JPS59162994A - Treatment of waste water containing organic substance - Google Patents

Treatment of waste water containing organic substance

Info

Publication number
JPS59162994A
JPS59162994A JP3753983A JP3753983A JPS59162994A JP S59162994 A JPS59162994 A JP S59162994A JP 3753983 A JP3753983 A JP 3753983A JP 3753983 A JP3753983 A JP 3753983A JP S59162994 A JPS59162994 A JP S59162994A
Authority
JP
Japan
Prior art keywords
treated water
wastewater
waste water
tank
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3753983A
Other languages
Japanese (ja)
Inventor
Mitsuo Takano
高野 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Peroxide Co Ltd
Original Assignee
Nippon Peroxide Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Peroxide Co Ltd filed Critical Nippon Peroxide Co Ltd
Priority to JP3753983A priority Critical patent/JPS59162994A/en
Publication of JPS59162994A publication Critical patent/JPS59162994A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently treat waste water with the small amounts of hydrogen peroxide and a ferrous salt to be added, by oxidatively treating said waste water containing organic substance, adjusting its pH to precipitate flocks, and circulatively mixing a part of treated water after being subjected to solid-liquid separation in the waste water. CONSTITUTION:Treated water 3 circulated from a solid-liquid separation tank 2 is mixed in waste water 1 containing organic substance, and the resulting liquid mixture is supplied to a reaction tank 4. Hydrogen peroxide 5, a ferrous salt 6 such as ferrous sulfate and optionally a pH adjusting agent 7 are charged in the reaction tank 4 to adjust a pH to about 2-4, and the liquid mixture is agitated therein for a predetermined time to oxidatively decompose dissolved organic substance. After the oxidative reaction is finished, the oxidatively treated water 8 is sent to a coagulation tank 9, wherein pH is adjusted to about 5-8 by the addition of an alkali agent 10 to precipitately coagulate flocks based on ferric hydroxide. Thereafter, the liquid mixture is separated into treated water 3 and sludge 11 in the precipitation tank 2, and a part of said treated water 3 is circulated to raw waste water.

Description

【発明の詳細な説明】 本発明は、有機物質を含有する廃水の処理方法に関する
ものであり、更に詳しくは、廃水中のCODや色度の原
因物質である有機物質を過酸化水素と鉄塩を用いて除去
する廃水処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing organic substances, and more specifically, the present invention relates to a method for treating wastewater containing organic substances. This article relates to a wastewater treatment method for removing wastewater using.

過酸化水素と鉄塩を用いた有機物質含有廃水の処理方法
は、酸化剤である過酸化水素が鉄塩触媒と反応して生成
する強カガ酸化力をもつ遊離基を利用するものであシ、
有効な方法であることから実際の廃水処理に適用されて
きている。
The method for treating wastewater containing organic substances using hydrogen peroxide and iron salts utilizes free radicals with strong oxidizing power that are generated when hydrogen peroxide, an oxidizing agent, reacts with an iron salt catalyst. ,
Since it is an effective method, it has been applied to actual wastewater treatment.

従来の方法は、有機物質含有廃水に過酸化水素および硫
酸第一鉄のよう々鉄塩を加えて有機物質をpn2〜4の
酸性条件下で酸化分解したのち、アルカリを加えてpH
5〜8に調整して生成する水酸化鉄と共に凝集分離し、
処理水を得る方法である。
The conventional method is to add hydrogen peroxide and a ferrous salt such as ferrous sulfate to organic substance-containing wastewater to oxidize and decompose organic substances under acidic conditions of pn 2 to 4, and then add alkali to adjust the pH.
Coagulates and separates with iron hydroxide produced by adjusting to 5 to 8,
This is a method of obtaining treated water.

