JP2014034924A - Exhaust heat recovery device of internal combustion engine and cogeneration system - Google Patents

Exhaust heat recovery device of internal combustion engine and cogeneration system Download PDF

Info

Publication number
JP2014034924A
JP2014034924A JP2012176561A JP2012176561A JP2014034924A JP 2014034924 A JP2014034924 A JP 2014034924A JP 2012176561 A JP2012176561 A JP 2012176561A JP 2012176561 A JP2012176561 A JP 2012176561A JP 2014034924 A JP2014034924 A JP 2014034924A
Authority
JP
Japan
Prior art keywords
steam
internal combustion
combustion engine
exhaust
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176561A
Other languages
Japanese (ja)
Inventor
Hiroshi Arase
央 荒瀬
Kenji Kariya
謙二 假屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2012176561A priority Critical patent/JP2014034924A/en
Publication of JP2014034924A publication Critical patent/JP2014034924A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust heat recovery device of an internal combustion engine, which has a heat pump to generate steam using, as a heat absorption source, heat quantity of either a lubricant system of the internal combustion engine or a closed type circulating cooling water system directly cooling the internal combustion engine, capable of generating steam without increasing power consumption or fuel consumption or without practically using power or fuel.SOLUTION: An exhaust heat recovery device of an internal combustion engine comprises: an exhaust heat recovery boiler which generates steam by recovering heat from combustion exhaust of the internal combustion engine; and a heat pump which also generates the steam with lubricant of the internal combustion engine or engine cooling liquid as a heat absorption source. The exhaust heat recovery boiler is configured to generate super-heated steam. The heat pump has a back-pressure type steam turbine which uses the super-heated steam generated by the exhaust heat recovery boiler as drive steam, a drive source, of a compressor to compress a cooling medium or the steam inside the heat pump. Exhaust stem from the back-pressure type steam turbine is used as supply steam to a steam demander.

Description

本発明は、内燃機関の排熱回収装置及びコジェネレーション・システムに係り、特に、内燃機関の燃焼排ガスから蒸気を発生する排熱回収ボイラと、内燃機関の潤滑油系統や内燃機関を直接冷却する密閉式循環冷却水系統の持つ熱量を吸熱源として蒸気を発生させるヒートポンプを有する内燃機関の排熱回収装置に関する。   The present invention relates to an exhaust heat recovery device and a cogeneration system for an internal combustion engine, and in particular, directly cools an exhaust heat recovery boiler that generates steam from combustion exhaust gas of the internal combustion engine, a lubricating oil system of the internal combustion engine, and the internal combustion engine. The present invention relates to an exhaust heat recovery apparatus for an internal combustion engine having a heat pump that generates steam by using the amount of heat of the hermetic circulating cooling water system as a heat absorption source.

内燃機関は、機械駆動や発電機駆動を目的として設置されるが、多くの熱損失が発生する。その主要な熱損失源は排ガス、潤滑油及び機関冷却液の3種類に大別される。   Although an internal combustion engine is installed for the purpose of driving a machine or a generator, a lot of heat loss occurs. The main heat loss sources are roughly classified into three types: exhaust gas, lubricating oil, and engine coolant.

このうち排ガスについては温度が約350℃以上はあるので、内燃機関の排ガス出口に排熱回収ボイラを設置し、排ガスの熱エネルギーを蒸気エネルギーとして回収することが一般的に行われている。   Among these, since the temperature of the exhaust gas is about 350 ° C. or more, it is generally performed to install an exhaust heat recovery boiler at the exhaust gas outlet of the internal combustion engine and recover the thermal energy of the exhaust gas as steam energy.

一方、潤滑油及び機関冷却液については、潤滑油冷却温度は60℃〜75℃、内燃機関を直接冷却する密閉式循環冷却系統の機関冷却液温度は85℃〜95℃であるので、常温から90℃程度までの温水を製造し、外部に供給することは可能である。但し、温水の利用先は、寒冷期の暖房用熱源水に限られることが多い。また、85℃〜95℃の機関冷却水については、温水吸収式冷凍機の駆動熱源として夏季の冷房用に用いられる場合もある。排ガスにより蒸気を発生させて外部に供給し、機関冷却水を温水吸収式冷凍機の駆動熱源としたものとしては、例えば、特許文献1に記載のものがある。   On the other hand, for the lubricating oil and engine coolant, the lubricating oil cooling temperature is 60 ° C. to 75 ° C., and the engine coolant temperature of the closed circulation cooling system that directly cools the internal combustion engine is 85 ° C. to 95 ° C. It is possible to produce hot water up to about 90 ° C. and supply it to the outside. However, the use of hot water is often limited to heat source water for heating in the cold season. Further, the engine cooling water at 85 ° C. to 95 ° C. may be used for cooling in summer as a driving heat source of the hot water absorption refrigerator. For example, Japanese Patent Application Laid-Open No. H10-133707 discloses a method in which steam is generated by exhaust gas and supplied to the outside, and engine cooling water is used as a driving heat source for a hot water absorption refrigerator.

しかし、温水や、温水を使用して製造した冷水は、蒸気よりも利用先が少なく、利用先がない場合には、これらの冷却液の持つ熱量は、熱交換器を介して冷却水サイクルに排熱し、冷却塔から大気に排熱している場合も多い。   However, hot water and cold water produced using hot water have fewer uses than steam, and if there is no use, the amount of heat of these coolants is transferred to the cooling water cycle via a heat exchanger. In many cases, heat is exhausted and exhausted from the cooling tower to the atmosphere.

こうした状況の中で、近年70℃程度の温水を吸熱源として、7.0MPa、160℃越えの蒸気を発生させるヒートポンプが実用化されている。このヒートポンプの吸熱源として要求される温度域は約70℃程度であり、内燃機関の潤滑油系統の潤滑油温度は60℃〜75℃、密閉式循環冷却系統の冷却液の温度は85℃〜95℃であることから、これらの系統をヒートポンプの吸熱源として熱を取り出した場合、内燃機関からの発生蒸気量を大幅に増加させることが可能となる筈である。   Under such circumstances, heat pumps that generate steam exceeding 7.0 MPa and 160 ° C. using hot water of about 70 ° C. as a heat absorption source have been put into practical use in recent years. The temperature range required as the heat absorption source of this heat pump is about 70 ° C., the lubricating oil temperature of the lubricating oil system of the internal combustion engine is 60 ° C. to 75 ° C., and the temperature of the coolant of the closed circulation cooling system is 85 ° C. to Since it is 95 ° C., when these systems are used as the heat absorption source of the heat pump, the amount of steam generated from the internal combustion engine can be greatly increased.

内燃機関の排熱回収装置ではないが、ヒートポンプを用いて工場等の温排水から120℃程度の蒸気を発生させ、蒸気を供給することが、非特許文献1に記載されている。   Although it is not an exhaust heat recovery device of an internal combustion engine, Non-Patent Document 1 describes that steam at about 120 ° C. is generated from hot wastewater in a factory or the like by using a heat pump and the steam is supplied.

