JP6841721B2 - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP6841721B2
JP6841721B2 JP2017101338A JP2017101338A JP6841721B2 JP 6841721 B2 JP6841721 B2 JP 6841721B2 JP 2017101338 A JP2017101338 A JP 2017101338A JP 2017101338 A JP2017101338 A JP 2017101338A JP 6841721 B2 JP6841721 B2 JP 6841721B2
Authority
JP
Japan
Prior art keywords
water
ozone
treated
oxidation treatment
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017101338A
Other languages
Japanese (ja)
Other versions
JP2018196844A (en
Inventor
未知子 青木
未知子 青木
加藤 康弘
康弘 加藤
史泰 横山
史泰 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2017101338A priority Critical patent/JP6841721B2/en
Publication of JP2018196844A publication Critical patent/JP2018196844A/en
Application granted granted Critical
Publication of JP6841721B2 publication Critical patent/JP6841721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、水処理システムおよび水処理方法に関し、特には、浄水場等において好適に使用し得る水処理システムおよび水処理方法に関するものである。 The present invention relates to a water treatment system and a water treatment method, and more particularly to a water treatment system and a water treatment method that can be suitably used in a water purification plant or the like.

従来、浄水場等において用いられる水処理プロセスとして、凝集剤を用いて被処理水を凝集処理した後、凝集処理を施した被処理水に対してオゾンを用いた酸化処理を更に施す高度水処理プロセスが知られている(例えば、特許文献1参照)。このような高度水処理プロセスにおいては、凝集剤を用いた凝集処理により有機物質を除去することができるので、得られた処理水を塩素消毒した際にトリハロメタンが発生するのを抑制することができる。また、オゾンを用いた酸化処理により臭気物質を酸化分解することができるので、臭気物質を低減した処理水を得ることができる。 Conventionally, as a water treatment process used in water purification plants and the like, advanced water treatment in which the water to be treated is coagulated with a coagulant and then the water to be treated is further oxidized with ozone. The process is known (see, for example, Patent Document 1). In such an advanced water treatment process, organic substances can be removed by coagulation treatment using a coagulant, so that it is possible to suppress the generation of trihalomethane when the obtained treated water is chlorinated. .. Further, since the odorous substance can be oxidatively decomposed by the oxidative treatment using ozone, the treated water with the reduced odorous substance can be obtained.

そして、特許文献1では、pH4〜6で凝集処理を行った後、pHを4〜6に維持した状態でオゾンを用いた酸化処理を行うことにより、酸化処理における臭気物質の酸化速度を向上させている。 Then, in Patent Document 1, after the aggregation treatment is performed at pH 4 to 6, the oxidation rate of the odorous substance in the oxidation treatment is improved by performing the oxidation treatment using ozone while maintaining the pH at 4 to 6. ing.

特開2000−237772号公報Japanese Unexamined Patent Publication No. 2000-237772

しかし、上記従来の高度水処理プロセスには、被処理水中の臭気物質を更に効率的に除去するという点において改善の余地があった。 However, there is room for improvement in the above-mentioned conventional advanced water treatment process in that odorous substances in the water to be treated are removed more efficiently.

そこで、本発明は、凝集剤を用いて被処理水を凝集処理した後、凝集処理を施した被処理水に対してオゾンを用いた酸化処理を施す水処理システムおよび水処理方法において、被処理水中の臭気物質を効率的に除去することを可能にすることを目的とする。 Therefore, the present invention is to be treated in a water treatment system and a water treatment method in which the water to be treated is coagulated with a coagulant and then the water to be treated is subjected to an oxidation treatment using ozone. The purpose is to make it possible to efficiently remove odorous substances in water.

この発明は、上記課題を有利に解決することを目的とするものであり、本発明の水処理システムは、凝集剤を用いて被処理水を凝集処理し、凝集処理水を得る凝集処理装置と、オゾンを用いて前記凝集処理水中の臭気物質を酸化処理するオゾン酸化処理装置とを備える水処理システムであって、前記オゾン酸化処理装置に流入する水および前記オゾン酸化処理装置内を流れる水の少なくとも一方に対してアルカリを添加するアルカリ添加装置を更に備えることを特徴とする。このように、オゾン酸化処理装置に流入する水および/またはオゾン酸化処理装置内を流れる水にアルカリを添加するアルカリ添加装置を設ければ、アルカリを添加して凝集処理時よりもpHを上昇させた状態でオゾンを用いた酸化処理を行い、臭気物質を効率的に除去することが可能になる。 An object of the present invention is to solve the above problems advantageously, and the water treatment system of the present invention is a coagulation treatment apparatus that coagulates water to be treated with a coagulant to obtain coagulation-treated water. A water treatment system including an ozone oxidation treatment device for oxidizing an odorous substance in the coagulation-treated water using ozone, and water flowing into the ozone oxidation treatment device and water flowing in the ozone oxidation treatment device. It is further provided with an alkali adding device for adding alkali to at least one of them. In this way, if an alkali adding device for adding alkali to the water flowing into the ozone oxidation treatment device and / or the water flowing in the ozone oxidation treatment device is provided, the pH is raised by adding alkali as compared with the case of coagulation treatment. Oxidation treatment using ozone can be performed in this state to efficiently remove odorous substances.

ここで、本発明の水処理システムは、前記オゾン酸化処理装置が、直列接続された複数のオゾン接触部を備え、前記アルカリ添加装置が、水の流れ方向で見て上流側からn番目(但し、nは2以上の整数)のオゾン接触部内を流れる水に対してアルカリを添加することが好ましい。アルカリを添加するオゾン接触部を上流側から2番目以降とすれば、オゾンを用いた酸化処理を行った際に臭素酸イオンが生成するのを抑制しつつ、臭気物質の除去効率を向上させることができるからである。 Here, in the water treatment system of the present invention, the ozone oxidation treatment device includes a plurality of ozone contact portions connected in series, and the alkali addition device is the nth from the upstream side in the water flow direction (provided that the water treatment device is nth from the upstream side. , N is an integer of 2 or more), and it is preferable to add alkali to the water flowing in the ozone contact portion. If the ozone contact portion to which the alkali is added is the second or later from the upstream side, the efficiency of removing odorous substances can be improved while suppressing the generation of bromate ions when the oxidation treatment using ozone is performed. Because it can be done.

