JPS5959299A - Treatment of waste syrup liquid - Google Patents

Treatment of waste syrup liquid

Info

Publication number
JPS5959299A
JPS5959299A JP57167848A JP16784882A JPS5959299A JP S5959299 A JPS5959299 A JP S5959299A JP 57167848 A JP57167848 A JP 57167848A JP 16784882 A JP16784882 A JP 16784882A JP S5959299 A JPS5959299 A JP S5959299A
Authority
JP
Japan
Prior art keywords
liquid
treatment
treated
added
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57167848A
Other languages
Japanese (ja)
Other versions
JPH0125638B2 (en
Inventor
Asao Horiuchi
堀内 朝夫
Ichiro Yamamoto
一郎 山本
Masaki Aizawa
藍沢 正樹
Toyoichi Yokomaku
豊一 横幕
Toyohiko Matsushima
松島 豊彦
Keiichi Koshiba
小柴 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP57167848A priority Critical patent/JPS5959299A/en
Publication of JPS5959299A publication Critical patent/JPS5959299A/en
Publication of JPH0125638B2 publication Critical patent/JPH0125638B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To easily treat waste syrup liquid to a high degree at a low cost, by treating the waste syrup liquid in the process of aerobic biotreatment to reduce soluble BOD components below 50mg/l, adding a coagulant to it, adjusting a pH to 3-5.5 and then coagulatively separating it. CONSTITUTION:Waste syrup liquid is introduced through a pipe 1 into a part 2 for aerobic biotreatment, a nutritive seat 3 such as nitrogen or phosphorus is optionally added therein, and said waste liquid is treated in the process of aerobic biotreatment until soluble BOD components in the waste liquid are made below 50mg/l. Thereafter, a coagulant based on ferric salt is added to the treated liquid being agitated in the first mixing tank 4, and then a pH-adjusting agent 7 is added in the first pH-adjusting tank 6 to adjust a pH to 3-5.5. Thereafter, suspended substance, organic substance, colors and coloring components in the treated liquid are coagulated together with the flocks of ferric hydroxide under the addition of a coagulant 9 in an intermediate solid-liquid separation tank 8 and then separated by a proper means such as filtration or precipitation.

Description

【発明の詳細な説明】 本発明は糖蜜廃液の新規かつ有効な処理方法に関する。[Detailed description of the invention] The present invention relates to a novel and effective method for treating molasses wastewater.

本発明の処理対象である糖蜜廃液は、主として、砂糖精
製工程から排出される廃糖蜜を原料として、アルコール
、アミノ酸、核酸誘専体、及びパン酵母等の発酵製品を
製造する過程で排出されるものであるか、この廃液は一
般に、水質的にはBOD。
The molasses waste liquid that is the subject of treatment in the present invention is mainly discharged during the process of manufacturing fermented products such as alcohol, amino acids, nucleic acid derivatives, and baker's yeast using the molasses discharged from the sugar refining process as a raw material. This waste liquid is generally BOD in terms of water quality.

CODとも5,000〜100.00011??/lと
極めて濃厚なものであり、排出液量も100〜3.00
0 +yz”/日と大量である場合が多い。
5,000 to 100.00011 for COD? ? /l is extremely concentrated, and the amount of discharged liquid is 100 to 3.00.
In many cases, the amount is as large as 0 +yz"/day.

従来、この糖蜜廃液は生物学的な方法のみで処理されて
いたが、この方法では廃液中のB OD成分を除去する
ことはできるが、COD及び色度成分の除去性は悪く、
生物学的処理液のCODは1、500〜5. OOO■
7t、色度は3.000〜20,000゜である。
Conventionally, this molasses waste liquid has been treated only by biological methods, but although this method can remove the BOD component in the waste liquid, the removal of COD and chromaticity components is poor.
The COD of biological treatment liquid is 1,500 to 5. OOO■
7t, chromaticity is 3.000-20,000°.

この生物学的処理液におけるCOD、色度成分の主体は
メラノイジン等の生物難性M性の有機高分子化合物であ
るが、この種の有機高分子化合物を含む排水の処理には
各種の方法が開発されておシ、特開昭55−34135
号の「有機性排水の処理方法」もその1つである。
The COD and chromaticity components in this biological treatment solution are mainly composed of biorefractory M organic polymer compounds such as melanoidin, but various methods are available to treat wastewater containing this type of organic polymer compound. It was developed in Japanese Unexamined Patent Publication No. 55-34135.
``Methods for treating organic wastewater'' in this issue is one of them.

この公知方法は、有機性排水にa72鉄塩を主とする凝
集剤を添加して、PH3乃至55の範囲に調整したのち
、懸濁物質、有機物質、及び色度成分を水酸化第2鉄フ
ロツクと共に凝集分離する第1工程と、第1工程の処理
水に新たに鉄塩、過酸化水素を添加して有機物質及び色
度成分を酸化分解する第2工程と、その酸化処理水にア
ルカリを加えてPH4以上で鉄塩触媒を水酸化鉄フロッ
クとして析出分離する第6エ程とから成る一連の工程で
有機性物質を含む排水を処理して、排水中の有機物質及
び色度成分を高度に除去しようとするものであり、場合
により予め、活性汚泥法、散水炉床法、又は嫌気性消化
法等の生物学的処理方法を用いて排水のBODを110
0pp以下捷で極力低下させておくことが、薬剤使用量
を大巾に減少させる土で必要であるとしている。
In this known method, a coagulant mainly containing A72 iron salt is added to organic wastewater to adjust the pH to a range of 3 to 55, and then suspended solids, organic substances, and color components are removed from ferric hydroxide. The first step is coagulation and separation with flocs, the second step is to add new iron salt and hydrogen peroxide to the water treated in the first step to oxidize and decompose organic substances and color components, and the second step is to add alkali to the oxidized water. and the sixth step in which the iron salt catalyst is precipitated and separated as iron hydroxide flocs at a pH of 4 or above, and the wastewater containing organic substances is treated to remove organic substances and color components in the wastewater. In some cases, biological treatment methods such as activated sludge method, watering hearth method, or anaerobic digestion method are used to reduce the BOD of wastewater to 110%.
It is said that it is necessary for soils to reduce the amount of chemicals used to a large extent by keeping the concentration below 0pp as much as possible.