特開平3-237256号公報JP-A-3-237256

“高効率蒸気供給システム「スチームグロウヒートポンプ」の開発・販売について”、[online]、2011年2月21日、株式会社神戸製鋼所他、[平成23年12月22日検索]、インターネット<URL:http://www.kobelco.co.jp/topics/2011/02/1184033_11064.html>“Development and sales of high-efficiency steam supply system“ Steam Glow Heat Pump ”” [online], February 21, 2011, Kobe Steel Co., Ltd., [December 22, 2011 search], Internet <URL : Http://www.kobelco.co.jp/topics/2011/02/1184033_11064.html>

非特許文献1では、ヒートポンプ内部における冷媒圧縮機を駆動するのに電動機を駆動している。このような技術を内燃機関の排熱回収装置に適用した場合、機関排熱を回収するための省エネルギー設備が、内燃機関の本来の設置目的である発電電力を得るということを阻害する結果になってしまう。すなわち、内燃機関で発電機を駆動している場合、外部への電力供給量が少なくなることになる。また、内燃機関で機械を駆動している場合においても、機械を駆動する電動機の替わりに内燃機関を用いることにより電力を節約したにもかかわらず、ヒートポンプの構成機器である圧縮機を駆動するために外部から給電する必要が生じてしまう。   In Non-Patent Document 1, an electric motor is driven to drive a refrigerant compressor inside a heat pump. When such a technique is applied to an exhaust heat recovery device for an internal combustion engine, the result is that energy saving equipment for recovering engine exhaust heat obstructs obtaining the generated power that is the original installation purpose of the internal combustion engine. End up. That is, when the generator is driven by the internal combustion engine, the amount of power supplied to the outside is reduced. Further, even when a machine is driven by an internal combustion engine, in order to drive a compressor, which is a component of a heat pump, even though power is saved by using the internal combustion engine instead of an electric motor that drives the machine. It becomes necessary to supply power from the outside.

本発明の目的は、内燃機関の潤滑油系統または内燃機関を直接冷却する密閉式循環冷却水系統の持つ熱量を吸熱源として蒸気を発生させるヒートポンプを有する内燃機関の排熱回収装置において、電力消費量または燃料使用量を増加させることなく、または、実質的に電力または燃料を投入することなく、蒸気を発生させることが可能な内燃機関の排熱回収装置を提供することにある。   An object of the present invention is to provide an exhaust heat recovery apparatus for an internal combustion engine having a heat pump that generates steam using the amount of heat of a lubricating oil system of the internal combustion engine or a closed circulation cooling water system that directly cools the internal combustion engine as a heat sink. An object of the present invention is to provide an exhaust heat recovery device for an internal combustion engine capable of generating steam without increasing the amount or the amount of fuel used, or substantially without supplying electric power or fuel.

上記の課題を解決するために、本発明は、内燃機関の燃焼排ガスを熱回収して蒸気を発生させる排熱回収ボイラと、内燃機関の潤滑油または機関冷却液を吸熱源として蒸気を発生するヒートポンプを備え、排熱回収ボイラは過熱蒸気を発生させるように構成するとともに、ヒートポンプ内部の冷却媒体及び蒸気、または、その一方を加圧する圧縮機の駆動源として排熱回収ボイラで発生した過熱蒸気を駆動蒸気として使用する背圧型蒸気タービンを設置し、また、背圧型蒸気タービンの排気蒸気も蒸気需要先への供給蒸気として利用するようにしたことを特徴とする。   In order to solve the above problems, the present invention generates an exhaust heat recovery boiler that recovers heat from combustion exhaust gas of an internal combustion engine to generate steam, and generates steam using the lubricating oil or engine coolant of the internal combustion engine as a heat sink. A heat pump is provided, and the exhaust heat recovery boiler is configured to generate superheated steam, and the superheated steam generated in the exhaust heat recovery boiler as a driving source of a compressor that pressurizes the cooling medium and / or steam inside the heat pump. This is characterized in that a back pressure type steam turbine that uses as a driving steam is installed, and the exhaust steam of the back pressure type steam turbine is also used as supply steam to a steam demand destination.

本発明によれば、電力消費量または燃料使用量を増加させることなく、または、実質的に電力または燃料を投入することなく、内燃機関の潤滑油系統または内燃機関を直接冷却する密閉式循環冷却水系統の持つ熱量を吸熱源としてヒートポンプを用いて蒸気を発生させることが可能となる。   According to the present invention, hermetic circulation cooling that directly cools a lubricating oil system or an internal combustion engine of an internal combustion engine without increasing power consumption or fuel consumption, or substantially without supplying power or fuel. Steam can be generated using a heat pump with the heat quantity of the water system as an endothermic source.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明による実施例1の内燃機関の排熱回収装置を具備した複合発電設備の系統図。1 is a system diagram of a combined power generation facility equipped with an exhaust heat recovery apparatus for an internal combustion engine according to a first embodiment of the present invention. 比較例による内燃機関の排熱回収装置を具備した複合発電設備の系統図。The system diagram of the combined power generation equipment provided with the exhaust-heat recovery apparatus of the internal combustion engine by a comparative example. 本発明による実施例2の内燃機関の排熱回収装置を具備した複合発電設備の系統図。The systematic diagram of the combined power generation equipment which comprised the exhaust-heat recovery apparatus of the internal combustion engine of Example 2 by this invention.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例における内燃機関の排熱回収装置は、内燃機関の燃焼排ガスを熱回収して蒸気を発生させる排熱回収ボイラと、内燃機関の冷却液を吸熱源として蒸気を発生するヒートポンプを備え、ヒートポンプ内部の冷却媒体を加圧する圧縮機及び発生蒸気を加圧する圧縮機を内燃機関の排熱回収ボイラの発生蒸気(過熱蒸気)を使用した背圧型蒸気タービン駆動とするようにしたものである。   The exhaust heat recovery device for an internal combustion engine in the present embodiment includes an exhaust heat recovery boiler that recovers heat from the combustion exhaust gas of the internal combustion engine to generate steam, and a heat pump that generates steam using the coolant of the internal combustion engine as a heat absorption source, The compressor for pressurizing the cooling medium inside the heat pump and the compressor for pressurizing the generated steam are driven by a back pressure steam turbine using the generated steam (superheated steam) of the exhaust heat recovery boiler of the internal combustion engine.

そして、本実施例では、各背圧型蒸気タービンで仕事をした後に、背圧型蒸気タービンの排気蒸気が外部の蒸気需要先で利用可能となるように(蒸気需要先で必要とされる蒸気条件となるように)、各背圧タービンの入り口蒸気の圧力・温度条件、すなわち、排熱回収ボイラにおける発生蒸気の圧力・温度を調節している。具体的には、各背圧型蒸気タービンでの仕事を考慮して、必要な圧力と過熱度を有するように、排熱回収ボイラの伝熱面、ドラム及び蒸発器、給水ポンプ等を構成する。   In this embodiment, after working at each back pressure steam turbine, the exhaust steam of the back pressure steam turbine can be used at an external steam demand destination (the steam condition required at the steam demand destination). Thus, the pressure and temperature conditions of the inlet steam of each back pressure turbine, that is, the pressure and temperature of the generated steam in the exhaust heat recovery boiler are adjusted. Specifically, in consideration of the work in each back pressure steam turbine, the heat transfer surface of the exhaust heat recovery boiler, the drum and the evaporator, the feed water pump, and the like are configured so as to have a necessary pressure and superheat degree.

図1は本発明による内燃機関の排熱回収装置をコジェネレーション・システムに適用した場合を示すものである。即ち、図1は、発電機2を駆動して発電することを目的としたガスエンジン1の燃焼排ガスを熱回収して蒸気を発生させる排熱回収ボイラ4と、ガスエンジン1の機関密閉循環冷却水系統11を吸熱源として蒸気を発生するヒートポンプ22の両方を備えた内燃機関の排熱回収装置に本発明を適用した場合を示すものである。   FIG. 1 shows a case where an exhaust heat recovery apparatus for an internal combustion engine according to the present invention is applied to a cogeneration system. That is, FIG. 1 shows an exhaust heat recovery boiler 4 that generates heat by recovering the combustion exhaust gas of the gas engine 1 for the purpose of generating power by driving the generator 2, and the engine hermetic circulation cooling of the gas engine 1. The case where this invention is applied to the exhaust-heat recovery apparatus of the internal combustion engine provided with both the heat pumps 22 which generate | occur | produce a vapor | steam using the water system 11 as a heat sink is shown.

