JPS61161197A - Treatment of organic waste water - Google Patents

Treatment of organic waste water

Info

Publication number
JPS61161197A
JPS61161197A JP60002071A JP207185A JPS61161197A JP S61161197 A JPS61161197 A JP S61161197A JP 60002071 A JP60002071 A JP 60002071A JP 207185 A JP207185 A JP 207185A JP S61161197 A JPS61161197 A JP S61161197A
Authority
JP
Japan
Prior art keywords
added
ferric
separated
sludge
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60002071A
Other languages
Japanese (ja)
Other versions
JPH0585240B2 (en
Inventor
Hiroaki Miyakoshi
宮腰 博明
Kenichi Jinnai
陣内 憲一
Keiichi Koshiba
小柴 慶一
Shuichi Kojima
修一 小島
Ichiro Yamamoto
一郎 山本
Asao Horiuchi
堀内 朝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP60002071A priority Critical patent/JPS61161197A/en
Publication of JPS61161197A publication Critical patent/JPS61161197A/en
Publication of JPH0585240B2 publication Critical patent/JPH0585240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To remove economically and highly the suspended matter in waste water by circulating and reusing sludge separated at the intermediate stage as a flocculant, and separating an appropriate amt. of sludge to the outside of the system in accordance with the Ca sulfate concn. in the sludge. CONSTITUTION:A flocculant consisting essentially of a ferric salt is added to org. waste water to regulate the pH to 3-5.5 at the first stage, an the contaminants, etc. are flocculated and separated along with the flocculated ferric hydroxide. At the second stage, an iron salt as the oxidation catalyst and hydrogen peroxide as the oxidizing agent are added to the water treated at the first stage to oxidize and decompose org. materials, etc. At the third stage, after a reducing agent is added to decompose and remove the hydrogen peroxide, an alkaline agent is added to regulate the pH to >=4, and the iron salt catalyst is deposited as ferric hydroxide and removed. At the fourth stage, after an appropriate amt. of sludge is separated to the outside of the system in accordance with the Ca sulfate concn. in the sludge, the deposited and separated ferric hydroxide is dissolved by adding a mineral acid, and regenerated as the flocculant which is circulated and reused.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機性物質を含有する排水の処理方法に関す
るものであり、更に詳しくは、有機性物質を含有する排
水中の有機物ならびに色度成分の除去を主目的とする新
規で経済的な処理方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for treating wastewater containing organic substances, and more specifically, it relates to a method for treating wastewater containing organic substances. The present invention relates to a new and economical treatment method whose main purpose is to remove components.

(従来の技術) 近年、閉鎖水域への放流される水質の規制は、富栄養化
対策の見地から一層強化され、特に窒素燐酸等の成分と
同時に、化学的酸素要求量(以下CODM11と略す)
も1opp+s以下であることが要求され、また、排水
基質の総量規制の導入と相まって、技術的な除去方法の
確立が早急に望まれている。
(Prior art) In recent years, regulations on the quality of water discharged into closed water bodies have been further strengthened from the viewpoint of eutrophication countermeasures, and in particular, at the same time as nitrogen phosphoric acid and other components, chemical oxygen demand (hereinafter abbreviated as CODM11)
Coupled with the introduction of regulations on the total amount of wastewater substrate, there is an urgent need to establish a technical removal method.

通常、有機性排水の処理に用いられる生物学的処理方式
では、その性質上、生物学的酸素要求値(以下BODと
略す)は低下するものの、有機性排水中に含有される生
物難分解性物質に起因するCODMIIに対しては無力
であり、且つまた生物代謝の結果排出される老廃物質の
蓄積のため、BODに比してCODMnは高水準に維持
されるため、有機性排水のCODMn処理を一層難しく
している。
Normally, biological treatment methods used to treat organic wastewater reduce the biological oxygen demand value (BOD) due to its nature; CODMn treatment of organic wastewater is ineffective against CODMII caused by substances, and CODMn is maintained at a high level compared to BOD due to the accumulation of waste materials discharged as a result of biological metabolism. making it even more difficult.

このような排水の規制の強化に即応して排水処理技術に
も新しい手法が試みられており、その中で丹保氏ら(丹
保、亀井:水道協会雑誌、第502号2〜24 (19
78)、南部風ら(南部、真柄、伊東二上木学会第31
回年次学術講演会講演概要集、第2部、501〜502
 (197B))によるゲル・クロマトグラフ法による
排水の評価が進められ、従来BODあるいはCODMn
といった酸素消費ポテンシャルに基づいて間接的に計量
されていた有機性物質を、ゲル・クロマトグラフ法で分
画し、分子量、全有機炭素および紫外線吸光度を用いて
排水中の有機成分を、より直接的、より精密に計測する
新しい水質評価法が確立し、有機性排水の高度処理の研
究が活発に行われつつある。
In response to the tightening of wastewater regulations, new methods are being tried in wastewater treatment technology, including Tanpo et al. (Tanpo, Kamei: Water Works Association Magazine, No. 502, 2-24 (19
78), Nambu Kaze et al.
Abstracts of the Annual Academic Conference, Part 2, 501-502
(197B)), the evaluation of wastewater by gel chromatography was progressed, and conventionally BOD or CODMn
Organic substances in wastewater, which had been measured indirectly based on oxygen consumption potential such as A new water quality evaluation method that measures water quality more precisely has been established, and research into advanced treatment of organic wastewater is being actively conducted.

例えば、廃棄物理立場浸出汚水についてみれば、生ゴミ
埋立て、あるいは不燃物埋立て後、長期間にわたり埋立
て層内で廃棄物中の有機物は。
For example, if we look at leached sewage from the waste physical stage, organic matter in the waste remains in the landfill layer for a long period of time after being landfilled with food waste or non-combustible materials.

、嫌気性あるいは好気性分解を受ける結果、廃棄物理立
場浸出汚水中に含有する有機物は、一部の生物易分解性
の糖、蛋白アミノ酸、脂肪酸類等を含む他は、生物難分
解性物質あるいは生物代謝の結果排出される老廃物質で
あるムコ多糖体、フミン酸、フルボ酸等の有機高分子化
合物が殆どであり、有機物汚濁負荷量が高く、且つ黒ま
たは褐色に着色しており、生物学的処理方法のみでは、
高度に沙化することは不可能である。
As a result of undergoing anaerobic or aerobic decomposition, the organic matter contained in the waste effluent contains some easily biodegradable sugars, protein amino acids, fatty acids, etc., as well as non-biodegradable substances and Most of them are organic polymer compounds such as mucopolysaccharide, humic acid, and fulvic acid, which are waste substances discharged as a result of biological metabolism, and have a high organic pollution load and are colored black or brown, making them biologically With only the standard processing method,
It is impossible to achieve a high degree of saturation.

一方、し尿処理においては、し尿中に多量に含有されて
いる有機性物質は、通常、嫌気性消化。
On the other hand, in human waste treatment, the organic substances contained in large amounts in human waste are usually anaerobically digested.

好気性消化あるいはその併用法を用いて処理されている
が、生物学的処理の過程で新たに蓄積する生物代謝老廃
物質のため、BODに比してCODMllの残留量は多
く、且つ、また、し尿中に含有されている胆汁色素の除
去が不十分なばかりでなく、生物履歴の過程で蓄積する
生物代謝老廃物質の色度と相まって通常褐色を呈してい
る。
Although it is treated using aerobic digestion or a combination thereof, the amount of CODMll remaining is large compared to BOD due to biometabolic waste substances that newly accumulate during the biological treatment process. Not only is the removal of bile pigments contained in human urine insufficient, but also the chromaticity of biometabolic waste substances that accumulate during the course of biological history usually results in a brown color.