この従来法を用いた有機物質含有廃水の処理においては
、廃水が高濃度の有機物質や難分解性の有機物質を含有
する場合には多量の過酸化水素および鉄塩が必要と々つ
たり、また、これらの薬剤を多量に添加しても十分に有
機物質を除去でき力いといった問題点があった。これは
、廃水中の有機物質を一度に多量の薬剤を添加して低濃
度まで処理しようとするために、酸化反応において過酸
化水素が無効に消費されたり鉄塩との反応で生成する酸
化性の遊離基が有機物質に有効に働かなかったり、また
あるいは、酸化反応ののちアルカリを加えて生成する水
酸化鉄によって未分解の有機物質を十分に凝集分離でき
ないこと等が原因であると考えられる。
In the treatment of wastewater containing organic substances using this conventional method, large amounts of hydrogen peroxide and iron salts are required when the wastewater contains high concentrations of organic substances or persistent organic substances. Furthermore, there is a problem that even if a large amount of these chemicals is added, the organic substances cannot be removed sufficiently. This is due to the fact that hydrogen peroxide is ineffectively consumed in the oxidation reaction and the oxidation produced by the reaction with iron salts is caused by the attempt to treat organic substances in wastewater down to low concentrations by adding large amounts of chemicals at once. This is thought to be due to the fact that free radicals do not work effectively on organic substances, or that undecomposed organic substances cannot be sufficiently coagulated and separated by iron hydroxide produced by adding alkali after the oxidation reaction. .

前記の問題点は、すでに公知と力っている廃水を2段階
に処理する方法(特開昭56−163796)によりあ
る程度まで解消することができる。この2段処理法は、
廃水を上記従来法で処理して得られる処理水をさらに従
来法で処理する方法であり、過酸化水素および鉄塩を分
割添加し、有機物質の酸化分解および凝集分離を2回繰
り返すことにより、これらの薬剤の全量を一括して添加
する従来法よりも薬剤を有効に利用でき、比較的高い処
理効率が得られる。しかし々から、2段処理における各
段階の処理は従来法によるものであり、前記問題点は十
分に解消されず従来法に対する処理効率の向上には限界
がある。寸だ、処理プロセスが複雑であり、処理装置の
設備費がかさむ欠点もある。
The above-mentioned problems can be solved to some extent by the already known method of treating wastewater in two stages (Japanese Unexamined Patent Publication No. 163796/1983). This two-stage processing method is
This is a method in which the treated water obtained by treating wastewater by the above conventional method is further treated by the conventional method, by adding hydrogen peroxide and iron salt in portions and repeating the oxidative decomposition and coagulation separation of organic substances twice. The chemicals can be used more effectively than the conventional method in which the entire amount of these chemicals is added at once, and relatively high processing efficiency can be obtained. However, since each stage of the two-stage process is performed using the conventional method, the above-mentioned problems have not been sufficiently resolved, and there is a limit to the improvement in processing efficiency compared to the conventional method. However, the treatment process is complicated and the equipment costs for the treatment equipment are high.

なお、廃水を3段階以上の多段階に処理する多段処理(
有機物質の酸化分解および凝集分離を3回以上繰り返す
)によりさらに高い処理効率が得られることが考えられ
るが、処理プロセスがより過酸化水素および鉄塩が有効
に働き、前記2段処理法よりも処理効率が優れ、処理プ
ロセスが簡単で処理装置の設備費が安価な廃水処理法を
提供することを目的とした。
In addition, multi-stage treatment (in which wastewater is treated in three or more stages)
It is conceivable that higher treatment efficiency can be obtained by repeating oxidative decomposition and coagulation separation of organic substances three or more times, but the treatment process is more effective than the two-stage treatment method because hydrogen peroxide and iron salts work more effectively. The purpose of this invention is to provide a wastewater treatment method that has excellent treatment efficiency, a simple treatment process, and low equipment costs.

この目的を達成するために、本発明は、反応槽において
有機物質含有廃水に過酸化水素および鉄塩を加えて有機
物質を酸化分解したのち、凝集槽においてアルカリを加
えて水酸化鉄と共に凝集させ、生成するフロックを固液
分離槽で分離して得られる処理水を前記廃水に混合する
ことを特徴とする 特に、廃水中の有機物質を酸化分解したのちさらに凝集
分離して得られる処理水を原廃水に混合して処理するこ
とが要点である。
To achieve this objective, the present invention adds hydrogen peroxide and iron salt to organic substance-containing wastewater in a reaction tank to oxidize and decompose organic substances, and then adds an alkali to coagulate them together with iron hydroxide in a flocculation tank. , characterized in that the treated water obtained by separating the produced flocs in a solid-liquid separation tank is mixed with the wastewater. In particular, the treated water obtained by oxidatively decomposing organic substances in the wastewater and then coagulating and separating the wastewater. The key is to mix it with raw wastewater and treat it.