そして、本発明の水処理システムは、前記オゾン酸化処理装置が、直列接続された複数のオゾン接触部と、水の流れ方向で見て上流側からn番目(但し、nは2以上の整数)のオゾン接触部内を流れる水に対して過酸化水素を添加する酸化剤添加機構とを備え、前記アルカリ添加装置が、前記過酸化水素が添加されるオゾン接触部以降のオゾン接触部内を流れる水に対してアルカリを添加することが好ましい。オゾン接触部内を流れる水に対して過酸化水素を添加する酸化剤添加機構を設ければ、促進酸化処理(AOP:advanced oxidation process)により臭気物質を更に効率的に除去することができるからである。また、過酸化水素を添加しない通常の酸化処理と、過酸化水素を添加する酸化処理(AOP)とを組み合わせて実施する場合に、アルカリを添加するオゾン接触部をAOPを実施するオゾン接触部とすれば、過酸化水素に由来する還元反応により臭素酸イオンの生成を抑制しつつ、臭気物質の除去効率を向上させることができるからである。 In the water treatment system of the present invention, the ozone oxidation treatment device is connected to a plurality of ozone contact portions connected in series and is nth from the upstream side in the water flow direction (however, n is an integer of 2 or more). It is equipped with an oxidant addition mechanism that adds hydrogen peroxide to the water flowing in the ozone contact portion of the above, and the alkali addition device is used for the water flowing in the ozone contact portion after the ozone contact portion to which the hydrogen peroxide is added. On the other hand, it is preferable to add alkali. This is because if an oxidizing agent addition mechanism for adding hydrogen peroxide to the water flowing in the ozone contact portion is provided, odorous substances can be removed more efficiently by the advanced oxidation process (AOP). .. Further, when the normal oxidation treatment in which hydrogen peroxide is not added and the oxidation treatment in which hydrogen peroxide is added (AOP) are carried out in combination, the ozone contact portion to which the alkali is added is the ozone contact portion to which AOP is carried out. This is because the efficiency of removing odorous substances can be improved while suppressing the production of bromate ions by the reduction reaction derived from hydrogen peroxide.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の水処理方法は、凝集剤を使用し、第一のpHで被処理水を凝集処理して凝集処理水を得る凝集処理工程と、オゾンを用いて前記凝集処理水中の臭気物質を酸化処理するオゾン酸化処理工程とを含み、前記オゾン酸化処理工程が、前記第一のpHよりも高い第二のpHでオゾンを用いた酸化処理を行うステップを含むことを特徴とする。このように、凝集処理を行う際の第一のpHよりも高い第二のpHでオゾンを用いた酸化処理を行うステップを含むオゾン酸化処理工程を実施すれば、凝集処理時よりもpHを上昇させた状態でオゾンを用いた酸化処理を行い、臭気物質を効率的に除去することが可能になる。 Further, the present invention aims to advantageously solve the above problems, and the water treatment method of the present invention uses a flocculant to coagulate the water to be treated at the first pH to coagulate. A second step in which the ozone oxidation treatment step is higher than the first pH, including a coagulation treatment step for obtaining treated water and an ozone oxidation treatment step for oxidizing an odorous substance in the coagulation treatment water using ozone. It is characterized by including a step of performing an oxidation treatment using ozone at pH. As described above, if the ozone oxidation treatment step including the step of performing the oxidation treatment using ozone at the second pH higher than the first pH at the time of the aggregation treatment is carried out, the pH is raised as compared with the time of the aggregation treatment. Oxidation treatment using ozone can be performed in this state to efficiently remove odorous substances.

ここで、本発明の水処理方法は、前記オゾン酸化処理工程が、前記第二のpHよりも低いpHでオゾンを用いた酸化処理を行う第一ステップと、前記第一ステップの後に前記第二のpHでオゾンを用いた酸化処理を行う第二ステップとを含むことが好ましい。第二のpHよりも低いpHで酸化処理を行う第一ステップの後に第二のpHで酸化処理を行う第二ステップを実施すれば、オゾン酸化処理工程中に臭素酸イオンが生成するのを抑制しつつ、臭気物質の除去効率を向上させることができるからである。 Here, in the water treatment method of the present invention, the ozone oxidation treatment step includes a first step of performing an oxidation treatment using ozone at a pH lower than the second pH, and a second step after the first step. It is preferable to include a second step of performing an oxidation treatment using ozone at the pH of. If the second step of performing the oxidation treatment at a second pH is carried out after the first step of performing the oxidation treatment at a pH lower than the second pH, the generation of bromate ions during the ozone oxidation treatment step is suppressed. This is because the efficiency of removing odorous substances can be improved.

また、本発明の水処理方法は、前記第二ステップが、過酸化水素の存在下でオゾンを用いた酸化処理を行う促進酸化ステップであることが好ましい。第二ステップを促進酸化ステップとすれば、促進酸化処理(AOP:advanced oxidation process)により臭気物質を更に効率的に除去することができるからである。また、第二のpHよりも低いpHで酸化処理を行う第一ステップと、第二のpHで酸化処理を行う第二ステップとを組み合わせて実施する場合に、第二ステップを促進酸化ステップとすれば、過酸化水素に由来する還元反応により臭素酸イオンの生成を抑制しつつ、臭気物質の除去効率を向上させることができるからである。 Further, in the water treatment method of the present invention, it is preferable that the second step is an accelerated oxidation step in which an oxidation treatment using ozone is performed in the presence of hydrogen peroxide. This is because if the second step is an accelerated oxidation step, odorous substances can be removed more efficiently by an advanced oxidation process (AOP). Further, when the first step of performing the oxidation treatment at a pH lower than the second pH and the second step of performing the oxidation treatment at the second pH are carried out in combination, the second step is referred to as the accelerated oxidation step. For example, it is possible to improve the efficiency of removing odorous substances while suppressing the production of bromine ions by the reduction reaction derived from hydrogen peroxide.

更に、本発明の水処理方法は、前記第一のpHが6.8以下であることが好ましい。第一のpHが6.8以下であれば、凝集処理工程における有機物質の除去効率を向上させることができると共に、凝集処理水中の無機炭素(IC)の量を低減してオゾン酸化処理工程における酸化処理効率を向上させ、臭気物質の除去効率を更に向上させることができるからである。 Further, in the water treatment method of the present invention, the first pH is preferably 6.8 or less. When the first pH is 6.8 or less, the efficiency of removing organic substances in the coagulation treatment step can be improved, and the amount of inorganic carbon (IC) in the coagulation treatment water can be reduced to reduce the amount of inorganic carbon (IC) in the coagulation treatment step. This is because the oxidation treatment efficiency can be improved and the removal efficiency of odorous substances can be further improved.

そして、本発明の水処理方法は、前記第二のpHが7.0以上7.5以下であることが好ましい。第二のpHが7.0以上であれば、臭気物質の除去効率を更に向上させることができるからである。また、第二のpHが7.5以下であれば、オゾン酸化処理工程中に臭素酸イオンが生成するのを十分に抑制することができるからである。 In the water treatment method of the present invention, the second pH is preferably 7.0 or more and 7.5 or less. This is because when the second pH is 7.0 or more, the efficiency of removing odorous substances can be further improved. Further, when the second pH is 7.5 or less, it is possible to sufficiently suppress the generation of bromate ions during the ozone oxidation treatment step.

本発明の水処理システムおよび水処理方法によれば、被処理水中の臭気物質を効率的に除去することができる。 According to the water treatment system and the water treatment method of the present invention, odorous substances in the water to be treated can be efficiently removed.

本発明に従う水処理システムの一例の概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of an example of the water treatment system according to this invention. 本発明に従う水処理システムの他の例の概略構成を示す説明図である。It is explanatory drawing which shows the schematic structure of another example of the water treatment system according to this invention. 本発明に従う水処理システムに使用し得るオゾン酸化処理装置の変形例を示す説明図である。It is explanatory drawing which shows the modification of the ozone oxidation treatment apparatus which can be used in the water treatment system according to this invention. 実施例および比較例において河川水を処理した際の、酸化処理時間と水中の臭気物質濃度との関係を示すグラフである。It is a graph which shows the relationship between the oxidation treatment time and the odor substance concentration in water at the time of treating river water in an Example and a comparative example. 実施例および比較例において河川水を処理した際の、酸化処理時間と水中の臭素酸イオン濃度との関係を示すグラフである。It is a graph which shows the relationship between the oxidation treatment time and the bromate ion concentration in water at the time of treating river water in an Example and a comparative example.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。なお、各図において、同一の符号を付したものは、同一の構成要素を示すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, those having the same reference numerals indicate the same components.

(水処理システム)
本発明の水処理システムは、特に限定されることなく、例えば浄水場等において水の高度処理を行う際に好適に用いることができる。
(Water treatment system)
The water treatment system of the present invention is not particularly limited, and can be suitably used when performing advanced treatment of water, for example, in a water purification plant or the like.

ここで、図1に、本発明の水処理システムの一例の概略構成を示す。図1に示す水処理システム100は、被処理水が流入する凝集処理装置10と、凝集処理装置10の後段に任意に設けられた砂ろ過装置20と、砂ろ過装置20の後段に設けられたオゾン酸化処理装置30と、オゾン酸化処理装置30内を流れる水に対してアルカリを添加するアルカリ添加装置40とを備えている。 Here, FIG. 1 shows a schematic configuration of an example of the water treatment system of the present invention. The water treatment system 100 shown in FIG. 1 is provided after the coagulation treatment device 10 into which the water to be treated flows, the sand filtration device 20 arbitrarily provided after the coagulation treatment device 10, and the sand filtration device 20. The ozone oxidation treatment device 30 and an alkali addition device 40 for adding alkali to the water flowing in the ozone oxidation treatment device 30 are provided.