本発明は、前記公知方法を糖蜜廃液の処理に利用するに
半り、一層適切な前処理工程を組合せることにより、と
i′Lまで有効に処理することができなかったれ11蜜
廃液を簡易かつ低コストで、しかも極めて高度に処理で
きるようにし/こものである。
The present invention utilizes the above-mentioned known method for treating molasses waste liquid, and by combining it with a more appropriate pre-treatment step, it is possible to easily treat molasses waste liquid, which has not been able to be effectively treated up to i'L. It is also low cost and can be processed at an extremely high level.

そして、本発明における前処理の將徴は、第1発明では
、糖蜜廃液を好気性生物処理法で処理してその溶解性B
ODを特に50m9/を以下にする点であり、第2発明
では、糖蜜廃液を一旦95℃以上に加熱してから冷却し
、次いで好気性生物処理11法で処理する点であり、第
3発明では、糖蜜廃液を先ずメタン発酵法で処理し、次
いで好気性生物処理法で処理する点である。
The advantage of the pretreatment in the present invention is that in the first invention, the molasses waste liquid is treated with an aerobic biological treatment method, and its soluble B
In the second invention, the molasses waste liquid is first heated to 95°C or higher, then cooled, and then treated by the aerobic biological treatment method 11, and the third invention In this case, molasses waste liquid is first treated by methane fermentation method and then treated by aerobic biological treatment method.

以下、第1発明ないし第3発明について各別に具体的に
説明する。
Hereinafter, each of the first to third inventions will be specifically explained.

第1図によυ第1発明の一実施態ぢfについて説明する
に、処理対象の糖蜜廃液は管1で好気性生物処理部2に
導かれ、ここで、必要にょυ窒素、りん等の栄養塩3を
添加して、廃液の溶解性BODが50■/を以下になる
まで、好気性生物処理法て処理される(第1工程)。
To explain one embodiment of the first invention with reference to FIG. Nutrient salt 3 is added and the waste liquid is treated using an aerobic biological treatment method until the soluble BOD of the waste liquid becomes less than 50 μm (first step).

第1工程処理沿の溶解性BODか5omg7を以下にな
る寸で処理することが、第1発明の重要な構成要件であ
って、50q/を以上では、第2工程以稜での凝集剤、
酸化剤等の薬品注入量が著しく増加するばかυでなく、
処理効果か極端に悪くカシ、最終的な処理限界水質が上
昇して、本発明の目的を達成することができない。なお
、微生物フロック等に起因するSS(浮遊固形物)性の
BODの存在は薬注量と処理効果に悪影響を及ぼさない
It is an important component of the first invention to treat the soluble BOD in the first step to a size of 5 omg7 or less, and if the soluble BOD is 50 q/ or more, the flocculant in the second step and beyond,
It is not stupid υ that significantly increases the amount of chemicals such as oxidizers injected,
The treatment effect will be extremely poor, and the final treatment limit water quality will rise, making it impossible to achieve the purpose of the present invention. Note that the presence of SS (suspended solids) BOD caused by microbial flocs etc. does not adversely affect the amount of chemical injection and the treatment effect.

好気性生物処理の方法にはq、γに限定はなく、活性汚
泥法、散水炉床法、接触酸化法、回転円板法等の何れで
もよく、又はこれらの併用でもよい。
The method of aerobic biological treatment is not limited to q and γ, and any of the activated sludge method, watering hearth method, catalytic oxidation method, rotating disk method, etc., or a combination thereof may be used.

だだ、処理液のBODを50η/を以下に維持管理する
には、正蟲なりOD容積負6パ]で運転されているか、
必要な酸素が十分に供給さねているか、BOD汚泥負荷
が適正であるか等、処理秋況に十分な注意が必要である
However, in order to maintain and manage the BOD of the processing liquid to 50η/ or less, it must be operated at a positive OD volume or a negative OD volume of 6%.
It is necessary to pay close attention to the processing conditions, such as whether the necessary oxygen is being supplied sufficiently and whether the BOD sludge load is appropriate.

なお、第1工程で生じた余剰生物汚泥は、濃縮分19f
f Lだ後、別途処理してもよいが、第1工程処几液と
共に下記の第2工程で処理して、COD及び色度成分と
共に凝集分離することもできる。
In addition, the excess biological sludge generated in the first step has a concentrated content of 19f.
After f L, it may be treated separately, but it can also be treated in the following second step together with the first step treatment solution to coagulate and separate the COD and chromaticity components.

第2工程でに[、先ず、第1混和槽4において第1工程
処理液に攪拌しつつ第2鉄塩を主とする凝集剤5を所定
景添加し、次いで、第1PH調整槽6でP H調整剤7
の添加によりPHを所定値(3〜5.5、好賛しくは4
〜4.5)に調整した後、中間固液分離槽8において凝
集助剤9の添加の下に、処理液中の慰濁物質、有機物質
、及び色度成分を水酸化第2鉄フロツクと共に凝集させ
、これを沖過、沈殿等適宜手段で分離する。
In the second step, first, a predetermined amount of flocculant 5 mainly composed of ferric salt is added to the first step treatment liquid while stirring in the first mixing tank 4, and then, P H adjuster 7
By adding
~ 4.5), in the intermediate solid-liquid separation tank 8, the turbid substances, organic substances, and chromaticity components in the treated liquid are mixed with the ferric hydroxide flocs while adding a coagulation aid 9. Agglomerate and separate by appropriate means such as filtration or sedimentation.

ここで使用する第2鉄塩を主とする凝集剤は、硫酸第2
鉄、塩化第2鉄、ポリ砧酸鉄の何tでもよく、又、添加
量は、量に比f:・して処理効果は向上するが、通常は
、鉄原子換算で25〜2. s o o mg7tとす
る。
The flocculant mainly composed of ferric salt used here is ferric sulfate.
Any number of tons of iron, ferric chloride, or polyferric nitrate may be used, and the treatment effect will be improved by increasing the amount of iron, ferric chloride, or iron polynitrate; however, it is usually 25 to 2.0 tons in terms of iron atoms. S o mg 7t.