本発明方法によれば、原廃水が処理水で希釈されること
により、原廃水に添加する過酸化水素および鉄塩を低濃
度で利用できるため、それらの薬剤や生成する酸化性の
遊離基が無効に消費されることなく廃水中の有機物質の
酸化分解および凝集分離に有効に働き、また、処理水を
循環することにより有機物質が何回も繰シ返し酸化分解
、凝集分離されるために、高濃度あるいは難分解性の有
機物質を含む廃水も少ない薬剤添加量で効率よく処理す
ることができる。
According to the method of the present invention, by diluting the raw wastewater with treated water, hydrogen peroxide and iron salts added to the raw wastewater can be used at low concentrations, so that these chemicals and the oxidizing free radicals generated can be used. It works effectively in the oxidative decomposition and coagulation separation of organic substances in wastewater without being wasted, and because the organic substances are repeatedly oxidized and decomposed and coagulated and separated many times by circulating the treated water. Also, wastewater containing highly concentrated or persistent organic substances can be efficiently treated with a small amount of chemicals added.

そのため、例えばCODの除去量を過酸化水素の添加量
で割って得られる過酸化水素の利用率は、処理水の循環
率(原廃水量に対する循環量の割合)を大きくすること
により極めて高くなり、前記2段処理法よりも高い処理
効率を得ることができる。
Therefore, for example, the utilization rate of hydrogen peroxide, which can be obtained by dividing the amount of COD removed by the amount of hydrogen peroxide added, can be extremely increased by increasing the circulation rate of treated water (the ratio of the amount of circulation to the amount of raw wastewater). , it is possible to obtain higher processing efficiency than the two-stage processing method.

壕だ、処理水の循環率を変化させることにより処理効率
を変えることができるため、連続流入する廃水の水質が
変動する場合、過酸化水素や鉄塩の添加量を調節するだ
けで々〈処理水の循環率を変化させることにより比較的
大き々廃水の水質変動にも対処でき、安定した処理水質
を得ることができることも従来法および2段処理法には
ない大きな特徴である。
However, the treatment efficiency can be changed by changing the circulation rate of the treated water, so if the quality of the continuously flowing wastewater fluctuates, simply adjusting the amount of hydrogen peroxide or iron salt added can be used. Another major feature that conventional methods and two-stage treatment methods do not have is that by changing the water circulation rate, it is possible to cope with relatively large fluctuations in the quality of wastewater and to obtain stable treated water quality.

次に、図面に基づいて本発明を詳述する。Next, the present invention will be explained in detail based on the drawings.

第1図は本発明方法の実施態様を示すフローシートであ
る。
FIG. 1 is a flow sheet showing an embodiment of the method of the present invention.

原廃水1は、捷ず固液分離槽2から循環された処理水3
と混合し反応槽4に流入する。反応槽4において、過酸
化水素5と硫酸第一鉄などの鉄塩6、および必要に応じ
てp)l調整剤7が添加され、通常pH2〜4の酸性条
件下で所定時間攪拌され溶存する有機物質が酸化分解さ
れる。この場合、酸化反応の時間は廃水の濃度、水温、
過酸化水素や鉄塩の濃度などによって異なるが、実験に
よシ攪拌時間を決定すればよい。反応槽4において酸化
反応の終了した酸化処理水8は、凝集槽9に流入しアル
カリ剤10の添加によりpH5〜8程度に調整され、水
酸化鉄を主体とするフロックが析出し凝集したのち、沈
澱槽2において処理水3とスラツジ11に分離される。
The raw wastewater 1 is treated water 3 which is circulated from the solid-liquid separation tank 2 without being separated.
and flows into the reaction tank 4. In the reaction tank 4, hydrogen peroxide 5, an iron salt 6 such as ferrous sulfate, and, if necessary, a p)l adjuster 7 are added, and are stirred for a predetermined period of time under acidic conditions of usually pH 2 to 4 to dissolve. Organic substances are oxidized and decomposed. In this case, the time for the oxidation reaction depends on the concentration of the wastewater, the water temperature,
Although it varies depending on the concentration of hydrogen peroxide and iron salt, the stirring time can be determined by experiment. The oxidized water 8 that has undergone the oxidation reaction in the reaction tank 4 flows into the coagulation tank 9 and is adjusted to a pH of about 5 to 8 by adding an alkali agent 10, and flocs mainly composed of iron hydroxide precipitate and coagulate. In the settling tank 2, the treated water 3 and sludge 11 are separated.