また、醸造、醗酵工業の排水は、既に生産工程で原料の
有機物(特に、大豆、米、麦等の穀類)を酵母、菌類等
の微生物で長期間に渡って醗酵分解させる結果、これ等
の工程により排出される排水は、高度に微生物分解作用
を受けているため、生物易分解性の脂肪酸類、アルコー
ル類、蛋白、アミノ酸類、糖類は生物学的処理方法で除
去が期待されるものの、生物代謝老廃物質である生物難
分解性物質を多量に含有し、褐色乃至淡黄色を呈してい
るのが普通である。
In addition, wastewater from the brewing and fermentation industries is a result of fermentation and decomposition of organic materials (especially grains such as soybeans, rice, and wheat) as raw materials over a long period of time using microorganisms such as yeast and fungi during the production process. The wastewater discharged from the process is highly subject to microbial decomposition, so biologically degradable fatty acids, alcohols, proteins, amino acids, and sugars are expected to be removed by biological treatment methods. It contains a large amount of biologically persistent substances, which are waste substances of biological metabolism, and is usually brown to pale yellow in color.

(発明が解決しようとしている問題点)このように廃棄
物理立場浸出汚水、し尿、下水あるいは各種産業から排
出される有機性排水の処理方法として、通常は生物学的
処理方法が、設備費、ランニングコストの紙庫さから排
水処理に利用されているが、生物易分解性物質の分解除
去方法としては優れているものの、当然のことながら生
物難分解性物質の処理および生物代謝の結果生成される
老廃物質の蓄積のため、有機性排水の高度処理方法とし
ては必ずしも満足できるものではない。
(Problem to be solved by the invention) Biological treatment methods are usually used to treat wastewater, human waste, sewage, or organic wastewater discharged from various industries, due to the equipment costs and running costs. It is used for wastewater treatment due to its low cost, but although it is an excellent method for decomposing and removing biodegradable substances, it is naturally produced as a result of the treatment of biodegradable substances and biological metabolism. Due to the accumulation of waste materials, this method is not always satisfactory as an advanced treatment method for organic wastewater.

生物難分解性物質あるいは生物代謝老廃物質を含む排水
の処理方法として、各種処理方法が開発されているが、
その中で代表的なものとして、活性炭吸着法、オゾン酸
化法等の物理化学的な処理を主体とする方法がある。こ
れらの方法は、汚濁負荷量の高い排水処理においては、
大規模な設備、膨大なランニングコストがかかる一方、
処理技術上の木質にかかわる問題点を含んでいる。
Various treatment methods have been developed to treat wastewater containing biorefractory substances or biometabolic waste substances.
Typical of these methods include methods that mainly involve physicochemical treatments such as activated carbon adsorption and ozone oxidation. These methods are effective in treating wastewater with a high pollution load.
Although it requires large-scale equipment and huge running costs,
Contains problems related to wood quality in processing technology.

つまり、活性炭吸着法では生物学的処理水中に蓄積して
いる生物代謝老廃物質が、糖蛋白、フミン酸、フルボ酸
等の分子量数千〜飲方の達する有機高分子化合物である
ため、活性炭中の細孔への吸着、拡散が著しく悪く、有
機物除去効果が低い。
In other words, in the activated carbon adsorption method, the biometabolic waste substances accumulated in biologically treated water are organic polymer compounds such as glycoproteins, humic acids, and fulvic acids with molecular weights of several thousand or more. Adsorption and diffusion into pores are extremely poor, and the organic matter removal effect is low.

オゾン処理法は、排水中の有機高分子化合物を酸化分解
し、一部C0Dr’−(nを低下させるものの、その処
理効果は低く、酸化分解の過程で生成した低分子有機化
合物は、生物易分解性物質に転換され、BODを増大さ
せる欠陥を有することが認められ、両方式共実用上大き
な問題になっている。
Although the ozone treatment method oxidizes and decomposes organic polymer compounds in wastewater and partially lowers C0Dr'-(n, its treatment effect is low, and the low-molecular organic compounds produced during the oxidative decomposition process are easily bioactive. Both types have become a major problem in practice, as they are converted into degradable substances and are recognized to have defects that increase BOD.

本発明者らは、かかる状況下において鋭意研究を重ねた
結果、有機性排水中の懸濁物質、有機性物質ならびに色
度成分を、同時、且つ高度にしかも経済的に除去し得る
優れた方法を見出し、本発明を完成するに至った。
As a result of extensive research under these circumstances, the present inventors have discovered an excellent method that can simultaneously, efficiently, and economically remove suspended solids, organic substances, and color components from organic wastewater. They discovered this and completed the present invention.

(問題点を解決するための手段) すなわち、本発明は、有機性排水の処理方法において、 (イ)有機性排水に第2鉄石を主とする凝集剤を添加し
、pHを3乃至5.5の範囲に調整した後、汚濁物質、
有機性物質ならびに色度成分を水酸化第2鉄フロックと
共に凝集分離する第1工程。
(Means for Solving the Problems) That is, the present invention provides a method for treating organic wastewater, in which (a) a flocculant mainly containing ferric stone is added to the organic wastewater, and the pH is adjusted to 3 to 5. After adjusting to the range of 5, pollutants,
The first step is to coagulate and separate organic substances and color components together with ferric hydroxide flocs.

(ロ)第1工程の処理水に新たに酸化触媒としての鉄塩
および酸化剤としての過酸化水素を添加して、有機物な
らびに色度成分を酸化分解する第2工程。
(b) A second step in which an iron salt as an oxidation catalyst and hydrogen peroxide as an oxidizing agent are newly added to the treated water of the first step to oxidize and decompose organic substances and chromaticity components.

(ハ)第2工程の酸化処理水は、そのままか、もしくは
未反応の過酸化水素が残留する場合は、還元剤を加えて
過酸化水素を分解除去した後、アルカリ剤を加えてpH
4以上とし、鉄塩触媒を水酸化第2鉄として析出分離す
る第3工程、 (ニ)第3工程で析出分離された水酸化第2鉄を、その
スラッジ中の硫酸カルシウム一度に従って適I−のスラ
ッジを系外へ除去分離した後、鉱酸を加えて溶解し、第
1工程の第2鉄塩を主とする凝集剤として再生し、循環
再使用する第4工程、 からなり、第1〜3工程のいずれかまたは全てにおける
アルカリ剤として消石灰を使用し、1つ第4工程におけ
る鉱酸として硫酸を用いることを特徴とする有機性排水
の処理方法である。
(c) The oxidized water in the second step can be used as is, or if unreacted hydrogen peroxide remains, a reducing agent is added to decompose and remove the hydrogen peroxide, and then an alkaline agent is added to adjust the pH.
4 or more, and the third step is to precipitate and separate the iron salt catalyst as ferric hydroxide; The fourth step consists of removing and separating the sludge from the system, adding mineral acid to dissolve it, regenerating it as a flocculant mainly using the ferric salt from the first step, and recycling and reusing it. This is a method for treating organic wastewater, characterized in that slaked lime is used as an alkali agent in any or all of the three steps, and sulfuric acid is used as the mineral acid in the fourth step.

本発明を更に詳細に説明すると、上記の本発明方法は、
有機性排水中の生物難分解性物質、生物代謝老廃物質を
はじめとする有機物および色度成分を、処理方法が簡便
で、処理コストが紙庫、且つ極めて高率に除去すること
が回部な方法である。
To explain the present invention in more detail, the above-mentioned method of the present invention includes:
It is a simple process to remove organic substances and color components, including biorefractory substances and biometabolic waste substances, in organic wastewater, with a simple processing method, low processing cost, and an extremely high rate of removal. It's a method.