そして、水処理システム100では、特に限定されることなく、例えば、河川水、ダム湖水、湖沼水または地下水、或いは、それらを前処理(例えば、夾雑物を除去するための砂ろ過、有機物質やアンモニア性窒素を除去するための生物酸化処理など)してなる前処理水などが被処理水として処理される。また、水処理システム100で得られた処理水は、任意に後処理(例えば、活性炭処理、高速砂ろ過、塩素消毒など)を施した後で、例えば上水道などへと供給することができる。 Then, in the water treatment system 100, without particular limitation, for example, river water, dam lake water, lake water or groundwater, or pretreatment of them (for example, sand filtration for removing impurities, organic substances, etc. Pre-treated water (such as biooxidation treatment to remove ammoniacal nitrogen) is treated as water to be treated. Further, the treated water obtained by the water treatment system 100 can be arbitrarily post-treated (for example, activated carbon treatment, high-speed sand filtration, chlorination, etc.) and then supplied to, for example, a water supply.

ここで、図1に示す水処理システム100の凝集処理装置10は、凝集剤を用いて被処理水を凝集処理し、凝集処理水を得る装置であり、被処理水と凝集剤とを混合する撹拌槽11と、生成した凝集体(フロック)を沈殿させる沈殿槽12とを備えている。また、撹拌槽11は、撹拌機13と、例えばポリ塩化アルミニウム(PAC)などの凝集剤を添加する凝集剤添加機構14とを備えており、任意に、凝集処理される被処理水のpHを調整するためのpH調整剤(例えば、硫酸、水酸化ナトリウム等)を添加するpH調整剤添加機構15を更に備えている。
なお、凝集処理装置10の撹拌槽11は、急速撹拌槽と緩速撹拌槽とで構成されていてもよい。
Here, the coagulation treatment device 10 of the water treatment system 100 shown in FIG. 1 is a device that coagulates the water to be treated with a coagulant to obtain the coagulation-treated water, and mixes the water to be treated and the coagulant. A stirring tank 11 and a settling tank 12 for precipitating the produced aggregates (flocks) are provided. Further, the stirring tank 11 includes a stirrer 13 and a coagulant addition mechanism 14 for adding a coagulant such as polyaluminum chloride (PAC), and arbitrarily adjusts the pH of the water to be treated to be coagulated. A pH adjuster addition mechanism 15 for adding a pH adjuster (for example, sulfuric acid, sodium hydroxide, etc.) for adjusting is further provided.
The stirring tank 11 of the coagulation treatment device 10 may be composed of a rapid stirring tank and a slow speed stirring tank.

また、砂ろ過装置20は、凝集処理装置10から流出した凝集処理水中に残存しているフロック等を砂ろ過により取り除き、フロック等が除去された凝集処理水を得る装置である。 Further, the sand filtration device 20 is a device that removes flocs and the like remaining in the coagulation-treated water flowing out from the coagulation treatment device 10 by sand filtration to obtain coagulation-treated water from which the flocs and the like have been removed.

オゾン酸化処理装置30は、凝集処理水中に含まれている臭気物質をオゾンを用いて酸化処理する装置である。なお、オゾン酸化処理装置30では、凝集処理水中に含まれている臭気物質以外の有機物質等も酸化処理され得る。また、オゾン酸化処理装置30では、凝集処理水中に含まれている原虫類等を殺滅させ得る。 The ozone oxidation treatment device 30 is a device that uses ozone to oxidize an odorous substance contained in coagulation-treated water. In the ozone oxidation treatment apparatus 30, organic substances other than odorous substances contained in the coagulation-treated water can also be oxidized. Further, the ozone oxidation treatment apparatus 30 can kill protozoans and the like contained in the coagulation-treated water.

ここで、オゾン酸化処理装置30は、砂ろ過装置20から流出した凝集処理水が流れる水槽38と、水槽38内に複数設置されて水槽38内を上流側(凝集処理水が流入する側)から下流側(処理水が流出する側)へと流れる水の流れを上下に迂回する押し出し流れとする仕切り壁31とを備えている。また、オゾン酸化処理装置30は、水槽38の内壁(図示例では左側の内壁)と水槽38の上側に位置する隔壁31(水槽38の底面まで延在していない隔壁31)との間および水槽38の上側に位置する隔壁31同士の間に形成された複数(図示例では3つ)のオゾン接触部32,33,34の底部に、オゾンを曝気するオゾン曝気装置35,36,37を備えている。即ち、オゾン酸化処理装置30は、直列接続された複数(図示例では3つ)のオゾン接触部32,33,34を水槽38内に有している。 Here, a plurality of ozone oxidation treatment devices 30 are installed in the water tank 38 through which the coagulation-treated water flowing out from the sand filtration device 20 flows, and from the upstream side (the side in which the coagulation-treated water flows in) in the water tank 38. It is provided with a partition wall 31 as an extruded flow that bypasses the flow of water flowing to the downstream side (the side from which the treated water flows out) up and down. Further, the ozone oxidation treatment device 30 is provided between the inner wall of the water tank 38 (the inner wall on the left side in the illustrated example) and the partition wall 31 located above the water tank 38 (the partition wall 31 that does not extend to the bottom surface of the water tank 38) and in the water tank. Ozone aeration devices 35, 36, 37 that aerate ozone are provided at the bottoms of a plurality of (three in the illustrated example) ozone contact portions 32, 33, 34 formed between the partition walls 31 located on the upper side of the 38. ing. That is, the ozone oxidation treatment device 30 has a plurality of (three in the illustrated example) ozone contact portions 32, 33, 34 connected in series in the water tank 38.

アルカリ添加装置40は、オゾン酸化処理装置30内を流れる水に対してアルカリ(例えば、水酸化ナトリウム等)を添加する装置である。具体的には、図1に示す水処理システム100では、アルカリ添加装置40は、水の流れ方向で見て上流側からn番目(但し、nは2以上の整数)のオゾン接触部(図示例では上流側から2番目のオゾン接触部33)内を流れる水に対してアルカリを添加する。 The alkali adding device 40 is a device that adds an alkali (for example, sodium hydroxide or the like) to the water flowing in the ozone oxidation treatment device 30. Specifically, in the water treatment system 100 shown in FIG. 1, the alkali addition device 40 is the nth ozone contact portion (where n is an integer of 2 or more) from the upstream side when viewed in the water flow direction (illustrated example). Then, alkali is added to the water flowing in the ozone contact portion 33) second from the upstream side.

そして、図1に示す水処理システム100では、凝集処理装置10において被処理水を凝集処理し、被処理水に含まれていた有機物質の一部や懸濁物質を除去することができるので、懸濁物質濃度およびトリハロメタン生成能が低減された処理水を得ることができる。 Then, in the water treatment system 100 shown in FIG. 1, the water to be treated can be coagulated in the coagulation treatment apparatus 10, and a part of the organic substance and the suspended substance contained in the water to be treated can be removed. It is possible to obtain treated water in which the concentration of suspended substances and the ability to produce trihalomethanes are reduced.