本実施例では、発電機2の駆動用のガスエンジン1の排ガスダクト3を排熱回収ボイラ4に接続し、排ガスの熱エネルギーを利用して蒸気を発生させている。一般的にガスエンジンの排熱回収ボイラ4では、0.7MPa程度の飽和蒸気を需要先に供給する場合が多い。本実施例では、排熱回収ボイラ4で発生した蒸気を用いて、後述する背圧蒸気タービン45、48を駆動し、その排気蒸気を需要先に約0.7MPaの飽和蒸気として供給するので、給水ポンプ6の揚程を高くすると共に、排熱回収ボイラ4には過熱器42を設置し、昇温・昇圧している。   In this embodiment, the exhaust gas duct 3 of the gas engine 1 for driving the generator 2 is connected to the exhaust heat recovery boiler 4, and steam is generated using the thermal energy of the exhaust gas. Generally, in the exhaust heat recovery boiler 4 of a gas engine, saturated steam of about 0.7 MPa is often supplied to customers. In this embodiment, the steam generated in the exhaust heat recovery boiler 4 is used to drive back pressure steam turbines 45 and 48, which will be described later, and the exhaust steam is supplied to the customer as saturated steam of about 0.7 MPa. While raising the head of feed water pump 6, superheater 42 is installed in exhaust heat recovery boiler 4, and it raises and raises pressure.

本実施例のガスエンジンの排ガスを用いた排熱回収ボイラ4は、具体的には次のように構成されている。先ず、給水管5から給水ポンプ6で供給されたボイラ給水を、節炭器伝熱管7で昇温し、ボイラドラム8に送る。ボイラドラム8には蒸発器9が接続され、蒸発器9において排ガスから受け取った熱エネルギーで蒸気を発生させる。発生した蒸気はボイラドラム8を介してボイラドラム8に接続された過熱器42に送られ、過熱器42において昇温・昇圧され過熱蒸気となる。ここでガスエンジン1の排ガス温度は、一般的に約350℃以上はあるので、排熱回収ボイラ4の出口蒸気温度を300℃程度まで昇温することは可能である。また、圧力についても、過熱器42の出口の過熱蒸気管43の箇所で3MPa程度となるように給水ポンプ6で昇圧する。   The exhaust heat recovery boiler 4 using the exhaust gas of the gas engine of the present embodiment is specifically configured as follows. First, the boiler feed water supplied from the feed water pipe 5 by the feed water pump 6 is heated by the economizer heat transfer pipe 7 and sent to the boiler drum 8. An evaporator 9 is connected to the boiler drum 8, and steam is generated by the thermal energy received from the exhaust gas in the evaporator 9. The generated steam is sent to the superheater 42 connected to the boiler drum 8 via the boiler drum 8, and the temperature is raised and increased in the superheater 42 to become superheated steam. Here, since the exhaust gas temperature of the gas engine 1 is generally about 350 ° C. or higher, the outlet steam temperature of the exhaust heat recovery boiler 4 can be raised to about 300 ° C. Also, the pressure is increased by the feed water pump 6 so that the pressure is about 3 MPa at the location of the superheated steam pipe 43 at the outlet of the superheater 42.

一方、ガスエンジン1の潤滑油と機関冷却液は、それぞれ潤滑油配管(潤滑油系統)15、機関密閉循環冷却水管(密閉式循環冷却系統)11で取り出され、循環ポンプである潤滑油ポンプ16、機関密閉循環冷却水ポンプ12で、それぞれ潤滑油冷却器17、機関密閉循環冷却水冷却器13に送られる。ガスエンジン1の潤滑油と機関冷却液の排熱は、それぞれ潤滑油冷却器17、機関密閉循環冷却水冷却器13において二次冷却水配管(二次冷却水系統)19の冷却水と熱交換し、最終的には、冷却塔21から大気に放熱される排熱処理の構成を有している。なお、図において、14は機関密閉循環冷却水温度調節弁、18は潤滑油温度調節弁、20は二次冷却水ポンプである。   On the other hand, the lubricating oil and the engine coolant of the gas engine 1 are taken out through a lubricating oil pipe (lubricating oil system) 15 and an engine hermetic circulating cooling water pipe (sealed circulating cooling system) 11 respectively, and a lubricating oil pump 16 that is a circulating pump. The engine hermetic circulating cooling water pump 12 sends the oil to the lubricating oil cooler 17 and the engine hermetic circulating cooling water cooler 13, respectively. The exhaust heat of the lubricating oil and the engine coolant of the gas engine 1 is exchanged with the cooling water of the secondary cooling water pipe (secondary cooling water system) 19 in the lubricating oil cooler 17 and the engine hermetic circulating cooling water cooler 13, respectively. And finally, it has the structure of the waste heat treatment radiated from the cooling tower 21 to the atmosphere. In the figure, 14 is an engine hermetic circulating cooling water temperature control valve, 18 is a lubricating oil temperature control valve, and 20 is a secondary cooling water pump.

そして、本実施例では、密閉式循環冷却系統11に設置した機関密閉循環冷却水熱交換器23を用いて、ヒートポンプ22に排熱を汲み上げる例を示している。ヒートポンプ吸熱源循環ポンプ25にて、吸熱源液がヒートポンプ吸熱源循環配管(ヒートポンプ吸熱源液循環系統)26を通じて、機関密閉循環冷却水熱交換器23と、ヒートポンプ22におけるヒートポンプ冷媒循環配管(冷却媒体循環経路)28上に設置したヒートポンプ蒸発器24を流れる。機関密閉循環冷却水熱交換器23で機関密閉循環冷却水管11からくみ上げられたガスエンジン1の機関排熱は、ヒートポンプ冷媒循環配管(冷却媒体循環経路)28上に設置したヒートポンプ蒸発器24で冷却媒体の気化に使われる。   In the present embodiment, an example is shown in which exhaust heat is pumped to the heat pump 22 using the engine hermetic circulating cooling water heat exchanger 23 installed in the hermetic circulating cooling system 11. In the heat pump heat absorption source circulation pump 25, the heat absorption source liquid passes through the heat pump heat absorption source circulation pipe (heat pump heat absorption source liquid circulation system) 26, and the engine sealed circulation cooling water heat exchanger 23 and the heat pump refrigerant circulation pipe (cooling medium) in the heat pump 22. Circulation path) 28 flows through the heat pump evaporator 24 installed on the circuit. The engine exhaust heat of the gas engine 1 drawn up from the engine hermetic circulation cooling water pipe 11 by the engine hermetic circulation cooling water heat exchanger 23 is cooled by the heat pump evaporator 24 installed on the heat pump refrigerant circulation pipe (cooling medium circulation path) 28. Used for medium vaporization.

気化した冷却媒体は冷媒圧縮機29に送られ圧縮され、冷媒凝縮器31でヒートポンプ温水循環配管(ヒートポンプ温水循環系統)33を循環している温水を加温することにより凝縮し、冷媒膨張弁30を経由して再びヒートポンプ蒸発器24に送られる。   The vaporized cooling medium is sent to and compressed by the refrigerant compressor 29, and is condensed by heating the hot water circulating through the heat pump hot water circulation pipe (heat pump hot water circulation system) 33 in the refrigerant condenser 31, and the refrigerant expansion valve 30. Then, it is sent again to the heat pump evaporator 24.