本発明の処理対象になる有機性排水は、廃棄物理立場浸
出汚水並びにその生物学的処理水、下水、し尿、集塵水
並びにピット汚水等の焼却場排水、および有機性工場排
水が望ましく、有機性排水中に生物易分解性の糖類、脂
肪酸類、アルコール類およびその他の水溶性有機物が含
有されている場合には、あらかじめ活性汚泥法、散水瀘
床法、回転円盤法あるいは嫌気性消化等の生物学的処理
方法を用いて、BODを100 PPII以下まで極力
低下させておくことが、本発明において使用する鉄塩触
媒、過酸化水素等の薬剤使用量を大幅に減少させるため
に必要な前処理である。
The organic wastewater to be treated by the present invention is preferably waste physical wastewater, biologically treated wastewater, sewage, human waste, collected dust water, incinerator wastewater such as pit sewage, and organic factory wastewater. If biodegradable sugars, fatty acids, alcohols, and other water-soluble organic substances are contained in the wastewater, the activated sludge method, trickling filter method, rotating disk method, or anaerobic digestion method should be used in advance. It is necessary to reduce the BOD as much as possible to 100 PPII or less using a biological treatment method in order to significantly reduce the amount of chemicals used in the present invention, such as iron salt catalysts and hydrogen peroxide. It is processing.

本発明の方法を更に具体的に説明すると、本発明の主た
る特徴は、第3工程で分離したスラッチを、水酸化第2
鉄を主とする凝集剤として循環再使用する点および第3
工程で析出沈澱したスラッチを、スラッチ中の硫酸カル
シウム濃度に従って系外へ適量を分離除去する点にある
。このような手段を採用することによって、第1工程〜
第3工程のいずれかあるいはすべての工程で添加するア
ルカリ剤として、また、第4工程にて添加する鉱酸とし
て、いずれも低コストであり、操作性、処理性が良い消
石灰および硫酸を用いることが回部となった。また、徐
々に濃縮される重金属の水酸化物を、スラッチと共に系
外へ分離除去し、各工程における酸およびアルカリ剤の
添加量を節減することが可能となり、全体として、著し
いコストの低下が実現される。
To explain the method of the present invention more specifically, the main feature of the present invention is that the slatch separated in the third step is
The point of recycling iron as a coagulant and the third point.
The point is to separate and remove an appropriate amount of the slatch that has precipitated during the process out of the system according to the concentration of calcium sulfate in the slatch. By adopting such means, the first step ~
Use slaked lime and sulfuric acid as the alkali agent added in any or all of the third step and as the mineral acid added in the fourth step, both of which are low cost and have good operability and processability. became the turning section. In addition, the gradually concentrated heavy metal hydroxides are separated and removed from the system along with the slatch, making it possible to reduce the amount of acid and alkali agents added in each process, resulting in a significant overall cost reduction. be done.

従って、まず、主として本発明を特徴づける第4工程を
、第1図の実施態様にもとづき詳しく説明し、次いでy
Jl工程から第3工程について詳細に説明する。
Therefore, first, the fourth step, which mainly characterizes the present invention, will be explained in detail based on the embodiment shown in FIG.
The Jl process to the third process will be explained in detail.

すなわち、本発明の第4工程では、第3工程の最終固液
分離槽7で分離したスラッジを5凝集剤再生槽8へ導き
、ここで硫酸にて溶解する。尚、スラッジの溶解は、使
用する酸が強酸であれば、いずれの酸でも可能であるが
、硫酸以外の酸は、いずれも硫酸よりも高価であり、且
つ取扱いが容易ではない、特に硝酸およびリン酸は、処
理水の富栄養化等の問題を生じる。
That is, in the fourth step of the present invention, the sludge separated in the final solid-liquid separation tank 7 of the third step is led to the 5 flocculant regeneration tank 8, where it is dissolved in sulfuric acid. Note that sludge can be dissolved with any strong acid, but all acids other than sulfuric acid are more expensive than sulfuric acid and are not easy to handle, especially nitric acid and Phosphoric acid causes problems such as eutrophication of treated water.

また、本発明の第1−第3工程では、アルカリ剤として
消石灰を使用するので、本発明のこの第4工程で、鉱酸
として硫酸を使用すると、処理系中で硫酸カルシウムが
生成するのは当然である。
Furthermore, since slaked lime is used as an alkali agent in the first to third steps of the present invention, if sulfuric acid is used as a mineral acid in the fourth step of the present invention, calcium sulfate is not generated in the treatment system. Of course.

このような状態において、固液分離槽7で分離されたス
ラッジを硫酸によって溶解し、生じた硫酸第2鉄を凝集
剤として循環再使用していけば、処理系中の硫酸カルシ
ウムは、徐々にその濃度を上げ、2,000mg/見〜
3,000mg/交にて沈澱反応を起こし、配管、水槽
、その他計装機器等にスケールとし付着し、閉塞、故障
等の起因となるものである。
Under such conditions, if the sludge separated in the solid-liquid separation tank 7 is dissolved with sulfuric acid and the resulting ferric sulfate is recycled and reused as a flocculant, calcium sulfate in the treatment system will gradually be removed. Increase the concentration to 2,000 mg/ml ~
At 3,000 mg/a, a precipitation reaction occurs, and scale adheres to piping, water tanks, and other instrumentation equipment, causing blockages and malfunctions.

木発す!においては、このような硫酸−消石灰の使用に
より生じる問題を次の如く解決し、本発明で使用するア
ルカリ剤および鉱酸として、安価で取扱い容易な消石灰
および硫酸の使用を可能にしたものである。
It comes from the tree! The problem caused by the use of sulfuric acid and slaked lime was solved as follows, and it became possible to use cheap and easy-to-handle slaked lime and sulfuric acid as the alkali agent and mineral acid used in the present invention. .

すなわち、最終固液分離槽7で分離したスラッジを、ス
ラッジ全体中の硫酸カルシウム濃度が一定値以にに低下
するまでスラッジの1部を系外へ分離除去し、新鮮な第
2鉄塩を補充すれば、処理系中全体中の硫酸カルシウム
の濃度が低下し、上述の如き硫酸カルシウムの析出は防
止できる。従って、凝集剤再生層8において添加する鉱
酸として、低コストで取扱いが容易な硫酸を用いること
ができる。更に、第1王程〜第3工程のいずれかまたは
全てにおいて添加するアルカリ剤に、やはり低コストで
取扱いが容易なうえ、フロックの凝集性および沈降性が
良い消石灰を用いることができるようになった。また、
更に、pH6乃至7の域で析出する亜鉛、カドミウム等
の濃縮を防!ヒし、各プロセスにおけるアルカリ剤およ
び鉱酸の添加量を削減できるようになった。なぜならば
、第1固液分離槽においては、前述した通り、 pHは
3乃至5.5であり、pH6乃至7の域で析出する重金
属のほとんどはイオン形態で排水中に存在するため、ス
ラッジとして系外へ除去することは不Iff能である。
That is, a part of the sludge separated in the final solid-liquid separation tank 7 is separated and removed from the system until the calcium sulfate concentration in the entire sludge falls below a certain value, and fresh ferric salt is replenished. By doing so, the concentration of calcium sulfate in the entire treatment system is reduced, and the precipitation of calcium sulfate as described above can be prevented. Therefore, as the mineral acid added in the flocculant regeneration layer 8, sulfuric acid, which is low cost and easy to handle, can be used. Furthermore, it has become possible to use slaked lime, which is low cost, easy to handle, and has good floc flocculation and sedimentation properties, as the alkaline agent added in any or all of the first to third steps. Ta. Also,
Furthermore, it prevents the concentration of zinc, cadmium, etc. that precipitates in the pH range of 6 to 7! This makes it possible to reduce the amount of alkaline agents and mineral acids added in each process. This is because, as mentioned above, in the first solid-liquid separation tank, the pH is between 3 and 5.5, and most of the heavy metals that precipitate in the pH range of 6 to 7 are present in the wastewater in the form of ions, so they are not treated as sludge. It is impossible to remove it from the system.