また、水処理システム100では、オゾン酸化処理装置30においてオゾンを用いて凝集処理水中の臭気物質を酸化処理することができるので、臭気物質が低減された処理水を得ることができる。また、水処理システム100では、オゾンを用いた酸化処理により、臭気物質以外の有機物質や原虫類等も低減し得る。そして、水処理システム100では特に、オゾン酸化処理装置内を流れる水に対してアルカリ添加装置40でアルカリを添加し、酸化処理される水のpHを上昇させた状態でオゾンを用いた酸化処理を行うことができるので、臭気物質の酸化分解を促進し、臭気物質を効率的に除去することができる。 Further, in the water treatment system 100, since the odorous substance in the coagulation-treated water can be oxidized by using ozone in the ozone oxidation treatment device 30, it is possible to obtain the treated water in which the odorous substance is reduced. Further, in the water treatment system 100, organic substances other than odorous substances, protozoans and the like can be reduced by the oxidation treatment using ozone. Then, in the water treatment system 100, in particular, the alkali addition device 40 adds alkali to the water flowing in the ozone oxidation treatment device, and the oxidation treatment using ozone is performed in a state where the pH of the water to be oxidized is raised. Since it can be carried out, the oxidative decomposition of the odorous substance can be promoted, and the odorous substance can be efficiently removed.

更に、臭化物イオンを含む水をオゾンで酸化処理した場合、特にpHが高い条件下においては臭素酸イオンが生成し易くなる。しかし、水処理システム100では、アルカリを添加するオゾン接触部を上流側から2番目以降(図示例では上流側から2番目のオゾン接触部33)としているので、オゾン酸化処理装置30に流入する凝集処理水や最初のオゾン接触部内を流れる水に対してアルカリを添加して高pH条件下で長時間の酸化処理を行う場合と比較し、臭素酸イオンが生成するのを抑制することができる。従って、水処理システム100によれば、臭素酸イオンの生成を抑制しつつ、アルカリを添加しない場合と比較して臭気物質の除去効率を向上させることができる。 Furthermore, when water containing bromide ions is oxidized with ozone, bromate ions are likely to be generated particularly under high pH conditions. However, in the water treatment system 100, since the ozone contact portion to which the alkali is added is the second or later ozone contact portion from the upstream side (in the illustrated example, the ozone contact portion 33 is the second from the upstream side), the aggregation flowing into the ozone oxidation treatment apparatus 30 It is possible to suppress the generation of bromate ions as compared with the case where an alkali is added to the treated water or the water flowing in the first ozone contact portion and the oxidation treatment is performed for a long time under high pH conditions. Therefore, according to the water treatment system 100, it is possible to improve the efficiency of removing odorous substances as compared with the case where no alkali is added, while suppressing the generation of bromate ions.

次に、図2に、本発明の水処理システムの他の例の概略構成を示す。図2に示す水処理システム100Aは、オゾン酸化処理装置30のオゾン接触部内を流れる水に対して過酸化水素(H)を添加する酸化剤添加機構50を備えている点、および、アルカリ添加装置40が、過酸化水素が添加されるオゾン接触部以降のオゾン接触部内を流れる水に対してアルカリを添加する点以外は図1に示す水処理システム100と同様の構成を有している。
なお、以下では、図1に示す水処理システム100と同様の構成については説明を省略する。
Next, FIG. 2 shows a schematic configuration of another example of the water treatment system of the present invention. The water treatment system 100A shown in FIG. 2 is provided with an oxidizing agent addition mechanism 50 that adds hydrogen peroxide (H 2 O 2 ) to the water flowing in the ozone contact portion of the ozone oxidation treatment device 30. The alkali adding device 40 has the same configuration as the water treatment system 100 shown in FIG. 1 except that the alkali adding device 40 adds alkali to the water flowing in the ozone contact portion after the ozone contact portion to which hydrogen peroxide is added. There is.
In the following, description of the same configuration as the water treatment system 100 shown in FIG. 1 will be omitted.

ここで、酸化剤添加機構50は、オゾン接触部内を流れる水に対して過酸化水素を添加し、過酸化水素を添加したオゾン接触部およびそれよりも下流側に位置するオゾン接触部において促進酸化処理(AOP)を行うための装置である。そして、図2に示す水処理システム100Aでは、酸化剤添加機構50は、水の流れ方向で見て上流側からn番目(但し、nは2以上の整数)のオゾン接触部(図示例では上流側から3番目のオゾン接触部34)内を流れる水に対して過酸化水素を添加する。 Here, the oxidizing agent addition mechanism 50 adds hydrogen peroxide to the water flowing in the ozone contact portion, and promotes oxidation in the ozone contact portion to which the hydrogen peroxide is added and the ozone contact portion located downstream of the hydrogen peroxide contact portion. It is a device for performing processing (AOP). Then, in the water treatment system 100A shown in FIG. 2, the oxidizing agent addition mechanism 50 is the nth ozone contact portion (where n is an integer of 2 or more) from the upstream side when viewed in the water flow direction (upstream in the illustrated example). Hydrogen peroxide is added to the water flowing in the ozone contact portion 34) third from the side.

また、アルカリ添加装置40は、酸化剤添加機構50により過酸化水素が添加されるオゾン接触部34内を流れる水に対してアルカリを添加する。 Further, the alkali adding device 40 adds alkali to the water flowing in the ozone contact portion 34 to which hydrogen peroxide is added by the oxidizing agent adding mechanism 50.

そして、水処理システム100Aでは、水処理システム100と同様に、懸濁物質濃度およびトリハロメタン生成能が低減された処理水を得ることができる。 Then, in the water treatment system 100A, as in the water treatment system 100, it is possible to obtain treated water having a reduced suspension substance concentration and trihalomethane production ability.

また、水処理システム100Aでは、オゾン酸化処理装置30において凝集処理水中の臭気物質を促進酸化処理(AOP)することができるので、臭気物質の酸化分解を更に促進し、臭気物質を更に効率的に除去することができる。なお、水処理システム100Aのオゾン酸化処理装置30では、凝集処理水中に含まれている臭気物質以外の有機物質や原虫類等も促進酸化処理され得る。 Further, in the water treatment system 100A, the ozone oxidation treatment apparatus 30 can perform accelerated oxidation treatment (AOP) on the odorous substance in the coagulation-treated water, so that the oxidative decomposition of the odorous substance can be further promoted and the odorous substance can be made more efficient. Can be removed. In the ozone oxidation treatment apparatus 30 of the water treatment system 100A, organic substances other than odorous substances and protozoans contained in the coagulation-treated water can also be subjected to accelerated oxidation treatment.

更に、水処理システム100Aでは、AOPを実施するオゾン接触部にアルカリ添加装置40でアルカリを添加するので、pHを上昇させた状態で酸化処理を行うことによる臭気物質の除去効率の向上効果を得つつ、過酸化水素に由来する還元反応により臭素酸イオンの生成を抑制することができる。 Further, in the water treatment system 100A, since the alkali is added to the ozone contact portion where AOP is carried out by the alkali adding device 40, the effect of improving the efficiency of removing odorous substances by performing the oxidation treatment in a state where the pH is raised is obtained. At the same time, the production of bromate ions can be suppressed by the reduction reaction derived from hydrogen peroxide.

以上、一例および他の例を用いて本発明の水処理システムについて説明したが、本発明の水処理システムは上述した一例および他の例に限定されるものではない。 Although the water treatment system of the present invention has been described above with reference to one example and other examples, the water treatment system of the present invention is not limited to the above-mentioned one example and other examples.

具体的には、上述した一例および他の例の水処理システムではアルカリ添加装置がオゾン酸化処理装置内を流れる水にアルカリを添加するが、本発明の水処理システムでは、オゾン酸化処理装置に流入する水(凝集処理水)に対してアルカリを添加してもよいし、オゾン酸化処理装置に流入する水とオゾン酸化処理装置内を流れる水との双方にアルカリを添加してもよい。また、アルカリ添加装置は、アルカリを多段階に分けて複数箇所に添加してもよい。 Specifically, in the water treatment systems of the above-mentioned example and other examples, the alkali addition device adds alkali to the water flowing in the ozone oxidation treatment device, but in the water treatment system of the present invention, it flows into the ozone oxidation treatment device. Alkali may be added to the water to be treated (coagulation-treated water), or alkali may be added to both the water flowing into the ozone oxidation treatment device and the water flowing in the ozone oxidation treatment device. Further, the alkali adding device may add alkali to a plurality of places in a plurality of stages.

