predetermined amount, the feed water controller 42 is provided. Automatically opens and closes the on-off valve 38 and supplies the water up to a full level.
[0054]
When the piping system of this cogeneration system is switched to the preheating circulation system for the waste heat boiler water tank shown by the solid line in FIG. 1, it is recovered from the cooling water of the diesel engine of the diesel generator 10. The waste heat recovery heat amount that combines the heat amount and the heat amount recovered from the exhaust gas of the diesel generator 10 is 98 Mcal / h.
[0055]
Next, when the cogeneration system is operated, for example, when the ambient temperature is relatively high, or the temperature of the stored water in the waste heat boiler feed water tank 26 becomes 70 ° C. or higher, and the radiator 10A for cooling the diesel engine The operation and operation in the case where the amount of heat recoverable from the diesel generator 10 is equal to or greater than the amount of heat used by the waste heat boiler 16 as in the case of radiating heat from the exhaust gas will be described.
[0056]
In this case, operation is performed in a state where the piping system of the cogeneration system is switched to the large boiler feed tank side preheating circulation system shown by the solid line in FIG. In this switching control, when the temperature controller 32 detects that the water temperature stored in the waste heat boiler feed water tank 26 has reached 70 ° C. by the temperature sensor 32A of the waste heat boiler feed water tank, the incoming water changeover is performed. The three-way valve 24 is switched so that water flows from the outlet pipe 36 to the supply pipe 20 side, and the temperature controller 32 serving as a control means switches the outlet three-way valve 46 from the outlet pipe 22 to the second return. Switch so that water flows to the water pipe 48 side. Furthermore, the temperature controller 32 as a control unit stops the first circulation pump 30.
[0057]
The temperature controller 32 as the control means is configured to use a temperature sensor 32A of the waste heat boiler feed water tank that measures the temperature of the water stored in the waste heat boiler feed water tank 26. The temperature controller 32 does not need to newly provide a sensor for controlling the three-way valve 24 for switching the incoming water and the three-way valve 46 for switching the outgoing water, thereby reducing the cost of additional equipment.
[0058]
With the control operation of the temperature controller 32 as the control means, in the large boiler feed tank side preheating circulation system, the second circulation pump 54 provided in the outlet water pipe 36 is driven by the control means, and the large boiler feed tank. The water stored in the pipe 34 is fed through the continuous blow heat recovery machine 56 and the pressure reducing valve 58 in the outlet pipe 36, and is supplied to each heat exchanger 12 through the three-way valve 24 for switching water and the supply pipe 20. Large-sized water is supplied to the diesel generator 10 and the heat is exchanged with the diesel engine cooling water, and returned to the large boiler feed tank 34 through the discharge pipe 22, the three-way valve 46 for switching water, and the second return water pipe 48. The boiler feed water tank side preheating circulation operation is performed.
[0059]
Due to the preheating circulation operation on the large boiler feed water tank side returning to the large boiler feed water tank 34, the stored water stored in the large boiler feed tank 34 is heated to become hot water. The preheating circulation operation on the large boiler feed water tank side is performed by using the second circulation pump 54 that is essential to be installed for other purposes in the large boiler feed tank 34 (for supplying water to the large boiler 18). Therefore, the equipment cost can be reduced as compared with the case where a circulation pump dedicated to the preheating circulation system for the large water boiler tank is newly provided. Furthermore, the second circulation pump 54 and a circulation pump dedicated to the preheating circulation system for the large boiler feed water tank are provided, and only the electric power for driving the second circulation pump 54 is required as compared with the case where these are driven simultaneously. Therefore, power saving can be achieved.
[0060]
The large boiler feed water tank 34 drives the second circulation pump 54 in conjunction with the feed water control operation for the feed water control valve 66 in a state in which the stored water in the large boiler is heated to become hot water, and the water discharge pipe line. Hot water is supplied to the large boiler 18 through the piping system 36 and the water supply pipe 62.
[0061]
Therefore, in the large boiler 18, the hot water preheated to a higher temperature by the continuous blow heat recovery device 56 and the heat exchanger 64 is heated to generate water vapor (or hot water), so the cold water is heated. Compared with this, energy can be omitted, the cost can be reduced, and the amount of generated carbon dioxide can be reduced.