以上の経路から、ガスエンジン1の機関密閉循環冷却水系統11に排熱された熱量の一部が、機関密閉潤滑冷却水熱交換器23とヒートポンプ蒸発器24を介してヒートポンプ22の冷却媒体に汲み上げられ、更に、冷媒圧縮機29の動力が印加され、冷媒凝縮器31を介してヒートポンプ温水循環系統33を循環している温水に汲み上げられたことになる。   A part of the heat exhausted from the above path to the engine hermetic circulating cooling water system 11 of the gas engine 1 is transferred to the cooling medium of the heat pump 22 via the engine hermetic lubricating cooling water heat exchanger 23 and the heat pump evaporator 24. Further, the power of the refrigerant compressor 29 is applied, and the hot water circulating through the heat pump hot water circulation system 33 is pumped through the refrigerant condenser 31.

冷媒凝縮器31を出た後のヒートポンプ循環温水は、温水フラッシュタンク34に送られ、フラッシュ蒸気が発生する。発生したフラッシュ蒸気は、フラッシュ蒸気管38を経由して蒸気圧縮機39に送られ、需要先に供給するのに必要な蒸気圧力まで昇圧され需要先に送られる。温水フラッシュタンク34には、補給水管(温水循環補給水系統)36の補給水ポンプ37で補給水が連続的に送られ、温水フラッシュタンク34の水位は一定に保たれる。   The heat pump circulating hot water after leaving the refrigerant condenser 31 is sent to the hot water flash tank 34 to generate flash steam. The generated flash steam is sent to the steam compressor 39 via the flash steam pipe 38, and the pressure is increased to a steam pressure necessary for supplying to the customer, and then sent to the customer. To the warm water flash tank 34, makeup water is continuously sent by a makeup water pump 37 of a makeup water pipe (warm water circulation makeup water system) 36, and the water level of the warm water flash tank 34 is kept constant.

そして、本実施例では、冷媒圧縮機29と蒸気圧縮機39を、排熱回収ボイラ4で発生させた過熱蒸気を、蒸気管43からそれぞれ分岐した蒸気管44、47を用いて駆動する背圧型蒸気タービンであるヒートポンプ冷媒圧縮機駆動用背圧蒸気タービン45、ヒートポンプ蒸気圧縮機駆動用背圧タービン48によりそれぞれ駆動している。   In the present embodiment, the refrigerant compressor 29 and the steam compressor 39 are driven by the back pressure type in which the superheated steam generated in the exhaust heat recovery boiler 4 is driven using steam pipes 44 and 47 branched from the steam pipe 43, respectively. The heat pump is driven by a back pressure steam turbine 45 for driving a heat pump refrigerant compressor and a back pressure turbine 48 for driving a heat pump steam compressor, which are steam turbines.

また、本実施例では、各背圧蒸気タービン45、48の出口蒸気(排気蒸気)をそれぞれ背圧蒸気タービン排気管46、49により蒸気の需要先に送気するようにしている。各背圧蒸気タービン45、48の出口蒸気を蒸気供給ヘッダ50に導いている。この蒸気供給ヘッダ50にはヒートポンプ22のアウトプットである蒸気圧縮機39から供給する蒸気もヒートポンプ出口蒸気管41から接続し、そして、これらの発生蒸気が蒸気供給ヘッダ50から需要先への蒸気供給配管51を介して送気される。   Further, in this embodiment, the outlet steam (exhaust steam) of each of the back pressure steam turbines 45 and 48 is sent to the steam demand through the back pressure steam turbine exhaust pipes 46 and 49, respectively. The outlet steam of each back pressure steam turbine 45, 48 is led to the steam supply header 50. The steam supplied from the steam compressor 39, which is the output of the heat pump 22, is also connected to the steam supply header 50 from the heat pump outlet steam pipe 41, and the generated steam is supplied from the steam supply header 50 to the customer. Air is supplied through the pipe 51.

なお、ヒートポンプ22の停止時には、排熱回収ボイラ4で発生した蒸気が、タービンバイパス管(タービンバイパス系統)52を通ってタービンバイパス弁53及び減温器54で需要先の必要蒸気圧力・温度条件に減圧減温され、蒸気供給ヘッダ50に送られるようにしている。この場合の減温器54への減温水は、排熱回収ボイラ4の給水ポンプ6の出口から分岐し、減温給水管55に設置された温度調節弁56により流量が調節されて、減温器54の下流側の蒸気温度を制御する。   When the heat pump 22 is stopped, the steam generated in the exhaust heat recovery boiler 4 passes through the turbine bypass pipe (turbine bypass system) 52 and the turbine bypass valve 53 and the temperature reducer 54 require the required steam pressure and temperature conditions at the demand destination. The reduced pressure is reduced to the vapor supply header 50. In this case, the temperature-reduced water to the temperature reducer 54 branches from the outlet of the feed water pump 6 of the exhaust heat recovery boiler 4, and the flow rate is adjusted by the temperature control valve 56 installed in the temperature-reduced water supply pipe 55. The steam temperature downstream of the vessel 54 is controlled.

次に本実施例の効果を比較例との対比で説明する。   Next, the effect of this embodiment will be described in comparison with a comparative example.

比較例は、図2に示すように、冷媒圧縮機29と蒸気圧縮機39が、本実施例のように背圧蒸気タービン45、48により駆動されるのではなく、電動機32、40によりそれぞれ駆動されるようになっている。また、排熱回収ボイラ4は、従来のガスエンジンにおける排熱回収と同様に、蒸発器9で発生した蒸気がドラム8を介して系外(需要先)に飽和蒸気(0.7MPa程度の飽和蒸気)が送られるようになっている。また、電動機40で駆動される蒸気圧縮機39から昇圧された蒸気が需要先に送られる。この図2に示す比較例では、ヒートポンプ22の内部の冷媒圧縮機29や蒸気圧縮機39をそれぞれ電動機32、40で駆動しているので、内燃機関(ガスエンジン)の機関密閉循環冷却水系統11への機関排熱を回収するための省エネルギー設備が、内燃機関の本来の設置目的である発電電力を得るということを阻害する結果になっている。すなわち、この比較例では、ガスエンジン1で発電機2を駆動しているが、外部への電力供給量が少なくなることになる。   In the comparative example, as shown in FIG. 2, the refrigerant compressor 29 and the steam compressor 39 are not driven by the back pressure steam turbines 45 and 48 as in this embodiment, but are driven by the electric motors 32 and 40, respectively. It has come to be. In the exhaust heat recovery boiler 4, the steam generated in the evaporator 9 is saturated outside the system (destination) via the drum 8 (saturation of about 0.7 MPa) as in the exhaust gas recovery in the conventional gas engine. Steam) is sent. Further, the steam whose pressure is increased from the steam compressor 39 driven by the electric motor 40 is sent to the customer. In the comparative example shown in FIG. 2, the refrigerant compressor 29 and the vapor compressor 39 inside the heat pump 22 are driven by the electric motors 32 and 40, respectively. Therefore, the engine hermetic circulating cooling water system 11 of the internal combustion engine (gas engine). As a result, the energy-saving equipment for recovering the exhaust heat from the engine prevents the generation of the generated power, which is the original installation purpose of the internal combustion engine. That is, in this comparative example, the generator 2 is driven by the gas engine 1, but the amount of power supplied to the outside is reduced.