また、上述した一例および他の例の水処理システムでは仕切り壁により区画形成された複数のオゾン接触部を有するオゾン酸化処理装置を用いたが、本発明の水処理システムのオゾン酸化処理装置は、オゾン接触部を一つのみ有するものであってもよいし、図3に示すような、凝集処理水が押し出し流れで流れる1槽の水槽38内に複数のオゾン曝気装置35,36,37を水の流れ方向に離隔して配置することにより複数のオゾン接触部32,33,34を形成したオゾン酸化処理装置30Bであってもよい。また、オゾン酸化処理装置は、オゾン曝気装置を設けた水槽からなるオゾン接触部を複数直列接続してなるものであってもよい。 Further, in the water treatment systems of the above-mentioned example and the other examples, an ozone oxidation treatment device having a plurality of ozone contact portions formed by partition walls was used, but the ozone oxidation treatment device of the water treatment system of the present invention is used. It may have only one ozone contact portion, or as shown in FIG. 3, a plurality of ozone aeration devices 35, 36, 37 are watered in one water tank 38 in which the coagulated treated water flows in an extruded flow. The ozone oxidation treatment device 30B may have a plurality of ozone contact portions 32, 33, 34 formed by arranging the ozone contact portions 32, 33, 34 apart from each other in the flow direction of the ozone. Further, the ozone oxidation treatment apparatus may be formed by connecting a plurality of ozone contact portions made of a water tank provided with an ozone aeration apparatus in series.

更に、上述した他の例の水処理システムでは酸化剤添加機構50がオゾン接触部34内を流れる水のみに過酸化水素を添加しているが、本発明の水処理システムでは、酸化剤添加機構は、過酸化水素を複数箇所に添加してもよい。なお、過酸化水素を複数箇所に添加する場合、アルカリ添加装置は、過酸化水素が添加されるオゾン接触部のうち最も上流側に位置するオゾン接触部以降のオゾン接触部内を流れる水に対してアルカリを添加することが好ましい。 Further, in the water treatment system of the other example described above, the oxidant addition mechanism 50 adds hydrogen peroxide only to the water flowing in the ozone contact portion 34, but in the water treatment system of the present invention, the oxidant addition mechanism May add hydrogen peroxide to a plurality of locations. When hydrogen peroxide is added to a plurality of locations, the alkali adding device is used for the water flowing in the ozone contact portion after the ozone contact portion located on the most upstream side of the ozone contact portions to which hydrogen peroxide is added. It is preferable to add alkali.

(水処理方法)
本発明の水処理方法は、特に限定されることなく、例えば浄水場等において水の高度処理を行う際に好適に用いることができる。そして、本発明の水処理方法は、特に限定されることなく、例えば上述した本発明の水処理システムを用いて被処理水を連続処理する際に好適に用いることができる。
なお、本発明の水処理方法は、回分式の水処理装置を用いて被処理水を処理する際に用いてもよい。
(Water treatment method)
The water treatment method of the present invention is not particularly limited, and can be suitably used when performing advanced treatment of water, for example, in a water purification plant or the like. The water treatment method of the present invention is not particularly limited, and can be suitably used, for example, when continuously treating the water to be treated by using the water treatment system of the present invention described above.
The water treatment method of the present invention may be used when treating water to be treated by using a batch type water treatment apparatus.

ここで、本発明の水処理方法は、凝集剤を使用し、第一のpHで被処理水を凝集処理して凝集処理水を得る凝集処理工程と、凝集処理工程の後に、オゾンを用いて凝集処理水中の臭気物質を酸化処理するオゾン酸化処理工程とを含む。また、本発明の水処理方法の一例は、オゾン酸化処理工程が、第一のpHよりも高い第二のpHでオゾンを用いた酸化処理を行うステップを含むことを必要とする。 Here, in the water treatment method of the present invention, a coagulant is used, and ozone is used after the coagulation treatment step of coagulating the water to be treated at the first pH to obtain the coagulation-treated water and the coagulation treatment step. Coagulation treatment Includes an ozone oxidation treatment step of oxidizing odorous substances in water. Further, an example of the water treatment method of the present invention requires that the ozone oxidation treatment step includes a step of performing an oxidation treatment using ozone at a second pH higher than the first pH.

なお、本発明の水処理方法で処理される被処理水としては、上述した水処理システムの被処理水として例示したものと同様のものが挙げられる。また、本発明の水処理方法で得られる処理水は、任意に後処理(例えば、活性炭処理、高速砂ろ過、塩素消毒など)を施した後で、例えば上水道などへと供給することができる。 Examples of the water to be treated by the water treatment method of the present invention include those similar to those exemplified as the water to be treated in the water treatment system described above. In addition, the treated water obtained by the water treatment method of the present invention can be arbitrarily post-treated (for example, activated carbon treatment, high-speed sand filtration, chlorination, etc.) and then supplied to, for example, a water supply.

そして、凝集処理工程では、必要に応じてpH調整剤(例えば、硫酸、水酸化ナトリウム等)を添加しつつ被処理水と凝集剤(例えば、PAC等)とを第一のpHで混合し、被処理水中に含まれていた懸濁物質等を凝集させる。なお、生成した凝集体(フロック)は、沈殿やろ過等の既知の方法を用いて分離することができる。 Then, in the coagulation treatment step, the water to be treated and the coagulant (for example, PAC) are mixed at the first pH while adding a pH adjuster (for example, sulfuric acid, sodium hydroxide, etc.) as necessary. Aggregates suspended substances and the like contained in the water to be treated. The produced aggregates (flocks) can be separated by using a known method such as precipitation or filtration.

このように、凝集処理工程において被処理水を凝集処理すれば、被処理水に含まれていた有機物質の一部や懸濁物質を除去することができるので、懸濁物質濃度およびトリハロメタン生成能が低減された処理水を得ることができる。 In this way, if the water to be treated is coagulated in the coagulation treatment step, a part of the organic substances and the suspended substances contained in the water to be treated can be removed, so that the suspended substance concentration and the trihalomethane production ability can be removed. Can be obtained with reduced treatment water.

なお、第一のpHは、その下限値が5.0以上であることが好ましく、5.5以上であることがより好ましく、6.0以上であることが更に好ましく、その上限値が6.8以下であることが好ましく、6.5以下であることがより好ましく、6.3以下であることが更に好ましい。第一のpHが上記下限値以上であれば、本発明の水処理方法を用いて得られる処理水の中和等に要する手間およびコストを低減することができる。また、第一のpHが上記上限値以下であれば、凝集剤の荷電中和力を大きくし、有機物質の除去効率を向上させることができると共に、凝集処理水中の無機炭素(IC)の量を低減してオゾン酸化処理工程における酸化処理効率を向上させ、臭気物質の除去効率を更に向上させることができる。 The lower limit of the first pH is preferably 5.0 or more, more preferably 5.5 or more, further preferably 6.0 or more, and the upper limit is 6. It is preferably 8 or less, more preferably 6.5 or less, and even more preferably 6.3 or less. When the first pH is at least the above lower limit value, the labor and cost required for neutralizing the treated water obtained by using the water treatment method of the present invention can be reduced. Further, when the first pH is not more than the above upper limit value, the charge neutralizing power of the coagulant can be increased, the removal efficiency of organic substances can be improved, and the amount of inorganic carbon (IC) in the coagulation-treated water can be improved. It is possible to improve the oxidation treatment efficiency in the ozone oxidation treatment step and further improve the removal efficiency of odorous substances.