[0062]
In the large boiler 18, the generated steam is supplied to the steam reservoir by a steam main pipe (not shown) and then used at the steam utilization section. The large boiler feed tank 34 measures the amount of water for supply (reserved water level) stored in the large boiler water tank. When the amount of water becomes below a predetermined amount that is insufficient, the water automatically fills the water from the outside. Water is supplied.
[0063]
Thus, when performing waste heat recovery using the large boiler feed water tank side preheating circulation system, the temperature of the stored water stored in the waste heat boiler feed tank 26 is set to a set temperature (for example, 70 ° C.). In the waste heat boiler feed water tank side preheating circulation system, when the waste heat of the diesel generator 10 cannot be recovered, the heat radiated by the radiator 10A for cooling the diesel engine of the diesel generator 10 is approximately 70. % Can be recovered.
[0064]
Therefore, in the combined heat and power generation system shown in FIG. 2, the increase in the amount of waste heat recovery heat using the large boiler feed tank side preheating circulation system is actually 238 Mcal / h obtained from the following equation. It was confirmed by driving.
[0065]
Formula {(240 × 2) × 0.7} −98 = 238 (Mcal / h)
Further, in this combined heat and power generation system, the temperature controller 32 as the control means has a predetermined low temperature of less than 70 ° C. stored in the waste heat boiler feed water tank 26 by the temperature sensor 32A of the waste heat boiler feed water tank. When it is detected that the temperature has been reached, the three-way valve 24 for switching the incoming water and the three-way valve 46 for switching the outlet water are controlled, so that the preheating circulation system for the waste heat boiler is supplied from the preheating circulation system for the waste heat boiler. The system is switched to the circulation system, and the control operation is performed so that the stored water stored in the waste heat boiler feed water tank 26 is circulated so that the water temperature becomes 70 ° C. or higher.
[0066]
By controlling in this way, the temperature fluctuation range of the stored water in the waste heat boiler feed water tank 26 can be maintained within a predetermined frame.
[0067]
Moreover, although the above-mentioned embodiment demonstrated the means to heat the stored water in the large boiler feed water tank 34 directly by the heat exchanger 12 by circulating the large boiler feed tank side preheating circulation system. The stored water in the waste water boiler water tank 26 and the stored water in the large boiler water tank 34 may be circulated to recover heat from the stored water in the large boiler water tank 34. .
[0068]
In this case, a new circulation pipeline system is provided between the waste heat boiler feed water tank 26 and the large boiler feed water tank 34 to circulate the stored water stored therein, and this circulation pipeline. A new pump is provided in the system, and the pump is driven and controlled by a pump start / stop level switch provided on the waste heat boiler feed water tank 26 side, so that the waste heat boiler feed tank 26 and the large boiler are connected through the circulation line system. It is possible to circulate the stored water stored in the interior of each of the water supply tanks 34 and perform heat recovery with the stored water in the large boiler water supply tank 34.
[0069]
【The invention's effect】
According to the exhaust heat recovery system of the present invention, there is an effect that a larger amount of heat generated in a heat source for power generation can be recovered and used.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic configuration diagram of a main part of a piping system in which a feed water tank side preheating circulation system for a waste heat boiler is shown by a solid line in an exhaust heat recovery system according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a main part of a piping system, in which a large boiler water tank preheating circulation system in a waste heat recovery system according to an embodiment of the present invention is indicated by a solid line.
[Explanation of symbols]
10 Diesel generator
12 Heat exchanger
16 Waste heat boiler
18 Large boiler
20 Supply line
22 Discharge pipe
24 Three-way valve for switching water (flow path switching means)
26 Water tank for waste heat boiler
28 Drain pipe
30 First circulation pump
32 Temperature controller (control means)
34 Water supply tank for large boilers
36 Drainage pipeline
44 First return water pipe
46 Three-way valve for switching water discharge (channel switching means)
48 Second return water pipe
50 Waste heat boiler feed line
52 Waste heat boiler feed pump
54 Second circulation pump