中間固液分離槽8で分離j7た固形分は、管10で排出
して、必要に応じて別途処理した後、処分し、液分は次
の第6エ程へ送る。
The solid content separated in the intermediate solid-liquid separation tank 8 is discharged through a pipe 10, treated separately if necessary, and then disposed of, and the liquid content is sent to the next sixth step.

第6エ程では、先ず、第2混和槽11において、攪拌し
つつ、酸化剤としての過酸化水素12と酸化触媒として
の鉄塩13の添加を行い、その液を酸化反応槽14に導
いて酸化反応を行わせ、液中の有機物質及び色度成分を
酸化分解する。
In the sixth step, first, in the second mixing tank 11, hydrogen peroxide 12 as an oxidizing agent and iron salt 13 as an oxidation catalyst are added while stirring, and the liquid is led to the oxidation reaction tank 14. An oxidation reaction is carried out to oxidize and decompose organic substances and chromaticity components in the liquid.

過酸化水素の添加量は、特に限定はなく、廃液の組成、
濃度、処理目標水質等により決定するが、通常は、廃液
中のCODMn量に対して過酸化水素中の有効酸素換算
で01〜2倍の範囲とする。
The amount of hydrogen peroxide added is not particularly limited, and depends on the composition of the waste liquid,
It is determined depending on the concentration, target water quality, etc., but is usually in the range of 0.1 to 2 times the amount of CODMn in the waste liquid in terms of effective oxygen in hydrogen peroxide.

鉄塩は、硫酸第1又は第2鉄塩、塩化第1又は第2鉄埴
、ポリ硫酸鉄等の化合物、及びその水溶液であるが、通
常は、酸化触媒能が高く、価格が低部なことから硫酸第
1鉄塩を)liいる。又、鉄塩の添加量は、廃液の濃度
、組成、過酸化水素の添加量、反応時間、及び酸化反応
稜の固液分離法等により決定するのであるが、斂〜/を
程度から効果を発揮し、多量になるほど反応速度が早く
なる一方、スラッジの発生量が増大するので、通常は、
鉄原子換算でIG〜2.a o Q vrq/1. の
範囲とする。
Iron salts include compounds such as ferrous or ferric sulfate, ferrous or ferric chloride, polyferrous sulfate, and their aqueous solutions, but usually iron salts have high oxidation catalytic ability and are inexpensive. Therefore, ferrous sulfate salt) is required. The amount of iron salt added is determined by the concentration and composition of the waste liquid, the amount of hydrogen peroxide added, the reaction time, and the solid-liquid separation method at the oxidation reaction edge. The larger the amount, the faster the reaction speed, but the amount of sludge generated increases.
IG~2. in terms of iron atoms. a o Q vrq/1. The range shall be .

鉄塩は液中で過酸化水素と反応して強力な酸化性を有す
る水酸基ラジカルを生成するとともに加水分解して、反
応至適のP H4υ下になるが、必要によシ最適反応P
IIK調整するた袷に第2混和槽11においてP )1
調整剤15を添加する。
Iron salt reacts with hydrogen peroxide in the liquid to generate hydroxyl radicals with strong oxidizing properties and is hydrolyzed to reach the optimum reaction P H4υ.
P)1 in the second mixing tank 11 during IIK adjustment
Add modifier 15.

酸化反応槽14は、油筒、機構攪拌又は空気攪拌される
。そして、酸化反比、槽14での反応時間は、廃液の組
成、濃度、反応温度、過酸化水素量、鉄塩量によシ異る
が、通常は、常温で5分ないし24時間である。
The oxidation reaction tank 14 is agitated by an oil cylinder, mechanical agitation, or air agitation. The oxidation ratio and the reaction time in the tank 14 vary depending on the composition, concentration, reaction temperature, amount of hydrogen peroxide, and amount of iron salt of the waste liquid, but are usually 5 minutes to 24 hours at room temperature.

なお、反応が知時間で完結する条件の場合には第2混和
槽11での反応だけで十分である。
Note that if the conditions are such that the reaction is completed within a certain amount of time, the reaction in the second mixing tank 11 is sufficient.

槽16に導いてアルカリ剤17が必要に応じて還元剤1
8を添加し、最終固液分離槽19において、通常は凝集
助剤20の添加の下に、鉄イオンを水酸化鉄フロックと
して析出させると同前に、廃液の有機物も合わせて凝集
させ、これを濾過、沈殿等の適宜手段で分離する。
The alkaline agent 17 is introduced into the tank 16 and the reducing agent 1 is added as required.
8, and in the final solid-liquid separation tank 19, usually with the addition of a coagulation aid 20, iron ions are precipitated as iron hydroxide flocs, and at the same time, the organic matter of the waste liquid is also coagulated. Separate by appropriate means such as filtration or precipitation.

酸化反応において未反応の過酸化水素が残留すると、C
OD測定時にCOD値として検出されて見n1のCOD
が増加するが、還元剤は、この場合に残留の過酸化水素
を分解するために添加するのであって、硫酸釦1鉄、塩
化第1鉄、亜硫酸ソーダ、チオ硫酸ソータ等が用いられ
る。
If unreacted hydrogen peroxide remains in the oxidation reaction, C
COD of n1 detected as COD value during OD measurement
However, in this case, a reducing agent is added to decompose the remaining hydrogen peroxide, and ferrous sulfate, ferrous chloride, sodium sulfite, thiosulfate sorter, etc. are used.