また、オゾンを用いて凝集処理水中の臭気物質を酸化処理するオゾン酸化処理工程では、曝気等の既知の方法を用いて凝集処理水とオゾンとを接触させ、凝集処理水中の臭気物質を酸化処理する。なお、オゾン酸化処理工程では、凝集処理水中に含まれている有機物質等も酸化処理され得る。また、オゾン酸化処理工程では、凝集処理水中に含まれている原虫類等を殺滅させ得る。 Further, in the ozone oxidation treatment step of oxidizing the odorous substance in the coagulation-treated water using ozone, the coagulation-treated water and ozone are brought into contact with each other by using a known method such as aeration, and the odorous substance in the coagulation-treated water is oxidized. To do. In the ozone oxidation treatment step, organic substances and the like contained in the coagulation-treated water can also be oxidized. Further, in the ozone oxidation treatment step, protozoans and the like contained in the coagulation-treated water can be killed.

そして、オゾン酸化処理工程では、第一のpHよりも高い第二のpHでオゾンを用いた酸化処理を行うステップを実施することを必要とし、第二のpHよりも低いpHでオゾンを用いた酸化処理を行う第一ステップと、第一ステップの後に第二のpHでオゾンを用いた酸化処理を行う第二ステップとを実施することが好ましい。 Then, in the ozone oxidation treatment step, it is necessary to carry out the step of performing the oxidation treatment using ozone at a second pH higher than the first pH, and ozone is used at a pH lower than the second pH. It is preferable to carry out the first step of performing the oxidation treatment and the second step of performing the oxidation treatment using ozone at the second pH after the first step.

このように、第一のpHよりも高い第二のpHでオゾンを用いた酸化処理を行うステップを実施すれば、凝集処理工程では比較的低い第一のpHにおいて効率的に有機物質を除去しつつ、オゾン酸化処理工程では例えばアルカリの添加などによってpHを上昇させた状態で臭気物質の酸化分解を促進し、臭気物質を効率的に除去することができる。 In this way, if the step of performing the oxidation treatment using ozone at the second pH higher than the first pH is carried out, the organic substance is efficiently removed at the relatively low first pH in the coagulation treatment step. On the other hand, in the ozone oxidation treatment step, the odorous substance can be efficiently removed by promoting the oxidative decomposition of the odorous substance in a state where the pH is raised by, for example, addition of an alkali.

また、臭化物イオンを含む水をオゾンで酸化処理した場合、特にpHが高い条件下においては臭素酸イオンが生成し易くなる。しかし、第二のpHよりも低いpHでオゾンを用いた酸化処理を行う第一ステップの後に第二のpHでオゾンを用いた酸化処理を行う第二ステップを実施すれば、オゾン酸化処理工程の最初から第二のpHで酸化処理を行う場合と比較し、臭素酸イオンが生成するのを抑制することができる。従って、臭素酸イオンの生成を抑制しつつ、pHを凝集処理工程のpH(第一のpH)よりも高い第二のpHまで上昇させない場合と比較して、臭気物質の除去効率を向上させることができる。 Further, when water containing bromide ions is oxidized with ozone, bromate ions are likely to be generated particularly under high pH conditions. However, if the second step of performing the oxidation treatment using ozone at the second pH is carried out after the first step of performing the oxidation treatment using ozone at a pH lower than the second pH, the ozone oxidation treatment step It is possible to suppress the formation of bromate ions as compared with the case where the oxidation treatment is performed at the second pH from the beginning. Therefore, the efficiency of removing odorous substances is improved as compared with the case where the pH is not raised to the second pH, which is higher than the pH (first pH) of the coagulation treatment step, while suppressing the production of bromate ions. Can be done.

なお、オゾン酸化処理工程の実施中に酸化処理される水のpHを調整する方法としては、特に限定されることなく、例えば以下の方法が挙げられる。即ち、図1,2に示す水処理システムのような連続式の水処理システムでは、水処理システム内を流れている酸化処理される水に対し、水の流れ方向の所定の位置でアルカリ等のpH調整剤を添加する方法が挙げられる。また、単一の水槽内でオゾン酸化処理工程を行う回分式の水処理システムでは、オゾン酸化処理工程の開始後の所定のタイミングでアルカリ等のpH調整剤を水槽内に添加する方法が挙げられる。 The method for adjusting the pH of the water to be oxidized during the ozone oxidation treatment step is not particularly limited, and examples thereof include the following methods. That is, in a continuous water treatment system such as the water treatment system shown in FIGS. 1 and 2, an alkali or the like is used at a predetermined position in the water flow direction with respect to the oxidation-treated water flowing in the water treatment system. A method of adding a pH adjuster can be mentioned. Further, in a batch type water treatment system in which the ozone oxidation treatment step is performed in a single water tank, a method of adding a pH adjuster such as alkali to the water tank at a predetermined timing after the start of the ozone oxidation treatment step can be mentioned. ..

そして、本発明の水処理方法では、第二のpHは、その下限値が6.5以上であることが好ましく、7.0以上であることがより好ましく、その上限値が8.0以下であることが好ましく、7.5以下であることがより好ましい。第二のpHが上記下限値以上であれば、臭気物質の酸化分解を十分に促進し、臭気物質の除去効率を更に向上させることができる。また、第二のpHが上記上限値以下であれば、オゾン酸化処理工程中に臭素酸イオンが生成するのを十分に抑制することができる。
なお、オゾン酸化処理工程において第一ステップおよび第二ステップを実施する場合、第一ステップのpHは、特に限定されるものではないが、通常、第一のpH以上であり、凝集処理工程において被処理水を凝集処理し、生成した凝集体を沈殿やろ過等の既知の方法を用いて分離することにより得られる凝集処理水のpHと同じであることが好ましい。
In the water treatment method of the present invention, the lower limit of the second pH is preferably 6.5 or more, more preferably 7.0 or more, and the upper limit is 8.0 or less. It is preferably present, and more preferably 7.5 or less. When the second pH is at least the above lower limit value, the oxidative decomposition of the odorous substance can be sufficiently promoted, and the efficiency of removing the odorous substance can be further improved. Further, when the second pH is not more than the above upper limit value, it is possible to sufficiently suppress the generation of bromate ions during the ozone oxidation treatment step.
When the first step and the second step are carried out in the ozone oxidation treatment step, the pH of the first step is not particularly limited, but is usually equal to or higher than the first pH, and is subject to the aggregation treatment step. It is preferable that the pH of the treated water is the same as that obtained by coagulating the treated water and separating the produced agglomerates using a known method such as precipitation or filtration.

また、本発明の水処理方法では、オゾン酸化処理工程において第一ステップおよび第二ステップを実施する場合、第二ステップを過酸化水素の存在下でオゾンを用いた酸化処理を行う促進酸化ステップとすることもできる。第二ステップを促進酸化ステップとすれば、pHを第二のpHまで上昇させた状態で酸化処理を行うことによる臭気物質の除去効率の向上効果を得つつ、過酸化水素に由来する還元反応により臭素酸イオンの生成を抑制することができる。また、促進酸化処理(AOP)により臭気物質の酸化分解を更に促進し、臭気物質を更に効率的に除去することができる。 Further, in the water treatment method of the present invention, when the first step and the second step are carried out in the ozone oxidation treatment step, the second step is an accelerated oxidation step in which the oxidation treatment using ozone is carried out in the presence of hydrogen peroxide. You can also do it. If the second step is an accelerated oxidation step, the reduction reaction derived from hydrogen peroxide is carried out while obtaining the effect of improving the removal efficiency of odorous substances by performing the oxidation treatment in a state where the pH is raised to the second pH. The production of bromate ions can be suppressed. In addition, the accelerated oxidation treatment (AOP) can further promote the oxidative decomposition of the odorous substance, and the odorous substance can be removed more efficiently.