現在、実用化されている、図2に示すタイプのヒートポンプの成績係数は、ヒートポンプにおいて、その補給水が蒸気として出力されるまでに得たエネルギーに対する、電動機入力として定義されており、約2.5という数値が報告されている。これは、電動機への1.0の電気入力に対し、補給水〜蒸気系が、2.5倍の熱エネルギーを受け取っていることを示している。ここで、受け取り熱エネルギー出力2.5から、電動機への電気エネルギー入力1.0を差し引いた値、1.5が内燃機関の機関密閉循環冷却水系統11から汲み上げたエネルギーの比率となる。すなわち、1.5の熱エネルギーを汲み上げるのに要する電気エネルギーの比率が、1.0であるので、汲み上げた吸熱源の熱エネルギーの2/3の電気エネルギーを要することになる。ガスエンジン発電設備の発電効率が約50%程度であることを考えると、メリットのある省エネルギー手段とは云えない。   The coefficient of performance of the heat pump of the type shown in FIG. 2, which is currently in practical use, is defined as an electric motor input with respect to the energy obtained until the makeup water is output as steam in the heat pump. A number of 5 has been reported. This indicates that the make-up water-steam system receives 2.5 times the heat energy for an electric input of 1.0 to the motor. Here, a value obtained by subtracting the electric energy input 1.0 to the electric motor from the received heat energy output 2.5, 1.5 is the ratio of the energy pumped from the engine hermetic circulating cooling water system 11 of the internal combustion engine. That is, since the ratio of the electric energy required for pumping up 1.5 heat energy is 1.0, 2/3 of the heat energy of the pumped heat absorption source is required. Considering that the power generation efficiency of the gas engine power generation facility is about 50%, it cannot be said that it is an advantageous energy saving means.

内燃機関は、化学エネルギーを熱エネルギーに変換し、そこから力学的エネルギーを取り出す機関である。内燃機関で発電機を駆動する場合は、力学的エネルギーを、さらに電気エネルギーに変換し、これが最終アウトプットとなるが、図2に示す比較例では、こうして最終的に得られる電気エネルギーを消費して、再び中間的なアウトプットである熱エネルギーに変換、すなわち蒸気を製造していることになる。   An internal combustion engine is an engine that converts chemical energy into heat energy and extracts mechanical energy therefrom. When a generator is driven by an internal combustion engine, mechanical energy is further converted into electric energy, which is the final output. In the comparative example shown in FIG. 2, the electric energy thus finally obtained is consumed. Thus, it is converted into heat energy which is an intermediate output again, that is, steam is produced.

これに対して、本実施例では、排熱回収ボイラ4で発生させる蒸気の圧力・温度を、比較例よりも高くしたことにより、排熱回収ボイラ4で発生する蒸気の重量流量は減少するが、蒸気が有する内部エネルギーはほぼ同じである。この蒸気は、背圧蒸気タービン45、48で仕事をした後に、ほぼ全量が需要先に送られるので、ほとんど損失とならない。   In contrast, in this embodiment, the pressure and temperature of the steam generated in the exhaust heat recovery boiler 4 is higher than that in the comparative example, so that the weight flow rate of the steam generated in the exhaust heat recovery boiler 4 decreases. The internal energy of steam is almost the same. Since almost the entire amount of this steam is sent to the customer after working in the back pressure steam turbines 45 and 48, there is almost no loss.

そして、ヒートポンプ22側においては、ガスエンジンの機関密閉循環冷却水系統11を吸熱源として汲み上げた熱量と、背圧蒸気タービン45の仕事が、それぞれ、蒸発器24、冷媒圧縮機29で冷媒液に蓄えられ、凝縮器31を介して循環温水系統33の温水の内部エネルギーに変換される。この系の温水フラッシュタンク34で発生した蒸気は蒸気圧縮機39で昇圧されるので、背圧蒸気タービン48でした仕事は、ほぼ全量がヒートポンプでの発生蒸気エネルギーとして伝達される。   On the heat pump 22 side, the amount of heat pumped up using the engine hermetic circulating cooling water system 11 of the gas engine as a heat absorption source and the work of the back pressure steam turbine 45 are converted into refrigerant liquid by the evaporator 24 and the refrigerant compressor 29, respectively. It is stored and converted into the internal energy of the hot water of the circulating hot water system 33 via the condenser 31. Since the steam generated in the hot water flash tank 34 of this system is pressurized by the steam compressor 39, almost all the work performed by the back pressure steam turbine 48 is transmitted as steam energy generated in the heat pump.

すなわち、比較例と対比した場合に、本実施例では、ガスエンジンの機関密閉循環冷却水系統11を吸熱源として汲み上げた熱量がほぼ全量需要先への蒸気量の増加となるのは比較例と同じであるが、排熱回収ボイラ4で蒸気が得た熱量も背圧蒸気タービン45、48でヒートポンプ22に回収した後、ほぼ全量が需要家に送られるので、極めて損失が少ないといえる。   That is, in contrast to the comparative example, in this embodiment, the amount of heat pumped up using the engine hermetic circulating cooling water system 11 of the gas engine as a heat absorption source is almost the same as the comparative example. Although the same is true, the amount of heat generated by the exhaust heat recovery boiler 4 is recovered to the heat pump 22 by the back pressure steam turbines 45 and 48, and then almost all of the heat is sent to the customer.

ここで、本実施例において、比較例と対比して増加する消費電力は排熱回収ボイラ4への給水ポンプ6の揚程を高くするのに必要な電力である。しかしながら、そのための消費電力の増加は、冷熱源から汲み上げる熱量の1/50程度であり、ガスエンジン発電設備の発電効率が約50%であることから考えると、ほとんど、そのメリットを減じるものではない。これに対し、冷媒圧縮機29、蒸気圧縮機39を電動機で駆動している比較例では、消費電力の増加が、冷熱源から汲み上げる熱量の2/3にも達しており、本実施例の内燃機関の排熱回収装置のメリットの方が極めて大きいといえる。   Here, in the present embodiment, the power consumption that is increased as compared with the comparative example is the power required to raise the head of the feed water pump 6 to the exhaust heat recovery boiler 4. However, the increase in power consumption for that purpose is about 1/50 of the amount of heat pumped from the cold heat source, and considering that the power generation efficiency of the gas engine power generation facility is about 50%, it hardly reduces the merit. . On the other hand, in the comparative example in which the refrigerant compressor 29 and the vapor compressor 39 are driven by an electric motor, the increase in power consumption reaches 2/3 of the amount of heat pumped up from the cold source, and the internal combustion engine of the present embodiment. It can be said that the merit of the exhaust heat recovery device of the engine is much greater.

また、図2の比較例とは別に、内燃機関で機械を駆動している場合においても、電動機の替わりに内燃機関を用いることにより節約した電力を、ヒートポンプの構成機器である圧縮機を駆動するために外部から給電する必要が生じてしまうので、本実施例の省エネルギー効果は大きい。   In addition to the comparative example of FIG. 2, even when the machine is driven by an internal combustion engine, the compressor, which is a heat pump component, drives the power saved by using the internal combustion engine instead of the electric motor. For this reason, it is necessary to supply power from the outside, so that the energy saving effect of this embodiment is great.

また、単に外部への蒸気量を増加させたいのであれば、ヒートポンプを使用しなくても内燃機関の冷却排液から熱交換により90℃程度の温水を製造し、更に電気ボイラか燃焼ボイラにより蒸気を製造できるが、これらの方法においても、燃焼ボイラを使用すれば燃料使用量が増加するし、電気ボイラを使用すれば電力使用量の増加となるので、本実施例の省エネルギー効果は大きいと言える。   If you just want to increase the amount of steam to the outside, hot water of about 90 ° C. is produced by heat exchange from the cooling waste liquid of the internal combustion engine without using a heat pump, and steam is further generated by an electric boiler or combustion boiler. However, even in these methods, if a combustion boiler is used, the amount of fuel used increases, and if an electric boiler is used, the amount of power used increases. Therefore, it can be said that the energy saving effect of this embodiment is great. .