最終固液分離槽19で分離した液分は管21よシ取出し
て、必要によりPH調整をした後、放流するか、又はよ
り高度の処理のだめに他の処理工程に送る。一方、固形
分(水酸化vくフロック)は斎22よシ排出して処分す
るが、場合によっては塩酸、硫酸等の鉱酸を加えて水酸
化鉄を溶解し、第2工程における第2鉄塩を主とする凝
集剤として再使用することもできる。
The liquid separated in the final solid-liquid separation tank 19 is taken out through a pipe 21, and after adjusting the pH if necessary, it is either discharged or sent to another treatment step for higher-level treatment. On the other hand, the solid content (hydroxide flocs) is discharged and disposed of in Sai 22, but in some cases, mineral acids such as hydrochloric acid or sulfuric acid are added to dissolve the iron hydroxide, and iron hydroxide is used in the second step. It can also be reused as a salt-based flocculant.

実施例 酵母製造工場から排出された第1表に示す液質の糖蜜廃
液を清水で5倍希釈し、処理方法が容積iozの曝気槽
を用いた回分式活併汚泥法、BO7!L D負荷が2,0Kf−BOD/rn2日、液塩が65℃
の条件で、曝気量を8ノ、4.5t4)、3/−7分 
の3段階に変化させて、好気性生物処理を行ったところ
、それら処理液の液質は第2表に示す通シであった。
Example The molasses waste liquid discharged from a yeast manufacturing factory and having the liquid quality shown in Table 1 was diluted five times with fresh water, and the treatment method was a batch activation-sludge method using an aeration tank with a volume of 1 oz, BO7! LD load is 2,0Kf-BOD/rn2 days, liquid salt is 65℃
Under the conditions, the aeration amount is 8, 4.5t4), 3/-7 minutes.
When aerobic biological treatment was carried out in three stages, the liquid quality of the treated solution was as shown in Table 2.

第 1 表 第2表 但し、BODはA 5 Cの沖紙で濾過しだ涙液の値 次に、これらの処理液に対して、第2工程では、処理方
法が1tビー丸による回分処理で、固液分離は沈降法、
塩化第2鉄の添加量が3価の鉄イオン換算で500η/
l 、 P H調整剤が1Nの水酸化ナトリウム液、凝
集時のPHが4の条件で、第5工程では、処理方法が1
tヒーカーによる回分処理、過酸化水素の添加量が有効
酸素換算で100■/1.硫酸第1鉄の添加量が2価の
鉄イオン換算で500■/1.戊応PHが29、反応時
間が60分の条件で、第4工程では、処理方法が1tビ
ーカーによる回分処理で、固液分離は沈降法、アルカリ
剤は1Nの水酸化ナトリウム液、凝集時のPHは7、還
元剤は無添加の条件で、第1発明における第2〜第4工
程の処理を行ったところ、その処理液の液質は第5表に
示す通りであった。
Table 1 Table 2 However, BOD is the value of lachrymal fluid filtered with A5C paper.Next, in the second step, for these treatment solutions, the treatment method is batch treatment using 1t B-Maru. , solid-liquid separation is done by sedimentation method,
The amount of ferric chloride added is 500η/ in terms of trivalent iron ion.
In the fifth step, the treatment method was 1.
Batch processing using a t-heater, the amount of hydrogen peroxide added is 100 μ/1 in terms of effective oxygen. The amount of ferrous sulfate added is 500 μ/1 in terms of divalent iron ions. In the fourth step, the reaction time was 60 minutes, the reaction time was 29, the treatment method was batch treatment using a 1 ton beaker, the solid-liquid separation was the sedimentation method, the alkaline agent was 1N sodium hydroxide solution, and the alkali agent was 1N sodium hydroxide solution. When the second to fourth steps in the first invention were carried out under the conditions of pH 7 and no reducing agent added, the liquid quality of the treated liquid was as shown in Table 5.

第3表 第3表によると、第1発明におけるCOD及び色度の除
去性が顕著に良好なことが明らかである。
According to Table 3, it is clear that the removability of COD and chromaticity in the first invention is significantly good.

次に、第2表に示す第1工程処理液に対し、第2工程に
おける塩化第2鉄の添加量を種々変化させた場合の第2
工程処理液のCOD値と鉄フロックによって凝集除去さ
れたC0DIの関係を第2図に示す。
Next, for the first process treatment solution shown in Table 2, the second
FIG. 2 shows the relationship between the COD value of the process solution and the CODI coagulated and removed by iron flocs.

第2図によると、第1発明では第2工程のCODの凝集
除去性が格段に向上していることが判る。
According to FIG. 2, it can be seen that in the first invention, the ability to remove agglomerates of COD in the second step is significantly improved.

次に、第2表に示す5つのgr!1工程処理液に対して
塩化第2鉄の添加量を3価の鉄イオン換3′−でそれぞ
れ300m’j/l、 450mY/l、500 rw
/lとして処理を行った第2工程処理液のCODは、そ
れぞれ580■/l、530■/11560■/lとほ
ぼ同程度の値を示したので、この第2工程処理液に対し
て第6エ程で過酸化水X(の添加量を種々変化させて、
第3及び第4工程の処刑を行った場合の第4工程処恐液
のCODと第6工程での過酸化水素の添加最古の関係を
調べた(卯6図)。
Next, the five gr!s shown in Table 2! The amount of ferric chloride added to the 1-step treatment solution was 300 m'J/l, 450 mY/l, and 500 rw for trivalent iron ion exchange 3'-, respectively.
The COD of the second process treatment liquid treated as 1/l was approximately the same as 580/l and 530/11560/l, respectively. By varying the amount of peroxide (X) added in 6 steps,
We investigated the relationship between the COD of the 4th step processing solution and the earliest addition of hydrogen peroxide in the 6th step when the 3rd and 4th steps were executed (Figure 6).

この第3図から明らかなように、卯2工程処理液のCO
D値を同レベルに調整した場合でも、第1工程で溶解性
BODを50■/lり下まで処理すると少ない過酸化水
素の添加で高いCODの除去性を示すことが判る。
As is clear from this Figure 3, the CO of the rabbit 2nd process treatment solution is
It can be seen that even when the D value is adjusted to the same level, if the soluble BOD is treated in the first step to less than 50 μ/l, high COD removal performance can be achieved with the addition of a small amount of hydrogen peroxide.