以上、本発明の水処理方法について説明したが、本発明の水処理方法は上述した内容に限定されるものではない。
具体的には、本発明の水処理方法のオゾン酸化処理工程は、第一ステップおよび第二ステップ以外に、第一ステップのpHおよび第二のpH以外のpHで酸化処理を行う1つ以上のステップを更に含んでいてもよい。また、本発明の水処理方法のオゾン酸化処理工程は、第二ステップの後に、第二のpH以外のpHで促進酸化処理を行うステップを更に含んでいてもよい。
Although the water treatment method of the present invention has been described above, the water treatment method of the present invention is not limited to the above-mentioned contents.
Specifically, in the ozone oxidation treatment step of the water treatment method of the present invention, in addition to the first step and the second step, one or more oxidation treatments are performed at a pH other than the pH of the first step and the second pH. It may further include steps. Further, the ozone oxidation treatment step of the water treatment method of the present invention may further include a step of performing accelerated oxidation treatment at a pH other than the second pH after the second step.

以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
<凝集処理工程>
回分式の反応槽に投入した被処理水としての河川水(TOC:3.2mg/L、臭化物イオン濃度:0.2mg/L)に対し、pH調整剤としての硫酸を添加し、pHを6.0(第一のpH)に調整した。そして、温度25℃の条件下、凝集剤としてのPACを注入率が50mg/Lとなるように添加し、150rpmで2分間急速撹拌した後、50rpmで10分間緩速撹拌し、河川水の凝集処理を行った。そして、生成した凝集体を沈殿により除去し、凝集処理水を得た。
<オゾン酸化処理工程>
得られた凝集処理水13Lを反応槽に投入し、温度25℃の条件下でオゾンを反応槽内に12分間曝気した。なお、曝気中はアルカリとしての水酸化ナトリウムを反応槽内に添加し、pHを6.5(第二のpH)に調整した。
そして、反応槽内の水について、臭気物質濃度の経時変化をガスクロマトグラフィーで測定し、臭素酸イオン濃度の経時変化をイオンクロマトグラフィーで測定した。測定結果をそれぞれ図4および図5に示す。
(Example 1)
<Coagulation treatment process>
Sulfuric acid as a pH adjuster was added to river water (TOC: 3.2 mg / L, bromide ion concentration: 0.2 mg / L) as the water to be treated that was put into the batch type reaction tank, and the pH was adjusted to 6. The pH was adjusted to 0.0 (first pH). Then, under the condition of a temperature of 25 ° C., PAC as a coagulant was added so that the injection rate was 50 mg / L, and the mixture was rapidly stirred at 150 rpm for 2 minutes and then slowly stirred at 50 rpm for 10 minutes to coagulate river water. Processing was performed. Then, the produced agglomerates were removed by precipitation to obtain agglomeration-treated water.
<Ozonolysis process>
13 L of the obtained coagulation-treated water was put into a reaction vessel, and ozone was aerated in the reaction vessel for 12 minutes under the condition of a temperature of 25 ° C. During aeration, sodium hydroxide as an alkali was added into the reaction vessel to adjust the pH to 6.5 (second pH).
Then, with respect to the water in the reaction vessel, the time-dependent change in the odorous substance concentration was measured by gas chromatography, and the time-dependent change in the bromate ion concentration was measured by ion chromatography. The measurement results are shown in FIGS. 4 and 5, respectively.

(実施例2)
オゾン酸化処理工程においてpHを7.0に調整した以外は実施例1と同様にして凝集処理工程およびオゾン酸化処理工程を行い、河川水を処理した。また、実施例1と同様にして臭気物質濃度の経時変化および臭素酸イオン濃度の経時変化を測定した。測定結果をそれぞれ図4および図5に示す。
(Example 2)
The coagulation treatment step and the ozone oxidation treatment step were carried out in the same manner as in Example 1 except that the pH was adjusted to 7.0 in the ozone oxidation treatment step, and the river water was treated. Moreover, the time-dependent change of the odorant substance concentration and the time-dependent change of the bromate ion concentration were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 4 and 5, respectively.

(実施例3)
オゾン酸化処理工程においてpHを8.0に調整した以外は実施例1と同様にして凝集処理工程およびオゾン酸化処理工程を行い、河川水を処理した。また、実施例1と同様にして臭気物質濃度の経時変化および臭素酸イオン濃度の経時変化を測定した。測定結果をそれぞれ図4および図5に示す。
(Example 3)
The coagulation treatment step and the ozone oxidation treatment step were carried out in the same manner as in Example 1 except that the pH was adjusted to 8.0 in the ozone oxidation treatment step, and the river water was treated. Moreover, the time-dependent change of the odorant substance concentration and the time-dependent change of the bromate ion concentration were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 4 and 5, respectively.

(実施例4)
オゾン酸化処理工程において、最初の6分間は水酸化ナトリウムを添加せず、pH6.0でオゾンを曝気し(第一ステップ)、曝気開始から6分後にアルカリとしての水酸化ナトリウムを反応槽内に添加し、pH7.0で更に6分間オゾンを曝気した(第二ステップ)以外は実施例1と同様にして凝集処理工程およびオゾン酸化処理工程を行い、河川水を処理した。また、実施例1と同様にして臭気物質濃度の経時変化および臭素酸イオン濃度の経時変化を測定した。測定結果をそれぞれ図4および図5に示す。
(Example 4)
In the ozone oxidation treatment step, sodium hydroxide is not added for the first 6 minutes, ozone is aerated at pH 6.0 (first step), and sodium hydroxide as an alkali is placed in the reaction vessel 6 minutes after the start of aeration. The river water was treated by performing a coagulation treatment step and an ozone oxidation treatment step in the same manner as in Example 1 except that the mixture was added and ozone was aerated for another 6 minutes at pH 7.0 (second step). Moreover, the time-dependent change of the odorant substance concentration and the time-dependent change of the bromate ion concentration were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 4 and 5, respectively.

(実施例5)
オゾン酸化処理工程において、最初の6分間は水酸化ナトリウムを添加せず、pH6.0でオゾンを曝気し(第一ステップ)、曝気開始から6分後にアルカリとしての水酸化ナトリウムおよび酸化剤としての過酸化水素を反応槽内に添加し、pH7.0で更に6分間オゾンを曝気した(第二ステップ;促進酸化ステップ)以外は実施例1と同様にして凝集処理工程およびオゾン酸化処理工程を行い、河川水を処理した。また、実施例1と同様にして臭気物質濃度の経時変化および臭素酸イオン濃度の経時変化を測定した。測定結果をそれぞれ図4および図5に示す。
(Example 5)
In the ozone oxidation treatment step, sodium hydroxide was not added for the first 6 minutes, ozone was aerated at pH 6.0 (first step), and 6 minutes after the start of aeration, sodium hydroxide as an alkali and as an oxidizing agent were used. Hydrogen peroxide was added into the reaction vessel, and ozone was exposed to ozone for another 6 minutes at pH 7.0 (second step; accelerated oxidation step), and the coagulation treatment step and ozone oxidation treatment step were carried out in the same manner as in Example 1. , Treated river water. Moreover, the time-dependent change of the odorant substance concentration and the time-dependent change of the bromate ion concentration were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 4 and 5, respectively.

(比較例)
オゾン酸化処理工程において、水酸化ナトリウムを添加せず、凝集処理工程の第一のpHと同じpH6.0でオゾンを12分間曝気した以外は実施例1と同様にして凝集処理工程およびオゾン酸化処理工程を行い、河川水を処理した。また、実施例1と同様にして臭気物質濃度の経時変化および臭素酸イオン濃度の経時変化を測定した。測定結果をそれぞれ図4および図5に示す。
(Comparison example)
In the ozone oxidation treatment step, the coagulation treatment step and the ozone oxidation treatment were carried out in the same manner as in Example 1 except that sodium hydroxide was not added and ozone was aerated for 12 minutes at the same pH of 6.0 as the first pH of the coagulation treatment step. The process was carried out and the river water was treated. Moreover, the time-dependent change of the odorant substance concentration and the time-dependent change of the bromate ion concentration were measured in the same manner as in Example 1. The measurement results are shown in FIGS. 4 and 5, respectively.