以上説明したごとく、本発明によれば、従来、処理に多
量の過酸化水素および鉄塩を必要とした難分解性の有機
物質や高濃度の有機物質を含有する廃水を、少ない過酸
化水素および鉄塩の添加で極めて効率よく処理すること
ができる。
As explained above, according to the present invention, wastewater containing difficult to decompose organic substances or highly concentrated organic substances, which conventionally required large amounts of hydrogen peroxide and iron salts, can be treated with a small amount of hydrogen peroxide and iron salts. The addition of iron salts allows for extremely efficient treatment.

特に廃水を2段階に処理する方法(2段処理法)よりも
高い処理効率を得ることができるとともに、流入する廃
水の水質の大き々変動にも対処できる。
In particular, it is possible to obtain higher treatment efficiency than a method of treating wastewater in two stages (two-stage treatment method), and it is also possible to cope with large fluctuations in the quality of inflowing wastewater.

また、2段処理法と比較して処理プロセスが簡単で、廃
水処理装置としての設備費も安価であり、さらに、鉄塩
の添加量を低減できるために生成するスラッジ量も少々
く、実際の廃水処理に適している。
In addition, compared to the two-stage treatment method, the treatment process is simpler and the equipment cost for wastewater treatment equipment is lower.Furthermore, since the amount of iron salts added can be reduced, the amount of sludge generated is small, making it less difficult to use in real life. Suitable for wastewater treatment.

応用例1 第2図は、第1図における反応槽4を複数槽に仕切り、
各槽に過酸化水素5および/又は鉄塩を分割添加するよ
うに構成した本発明の応用方法を示すフローシートであ
る。これは、反応1「り 槽に所要量の過酸化水素および鉄塩を分撲添加し少しず
つ反応させることにより、過酸化水素の無効消費をさら
に抑え、有機物質の酸化分解のために有効に働かせ処理
効率を一段と高めることができる。
Application example 1 Figure 2 shows a system in which the reaction tank 4 in Figure 1 is partitioned into multiple tanks,
1 is a flow sheet showing an applied method of the present invention configured to add hydrogen peroxide 5 and/or iron salt in portions to each tank. In reaction 1, by adding the required amount of hydrogen peroxide and iron salt to the tank and allowing the reaction to occur little by little, the ineffective consumption of hydrogen peroxide is further suppressed and the process becomes effective for the oxidative decomposition of organic substances. The processing efficiency can be further increased.

応用例2 本発明方法は、連続流入する廃水中の有機物質の濃度が
大きく変動する場合の廃水処理にも有効であるが、この
場合には、処理水の循環率を大きくするほど処理効率が
高せることを応用して、有機物質の濃度の変動に応じて
循環率を変えることにより、処理水質が一定に保たれる
ように制御することができる。第3図は、本発明を廃水
処理の制御に応用した実施態様を示すフローシートであ
る。原廃水1の流量を流量計12で測定したのちその一
部を吸光光度計13のフローセルに導き、色度や難分解
性の有機物質などの濃度と相関をもつ特定の波長におけ
る吸光度が測定される。また、循環された処理水3につ
いても、同様に流量計12′と吸光光度計13′により
流量(循環量)と吸光度が測定される。これら原廃水1
の吸光度と流量、および処理水の吸光度に応じて、演算
機能を有する制御装置14を介してコントロールパルプ
15により循環量が調節される。このとき、吸光度が大
きい場合、すなわち色度あるいは有機物濃度が高い場合
には循環量が増加して処理効率が高まり、逆に吸光度が
小さい場合には循環量が減少するように調整され、常に
安定した処理水が得られる。
Application Example 2 The method of the present invention is also effective for wastewater treatment when the concentration of organic substances in continuously flowing wastewater fluctuates greatly, but in this case, the treatment efficiency increases as the circulation rate of the treated water increases. The quality of treated water can be controlled to be kept constant by changing the circulation rate in response to changes in the concentration of organic substances. FIG. 3 is a flow sheet showing an embodiment in which the present invention is applied to control of wastewater treatment. After the flow rate of the raw wastewater 1 is measured with a flowmeter 12, a part of it is introduced into a flow cell of an absorption photometer 13, and the absorbance at a specific wavelength that correlates with the chromaticity and the concentration of persistent organic substances is measured. Ru. Furthermore, the flow rate (circulation amount) and absorbance of the circulated treated water 3 are similarly measured by the flowmeter 12' and the absorption photometer 13'. These raw wastewater 1
The circulation amount is adjusted by the control pulp 15 via the control device 14 having an arithmetic function according to the absorbance and flow rate of the pulp and the absorbance of the treated water. At this time, when the absorbance is large, that is, when the chromaticity or organic matter concentration is high, the amount of circulation increases and treatment efficiency is increased, and conversely, when the absorbance is small, the amount of circulation is adjusted to decrease, resulting in constant stability. Treated water can be obtained.