実施例 第1表に示す液質の糖蜜廃液に対して、曝気量を種々変
化させて活性汚泥処理を行い、溶解性BODに差がある
この各処理液を第2工程で塩化第2鉄の添加量を2価の
鉄イオン換算で500■/lとして凝集処理を行い、各
第2工程処理液のCOD値と第1工程処理液のBOD値
との関係を調べた(第4図)。
EXAMPLE Activated sludge treatment was performed on the liquid molasses waste liquid shown in Table 1 by varying the amount of aeration, and the treated liquids, which had different soluble BOD, were treated with ferric chloride in the second step. A flocculation treatment was carried out with the amount added being 500 .mu./l in terms of divalent iron ions, and the relationship between the COD value of each second step treatment solution and the BOD value of the first step treatment solution was investigated (FIG. 4).

第4図によると、第1工程処理液のBODが50■/を
以下の場合に、第2工程におけるCODの処理性が急激
に向上することが判る。
According to FIG. 4, it can be seen that when the BOD of the first step treatment liquid is 50 square meters or less, the COD treatability in the second step is rapidly improved.

次に、このように第2工程での処理性が異る第1工程処
理液を、第2工程において水酸化第2鉄の添加量を変え
て処理して、同程度のCOD値の第2工程処理液となる
ように調整し、この各処理液を第3工程において実験例
1と同じ過酸化水素と触媒の添加量で酸化処理し、各第
4工程処理液のCOD値と第1工程処理液のBOD値と
の関係を調べた(第5図)。
Next, in the second step, the first step treatment solution having different treatability in the second step is treated by changing the amount of ferric hydroxide added, and the second step treatment solution having the same COD value is obtained. Each treatment liquid was oxidized in the third step with the same amount of hydrogen peroxide and catalyst as in Experimental Example 1, and the COD value of each fourth step treatment liquid and the first step were The relationship with the BOD value of the treatment liquid was investigated (Figure 5).

第5図によると、第1工程処理液のBODが50■/l
の場合に、第4工程処理液のCOD値が急激に減少り−
ることか判る。
According to Figure 5, the BOD of the first process treatment liquid is 50■/l.
In this case, the COD value of the fourth process treatment solution decreases rapidly.
I understand that.

以上の2つの実験の結果からも明らかなよう索、記1工
程の好気性生物処理において廃液の溶解性BODを特に
50■/を以1にしている第1発明によれば、後の工程
におけるCODの除去性が顕著であり、薬品添加駄の大
巾な低減が期待でき、その効果は前記公知例から予測さ
れる範囲を遥かに超えるものである。
As is clear from the results of the above two experiments, according to the first invention in which the soluble BOD of the waste liquid in the aerobic biological treatment in step 1 is particularly set to 50 μ/1, it is possible to The ability to remove COD is remarkable, and a significant reduction in the amount of chemical additives can be expected, and the effect far exceeds the range expected from the above-mentioned known examples.

次に、第6図によシ第2発明の一実施態について説明す
るに、処理対象の糖蜜廃液は管23で加熱部24に導か
れ、ここで加熱媒体25によ995℃以上の温度に加熱
された後、冷却部26で冷却媒体27により冷却される
(第1工程)。
Next, referring to FIG. 6, an embodiment of the second invention will be described. The molasses waste liquid to be treated is guided through a pipe 23 to a heating section 24, where it is heated to a temperature of 995° C. or higher by a heating medium 25. After being heated, it is cooled by the cooling medium 27 in the cooling section 26 (first step).

第2発明では第1工程における廃液の加熱温度が重要で
あって、必ず95℃以上の温度に加熱しなりれば本発明
の目的は達成されない。加熱温度が95℃以下では、後
段の工程での凝集剤、酸化剤等の薬品の添加量が増大す
るばかシでなく、処理効果が悪くなシ、最終的な処理限
界水質が上昇する。逆に廃液を95℃以上に加熱するこ
とによシ、単に薬品の添加量の低減が期待できるのみな
らず、第2工程で必ずしも高度のBOD除去をしなくで
も、以後の工程において高い有機物の除去性を維持する
ことができる。
In the second invention, the heating temperature of the waste liquid in the first step is important, and unless the waste liquid is heated to a temperature of 95°C or higher, the object of the invention will not be achieved. If the heating temperature is 95° C. or lower, the amount of chemicals such as flocculants and oxidizing agents added in subsequent steps will increase, the treatment effect will be poor, and the final treatment limit water quality will increase. On the other hand, by heating the waste liquid to 95°C or higher, not only can the amount of chemicals added be expected to be reduced, but also high levels of organic matter can be removed in subsequent steps without necessarily having to remove a high degree of BOD in the second step. Removability can be maintained.

加熱の方法には特に限定はなく、直火、水蒸気、その他
の加熱媒体の倒れによってもよい。又、廃液を95℃以
上に保っておく時間は、長いほど効果は高く、保持温度
が高くなれば短時間で十分な効果を得ることができるが
、通常は、95℃で1時間以上、105℃では10分以
上で十分である。
There are no particular limitations on the heating method, and direct flame, steam, or other heating medium may be used. In addition, the longer the time the waste liquid is kept at 95°C or higher, the better the effect, and the higher the holding temperature, the sufficient effect can be obtained in a short time, but usually it is kept at 95°C for 1 hour or more, 105°C. ℃, 10 minutes or more is sufficient.

冷却は廃液の温度を第2工程の生物処理が可能な温度ま
で下けるためで、その手段は任意である。
The purpose of cooling is to lower the temperature of the waste liquid to a temperature that allows biological treatment in the second step, and any means may be used.

次に、第1工程処理液は生物処理部28に導かれ、マ・
′T1′ ここで、必要によ多窒素、りん等の栄養塩29を添加し
て、好気性生物処理を受ける(第2工程)。
Next, the first process treatment liquid is led to the biological treatment section 28,
'T1' Here, if necessary, nutrient salts 29 such as nitrogen and phosphorus are added and subjected to aerobic biological treatment (second step).