本実施例によれば、ヒートポンプで、内燃機関の機関冷却液を吸熱源として冷熱を汲み上げることにより需要家への送気蒸気量を増加させると共に、その過程で消費する電力量を大幅に低減する(若しくは電力量を実質的にゼロにする)ことが可能となる。   According to the present embodiment, the heat pump increases the amount of steam supplied to the consumer by pumping up the cold using the engine coolant of the internal combustion engine as the heat absorption source, and greatly reduces the amount of power consumed in the process. (Or the electric energy is made substantially zero).

本発明の他の実施例を図3に示す。上述の実施例1では、ヒートポンプ22内部の冷媒圧縮機29と蒸気圧縮機39をそれぞれ駆動する背圧蒸気タービン45、48を並列に構成しているのに対し、本実施例では、ヒートポンプ22内部の冷媒圧縮機29と蒸気圧縮機39をそれぞれ駆動する背圧蒸気タービン45、48を直列に構成としている。すなわち、本実施例では、排熱回収ボイラ4の過熱蒸気管43を、冷媒圧縮機29用の背圧蒸気タービン45に接続し、背圧蒸気タービン45の蒸気タービン排気管46を、蒸気圧縮機39用の背圧蒸気タービン48に接続している。そして、背圧蒸気タービン48の蒸気タービン排気管49を蒸気供給ヘッダ50に接続している。この順路に従い、排熱回収ボイラ4を出た過熱蒸気は、背圧蒸気タービン45、背圧蒸気タービン48の順に仕事をしてから蒸気供給ヘッダ50に導かれる。なお、排熱回収ボイラ4を出た過熱蒸気→背圧蒸気タービン48→背圧蒸気タービン45の順に仕事をしてから蒸気供給ヘッダ50に導くようにしても良い。   Another embodiment of the present invention is shown in FIG. In the above-described first embodiment, the back pressure steam turbines 45 and 48 that respectively drive the refrigerant compressor 29 and the steam compressor 39 inside the heat pump 22 are configured in parallel. Back pressure steam turbines 45 and 48 that respectively drive the refrigerant compressor 29 and the steam compressor 39 are configured in series. That is, in this embodiment, the superheated steam pipe 43 of the exhaust heat recovery boiler 4 is connected to the back pressure steam turbine 45 for the refrigerant compressor 29, and the steam turbine exhaust pipe 46 of the back pressure steam turbine 45 is connected to the steam compressor. The back pressure steam turbine 48 for 39 is connected. The steam turbine exhaust pipe 49 of the back pressure steam turbine 48 is connected to the steam supply header 50. The superheated steam that has exited the exhaust heat recovery boiler 4 along this route passes through the back-pressure steam turbine 45 and the back-pressure steam turbine 48 in this order, and is then guided to the steam supply header 50. The superheated steam exiting the exhaust heat recovery boiler 4, the back pressure steam turbine 48, and the back pressure steam turbine 45 may be worked in this order before being guided to the steam supply header 50.

本実施例においても、ガスエンジンの機関密閉循環冷却水系統11を吸熱源として汲み上げる熱量には変わりはない。   Also in the present embodiment, there is no change in the amount of heat pumped up using the engine hermetic circulating cooling water system 11 of the gas engine as a heat absorption source.

本実施例においても、上述の実施例1と同様に、ヒートポンプで、内燃機関の機関冷却液を吸熱源として冷熱を汲み上げることにより需要家への送気蒸気量を増加させると共に、その過程で消費する電力量を大幅に低減する(若しくは実質的にゼロにする)ことが可能となる。   Also in the present embodiment, in the same manner as in the first embodiment described above, the amount of steam supplied to the consumer is increased by pumping up the cold with the heat pump using the engine coolant of the internal combustion engine as the heat sink, and consumed in the process. It is possible to greatly reduce (or substantially reduce) the amount of power to be generated.

上述の各実施例では、ヒートポンプは、内燃機関の機関冷却液を吸熱源として蒸気を発生するようにしているが、内燃機関の潤滑油を吸熱源として蒸気を発生するように構成しても良いし、内燃機関の機関冷却液及び内燃機関の潤滑油のそれぞれを吸熱源として蒸気を発生するように構成してもよい。内燃機関の機関冷却液及び内燃機関の潤滑油のそれぞれを吸熱源として蒸気を発生させる場合、同じヒートポンプで吸熱するようにしても良いし、異なるヒートポンプで機関冷却液と内燃機関の潤滑油のそれぞれから吸熱して蒸気を発生させるようにしても良い。例えば、複数の内燃機関を設置する場合には、一方の内燃機関の排熱回収ボイラで発生させた過熱蒸気を用いて、機関冷却液から吸熱するヒートポンプ内部の圧縮機を駆動する背圧蒸気タービンを駆動し、他方の内燃機関の排熱回収ボイラで発生させた過熱蒸気を用いて、内燃機関の潤滑油から吸熱するヒートポンプ内部の圧縮機を駆動する背圧蒸気タービンを駆動するようにしても良い。   In each of the above-described embodiments, the heat pump generates steam using the engine coolant of the internal combustion engine as a heat absorption source, but may be configured to generate steam using the lubricating oil of the internal combustion engine as a heat absorption source. Alternatively, steam may be generated using each of the engine coolant of the internal combustion engine and the lubricating oil of the internal combustion engine as a heat absorption source. When generating steam using each of the engine coolant of the internal combustion engine and the lubricating oil of the internal combustion engine as heat sinks, the heat may be absorbed by the same heat pump, or each of the engine coolant and the lubricating oil of the internal combustion engine by different heat pumps. The steam may be generated by absorbing heat. For example, when a plurality of internal combustion engines are installed, a back pressure steam turbine that drives a compressor inside a heat pump that absorbs heat from engine coolant using superheated steam generated by an exhaust heat recovery boiler of one internal combustion engine. And the back pressure steam turbine that drives the compressor inside the heat pump that absorbs heat from the lubricating oil of the internal combustion engine using the superheated steam generated in the exhaust heat recovery boiler of the other internal combustion engine. good.

また、上述の各実施例では、冷却圧縮機と蒸気圧縮機の双方を駆動するのに背圧型蒸気タービンを用いているが、何れか一方でも省エネルギー効果が得られる。   Further, in each of the above-described embodiments, the back pressure steam turbine is used to drive both the cooling compressor and the steam compressor, but any one of them can obtain an energy saving effect.

また、冷却圧縮機または蒸気圧縮機を駆動するのに、背圧型蒸気タービンと電動機を組み合せても良い。例えば、背圧型蒸気タービンをメインとし、電動機を補助に用いるようにすることが考えられる。   Further, a back pressure steam turbine and an electric motor may be combined to drive the cooling compressor or the steam compressor. For example, it is conceivable to use a back pressure steam turbine as a main and use an electric motor as an auxiliary.

また、上述の各実施例では、内燃機関により発電機を駆動するシステムとしているが、内燃機関により機械を駆動するシステムにも同様に適用できる。   In each of the above-described embodiments, the generator is driven by the internal combustion engine. However, the present invention can be similarly applied to a system that drives the machine by the internal combustion engine.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加,削除,置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

また、水や蒸気の流れ,熱交換などは説明上必要と考えられるものを示しており、必ずしも全ての水や蒸気の流れ,熱交換などを示しているとは限らない。熱効率などを向上させるために、水や蒸気の流れ、熱交換などの工夫が種々行われる。   In addition, the flow of water and steam, heat exchange, and the like are those that are considered necessary for the explanation, and not all the flow of water and steam, heat exchange, etc. are necessarily shown. In order to improve thermal efficiency and the like, various devices such as water and steam flow and heat exchange are performed.