一方、最終固液分離槽においては、水酸化物として析出
するもののスラッジの循環再使用離槽にてスラー2ヂと
して系外へ分離除去しなければ、各工程における酸、ア
ルカリ剤の必要添加量を増加させるばかりでなく、それ
に伴いフロックの発生量を増加させ、固液分離処理等の
妨げにもなる。
On the other hand, in the final solid-liquid separation tank, if the sludge that precipitates as hydroxide is not separated and removed from the system as slurry 2 in the separation tank, the required amount of acid and alkali agents added in each process Not only does this increase the amount of flocs generated, but it also obstructs solid-liquid separation processing.

以上の事から、最終固液分離槽7にて分離したスラッジ
を、スラッジ中の硫酸カルシウム濃度が2 、OOOI
Ig/l〜3 、OOOrmg/lに達した場合は、そ
のC度がθ〜2,500+ag/立、好ましくは2,0
00+mg/見以ドに低ドするまで、連続もしくは断続
的に管26から管32へ導き、系外へ分離除去すると、
各工程にて添加する酸およびアルカリ剤に消石灰および
硫酸等の安価な薬品を用いることが可能となるうえ、処
理性能および操作性も向上する。また、更に亜鉛、カド
ミウム等の重金属の濃縮を抑制し、各プロセスにおける
酸およびアルカリ剤の添加量も削減することができる。
From the above, the sludge separated in the final solid-liquid separation tank 7 has a calcium sulfate concentration of 2, OOOI
When it reaches Ig/l~3, OOOrmg/l, the C degree is θ~2,500+ag/vertical, preferably 2,0
When the amount is continuously or intermittently introduced from the tube 26 to the tube 32 until the concentration is as low as 00+mg/d, it is separated and removed from the system.
It becomes possible to use inexpensive chemicals such as slaked lime and sulfuric acid as the acid and alkali agents added in each step, and processing performance and operability are also improved. Furthermore, the concentration of heavy metals such as zinc and cadmium can be suppressed, and the amount of acid and alkaline agents added in each process can also be reduced.

尚、硫酸カルシウムの分離除去頻度については、硫酸カ
ルシウムが析出を始める濃度および時間、すなわち濃縮
速度を把握する事により1分離除去量度を求める事がで
き、分離除去量は、除去量と目標濃度に至るまでの時間
との関係を把握すれば、求めることができる。また1分
離除去したスラッジについては、中間固液分離槽にて分
離したスラッジと共に脱水処理を行う。
Regarding the frequency of separation and removal of calcium sulfate, the amount of removal per separation can be determined by understanding the concentration and time at which calcium sulfate starts to precipitate, that is, the concentration rate. You can find it by understanding the relationship with the time it takes to reach it. Furthermore, the sludge that has been separated and removed is subjected to dewatering treatment together with the separated sludge in an intermediate solid-liquid separation tank.

次に、凝集剤再生槽8における溶解方法について述べる
。その方法は、硫酸24を加えて一定時間撹拌を行うか
、あるいは連続的に行われる。ここでスラッチは硫酸と
反応して溶解するものであり、硫酸の使用量は水酸化第
2鉄が硫酸の鉄塩となる化学量論以上が必要であるが、
常にスラッチ濃度が変動する分離液においては、pH2
以下に酸添加量をコントロールすることにより完全に溶
解することができ゛る。溶解する過程でpHが2以上で
あると、水酸化第2鉄の溶解は不完全であり、第1工程
で凝集剤として再使用する場合に、その効果が劣ること
は容易に想像される訳である。またpH1以下の場合は
、溶解速度は迅速であるが、第1工程に流入する有機性
排水のアルカリ度が十分高い場合を除いて、第1工程で
の最適凝集pHに調整する場合に、多量の中和剤を要し
経済的でない、溶解温度は高い程迅速に効率良く反応す
る傾向があるが、常温においても充分本発明の目的は達
されるので、特に限定されるものではない、溶解反応時
間は、pH1凝集剤再生槽の撹拌強度、水酸化第2鉄濃
度により一率ではないが、通常は120分以内に完了す
る。かくして得られた第2鉄塩を上とする凝集剤は、管
27を通って第1工程に循環され、再使用される。
Next, the dissolution method in the flocculant regeneration tank 8 will be described. The method involves adding sulfuric acid 24 and stirring for a certain period of time, or continuously. Here, slatch reacts with sulfuric acid and dissolves, and the amount of sulfuric acid used needs to be at least stoichiometric for ferric hydroxide to become iron salt of sulfuric acid.
In a separated liquid where the slatch concentration constantly fluctuates, pH 2
Complete dissolution can be achieved by controlling the amount of acid added. If the pH is 2 or more during the dissolution process, the dissolution of ferric hydroxide will be incomplete, and it is easy to imagine that the effect will be poor when reusing it as a flocculant in the first step. It is. In addition, when the pH is below 1, the dissolution rate is rapid, but unless the alkalinity of the organic wastewater flowing into the first step is sufficiently high, a large amount of It requires a neutralizing agent and is not economical.The higher the dissolution temperature, the more quickly and efficiently the reaction tends to occur. However, the purpose of the present invention can be sufficiently achieved even at room temperature, so the dissolution method is not particularly limited. Although the reaction time varies depending on the stirring intensity of the pH 1 flocculant regeneration tank and the ferric hydroxide concentration, the reaction is usually completed within 120 minutes. The ferric salt-based flocculant thus obtained is recycled through pipe 27 to the first step and reused.

次に第11程〜第3工程の本発明の他の各工程について
詳細に説明する。
Next, each of the other steps of the present invention from step 11 to step 3 will be explained in detail.

第1工程では、有機性排水が、管9を通って、第1混和
槽lに撹拌されつつ導かれ、第2鉄填を主とする凝集剤
を管17を通して添加し、第1pH調整槽2で所定のp
Hに調整されて、排水中の有機物ならびに色度成分が水
酸化第2鉄フロックと共に析出する。
In the first step, the organic wastewater is led through the pipe 9 to the first mixing tank 1 while being stirred, a flocculant mainly containing ferric iron is added through the pipe 17, and the organic wastewater is introduced into the first mixing tank 2 through the pipe 17. with a given p
The organic matter and chromaticity components in the wastewater are precipitated together with the ferric hydroxide floc.

ここで使用される第2鉄塩を主とする凝集剤は、定常運
転時には前述の凝集剤再生工程で再生されたf!S2鉄
塩を主とする溶液が使用されるが、装置の試運転時や補
給用には新鮮な第2鉄J l 7が使用される。使用さ
れる第2鉄塩は、硫酸第2鉄、塩化第2鉄、硝酸第2鉄
あるいはポリ硫酸鉄のいずれでも使用することができる
が、通常、硝酸第2鉄は、処理水に与える影響を考慮し
て用いられない。
The flocculant mainly composed of ferric salt used here is f! A solution based on S2 iron salts is used, but fresh ferric J l 7 is used during equipment commissioning and for replenishment. The ferric salt used can be ferric sulfate, ferric chloride, ferric nitrate or polyferrous sulfate, but ferric nitrate is usually used because of its effect on the treated water. It cannot be used in consideration of

第2鉄塩を主とする凝集剤の添加量は、排水中に含まれ
る有機物量により、その添加量に差があるものの、第2
鉄塩の添加量に比例して処理効果は良好になるが、通常
は鉄原子換算で、1opps乃至1,0OOpp■の範
囲で添加される。
Although the amount of coagulant mainly composed of ferric salts varies depending on the amount of organic matter contained in the wastewater,
The treatment effect improves in proportion to the amount of iron salt added, but it is usually added in the range of 1 opps to 1,000pp in terms of iron atoms.