この第2工程は廃液中のBOD成分の除去を目的として
おり、ここでのBODの除去率は高い程よいが、通常は
、第2工程処理液のBODが200■/を以下であれば
、後の工程での高度なCODと色度の処理が期待できる
。そして、好気性生物処理の方法については特に限定は
ない。
The purpose of this second step is to remove BOD components in the waste liquid, and the higher the BOD removal rate here, the better, but normally, if the BOD of the second process treatment liquid is less than 200 μ/cm, then the We can expect advanced COD and chromaticity processing in the process. There are no particular limitations on the method of aerobic biological treatment.

第2工程処理液は、以後、第5工程ないし第5工程の処
理を受けるが、こハらけ即、1発明の第2工程ないし第
4工程と全く同様であるので、その説明は省略する。
The second step treatment liquid is subsequently subjected to the fifth step to the fifth step, which is exactly the same as the second to fourth steps of the first invention, so the explanation thereof will be omitted. .

実施例 酵母工場から排出さオtた第1表に示す液質の糖蜜廃液
を第2発明のgr!1工程(95℃、1時間加熱)で処
理し、この処理液を清水で5倍希釈した後、第2工程に
ふ・いて容積10tの曝気槽を用いて回分式活性汚泥法
により処理し、た。なお、この際のBOD負荷は2 K
? −BOD /n(、日、液温は35℃・曝気量は3
7/分であった。
Example The molasses waste liquid discharged from the yeast factory and having the liquid quality shown in Table 1 was used as gr! of the second invention. After processing in the first step (heating at 95 ° C. for 1 hour) and diluting this treated liquid 5 times with fresh water, the second step is performed using a batch activated sludge method using an aeration tank with a capacity of 10 tons. Ta. In addition, the BOD load at this time is 2 K
? -BOD /n (day, liquid temperature is 35℃, aeration amount is 3
It was 7/min.

一方、原液をM接5倍希釈して前記と同条件で好気性生
物処理を行った(比較例)。
On the other hand, the stock solution was diluted 5 times with M and subjected to aerobic biological treatment under the same conditions as above (comparative example).

これらの処理液の液質は第4表に示す通りであり、水質
的に大差はみられず、同程度の液質であることが判る。
The liquid quality of these treatment liquids is as shown in Table 4, and it can be seen that there is no major difference in water quality, and the liquid quality is of the same level.

第4表 次に、これら処理液に対して第2鉄塩の添加量をfil
!h変化させて第2発明における第3工程の処理を行い
、前掲処理液のCOD値と鉄フロックによって凝集除去
されたCOD量の関係を求めた(第7図)。
Table 4 Next, the amount of ferric salt added to these treatment solutions is fil.
! The third step in the second invention was carried out by changing h, and the relationship between the COD value of the above-mentioned treatment liquid and the amount of COD coagulated and removed by the iron flocs was determined (FIG. 7).

第7図から、第2発明で。比較例に比べて第6エ程での
COD凝犯除去性が格段に向上していることが明らかで
あシ、また、第2発明では3価の鉄イオン換算で300
■/1.比較例では同じく1、 o o o my7t
の第2鉄塩を添加して処理しまた第5工程処理液のCO
Dは、第2発明では510■/l、比較例では480グ
/lとほぼ同じ値を示した。
From FIG. 7, in the second invention. It is clear that the COD coagulation removal performance in the 6th step is significantly improved compared to the comparative example, and in the second invention, 300
■/1. In the comparative example, it is also 1, o o o my7t
The ferric salt of
D showed almost the same value of 510 g/l in the second invention and 480 g/l in the comparative example.

次に、この同程度のCOD値を持つ第3工程処理液に対
して、過酸化水素の添加量を秤々変化させて第2発明の
第4工杵の処ul! i行い、その処理部のCOD過酸
化水素の添加昂二との関係を求めた(第8図)。
Next, the amount of hydrogen peroxide added to the third step treatment solution having the same COD value was changed in proportion, and the processing in the fourth punch of the second invention was carried out. The relationship between COD and hydrogen peroxide addition in the treated area was determined (Figure 8).

第8図から、第1工程で原液を加熱処理した第2発明で
は少ない過酸化水素添加おで笛いCODの除去性を示す
ことが明らかである。
From FIG. 8, it is clear that the second invention, in which the stock solution was heat-treated in the first step, shows a small amount of hydrogen peroxide-added boiling COD removed.

以上の実験結果からも明らかなように、原液を95℃以
上に加熱する第1工程を付加している第2発明によると
、凝集剤や過酸化水素の使用量は大巾に少なく、かつ処
理液CODをはるかに低いレベルまで処理することが可
能である。
As is clear from the above experimental results, according to the second invention, in which the first step of heating the stock solution to 95°C or higher is added, the amount of coagulant and hydrogen peroxide used is significantly lower, and the processing It is possible to treat liquid COD to much lower levels.

そして、第2発明では、好気性生物処理工程におけるB
ODの処理性にさほど制約を受けることもなく、高度な
(:ODと色度の処理を行うことができるのも大きな特
長である。
And, in the second invention, B in the aerobic biological treatment step
Another major feature is that it can perform advanced OD and chromaticity processing without being subject to many restrictions on OD processing performance.

次に、第9図により第5発明の一実施態様について説明
するに、処理対象の糖蜜廃液(BODが10.000■
itg上の濃度の高いもの)は管30よpメタン発酵部
31に人p、ここで、必要によ多窒素、シん等の栄養塩
32を添加して、メタン発酵法による廃液中の有機物質
の処理が行われる(第1工程)。
Next, an embodiment of the fifth invention will be explained with reference to FIG. 9. Molasses waste liquid to be treated (BOD of 10.00
The organic matter in the waste liquid from the methane fermentation method is removed by adding nutrients 32 such as nitrogen and sulfur as necessary to the pipe 30 and the methane fermentation section 31. The material is processed (first step).

第6発明では第1工程において廃液をメタン発酵法で処
理することを重要な構成要件としており、この構成によ
り第5及び第4工程におけるCOD。
In the sixth invention, an important component is that the waste liquid is treated by a methane fermentation method in the first step, and this structure reduces COD in the fifth and fourth steps.