実施例1 原水として、汚泥の熱分解液を生物処理した処理水を第
二鉄塩凝集剤700 rl]g/i (Fe 原子とし
て)で凝集沈澱した上澄水を用いた。
Example 1 As raw water, supernatant water obtained by coagulating and precipitating treated water obtained by biologically treating a pyrolysis liquid of sludge with a ferric salt flocculant of 700 rl] g/i (as Fe atoms) was used.

CODMnは52011Ig/lである。この原水を第
1図に示した本発明方法で、処理したときの処理水の循
環率(原水量に対する循環量の割合)、過酸化水素(H
2O2)と硫酸第一鉄(FeSO,)の添加量、および
処理水CODMnを第1表に捷とめた。ただし、反応槽
の滞留時間を30分、pHを3.5とし、凝集槽はアル
カリ剤にCa(OH)2を用いてpHを5とした。なお
、各循環率における処理効率を比較するために、COD
 Mnの除去量をH2O2の添加量(O原子として)で
割った値を求め、H2O2利用率として示した。
CODMn is 52011 Ig/l. When this raw water was treated by the method of the present invention shown in Figure 1, the circulation rate of the treated water (the ratio of the amount of circulation to the amount of raw water), hydrogen peroxide (H
The amounts of added ferrous sulfate (FeSO2) and ferrous sulfate (FeSO), and the treated water CODMn are summarized in Table 1. However, the residence time in the reaction tank was 30 minutes, the pH was set to 3.5, and the pH in the coagulation tank was set to 5 using Ca(OH)2 as an alkaline agent. In addition, in order to compare the processing efficiency at each circulation rate, COD
The value obtained by dividing the amount of Mn removed by the amount of H2O2 added (in terms of O atoms) was determined and shown as the H2O2 utilization rate.

循環し々い場合(循環率0%、従来法)よりも循環した
場合の方が、また循環した場合、循環率が大きいほど処
理効率が高く、少量のH2O2およびF e S 04
の添加で同等の処理水質が得られた。
The higher the circulation rate, the higher the treatment efficiency, and the higher the circulation rate, the higher the treatment efficiency, and the smaller the amount of H2O2 and F e S 04.
The same quality of treated water was obtained by adding .

H2O2利用率が100%を越える場合があるのは、C
ODM、が、反応槽におけるH2O2を用いた酸化分解
だけでなく、凝集槽および固液分離槽における水酸化鉄
による凝集分離によっても除去されるためである。
The H2O2 utilization rate may exceed 100% because of C.
This is because ODM is removed not only by oxidative decomposition using H2O2 in the reaction tank but also by coagulation and separation using iron hydroxide in the coagulation tank and solid-liquid separation tank.