1…ガスエンジン、2…発電機、3…排ガスダクト、4…排熱回収ボイラ、5…給水管、6…給水ポンプ、7…節炭器伝熱管、8…ボイラドラム、9…蒸発器、10…蒸気管、11…機関密閉循環冷却水管、12…機関密閉循環冷却水ポンプ、13…機関密閉循環冷却水冷却器、14…機関密閉循環冷却水温度調節弁、15…潤滑油配管、16…潤滑油ポンプ、17…潤滑油冷却器、18…潤滑油温度調節弁、19…2次冷却水配管、20…二次冷却水ポンプ、21…冷却塔、22…ヒートポンプ、23…機関密閉循環冷却水熱交換器、24…ヒートポンプ蒸発器、25…ヒートポンプ吸熱源循環ポンプ、26…ヒートポンプ吸熱源循環配管、27…ヒートポンプ吸熱源水温度調節弁、28…ヒートポンプ冷媒循環配管、29…ヒートポンプ冷媒圧縮機、30…ヒートポンプ冷媒膨張弁、31…ヒートポンプ冷媒凝縮器、32…ヒートポンプ冷媒圧縮機駆動電動機、33…ヒートポンプ温水循環配管、34…ヒートポンプ温水フラッシュタンク、35…ヒートポンプ温水循環ポンプ、36…ヒートポンプ補給水管、37…ヒートポンプ補給水ポンプ、38…フラッシュ蒸気管、39…ヒートポンプ蒸気圧縮機、40…ヒートポンプ蒸気圧縮機駆動電動機、41…ヒートポンプ出口蒸気管、42…排熱回収ボイラ過熱器、43…排熱回収ボイラ過熱蒸気管、44…ヒートポンプ冷媒圧縮機駆動蒸気供給管、45…ヒートポンプ冷媒圧縮機駆動用背圧蒸気タービン、46…背圧蒸気タービン排気管、47…ヒートポンプ蒸気圧縮機駆動用蒸気管、48…ヒートポンプ蒸気圧縮機駆動用背圧蒸気タービン、49…背圧蒸気タービン排気管、50…蒸気供給ヘッダ、51…蒸気供給管、52…タービンバイパス管、53…タービンバイパス弁、54…減温器、55…減温給水管、56…温度調節弁。 DESCRIPTION OF SYMBOLS 1 ... Gas engine, 2 ... Generator, 3 ... Exhaust gas duct, 4 ... Exhaust heat recovery boiler, 5 ... Feed water pipe, 6 ... Feed water pump, 7 ... Charcoal saver heat transfer pipe, 8 ... Boiler drum, 9 ... Evaporator, DESCRIPTION OF SYMBOLS 10 ... Steam pipe, 11 ... Engine sealed circulation cooling water pipe, 12 ... Engine sealed circulation cooling water pump, 13 ... Engine sealed circulation cooling water cooler, 14 ... Engine sealed circulation cooling water temperature control valve, 15 ... Lubricating oil piping, 16 DESCRIPTION OF SYMBOLS ... Lubricating oil pump, 17 ... Lubricating oil cooler, 18 ... Lubricating oil temperature control valve, 19 ... Secondary cooling water piping, 20 ... Secondary cooling water pump, 21 ... Cooling tower, 22 ... Heat pump, 23 ... Engine hermetic circulation Cooling water heat exchanger, 24 ... heat pump evaporator, 25 ... heat pump heat absorption source circulation pump, 26 ... heat pump heat absorption source circulation piping, 27 ... heat pump heat absorption source water temperature control valve, 28 ... heat pump refrigerant circulation piping, 29 ... heat pump 30: heat pump refrigerant expansion valve, 31 ... heat pump refrigerant condenser, 32 ... heat pump refrigerant compressor drive motor, 33 ... heat pump hot water circulation piping, 34 ... heat pump hot water flash tank, 35 ... heat pump hot water circulation pump, 36 ... Heat pump make-up water pipe, 37 ... Heat pump make-up water pump, 38 ... Flash steam pipe, 39 ... Heat pump steam compressor, 40 ... Heat pump steam compressor drive motor, 41 ... Heat pump outlet steam pipe, 42 ... Waste heat recovery boiler superheater, 43 Exhaust heat recovery boiler superheated steam pipe, 44 ... Heat pump refrigerant compressor driving steam supply pipe, 45 ... Heat pump refrigerant compressor driving back pressure steam turbine, 46 ... Back pressure steam turbine exhaust pipe, 47 ... Heat pump steam compressor driving Steam pipe, 48 ... Back for heat pump steam compressor drive Steam turbine, 49 ... Back pressure steam turbine exhaust pipe, 50 ... Steam supply header, 51 ... Steam supply pipe, 52 ... Turbine bypass pipe, 53 ... Turbine bypass valve, 54 ... Temperature reducer, 55 ... Reduced temperature water supply pipe, 56 ... temperature control valve.

Claims (5)