第2鉄塩の添加と同時に、第1混和槽1に酸あるいはア
ルカリ剤のいずれか一方を添加して、水酸化第2鉄フロ
ックを生成させることも可能であるが、凝集時のpHを
、3乃至5.5、好ましくはpHを、4乃至4.5の範
囲に厳密に維持することが本発明の重要な構成要件をな
しているので、別に第1 pH調整槽2を設け、pHを
上記範囲に調整するのが好ましい。
It is also possible to generate ferric hydroxide flocs by adding either an acid or an alkaline agent to the first mixing tank 1 at the same time as the addition of the ferric salt, but the pH at the time of aggregation is Since it is an important component of the present invention to strictly maintain the pH within the range of 3 to 5.5, preferably 4 to 4.5, a separate first pH adjustment tank 2 is provided to maintain the pH within the range of 4 to 4.5. It is preferable to adjust it within the above range.

第1 pHal整槽2でのpH調整は、排水の性質によ
り酸またはアルカリ剤のpH調整剤18が添加され、上
記範囲の最適pHに維持される。有機性排水の生物学的
処理水は、生物分解の結果排出されるNHのpH#衝性
のため強酸性の第2鉄塩を添加しても、pH3乃至5.
5の至適pHまで低下しない場合には、硫酸、塩酸等の
鉱酸を添加するが、通常は第2鉄塩を主とする凝集剤の
添加と共に、pHは4以下に低下するため、アルカリ剤
を添加して、最適pHに調整する。中和に用いるアルカ
リは、峙性ソーダ、苛性カリ、消石灰、生石灰等の強ア
ルカリであれば良いが、ト述の通り、経済的な面や取扱
い容易性の面からは、硝石法を用いるのが好ましい、中
和に要する時間は通常の強酸、強アルカリ中和反応と同
様に、1乃至20分程度で完了し、生成する水酸化第2
鉄は、酸性下でコロイド粒子として析出する分子量数千
〜飲方の生物難分解性物質、生物代謝老廃物質および色
度成分と共に析出凝集する。
For pH adjustment in the first pHal adjusting tank 2, an acidic or alkaline pH adjusting agent 18 is added depending on the nature of the wastewater to maintain the optimum pH within the above range. Biologically treated organic wastewater has a pH of 3 to 5.0 even when a strongly acidic ferric salt is added due to the pH pH of NH discharged as a result of biodegradation.
If the pH does not drop to the optimum pH of 5, add a mineral acid such as sulfuric acid or hydrochloric acid, but usually with the addition of a flocculant mainly composed of ferric salts, the pH will drop to 4 or less. Add agent to adjust to optimum pH. The alkali used for neutralization may be any strong alkali such as aqueous soda, caustic potash, slaked lime, quicklime, etc. However, as mentioned above, from the economical and ease of handling standpoints, it is better to use the saltpeter method. Preferably, the time required for neutralization is about 1 to 20 minutes, similar to normal strong acid or strong alkali neutralization reactions, and the generated secondary hydroxide
Iron precipitates and agglomerates together with biorefractory substances, biometabolic waste substances, and chromaticity components with a molecular weight of several thousand to 1,000, which precipitates as colloidal particles under acidic conditions.

pH調整液は、管11を通って中間固液分離槽3に導か
れ、凝集剤19が加えられ、凝集沈澱あるいは凝集加圧
浮上等により、有機物あるいは色度成分を凝集した水酸
化第2鉄フロックは、管25により分離除去され、必要
に応じ設けられるスラッチ濃縮槽(図示なし)で濃縮さ
れ、脱水後中和剤を混入し、中性にしたのち処分される
The pH adjustment liquid is led to the intermediate solid-liquid separation tank 3 through a pipe 11, where a flocculant 19 is added, and ferric hydroxide with organic substances or chromaticity components flocculated by flocculation sedimentation or flocculation pressure flotation, etc. The flocs are separated and removed by a pipe 25, concentrated in a slatch concentration tank (not shown) provided as required, and after dehydration, a neutralizing agent is mixed in to make the flocs neutral and then disposed of.

第1工程で固液分離された処理水は、管12を通り第2
工程の第2混和槽4に導かれ撹拌されつつ、新たに、新
鮮な酸化触媒として、鉄塩20および酸化剤として過酸
化水素21が添加される。
The treated water separated into solid and liquid in the first step passes through the pipe 12 to the second
While being led to the second mixing tank 4 of the process and being stirred, iron salt 20 as a fresh oxidation catalyst and hydrogen peroxide 21 as an oxidizing agent are newly added.

酸化触媒として添加される鉄塩は、硫酸第1鉄塩、塩化
第1鉄塩等のFe(II)イオン、硫酸第2鉄塩、塩化
第2鉄塩等のFe(DI)イオンを有する化合物あるい
はそれらの水溶液であり、硝酸第1鉄塩、硝酸第2鉄坩
等の硝酸塩は、酸化触媒作用は十分期待できるものの、
処理水の富栄養化等を考慮して、特別の場合を除き用い
られず、また酸化触媒機能が高く価格等の紙庫なことか
ら1通常は硫酸第1鉄が用いられる。
The iron salt added as an oxidation catalyst is a compound having Fe(II) ions such as ferrous sulfate salts and ferrous chloride salts, and Fe(DI) ions such as ferric sulfate salts and ferric chloride salts. Or their aqueous solutions, and nitrates such as ferrous nitrate and ferric nitrate crucibles can be expected to have sufficient oxidation catalytic action, but
In consideration of eutrophication of treated water, it is not used except in special cases, and ferrous sulfate is usually used because it has a high oxidation catalyst function and is cheap.

鉄塩は排水中で過酸化水素と反応して、強力な酸化性を
有する水酸基ラジカルを生成すると共に加水分解し1反
応至適のpH4以下になるが、必要に応じ最適反応pH
に調整するため、酸またはアルカリ剤のpH調整剤18
を添加する。
Iron salts react with hydrogen peroxide in wastewater to generate hydroxyl radicals with strong oxidizing properties and are hydrolyzed to the optimum pH of 4 or less for one reaction, but the optimum reaction pH may be adjusted as necessary.
Acid or alkaline pH adjuster 18
Add.

酸化触媒としての鉄塩の添加量は、被酸化性物質の種類
、濃度、過酸化水素の注入量ならびに反応時間により決
定することが可能であるが、通常は第1I程で使用され
る鉄塩凝集剤の有効使用量に合せて決定されるものであ
り、第1工程と同様に、鉄原子換算で、1opp■乃至
1.oooPP腸の範囲で添加される。
The amount of iron salt added as an oxidation catalyst can be determined depending on the type and concentration of the oxidizable substance, the amount of hydrogen peroxide injected, and the reaction time, but usually the iron salt used in Step 1I is This is determined according to the effective usage amount of the flocculant, and as in the first step, the amount is 1 opp to 1. oooPP Added in the intestinal range.

また、 iMs化水素の添加量は特に限定はないが、排
水中の被酸化性物質の種類、fa度および処理水質目標
等により決定されるが、通常は排水中のC0Djvln
借に対し、過酸化水素中の有効酸素換算で0.1乃至2
倍の範囲で添加される。
In addition, the amount of iMs hydrogen hydride added is not particularly limited, but is determined depending on the type of oxidizable substance in the wastewater, the degree of fa, the target water quality, etc.
0.1 to 2 in terms of effective oxygen in hydrogen peroxide
It is added in twice the range.