第1表 実施例2 原水として、機械工場廃水を生物処理した処理水を第二
鉄塩凝集剤60mg/ 1(Fe原子として)で凝集沈
澱した上澄水を用いた。CODMnは55.3mg/l
である。この原水を第1図に示した本発明方法で処理し
たときの処理水の循環率と処理水COD M nの関係
を第4図に曲線Aで示し、また、比較のため同一原水を
従来法で処理(1段目)した処理水をさらに従来法で処
理(2段目)する2段処理法で処理したときの処理水C
OD M nを破線Bで示した。
Table 1 Example 2 As raw water, supernatant water obtained by coagulating and precipitating treated water obtained by biologically treating machine factory wastewater with a ferric salt coagulant of 60 mg/1 (as Fe atoms) was used. CODMn is 55.3mg/l
It is. The relationship between the circulation rate of treated water and the treated water COD M n when this raw water is treated by the method of the present invention shown in Figure 1 is shown by curve A in Figure 4, and for comparison, the same raw water was treated by the conventional method. Treated water C when treated with a two-stage treatment method in which the treated water treated with (first stage) is further treated with the conventional method (second stage)
OD M n is indicated by a broken line B.

ただし、本発明方法ではいずれの循環率の場合もH2O
2を0原子として30mg/l、FeSO4をFe原子
として120mg/l添加し、2段処理法では、1段目
と2段目にH2O2およびFeSO4を等量ずつ添加し
、添加量の合計がそれぞれ30rrvlll。
However, in the method of the present invention, H2O
In the two-stage treatment method, equal amounts of H2O2 and FeSO4 were added in the first and second stages, and the total amount of addition was 30rrvllll.

120mg/lになるようにした。The concentration was adjusted to 120 mg/l.

また、反応槽の滞留時間を30分(2段処理法では、1
段目と2段目の反応槽の滞留時間の合計)、反応槽のp
 Hを3.5とし、凝集槽は、アルカリ剤にCa(OH
)2を用いてp Hを5とした。
In addition, the residence time in the reaction tank is 30 minutes (in the two-stage treatment method, the residence time is 30 minutes).
total residence time of the first and second stage reaction tanks), p of the reaction tank
H is set to 3.5, and the flocculation tank contains Ca(OH) in the alkaline agent.
)2 to bring the pH to 5.

同量のH2O2およびFeSO4を添加した場合本発明
方法により、従来法(循環率O%)より良好な処理水質
が得られ、捷だ、処理水の循環率が130%以上のとき
二段処理法よりも処理水質が良好となった。
When the same amount of H2O2 and FeSO4 is added, the method of the present invention provides better treated water quality than the conventional method (circulation rate 0%). The quality of treated water was better than before.

実施例3 原水として、化学メッキ工場廃水を生物処理した処理水
を第二鉄塩凝集剤800 mg / l (Fe原子と
して)で凝集沈澱した上澄水を用いた。
Example 3 As raw water, supernatant water obtained by coagulating and precipitating treated water obtained by biologically treating chemical plating factory wastewater with a ferric salt coagulant of 800 mg/l (as Fe atoms) was used.

COD M nは446rr@/lである。この原水を
、第1図に示した本発明方法、および反応槽を3槽に区
切って(第1槽〜第3槽)各相に所要量のH2O2とF
eSO4を分割添加する応用例1の方法で処理したとき
の処理水の循環率と処理水CODMnの関係を第5図に
示す。
COD M n is 446rr@/l. This raw water is processed using the method of the present invention shown in Figure 1, and by dividing the reaction tank into three tanks (1st tank to 3rd tank) and adding the required amount of H2O2 and F to each phase.
FIG. 5 shows the relationship between the circulation rate of treated water and the treated water CODMn when treated by the method of application example 1 in which eSO4 is added in portions.

第5図で曲線Cは本発明方法、曲線りは応用例1の方法
による結果であり、また、比較として、2段処理法によ
る処理水のCODMnを破線Eで示した。
In FIG. 5, the curve C is the result obtained by the method of the present invention, the curved line is the result obtained by the method of Application Example 1, and for comparison, the CODMn of the water treated by the two-stage treatment method is shown by the broken line E.

これらの方法における処理条件は、すべて反応槽の滞留
時間を1時間(2段処理法、応用例1の方法は各反応槽
の滞留時間の合計)、反応槽のp Hを3.5とし、凝
集槽はアルカリ剤としてCa(OH)2を用いてpHを
5とした。また、それぞれの方法におけるH 2(、)
iおよびFeSO4の添加量は第2表に示す通りである
The processing conditions for these methods are that the residence time in the reaction tank is 1 hour (two-stage treatment method, the method of application example 1 is the total residence time of each reaction tank), the pH of the reaction tank is 3.5, The pH of the coagulation tank was adjusted to 5 using Ca(OH)2 as an alkaline agent. Also, H2(,) in each method
The amounts of i and FeSO4 added are shown in Table 2.