色度の除去性が向上する。Chromaticity removability is improved.

メタン発酵の方法については市に限定はなく、発酵プロ
セスも任意のものを用いることができる。
There are no restrictions on the method of methane fermentation, and any fermentation process can be used.

発酵部31で発生したガスは、管33で系外に導き、適
当に処理した後、発酵の熱源等に利用し、汚泥は、適当
な手段で固液分離を行って回収し、新だな廃液の発酵処
理に利用するが、余剰の汚泥は管34で系外に導き、必
要により適品な処理を行ってから、処分する。
The gas generated in the fermentation section 31 is led out of the system through a pipe 33 and, after being appropriately treated, is used as a heat source for fermentation, etc. The sludge is collected by solid-liquid separation by an appropriate means, and is recycled into a new container. The waste liquid is used for fermentation treatment, but excess sludge is led out of the system through a pipe 34, subjected to appropriate treatment as necessary, and then disposed of.

第1工程処理液は好気性処理部35において、必要によ
シ管36より希釈水を加えて、好気性生物処理法で処理
する(第2工程)。
The first step treatment liquid is treated in the aerobic treatment section 35 by an aerobic biological treatment method by adding dilution water from the inlet pipe 36 if necessary (second step).

この工程は、残留しているBOD及び硫化水素等の還元
性物質を除去して、第6及び第4工程における凝集剤及
び酸化剤等の薬品添加量を少なくするためのものであり
、第2工程処理液の溶解性BODは300■1tJJ下
であることが望捷しい。
This step is to remove residual BOD and reducing substances such as hydrogen sulfide and reduce the amount of chemicals added such as flocculant and oxidizing agent in the sixth and fourth steps. It is desirable that the soluble BOD of the process treatment liquid is less than 300 tJJ.

そして、この工程における好気性生物処理の方法につい
ては特に限定はない。
There is no particular limitation on the method of aerobic biological treatment in this step.

なお、この工程で発生した余剰汚泥は斜線して卯、1工
程のメタン発酵部31に導いて減Kl化を図ることがで
き、寸だ別に第2工程処理液と共に第3工程に導き、こ
こでCOD、色度截分と共に凝集分離することも可能で
ある。
Incidentally, the excess sludge generated in this step can be led to the methane fermentation section 31 of the first step to reduce Kl, and can be led to the third step along with the second step treatment liquid depending on the size. It is also possible to perform coagulation separation along with COD and chromaticity separation.

第2工程処理液は、以稜順次、第、3工程ないし第5工
程の処理を受けるが、これらは第1発明の第2丁程々い
し第4工程と全く同析であるので、その説明は省略する
The second process treatment solution is sequentially subjected to the processes of the third process to the fifth process, but since these are completely the same as the second process to the fourth process of the first invention, the explanation thereof is as follows. Omitted.

実施例 アルコール製造工轡から排出された第5表に示す液質の
糖蜜廃液を、処理方法が2を発酵槽による回分処理、B
OD負荷が4 K9− BOD/、、日、液温か53℃
の条件でメタン発酵処理を行い、この第1工程処理液を
苗木で5倍希釈したもの、及び廃液を直接5倍希釈した
ものをそれぞれ対象として、下記の条件で第5発明の第
2工程ないし第5工程の処理を行ったところ、第5及び
第4工程処理液の液質は第6表に示す通りであった。
EXAMPLE The molasses waste liquid discharged from the alcohol manufacturing process and having the liquid quality shown in Table 5 was treated by batch treatment using a fermenter (B).
OD load is 4 K9-BOD/, day, liquid temperature is 53℃
The methane fermentation treatment was carried out under the following conditions, and the first step treated liquid was diluted 5 times with seedlings, and the waste liquid was directly diluted 5 times, and the second step of the fifth invention was carried out under the following conditions. When the fifth step was carried out, the liquid qualities of the fifth and fourth step treatment solutions were as shown in Table 6.

第5表 処理条件 第2工程では、処理方法が容積107の曝気槽を用いた
回分式活性汚泥法、BOD負りiがj Kq−BOrl
/m、 1日、液温か65℃、曝気量が5t/分。
Table 5 Treatment Conditions In the second step, the treatment method was a batch activated sludge method using an aeration tank with a volume of 107, and the BOD burden i was j Kq-BOrl.
/m, 1 day, liquid temperature 65℃, aeration rate 5t/min.

第5工程では、処理方法が1tビーカーによる回分処理
で、固液分離は沈降法、塩化第2鉄添加量が3価の鉄イ
オン換算で5007η/7XPH調整剤が1Nの水酸化
ナトリウム液、凝集時のPHが0 第4工程では、処理方法が1tビーカーによる回分処理
、過酸化水素添加量が有効酸素換31−で150η7t
、硫酸第1鉄添加量が2価の鉄イオン換算で450■/
1.反応PHが2−9、反応時間が60分。
In the fifth step, the processing method is batch processing using a 1-ton beaker, solid-liquid separation is by sedimentation method, the amount of ferric chloride added is 5007η/7 in terms of trivalent iron ions, the XPH adjustment agent is 1N sodium hydroxide solution, and flocculation. In the fourth step, when the pH at the time was 0, the treatment method was batch treatment using a 1 ton beaker, and the amount of hydrogen peroxide added was 150η7 ton with an effective oxygen exchange of 31-
, the amount of ferrous sulfate added is 450 ■/ in terms of divalent iron ion.
1. Reaction pH was 2-9 and reaction time was 60 minutes.

第5工程でにL1処理方法が14ビーカーによる回分処
理で、固液分離は沈降法、アルカリ剤が1Nの水酸化す
) IJウム液、凝集時のPHが7、還元剤か無添加。
In the 5th step, the L1 treatment method is batch treatment using 14 beakers, solid-liquid separation is by sedimentation method, alkaline agent is 1N hydroxide) IJum solution, pH at the time of aggregation is 7, and no reducing agent is added.