内燃機関の燃焼排ガスを熱回収して蒸気を発生させる排熱回収ボイラと、前記内燃機関の潤滑油または機関冷却液を吸熱源として蒸気を発生するヒートポンプを備え、
前記排熱回収ボイラは過熱蒸気を発生させるように構成するとともに、
前記ヒートポンプ内部の冷却媒体または蒸気を加圧する圧縮機の駆動源として前記排熱回収ボイラで発生した過熱蒸気を駆動蒸気として使用する背圧型蒸気タービンを設置し、
前記ヒートポンプで発生した蒸気と前記背圧型蒸気タービンの排気蒸気を蒸気需要先へ供給するようにしたことを特徴とする内燃機関の排熱回収装置。
An exhaust heat recovery boiler that recovers heat from the combustion exhaust gas of the internal combustion engine and generates steam; and a heat pump that generates steam using the lubricating oil or engine coolant of the internal combustion engine as a heat absorption source,
The exhaust heat recovery boiler is configured to generate superheated steam,
A back pressure steam turbine that uses superheated steam generated in the exhaust heat recovery boiler as driving steam as a driving source of a compressor that pressurizes the cooling medium or steam inside the heat pump;
An exhaust heat recovery apparatus for an internal combustion engine, wherein steam generated by the heat pump and exhaust steam of the back pressure steam turbine are supplied to a steam demand destination.
請求項1において、前記冷却媒体を圧縮する圧縮機と前記蒸気を加圧する圧縮機のそれぞれの駆動源として前記背圧型蒸気タービンを用い、何れか一方の背圧型蒸気タービンに前記排熱回収ボイラで発生した過熱蒸気を供給し、前記一方の背圧型蒸気タービンの排気蒸気を、他方の背圧型蒸気タービンに供給し、前記他方の背圧型蒸気タービンの排気蒸気を前記需要先へ供給するようにしたことを特徴とする内燃機関の排熱回収装置。   In Claim 1, the said back pressure type steam turbine is used as each drive source of the compressor which compresses the said cooling medium, and the compressor which pressurizes the said steam, The said exhaust heat recovery boiler is used for any one of the back pressure type steam turbines. The generated superheated steam is supplied, the exhaust steam of the one back pressure steam turbine is supplied to the other back pressure steam turbine, and the exhaust steam of the other back pressure steam turbine is supplied to the customer. An exhaust heat recovery device for an internal combustion engine characterized by the above. 請求項1において、前記排熱回収ボイラから前記背圧型蒸気タービンへ蒸気を供給する経路の途中から分岐し、前記排熱回収ボイラで発生した蒸気を前記需要先側へバイパスさせる経路を有し、その経路に減温器を設置したことを特徴とする内燃機関の排熱回収装置。   In Claim 1, it has a path which branches from the middle of a path which supplies steam from the exhaust heat recovery boiler to the back pressure steam turbine, and bypasses the steam generated in the exhaust heat recovery boiler to the demand side, An exhaust heat recovery apparatus for an internal combustion engine, characterized in that a temperature reducer is installed in the path. 請求項1において、前記冷却媒体を圧縮する圧縮機または前記蒸気を加圧する圧縮機を、前記背圧型蒸気タービンに加えて電動機を用いて駆動することを特徴とする内燃機関の排熱回収装置。   2. The exhaust heat recovery apparatus for an internal combustion engine according to claim 1, wherein the compressor that compresses the cooling medium or the compressor that pressurizes the steam is driven using an electric motor in addition to the back pressure steam turbine. 内燃機関と、前記内燃機関により駆動される発電機と、前記内燃機関の燃焼排ガスを熱回収して蒸気を発生させる排熱回収ボイラと、前記内燃機関の潤滑油または機関冷却液を吸熱源として蒸気を発生するヒートポンプを備え、
前記排熱回収ボイラは過熱蒸気を発生させるように構成するとともに、
前記ヒートポンプ内部の冷却媒体または蒸気を加圧する圧縮機の駆動源として前記排熱回収ボイラで発生した過熱蒸気を駆動蒸気として使用する背圧型蒸気タービンを設置し、
前記ヒートポンプで発生した蒸気と前記背圧型蒸気タービンの排気蒸気を蒸気需要先へ供給するようにしたことを特徴とするコジェネレーション・システム。
An internal combustion engine, a generator driven by the internal combustion engine, an exhaust heat recovery boiler that recovers heat from the combustion exhaust gas of the internal combustion engine to generate steam, and a lubricating oil or engine coolant of the internal combustion engine as a heat absorption source Equipped with a heat pump that generates steam,
The exhaust heat recovery boiler is configured to generate superheated steam,
A back pressure steam turbine that uses superheated steam generated in the exhaust heat recovery boiler as driving steam as a driving source of a compressor that pressurizes the cooling medium or steam inside the heat pump;
A cogeneration system, wherein steam generated by the heat pump and exhaust steam of the back pressure steam turbine are supplied to a steam demand destination.
JP2012176561A 2012-08-09 2012-08-09 Exhaust heat recovery device of internal combustion engine and cogeneration system Pending JP2014034924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012176561A JP2014034924A (en) 2012-08-09 2012-08-09 Exhaust heat recovery device of internal combustion engine and cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176561A JP2014034924A (en) 2012-08-09 2012-08-09 Exhaust heat recovery device of internal combustion engine and cogeneration system

Publications (1)

Publication Number Publication Date
JP2014034924A true JP2014034924A (en) 2014-02-24

Family

ID=50284062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176561A Pending JP2014034924A (en) 2012-08-09 2012-08-09 Exhaust heat recovery device of internal combustion engine and cogeneration system

Country Status (1)

Country Link
JP (1) JP2014034924A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212584A (en) * 2014-05-01 2015-11-26 株式会社サムソン Exhaust heat recovery boiler
JP2016176425A (en) * 2015-03-20 2016-10-06 大阪瓦斯株式会社 Steam generating type cogeneration system
JPWO2015198656A1 (en) * 2014-06-25 2017-07-20 株式会社大島造船所 Heat supply system
CN107420138A (en) * 2017-08-02 2017-12-01 大唐东北电力试验研究所有限公司 Turbo-generator Set novel energy-conserving system and method
CN109441570A (en) * 2018-11-05 2019-03-08 华电电力科学研究院有限公司 One kind is coagulated in combination for two units takes out back heating system and operation method
CN110173347A (en) * 2019-05-28 2019-08-27 浙江亿扬能源科技有限公司 A kind of waste heat recycling system and operation method of coal mine equipment in use
CN111472853A (en) * 2020-05-11 2020-07-31 中国电力工程顾问集团西南电力设计院有限公司 Auxiliary engine cooling water system of gas-steam combined cycle unit
CN113187562A (en) * 2021-04-15 2021-07-30 花潍 Thermal working medium generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212584A (en) * 2014-05-01 2015-11-26 株式会社サムソン Exhaust heat recovery boiler
JPWO2015198656A1 (en) * 2014-06-25 2017-07-20 株式会社大島造船所 Heat supply system
JP2016176425A (en) * 2015-03-20 2016-10-06 大阪瓦斯株式会社 Steam generating type cogeneration system
CN107420138A (en) * 2017-08-02 2017-12-01 大唐东北电力试验研究所有限公司 Turbo-generator Set novel energy-conserving system and method
CN109441570A (en) * 2018-11-05 2019-03-08 华电电力科学研究院有限公司 One kind is coagulated in combination for two units takes out back heating system and operation method
CN109441570B (en) * 2018-11-05 2023-09-05 华电电力科学研究院有限公司 Condensation back-pumping heat supply system for combination of two units and operation method
CN110173347A (en) * 2019-05-28 2019-08-27 浙江亿扬能源科技有限公司 A kind of waste heat recycling system and operation method of coal mine equipment in use
CN110173347B (en) * 2019-05-28 2020-02-28 浙江亿扬能源科技有限公司 Waste heat recycling system of coal mine in-use equipment and operation method
CN111472853A (en) * 2020-05-11 2020-07-31 中国电力工程顾问集团西南电力设计院有限公司 Auxiliary engine cooling water system of gas-steam combined cycle unit
CN111472853B (en) * 2020-05-11 2024-04-12 中国电力工程顾问集团西南电力设计院有限公司 Auxiliary machine cooling water system of gas-steam combined cycle unit
CN113187562A (en) * 2021-04-15 2021-07-30 花潍 Thermal working medium generator

Similar Documents

Publication Publication Date Title
JP2014034924A (en) Exhaust heat recovery device of internal combustion engine and cogeneration system
US20120255309A1 (en) Utilizing steam and/or hot water generated using solar energy
RU2673959C2 (en) System and method for energy regeneration of wasted heat
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
JP2015052427A (en) Steam turbine plant
WO2017159149A1 (en) Compressed air energy storage power generation apparatus
MX2014011444A (en) System and method for recovery of waste heat from dual heat sources.
KR20120026569A (en) Intake air temperature control device and a method for operating an intake air temperature control device
EP3008297B1 (en) Arrangement and method for the utilization of waste heat
JP2014529039A (en) Improved ocean thermal energy conversion method and system
CN104727867A (en) Medium-and-low-temperature waste heat utilization method and pressure-reducing heat-absorbing type steam power circulating system thereof
JP2014122576A (en) Solar heat utilization system
JP4666641B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
KR101315918B1 (en) Organic rankine cycle for using low temperature waste heat and absorbtion type refrigerator
CN109488401B (en) Heat pump type waste heat utilization system
WO2016129451A1 (en) Heat exchanger, energy recovery device, and ship
RU2306489C1 (en) System for heat supply
CN107013272B (en) Internal combustion engine organic Rankine cycle power generation system based on photo-thermal photoelectric complementation
US9540961B2 (en) Heat sources for thermal cycles
RU2630284C1 (en) Cogeneration unit with deep waste energy disposal of thermal engine
Jo et al. Development of type 2 solution transportation absorption system for utilizing LNG cold energy
KR20150007950A (en) Boiler system
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
WO2013136606A1 (en) Steam generating system
KR102021901B1 (en) Supercritical CO2 generating system with parallel heater