図4より、実施例1〜5では、比較例1と比較し、河川水中の臭気物質を効率的に除去できたことが分かる。
また、図4および図5より、実施例4および5では特に、臭素酸イオンの生成を抑制しつつ河川水中の臭気物質を効率的に除去できたことが分かる。
From FIG. 4, it can be seen that in Examples 1 to 5, the odorous substances in the river water could be efficiently removed as compared with Comparative Example 1.
Further, from FIGS. 4 and 5, it can be seen that in Examples 4 and 5, the odorous substances in the river water could be efficiently removed while suppressing the production of bromate ions.

本発明の水処理システムおよび水処理方法によれば、被処理水中の臭気物質を効率的に除去することができる。 According to the water treatment system and the water treatment method of the present invention, odorous substances in the water to be treated can be efficiently removed.

10 凝集処理装置
11 撹拌槽
12 沈殿槽
13 撹拌機
14 凝集剤添加機構
15 pH調整剤添加機構
20 砂ろ過装置
30,30B オゾン酸化処理装置
31 仕切り壁
32,33,34 オゾン接触部
35,36,37 オゾン曝気装置
38 水槽
40 アルカリ添加装置
50 酸化剤添加機構
100,100A 水処理システム
10 Coagulation treatment device 11 Stirring tank 12 Sedimentation tank 13 Stirrer 14 Coagulant addition mechanism 15 pH adjuster addition mechanism 20 Sand filtration device 30, 30B Ozone oxidation treatment device 31 Partition wall 32, 33, 34 Ozone contact parts 35, 36, 37 Ozone aeration device 38 Water tank 40 Alkaline addition device 50 Oxidizing agent addition mechanism 100, 100A Water treatment system

Claims (2)

凝集剤を用いて被処理水を凝集処理し、凝集処理水を得る凝集処理装置と、
オゾンを用いて前記凝集処理水中の臭気物質を酸化処理するオゾン酸化処理装置と、を備える水処理システムであって、
前記オゾン酸化処理装置内を流れる水対してアルカリを添加するアルカリ添加装置を更に備え
前記オゾン酸化処理装置が、直列接続された複数のオゾン接触部を備え、
前記アルカリ添加装置が、水の流れ方向で見て上流側からn番目(但し、nは2以上の整数)のオゾン接触部内を流れる水に対してアルカリを添加する、水処理システム。
A coagulation treatment device that coagulates the water to be treated with a coagulant to obtain coagulation-treated water,
A water treatment system including an ozone oxidation treatment device that oxidizes an odorous substance in the coagulation-treated water using ozone.
Further comprising an alkali addition device for adding an alkali for the water flowing through the ozone oxidation processing apparatus,
The ozone oxidation treatment apparatus includes a plurality of ozone contact portions connected in series.
The alkali addition device, n-th from the upstream side as viewed in the flow direction of the water (where, n is an integer of 2 or more) you adding alkali to water flowing through the ozone contact portion of the water treatment system.
凝集剤を用いて被処理水を凝集処理し、凝集処理水を得る凝集処理装置と、
オゾンを用いて前記凝集処理水中の臭気物質を酸化処理するオゾン酸化処理装置と、を備える水処理システムであって、
前記オゾン酸化処理装置内を流れる水に対してアルカリを添加するアルカリ添加装置を更に備え、
前記オゾン酸化処理装置が、直列接続された複数のオゾン接触部と、水の流れ方向で見て上流側からn番目(但し、nは2以上の整数)のオゾン接触部内を流れる水に対して過酸化水素を添加する酸化剤添加機構とを備え、
前記アルカリ添加装置が、前記過酸化水素が添加されるオゾン接触部以降のオゾン接触部内を流れる水に対してアルカリを添加する、水処理システム。
A coagulation treatment device that coagulates the water to be treated with a coagulant to obtain coagulation-treated water,
A water treatment system including an ozone oxidation treatment device that oxidizes an odorous substance in the coagulation-treated water using ozone.
An alkali addition device for adding alkali to the water flowing in the ozone oxidation treatment device is further provided.
The ozone oxidation treatment device is used for a plurality of ozone contact portions connected in series and water flowing in the nth ozone contact portion (where n is an integer of 2 or more) from the upstream side in the water flow direction. Equipped with an oxidizing agent addition mechanism that adds hydrogen peroxide
A water treatment system in which the alkali adding device adds alkali to water flowing in the ozone contact portion after the ozone contact portion to which the hydrogen peroxide is added.
JP2017101338A 2017-05-23 2017-05-23 Water treatment system Active JP6841721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017101338A JP6841721B2 (en) 2017-05-23 2017-05-23 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101338A JP6841721B2 (en) 2017-05-23 2017-05-23 Water treatment system

Publications (2)

Publication Number Publication Date
JP2018196844A JP2018196844A (en) 2018-12-13
JP6841721B2 true JP6841721B2 (en) 2021-03-10

Family

ID=64663649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101338A Active JP6841721B2 (en) 2017-05-23 2017-05-23 Water treatment system

Country Status (1)

Country Link
JP (1) JP6841721B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149688A (en) * 1979-05-08 1980-11-21 Mitsubishi Electric Corp Disposal plant for waste water
JP3506171B2 (en) * 1997-08-19 2004-03-15 オルガノ株式会社 Method and apparatus for removing TOC component
JP2000107778A (en) * 1998-10-01 2000-04-18 Fuji Electric Co Ltd Method and apparatus for treating water
JP3552580B2 (en) * 1999-03-31 2004-08-11 Jfeエンジニアリング株式会社 Method and apparatus for treating human wastewater
JP2000350997A (en) * 1999-06-10 2000-12-19 Nkk Corp Method and apparatus for treating sewage
JP2005230731A (en) * 2004-02-20 2005-09-02 Kurita Water Ind Ltd Method and apparatus for water treatment
JP4334404B2 (en) * 2004-04-28 2009-09-30 株式会社東芝 Water treatment method and water treatment system
JP2009125708A (en) * 2007-11-27 2009-06-11 Kurita Water Ind Ltd Method for treating cmp wastewater
JP5412805B2 (en) * 2008-11-19 2014-02-12 栗田工業株式会社 Azole copper anticorrosive water treatment method
JP2013085973A (en) * 2011-10-13 2013-05-13 Shinseiwako Co Ltd Wastewater treatment system
JP2016168514A (en) * 2015-03-11 2016-09-23 王子ホールディングス株式会社 Waste water treatment method

Also Published As

Publication number Publication date
JP2018196844A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
JP2005000801A (en) Waste water treatment method
JP2007260586A (en) Treatment method of waste water generated in coke oven
JP6026865B2 (en) Sludge treatment apparatus and phosphorus production method
JP4684064B2 (en) Accelerated oxidized water treatment method and apparatus
JP6841721B2 (en) Water treatment system
JPS5834197B2 (en) High speed inosyoriho
JPH07124593A (en) Highly advanced water purifying treatment method
JP5817864B2 (en) Method and apparatus for treating ammonia-containing water
JPH03137990A (en) High level treatment of sewage to be treated
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP6187507B2 (en) Waste liquid treatment method and waste liquid treatment system
JP3697933B2 (en) Water treatment method and apparatus using ozone
JP6623288B2 (en) Method and apparatus for treating wastewater containing hydrogen sulfide
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JPS6339307B2 (en)
JPWO2007080686A1 (en) Selenium-containing wastewater treatment method
KR102652947B1 (en) System and method for treating water
CN213327040U (en) Surfactant wastewater treatment system
JP7292113B2 (en) Water treatment device and method
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JPS59162994A (en) Treatment of waste water containing organic substance
JPH09314182A (en) Treatment process for selenium containing drain
JPS59162995A (en) Treatment of waste water containing cod component
JP2005349255A (en) Method and apparatus for treating waste water containing dioxin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210218

R150 Certificate of patent or registration of utility model

Ref document number: 6841721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250