Claims (4)

熱源となるエンジンから排出される高温排気ガスから排熱回収を行う廃熱ボイラと、
前記エンジンの冷却水から熱交換器を介して熱回収をする廃熱ボイラ用給水タンク側予熱循環系に通水することにより得られた温水を、前記廃熱ボイラへ供給する廃熱ボイラ用給水タンクと、
前記エンジンの冷却水から前記熱交換器を介して熱回収をするため別途設けられた給水タンク側予熱循環系に通水することにより貯留水を温水として利用可能とする給水タンクと、
前記熱交換器で熱交換された温水を、廃熱ボイラ用給水タンク側予熱循環系又は給水タンク側予熱循環系へ通水する流路切替え手段と、
前記廃熱ボイラ用給水タンクに貯留された温水の温度を測定する温度センサと、
前記温度センサの検出温度に基づき、前記流路切替え手段を操作して廃熱ボイラ用給水タンク側予熱循環系又は給水タンク側予熱循環系の流路に切り換える制御手段と、
を有することを特徴とする排熱回収システム。
A waste heat boiler that recovers exhaust heat from the high-temperature exhaust gas discharged from the engine that is the heat source;
Waste heat boiler feed water that supplies warm water obtained by passing water from the engine cooling water through a heat exchanger to the waste heat boiler feed water tank side preheating circulation system to the waste heat boiler A tank,
A water supply tank that makes it possible to use the stored water as hot water by passing water from the cooling water of the engine to the preheating circulation system separately provided for heat recovery through the heat exchanger;
Channel switching means for passing the hot water heat-exchanged by the heat exchanger to the water heating tank side preheating circulation system for the waste heat boiler or the water heating tank side preheating circulation system;
A temperature sensor for measuring the temperature of the hot water stored in the water tank for the waste heat boiler;
Based on the temperature detected by the temperature sensor, the control means for operating the flow path switching means to switch to the flow path of the waste water boiler feed water tank side preheating circulation system or the feed water tank side preheating circulation system;
An exhaust heat recovery system comprising:
熱源となるエンジンから排出される高温排気ガスから排熱回収を行う廃熱ボイラと、
前記廃熱ボイラに温水を供給する廃熱ボイラ用給水タンクと、
前記熱源となる前記エンジンの冷却水から熱回収をする熱交換器と、
前記廃熱ボイラ用給水タンク内の貯留水を第1循環ポンプで送水するよう設けられた出水管に、入水切り換え用の三方弁を介して接続された供給管路で前記熱交換器に通水し、前記熱交換器で昇温された温水を通す排出管路に出水切り換え用の三方弁を介して接続された第1の復帰水管で、前記廃熱ボイラ用給水タンク内へ温水を循環させる廃熱ボイラ用給水タンク側予熱循環系と、
前記廃熱ボイラ用給水タンクへ供給可能な水を貯留する給水タンクと、
前記給水タンク内の貯留水を第2循環ポンプで送水するよう設けられた出水管路から分岐し、開閉弁を介して前記廃熱ボイラ用給水タンク内に送水可能に設けられた給水用配管と、
前記出水管路の出口に、前記入水切り換え用の三方弁を介して接続された前記供給管路で前記熱交換器に通水し、前記熱交換器で昇温された温水を通す前記排出管路に前記出水切り換え用の三方弁を介して接続された第2の復帰水管で、前記給水タンク内へ温水を循環させる給水タンク側予熱循環系と、
前記廃熱ボイラ用給水タンク内の貯留水の温度に対応して前記入水切り換え用の三方弁及び前記出水切り換え用の三方弁と前記第1、第2循環ポンプの切り換え操作を行うことにより、前記熱交換器に対して通水する、前記廃熱ボイラ用給水タンク側予熱循環系と、前記給水タンク側予熱循環系とを、切り換える制御を行う制御手段と、
を有することを特徴とする排熱回収システム。
A waste heat boiler that recovers exhaust heat from the high-temperature exhaust gas discharged from the engine that is the heat source;
A waste water boiler feed tank for supplying warm water to the waste heat boiler;
A heat exchanger that recovers heat from the engine coolant that serves as the heat source;
Water stored in the water supply tank for the waste heat boiler is supplied to the heat exchanger through a supply pipe connected to a water discharge pipe provided through a first circulation pump through a three-way valve for switching water. The hot water is circulated into the water tank for the waste heat boiler by a first return water pipe connected via a three-way valve for switching water to a discharge pipe through which the hot water heated by the heat exchanger passes. A preheating circulation system for the waste water boiler water tank,
A water supply tank for storing water that can be supplied to the water supply tank for the waste heat boiler;
A water supply pipe that branches off from a water discharge pipe provided to supply water stored in the water supply tank by a second circulation pump, and is supplied to the water supply tank for the waste heat boiler via an on-off valve; ,
The discharge through which the hot water heated by the heat exchanger is passed through the supply pipe connected to the outlet of the water discharge pipe via the three-way valve for switching the incoming water. A water supply tank-side preheating circulation system that circulates hot water into the water supply tank with a second return water pipe connected to a pipe line through the three-way valve for switching water discharge;
By performing the switching operation of the three-way valve for switching water and the three-way valve for switching water and the first and second circulation pumps corresponding to the temperature of the stored water in the water tank for the waste heat boiler, Control means for performing control for switching between the water heating tank side preheating circulation system for the waste heat boiler and the water heating tank side preheating circulation system for passing water to the heat exchanger;
An exhaust heat recovery system comprising:
前記給水タンク側予熱循環系の流路上に減圧弁が設けられていることを特徴とする請求項1又は請求項2に記載の排熱回収システム。The exhaust heat recovery system according to claim 1 or 2, wherein a pressure reducing valve is provided on a flow path of the water tank preheating circulation system. 前記給水タンク側予熱循環系に、ボイラから出る余熱回収用の連続ブロー熱回収装置を設置して、前記給水タンク側予熱循環系の流路を流れる水が昇温されるように構成したことを特徴とする請求項1乃至請求項3のいずれかに記載の排熱回収システム。A continuous blow heat recovery device for recovering residual heat from the boiler is installed in the feed water tank side preheating circulation system so that the water flowing through the flow path of the feed water tank side preheating circulation system is heated. The exhaust heat recovery system according to any one of claims 1 to 3, wherein
JP2003046709A 2003-02-25 2003-02-25 Waste heat collecting system Pending JP2004257601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046709A JP2004257601A (en) 2003-02-25 2003-02-25 Waste heat collecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046709A JP2004257601A (en) 2003-02-25 2003-02-25 Waste heat collecting system