混和液は、管13を通って反応槽5に導かれ、ここで酸
化反応が行われる0反応槽5は、機械撹拌あるいは空気
撹拌される1反応槽5での酸化反応時間は、排水中の被
酸化性物質の種類、濃度、反応温度、鉄塩触媒量、過酸
化水素量により異なり、例えば廃棄物理立場浸出汚水等
の如く短時間で反応が完結する排水の場合には、第2混
和槽での反応で十分であるが1通常は酸化反応槽5を設
け、常温で5分乃至24時間の滞留時間で充分反応が完
結する0反応温度は高い程、迅速に効率良く反応する傾
向があるが、常温においても十分本発明の目的は達成さ
れるので特に限定されるものではない。
The mixed liquid is led to the reaction tank 5 through a pipe 13, where an oxidation reaction is carried out.The reaction tank 5 is mechanically or air agitated.1The oxidation reaction time in the reaction tank 5 is as long as the water in the waste water It varies depending on the type of oxidizable substance, concentration, reaction temperature, amount of iron salt catalyst, and amount of hydrogen peroxide.For example, in the case of wastewater where the reaction is completed in a short time, such as wastewater leached from a waste physical site, a second mixing tank is used. Although the reaction at 1 is usually sufficient, an oxidation reaction tank 5 is provided, and the reaction is completed sufficiently in a residence time of 5 minutes to 24 hours at room temperature.The higher the reaction temperature, the more quickly and efficiently the reaction tends to occur. However, since the object of the present invention can be sufficiently achieved even at room temperature, there is no particular limitation.

次に酸化反応処理水は管14を通って、第3工程の第2
pH調整槽6に撹拌されつつ導かれ、アルカリ剤18′
あるいは必要に応じ還元剤22が添加される。
Next, the oxidation reaction treated water passes through the pipe 14 to the second stage of the third step.
The alkali agent 18' is introduced into the pH adjustment tank 6 while being stirred.
Alternatively, a reducing agent 22 may be added if necessary.

酸化反応処理水中の鉄塩触媒がFe(m)イオンの形態
で存在する場合の中和p)Iは、4以Eで水酸化第2鉄
フロックを析出し、Fe(ff)イオンの形態で存在す
る場合には、アルカリ剤でpH9以上に調整して曝気を
行いながらFe(IT)イオンを酸化して水酸化第2鉄
フロックとして析出させると同時に排水中の有機物を合
せて凝集分離する。
Neutralization p) I when the iron salt catalyst in the oxidation reaction treatment water is present in the form of Fe(m) ions, precipitates ferric hydroxide flocs at 4 or more E and in the form of Fe(ff) ions. If present, the pH is adjusted to 9 or higher with an alkaline agent, and while aeration is performed, Fe(IT) ions are oxidized and precipitated as ferric hydroxide flocs, and at the same time, organic matter in the wastewater is coagulated and separated.

また、酸化反応において未反応の過酸化水素が残留する
場合には、CODMn測定時においてCODMII値と
して検出され、見掛けのC00Mn値を増大させるため
、第1鉄塩、つまり硫酸第1鉄、塩化第1鉄、硝酸第1
鉄のFe(II)イオンあるいは炬硫酸ソーダ、チオ硫
酸ソーダ等の還元剤が、未反応の残留せる過酸化水素を
分解するために添加されるが、通常は過剰に添加しても
、pH7以Fで曝気により容易にFe(m)に酸化され
析出し、またpH9以上で水酸化第2鉄として分離除去
される第2鉄塩が用いられる。
In addition, if unreacted hydrogen peroxide remains in the oxidation reaction, it is detected as a CODMII value during CODMn measurement and increases the apparent CO00Mn value. 1 iron, nitric acid 1
Reducing agents such as Fe(II) ions of iron or sodium sulfate or sodium thiosulfate are added to decompose unreacted residual hydrogen peroxide, but normally even if added in excess, the pH will not exceed 7. A ferric salt is used that is easily oxidized and precipitated into Fe(m) by aeration with F, and is separated and removed as ferric hydroxide at pH 9 or higher.

中和処理水は管15を通って最終固液分離槽7で凝集助
剤19が添加され、沈澱あるいは浮上法によって固液分
離され、水酸化第2鉄フロックと処理水に分けられ、処
理水は管16を通って必要に応じpHの再調整を行い放
流されるか、またはより高度の処理を目的として他の処
理工程に送られる。一方、最終固液分離槽で分離された
水酸化第2鉄は、管26を通ってその全暑、もしくは管
z6から管32を通しその一部を除去分離した残りもの
が凝集剤再生槽8に送られるが、水酸化鉄中に水酸化第
1鉄が含有されいる場合は、第1工程での第2鉄墳凝集
剤の性能を低下させるので、必要に応じスラッチをpH
7以上に維持しながら曝気により酸化し、Fe(■)を
Fe(m)に変化させたのち、凝集剤再生槽8にメられ
、ここで前述の通りに処理されて第1T程に循環される
The neutralized treated water passes through a pipe 15 in the final solid-liquid separation tank 7, where a coagulation aid 19 is added, solid-liquid separation is performed by sedimentation or flotation, and the treated water is separated into ferric hydroxide flocs and treated water. is discharged through tube 16 with pH readjustment as necessary, or sent to other processing steps for higher-level processing. On the other hand, the ferric hydroxide separated in the final solid-liquid separation tank is passed through the pipe 26 and a part of it is removed or separated through the pipe z6 and the pipe 32, and the remaining part is sent to the flocculant regeneration tank 8. However, if ferrous hydroxide is contained in iron hydroxide, the performance of the ferrous flocculant in the first step will be reduced, so the pH of the slatch may be adjusted as necessary.
After being oxidized by aeration while maintaining the temperature at 7 or above to change Fe (■) to Fe (m), it is poured into the coagulant regeneration tank 8, where it is treated as described above and circulated to about 1T. Ru.

また第2図示例では、第3T程で酸化処理された酸化処
理水が、Fe(H)イオンを含有する場合、あるいは第
3工程で未反応で残留する過酸化水素を還元除去するた
めに、過剰に添加されたFe(II )イオンを酸化析
出するために、曝気槽28で、pH7以Eで空気23で
酸化する工程を設けたものである。
In addition, in the second illustrated example, if the oxidized water that has been oxidized in the third T contains Fe(H) ions, or in order to reduce and remove unreacted hydrogen peroxide in the third step, In order to oxidize and precipitate excessively added Fe(II) ions, a step of oxidizing with air 23 at a pH of 7 or higher in an aeration tank 28 is provided.

第3図示例では、第3T程で分離除去した水酸化鉄スラ
ッチが、Fe(II)イオンを含4丁している場合に、
水酸化鉄スラッジ酸化槽30を新たに設けたものであり
、 pH7以りに維持しながら空気23で酸化を行うも
のであって、第2図示例、第3図示例ともに処理方法の
原理は第1図示例と全く同様であることは容易に理解さ
れよう。
In the example shown in the third diagram, when the iron hydroxide slatch separated and removed in the third T or so contains Fe(II) ions,
A new iron hydroxide sludge oxidation tank 30 is installed, and oxidation is carried out with air 23 while maintaining the pH at 7 or higher.The principle of the treatment method in both the second and third illustrated examples is as follows. It will be easily understood that this example is exactly the same as the example shown in FIG.