本発明方法の応用方法によりさらに優れた処理成績が得
られ、100係の処理水循環で二段処理法よシ良好ガ処
理水質が得られた。
Even better treatment results were obtained by applying the method of the present invention, and better treated water quality was obtained than in the two-stage treatment method with 100 cycles of treated water circulation.

第2表 実施例4 原水として、CODMnの異なる3種類の汚泥の熱分解
液をそれぞれ生物処理した処理水を第二鉄塩凝集剤80
0■#!(Fe原子として)で凝集沈澱した上澄水を用
いた。COD Mnはそれぞれ46 srng、/l 
、 52 orrv:/1.61 orrrg/lであ
る。それぞれの原水を、反応槽滞留時間とpHを実施例
1と同じ条件にして処理したところ、第3表に示すよう
な結果が得られた。原水のCOD M nが異なる場合
でも、循環率を変えることによシ同量のH,02および
FeSO4の添加で同等の処理水質が得られた。
Table 2 Example 4 Treated water obtained by biologically treating pyrolysis liquids of three types of sludge with different CODMn as raw water was treated with a ferric salt flocculant of 80%
0 ■#! Supernatant water coagulated and precipitated (as Fe atoms) was used. COD Mn is 46 srng,/l respectively
, 52 orrv:/1.61 orrrg/l. When each raw water was treated under the same reaction tank residence time and pH conditions as in Example 1, the results shown in Table 3 were obtained. Even when the CODM n of the raw water was different, equivalent treated water quality was obtained by adding the same amount of H,02 and FeSO4 by changing the circulation rate.

第3表Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の実施態様を示すフローシート、
第2図および第3図は、本発明の応用方法の実施態様を
示すフローシートを示す。捷だ、第4図および第5図は
、それぞれ実施例2および実施例3の結果を示す。 1・・・原廃水、2・・・固液分離槽、3・・・処理水
、4・・・反応槽、5・・・過酸化水素、6・・・鉄塩
、7・・・pH調整剤、8・・・酸化処理水、9・・・
凝集槽、10・・・アルカリ剤、11・・・スラッジ、
12および12′・・・流量計、13および13′・・
・吸光光度計、14・・・演算機能を有する制御装置、
15・・・コントロールパルプ。 日本パーオキサイド株式会社 第1回
FIG. 1 is a flow sheet showing an embodiment of the method of the present invention;
2 and 3 show flow sheets illustrating an embodiment of the applied method of the present invention. Figures 4 and 5 show the results of Example 2 and Example 3, respectively. 1... Raw wastewater, 2... Solid-liquid separation tank, 3... Treated water, 4... Reaction tank, 5... Hydrogen peroxide, 6... Iron salt, 7... pH Conditioner, 8... Oxidized water, 9...
Coagulation tank, 10... Alkaline agent, 11... Sludge,
12 and 12'...flow meter, 13 and 13'...
・Absorption photometer, 14...control device with calculation function,
15...Control pulp. Japan Peroxide Co., Ltd. 1st

Claims (1)

【特許請求の範囲】 1、有機物質含有廃水に過酸化水素および鉄塩を加えて
有機物質を酸化分解1.たのち、アルカリを加えて生成
する水酸化鉄と共に凝集分離して得られる処理水の一部
を循環して、前記廃水に混合することを特徴とする有機
物質含有廃水の処理方法。 2、循環率を変更することによって、流入廃水の水質変
動にかかわりなく、処理水のCODを一定に保つことを
特徴とする特許請求の範囲第1項記載の有機物質含有廃
水の処理方法。
[Claims] 1. Oxidative decomposition of organic substances by adding hydrogen peroxide and iron salt to wastewater containing organic substances. A method for treating wastewater containing organic substances, characterized in that a part of the treated water obtained by coagulation and separation with iron hydroxide produced by adding an alkali is circulated and mixed with the wastewater. 2. The method for treating organic substance-containing wastewater according to claim 1, characterized in that by changing the circulation rate, the COD of the treated water is kept constant regardless of changes in the quality of the inflowing wastewater.
JP3753983A 1983-03-09 1983-03-09 Treatment of waste water containing organic substance Pending JPS59162994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3753983A JPS59162994A (en) 1983-03-09 1983-03-09 Treatment of waste water containing organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3753983A JPS59162994A (en) 1983-03-09 1983-03-09 Treatment of waste water containing organic substance