Publications (1)

Publication Number Publication Date
JP2004257601A true JP2004257601A (en) 2004-09-16

Family

ID=33113144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046709A Pending JP2004257601A (en) 2003-02-25 2003-02-25 Waste heat collecting system

Country Status (1)

Country Link
JP (1) JP2004257601A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119185A1 (en) 2008-03-27 2009-10-01 いすゞ自動車株式会社 Waste heat recovering device
KR101391321B1 (en) 2012-10-12 2014-05-30 삼성중공업 주식회사 Heat Recovery Apparatus for Ship
KR101444142B1 (en) * 2012-10-12 2014-09-30 삼성중공업 주식회사 Apparatus for Recycling Waste Heat for offshore Structure
KR101444160B1 (en) 2012-10-12 2014-09-30 삼성중공업 주식회사 Heat Recovery Apparatus for Ship
KR101444143B1 (en) 2012-10-23 2014-09-30 삼성중공업 주식회사 Heat Recovery Apparatus for Ship
CN116557938A (en) * 2023-05-09 2023-08-08 江苏联线环境设备有限公司 Heating and ventilation waste heat recovery energy-saving system and waste heat recovery method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119185A1 (en) 2008-03-27 2009-10-01 いすゞ自動車株式会社 Waste heat recovering device
US8567193B2 (en) 2008-03-27 2013-10-29 Isuzu Motors Limited Waste heat recovering device
KR101391321B1 (en) 2012-10-12 2014-05-30 삼성중공업 주식회사 Heat Recovery Apparatus for Ship
KR101444142B1 (en) * 2012-10-12 2014-09-30 삼성중공업 주식회사 Apparatus for Recycling Waste Heat for offshore Structure
KR101444160B1 (en) 2012-10-12 2014-09-30 삼성중공업 주식회사 Heat Recovery Apparatus for Ship
KR101444143B1 (en) 2012-10-23 2014-09-30 삼성중공업 주식회사 Heat Recovery Apparatus for Ship
CN116557938A (en) * 2023-05-09 2023-08-08 江苏联线环境设备有限公司 Heating and ventilation waste heat recovery energy-saving system and waste heat recovery method thereof
CN116557938B (en) * 2023-05-09 2023-10-27 江苏联线环境设备有限公司 Heating and ventilation waste heat recovery energy-saving system and waste heat recovery method thereof

Similar Documents

Publication Publication Date Title
JP2009103418A (en) Cogeneration system
JP2009103419A (en) Cogeneration system
CN104564194A (en) Comprehensive waste heat utilization system of internal combustion engine
CN103115388B (en) Thermal power plant circulating water heat supply system
CN203476412U (en) Novel efficient heating supply system based on NCB unit
JP2010007950A (en) Cogeneration system
CN106196229A (en) Air-introduced machine steam turbine low-vacuum-operating circulating water heating system and power-economizing method thereof
CN201916008U (en) Expansion power energy-saving system with high flow, low parameter and high back pressure
JP2009074744A (en) Gas heat pump cogeneration apparatus
KR20120103002A (en) Hybrid absorption type air conditioning system using solar heat
JP2004257601A (en) Waste heat collecting system
KR20130040320A (en) Fresh water generating equipment for vessels by using waste heat
CN106439777A (en) Water replenishing and preheating system for back-pressure steam turbine
JP6997714B2 (en) Power generation system
JP4128054B2 (en) Fuel cell system and operating method thereof
JP3242127U (en) Power storage and heat storage system
KR20010094080A (en) heating and hot water providing system by sun and discounted night electricity and gas boiler
JP2007263010A (en) Co-generation system
CN102486317A (en) Heat supplying method of cooling water residual heat recycling energy-saving system of thermal power plant
CN204457897U (en) The waste heat comprehensive utilization system of internal-combustion engine
KR101199687B1 (en) Operating method of compact cogeneration system
KR101913265B1 (en) Self-sufficient solar fresh air heating and water preheating hybrid system
CN212003365U (en) Energy supply system
CN209960462U (en) Device for heating boiler feed water by utilizing heat pump to absorb waste heat of steam turbine
CN208816195U (en) A kind of double pressure ORC electricity generation systems