(作用・効果) 以1−説11した如く1本発明は従来処理が著しく困難
であった生物難分解性物質、生物代謝老廃物質をはじめ
とする排水中の有機物ならびに色度成分を、高度に除去
すると同時に、生物学的硝化脱窒法、物理化学的脱窒法
を前段に設置することにより、′ネ素成分を除去すると
共に、脱燐、殺菌等の処理を合せて行い、11つまた、
産業廃棄物として多1いに排出されている第1鉄塩の有
効利用を可能にしたうえ、そのランニングコスト、処理
性、操作性を向1−させた本発明は、排水の高度処理の
ための[′!J的処理方法として極めて価値が高いもの
である。
(Operation/Effect) As described in 1-11, the present invention can highly remove organic matter and chromaticity components in wastewater, including biologically persistent substances and biologically metabolic waste substances, which were extremely difficult to treat in the past. At the same time, biological nitrification and denitrification methods and physicochemical denitrification methods are installed at the front stage to remove the ``N'' component and also perform treatments such as dephosphorization and sterilization.
The present invention enables the effective use of ferrous salts, which are often discharged as industrial waste, and improves running costs, processability, and operability. of['! This is extremely valuable as a J-type processing method.

次に実施例をあげて本発明の方法を更に具体的に説明す
るが、未発IJJはこれらの実施例のみに限定されるも
のではない。
Next, the method of the present invention will be explained in more detail with reference to Examples, but the treatment of undeveloped IJJ is not limited to these Examples.

実施例1 :jS3T程で沈降分離した水酸化第2鉄を主とするス
ラッチに、第4T程として硫酸を添加してpH1,5に
調整する。30分間撹拌して再生した第2鉄塩を上体と
した凝集剤を、鉄原子換算で廃棄物理立場浸出汚水の生
物学的硝化脱窒処理水に対し、200pp嘗の量で添加
し、消石灰でpHを4に調整して、排水中の有機物なら
びに色度成分を水酸化第2鉄フロックと共に凝集分離し
た。この第1L程処理水に、鉄塩触媒として硫酸第1鉄
を鉄原子換算で2009p■および酸化剤としての過酸
化水素を有効酸素換算で50ppm添加し、液pn3に
調整して撹拌を行いながら酸化反応を進行させる。15
分間酸化反応処理を行った第2T程の酸化反応処理水に
、消石灰を加えてpHを7に保ちながら、30分間空気
撹拌を行い、混合液中の第1鉄を第2鉄に酸化し、生成
する水酸化第2鉄フロックを沈降分離させ、最終工程の
処理水とする。沈降分離した水酸化第2鉄を主とするス
ラッチは、1回7月の頻度にて、24時間連続でその全
量をスラッチ処理工程へ送る。尚、本設備における硫酸
カルシウムの濃縮速度は、2部冒g/l・Hrであり、
24時間連続で最終固液分離槽より送られてくるスラッ
チを全量分離除去すれば、硫酸カルシウム濃度はその約
30%まで低下する。また、硫酸カルシウムの許容量は
、2.50011g/見である。
Example 1: Sulfuric acid is added as the 4th T to the slatch mainly composed of ferric hydroxide that has been sedimented and separated in the S3T stage to adjust the pH to 1.5. A flocculant containing ferric salt as a superstructure, which was regenerated by stirring for 30 minutes, was added in an amount of 200 ppm in terms of iron atoms to the biological nitrification and denitrification treatment water of waste physical leaching wastewater, and slaked lime was added. The pH was adjusted to 4, and organic matter and chromaticity components in the wastewater were coagulated and separated together with ferric hydroxide flocs. To this 1L of treated water, 2009p of ferrous sulfate as an iron salt catalyst in terms of iron atoms and 50ppm of hydrogen peroxide as an oxidizing agent in terms of effective oxygen were added, and the liquid was adjusted to PN3 while stirring. Allow the oxidation reaction to proceed. 15
Slaked lime is added to the oxidation reaction treated water of about 2T which has been subjected to the oxidation reaction treatment for 30 minutes, and while keeping the pH at 7, air stirring is performed for 30 minutes to oxidize the ferrous iron in the mixed liquid to ferric iron, The generated ferric hydroxide flocs are separated by sedimentation and used as treated water for the final step. The entire amount of the slatch, which is mainly composed of ferric hydroxide that has been sedimented and separated, is sent to the slatch treatment process once every July for 24 hours continuously. In addition, the concentration rate of calcium sulfate in this equipment is 2 parts per liter/Hr,
If the entire amount of slatch sent from the final solid-liquid separation tank is separated and removed continuously for 24 hours, the calcium sulfate concentration will be reduced to about 30%. Further, the allowable amount of calcium sulfate is 2.50011 g/view.

次に、上記実施例におけるランニングコストおよび木質
結果について述べる。
Next, the running costs and wood quality results in the above examples will be described.

第1表は、各プロセスにおける酸、アルカリ剤に塩酸お
よび苛性ソーダを用いた場合と、硫酸および消石灰を用
い、スラッチの1部を系外へ分離除去した場合の、10
,000rrrの排水を処理するのに要するコストを比
較したものであり、第2表は、その際の水質を比較した
ものである。尚。
Table 1 shows the results of 10% of slatch when using hydrochloric acid and caustic soda as acid and alkali agents in each process, and when using sulfuric acid and slaked lime to separate and remove a part of the slatch from the system.
,000rrr of wastewater, and Table 2 compares the water quality at that time. still.

酸、アルカリ剤に苛性ソーダ、塩酸を用いたものをA、
消石灰、硫酸を用いたものをBで表わす。
A using caustic soda or hydrochloric acid as an acid or alkali agent,
B indicates those using slaked lime and sulfuric acid.

−イL≦L二六り 血豆yヨー4ユZユ     80,000     
   −塩一醜一コーヱーh      te、ooo
         −nJ’;IM、 ’:I Z  
h                 3,000醗−
醜一ユーノー)                 4
.000吸北j翼り1ジX l−1,000 −計一         as、ooo       
  s、oo。
-I L ≦ L 26 blood beans y yo 4 yu z yu 80,000
- Salt, Ugly, Koeeh te, ooo
-nJ';IM,':IZ
h 3,000m
Ugly Yuno) 4
.. 000 north suction j wing 1ji x l-1,000 -total 1 as,ooo
s,oo.

−角艷一?−」ベニ 測定項月     ノ量嘘■ネ 匹しソ践は木 策しα
υ■オ処理水量  A    43,800rn”7年
     −−B    ae、ooom”7年   
  −−A     257.7ppm    ft1
.3ppm (76,2%)  34.7ppm (8
13,5%)CODM”    8        2
80.4ppm      54.5ppm(79,1
%)    28.3ppm(89,9%)A    
 457.5°   41.5” (90,鴻)   
14.9@(9L7%)色  度  B     4B
9.8°   32.0°(83,為)    IQ、
2°(97,昭)ss   A    188ppm 
   52pp■(?2.OK)   28ppm (
8B、[)B     233ppm     48p
pm (79,4%)    8ppm (9B、1l
n)※ ()内は除去率
- Soichi Kado? −” The measurement item month is a lie ■ne and the practice is the tree and the plan is α
υ■O treated water volume A 43,800rn"7 years --B ae,ooom"7 years
--A 257.7ppm ft1
.. 3ppm (76.2%) 34.7ppm (8
13.5%) CODM” 8 2
80.4ppm 54.5ppm (79,1
%) 28.3ppm (89.9%) A
457.5° 41.5” (90, Ko)
14.9@(9L7%) Chromaticity B 4B
9.8° 32.0° (83, for) IQ,
2° (97, Akira) ss A 188ppm
52ppm (?2.OK) 28ppm (
8B, [)B 233ppm 48p
pm (79,4%) 8ppm (9B, 1l
n) * () indicates removal rate