Publications (1)

Publication Number Publication Date
JPS59162994A true JPS59162994A (en) 1984-09-13

Family

ID=12500327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3753983A Pending JPS59162994A (en) 1983-03-09 1983-03-09 Treatment of waste water containing organic substance

Country Status (1)

Country Link
JP (1) JPS59162994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007080A (en) * 2016-07-01 2016-10-12 南京大学 Method for gradient oxidation deep purification of biochemical tail water
WO2017210094A1 (en) 2016-06-02 2017-12-07 Evoqua Water Technologies Llc Treatment of high peroxide waste streams

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210094A1 (en) 2016-06-02 2017-12-07 Evoqua Water Technologies Llc Treatment of high peroxide waste streams
KR20190013998A (en) * 2016-06-02 2019-02-11 에보쿠아 워터 테크놀로지스 엘엘씨 Treatment of high-content peroxide waste streams
US20190127247A1 (en) * 2016-06-02 2019-05-02 Evoqua Water Technologies Llc Treatment of high peroxide waste streams
JP2019517385A (en) * 2016-06-02 2019-06-24 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Treatment of high hydrogen peroxide waste streams
EP3464174A4 (en) * 2016-06-02 2019-07-03 Evoqua Water Technologies LLC Treatment of high peroxide waste streams
EP3858791A1 (en) * 2016-06-02 2021-08-04 Evoqua Water Technologies LLC Systems for reducing hydrogen peroxide in waste water
US11332392B2 (en) 2016-06-02 2022-05-17 Evoqua Water Technologies Llc Treatment of high peroxide waste streams
CN106007080A (en) * 2016-07-01 2016-10-12 南京大学 Method for gradient oxidation deep purification of biochemical tail water
CN106007080B (en) * 2016-07-01 2019-03-19 南京大学 A kind of method of biochemical tail water step oxidation depth purification

Similar Documents

Publication Publication Date Title
CN108640418A (en) The processing method of phosphor-containing organic wastewater in a kind of fire retardant production process
JP2005000801A (en) Waste water treatment method
JP2506032B2 (en) Wastewater treatment method
IL281874B2 (en) Systems for reducing hydrogen peroxide in wastewater
JP3793937B2 (en) Silicon wafer polishing wastewater treatment method
CN113184972B (en) Method for removing organic pollutants in wastewater by sequencing batch reaction
JPS59162994A (en) Treatment of waste water containing organic substance
JP2621090B2 (en) Advanced wastewater treatment method
KR20030053498A (en) The method and equipment of wastewater treatment contained organic compound of high concentration
JPS5930153B2 (en) Treatment method for wastewater containing sterilization/disinfectant
JPS59162995A (en) Treatment of waste water containing cod component
CN111573881A (en) Method and device for treating alkaline zinc-nickel alloy wastewater
JPS5851982A (en) Purification of oxidizable substance-contg. waste water
JPS6339307B2 (en)
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
CN114573088B (en) Method for treating wastewater by using iron-tannic acid through synchronous oxidation/coagulation and application
CN108862871A (en) A kind of method for the treatment of of dyeing wastewater and reuse
JPS61161197A (en) Treatment of organic waste water
JPH11347592A (en) Method for treating sewage containing hardly decomposable organic matter
KR100315434B1 (en) Wastewater Disposal Process
JP2001212597A (en) Method and apparatus for treating wastewater containing sulfoxide compounds
KR100225693B1 (en) Nonbiodegradable organic material treatment process
KR20200110140A (en) Process for treating wastewater
CN116535054A (en) Treatment method of high-salt wastewater
KR200209356Y1 (en) Apparatus for waste water processing contain heavy metal and a pollutant non decomposition