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は、本発明の工程説明図で
ある。 l・・第1混和槽   2・・第1P)l調整槽3・・
中間固液分離槽 4・・第1混和槽5・・反応槽   
  6・・第1pHJR1槽?・・最終固液分離槽 8
・・凝集剤再生槽9〜16・・管     17・・凝
集剤18・・po調整剤    18′・・アルカリ剤
18・・凝集助剤    20・・鉄塩21・・無機酸
     22・・1覚剤23・・空気      2
4・・無機酸25〜27・・管     28・・曝気
酸化槽28・・管   30・・水酸化鉄スラッヂ酸化
槽31〜32・・管
FIG. 1, FIG. 2, and FIG. 3 are process explanatory diagrams of the present invention. l... 1st mixing tank 2... 1st P) l adjustment tank 3...
Intermediate solid-liquid separation tank 4...First mixing tank 5...Reaction tank
6.1st pHJR1 tank? ...Final solid-liquid separation tank 8
...Flocculant regeneration tank 9-16...Pipe 17...Flocculant 18...Po adjuster 18'...Alkali agent 18...Flocculating aid 20...Iron salt 21...Inorganic acid 22...1 Agent 23...Air 2
4.Inorganic acid 25-27..Pipe 28..Aeration oxidation tank 28..Pipe 30..Iron hydroxide sludge oxidation tank 31-32..Pipe

Claims (2)

【特許請求の範囲】[Claims] (1)有機性排水の処理方法において、 (イ)有機性排水に、第2鉄塩を主とする凝集剤を添加
し、pHを3乃至5.5の範囲に調整した後、汚濁物質
、有機性物質ならびに色度成分を水酸化第2鉄フロック
と共に凝集分離する第1工程、 (ロ)第1工程の処理水に、新たに酸化触媒としての鉄
塩および酸化剤としての過酸化水素を添加して、有機物
ならびに色度成分を酸化分解する第2工程、 (ハ)第2工程の酸化処理水は、そのままか、もしくは
未反応の過酸化水素が残留する場合は、還元剤を加えて
過酸化水素を分解除去した後、アルカリ剤を加えてpH
4以上とし、鉄塩触媒を水酸化第2鉄として析出分離す
る第3工程、 (ニ)第3工程で析出分離された水酸化第2鉄を、その
スラッジ中の硫酸カルシウム濃度に従って適量のスラッ
ジを系外へ除去分離したのち、鉱酸を加えて溶解し、第
1工程の第2鉄塩を主とする凝集剤として再生し、循環
再使用する第4工程、 からなり、上記の第1〜3工程のいずれかまたは全てに
おけるアルカリ剤として消石灰を使用し、且つ第4工程
における鉱酸として硫酸を用いることを特徴とする有機
性排水の処理方法。
(1) In the method for treating organic wastewater, (a) a flocculant mainly consisting of ferric salt is added to the organic wastewater to adjust the pH to a range of 3 to 5.5, and then the pollutants are removed. A first step in which organic substances and color components are coagulated and separated together with ferric hydroxide flocs. (c) The oxidized water in the second step may be used as it is, or if unreacted hydrogen peroxide remains, a reducing agent may be added. After decomposing and removing hydrogen peroxide, add an alkaline agent to adjust the pH.
4 or more, and a third step in which the iron salt catalyst is precipitated and separated as ferric hydroxide; The fourth step consists of removing and separating the iron from the system, adding mineral acid to dissolve it, regenerating the ferric salt from the first step as a flocculant, and recycling and reusing it. - A method for treating organic wastewater, characterized in that slaked lime is used as an alkali agent in any or all of the three steps, and sulfuric acid is used as the mineral acid in the fourth step.
(2)硫酸カルシウム濃度を2.500mg/l以下と
する特許請求の範囲第(1)項に記載の有機性排水の処
理方法。
(2) The method for treating organic wastewater according to claim (1), wherein the calcium sulfate concentration is 2.500 mg/l or less.
JP60002071A 1985-01-11 1985-01-11 Treatment of organic waste water Granted JPS61161197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002071A JPS61161197A (en) 1985-01-11 1985-01-11 Treatment of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002071A JPS61161197A (en) 1985-01-11 1985-01-11 Treatment of organic waste water

Publications (2)

Publication Number Publication Date
JPS61161197A true JPS61161197A (en) 1986-07-21
JPH0585240B2 JPH0585240B2 (en) 1993-12-06

Family

ID=11519110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002071A Granted JPS61161197A (en) 1985-01-11 1985-01-11 Treatment of organic waste water

Country Status (1)

Country Link
JP (1) JPS61161197A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208164A (en) * 1987-06-25 1989-03-08 Laporte Industries Ltd Purification of waters
EP0723937A2 (en) * 1995-01-25 1996-07-31 Air Products And Chemicals, Inc. Method for treating industrial effluent
EP0723938A3 (en) * 1995-01-25 1998-06-17 Air Products And Chemicals, Inc. Method for treating water
JP2007252969A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Purification method of steel production drainage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942099A (en) * 1982-09-03 1984-03-08 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing hardly biologically decomposable material
JPS5959299A (en) * 1982-09-27 1984-04-05 Kankyo Eng Kk Treatment of waste syrup liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942099A (en) * 1982-09-03 1984-03-08 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing hardly biologically decomposable material
JPS5959299A (en) * 1982-09-27 1984-04-05 Kankyo Eng Kk Treatment of waste syrup liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208164A (en) * 1987-06-25 1989-03-08 Laporte Industries Ltd Purification of waters
GB2208164B (en) * 1987-06-25 1991-04-24 Laporte Industries Ltd Purification of water using a flocculating agent
EP0723937A2 (en) * 1995-01-25 1996-07-31 Air Products And Chemicals, Inc. Method for treating industrial effluent
EP0723937A3 (en) * 1995-01-25 1998-06-17 Air Products And Chemicals, Inc. Method for treating industrial effluent
EP0723938A3 (en) * 1995-01-25 1998-06-17 Air Products And Chemicals, Inc. Method for treating water
JP2007252969A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Purification method of steel production drainage
JP4662059B2 (en) * 2006-03-20 2011-03-30 新日本製鐵株式会社 Purification process for steel manufacturing wastewater

Also Published As

Publication number Publication date
JPH0585240B2 (en) 1993-12-06

Similar Documents

Publication Publication Date Title
CN104163539B (en) A kind of processing method of coal chemical industrial waste water
CN107857423A (en) A kind of processing system of reverse osmosis concentrated water
JP2000237772A (en) Advanced treatment of water
JPS61161197A (en) Treatment of organic waste water
KR100343637B1 (en) Treatment of leachate
JP2621090B2 (en) Advanced wastewater treatment method
JP3382766B2 (en) Method and apparatus for treating human wastewater
JPH08318292A (en) Waste water treatment method and apparatus
CN104478166B (en) The process technique of sulfur-containing waste water and the system of process in a kind of leather waste water
JPS5888097A (en) Purification of filthy water such as night soil
JPH0141110B2 (en)
JPH11319889A (en) Treatment of selenium-containing waste water and device therefor
JPS591117B2 (en) How to treat organic wastewater
CN104478167A (en) Treatment process and treatment system of chromium-containing wastewater in leather wastewater
JPH0483594A (en) Biological treatment of organic sewage
KR100280075B1 (en) Sanitary Landfill Leachate Treatment Method
JPS591118B2 (en) How to treat organic wastewater
KR100315434B1 (en) Wastewater Disposal Process
JPS59173199A (en) Biological treatment of waste water containing dithionic acid and ammonia
JPS6339309B2 (en)
JP2002282874A (en) Wastewater treating device
KR960002271B1 (en) Dyeing water treatment method
JPH0314519B2 (en)
JP3229806B2 (en) Human wastewater treatment equipment
JPS63258692A (en) Treatment of organic sewage

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term