外、6表 なお、第10図は第6エ程において塩化鉄の添加量を種
々変化させた場合の第3工程処理液のCOD値と除去C
OD量との関係を示す図である。
In addition, Figure 10 shows the COD value and removal C of the third process treatment solution when the amount of iron chloride added in the sixth process was varied.
It is a figure showing the relationship with OD amount.

第6発明によれば、好気性生物処理の前にメタン発酵を
行っていることにより、BOD成分が原液のso、7−
7o%程度除去されるため、好気性処理工程でのBOD
負荷が軽減され、第1発明のよりなりODが50η/を
以下の処理液を州ることが容易であるのみならず、第1
工程において、好気性生物処理で除去される有機成分り
外のものも処理されるので、好気性生物処理のみの処理
液とは組成、性状が異なるようになり、このことが後段
の処理工程に好結果をもたらして、高度なCODと色度
の処理効果が期待できる。
According to the sixth invention, by performing methane fermentation before the aerobic biological treatment, the BOD components are
BOD in the aerobic treatment process is removed by approximately 70%.
Not only is the load reduced and it is easy to prepare a processing solution having an OD of 50η/or less, but also
In the process, organic components other than those removed by aerobic biological treatment are also treated, so the composition and properties will be different from that of the treated solution that is only subjected to aerobic biological treatment, and this will cause problems in later treatment steps. It brings good results and can be expected to provide advanced COD and chromaticity processing effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明の工程説明図、卯2図は第1発明と比
較例の第2工程における処理水CODと除去COD量と
の関係図、第、3図は第1発明と比較例における過酸化
水素添加量と処理水CODとの関係図、第4図は第1発
明における第1工程処理液BODと卯2工程処理液CO
Dとの関係図、第5図は第1発明における第1工程処理
液BODと第4工程処理液CODとの関係図、第6図は
第2発明の工程説明図、第7図は第2発明と比較例の第
6エ程における処理液CODと除去COD量との関係図
、第8図は第2発明と比較例における過酸化水素添加に
;と処理液CODとの関係図、第9図は第3発明の工程
説明図、第10図は第6発明と比較例の第3工程におけ
る処理液CODと除去COD量の関係図である。 2・・・好気性生物処理部、4・・第1混和槽、6・・
第1P)l調整槽、8・・・中間固液分離槽、11・・
・第2混和槽、14・・・酸化反応槽、16・・・中和
槽、19・最終固液分離槽、24・・・加熱部、25・
・・冷却部、28・・・生物処理部、31・・・発酵部
、35・・・好気性処理11部、・−・特許出願人  
 環境エンジニアリング株式会社代理人弁理士  染 
 谷  廣  司第1図 第6図 第9図 第2図 久z*f< co o (r+y ) 第3図 j母線こイL木」酊弓ヱ4ト14浦’hり逗長辷豪斗栄
1竹(m(]/j! )第4図 X 11−JW−態1:WR,BOD(m(1/f )
第5図 ’& 17−J”を処理5’?、−BODC”’Aμ)
第7図 人芝磯COD(mclμ) 第8図 □璽 バh曲交、イL本t9シ梯7y粁レヨ浦り刀ゆ多しAむ
Q(m9/j2  )第10図 50    TOo    200    500  
 1000  2000九理ラスCOD(mci/))
Figure 1 is a process explanatory diagram of the first invention, Figure 2 is a relationship diagram between the treated water COD and the amount of COD removed in the second process of the first invention and comparative example, and Figures 3 and 3 are the first invention and comparative example. Figure 4 shows the relationship between the amount of hydrogen peroxide added and the COD of the treated water in the first invention.
D, FIG. 5 is a diagram of the relationship between the first process liquid BOD and the fourth process liquid COD in the first invention, FIG. 6 is a process explanatory diagram of the second invention, and FIG. A relationship diagram between the treatment liquid COD and the amount of removed COD in the sixth step of the invention and the comparative example, FIG. 8 is a relationship diagram between the hydrogen peroxide addition in the second invention and the comparative example; The figure is a process explanatory diagram of the third invention, and FIG. 10 is a diagram showing the relationship between the treatment liquid COD and the amount of COD removed in the third process of the sixth invention and a comparative example. 2...Aerobic biological treatment section, 4...1st mixing tank, 6...
1st P)l adjustment tank, 8... intermediate solid-liquid separation tank, 11...
・Second mixing tank, 14... Oxidation reaction tank, 16... Neutralization tank, 19. Final solid-liquid separation tank, 24... Heating section, 25.
...Cooling section, 28...Biological treatment section, 31...Fermentation section, 35...Aerobic treatment section 11, ...Patent applicant
Kankyo Engineering Co., Ltd. Agent Patent Attorney Some
Hiroshi Tani Figure 1 Figure 6 Figure 9 Figure 2 Kuz * f < co o (r + y ) Figure 3 Sakae 1 Bamboo (m(]/j!) Figure 4
Figure 5'&17-J" processing 5'?, -BODC"'Aμ)
Fig. 7 Hitoshiba Iso COD (mclμ) Fig. 8 □ Seiba h Kuko, I L book t9 shi ladder 7 y 灁 Reyo ura sword Yutashi Amu Q (m9/j2) Fig. 10 50 TOo 200 500
1000 2000 Kuri Las COD (mci/))

Claims (1)

【特許請求の範囲】 1)糖蜜廃液を好気性生物処理法で処理して廃液の溶解
性BODを50■/ t J−、)下にする第1工程と
、刺)1工程処理液に第2鉄塩を主とする凝集剤を添加
し、PHを3〜5.5の範囲に調整した後、懸濁物質、
有機物質、及び色度成分を水酸化第2鉄フロツクと共に
凝集分離する第2工程と、第2工程処理液に過酸化水素
と酸化触媒としての鉄塩を添加して有機物質及び色度成
分を酸化分wrする第6エ程と、この酸化処理液にアル
カリを加えてPH4以上で前記鉄塩を水酸化第2鉄とし
て析出分離する卯4工程とを値含することを特徴とする
糖蜜廃液の処理方法。 2)糖蜜廃液を95℃以上に加熱してから冷却する第1
工程と、第1工程処理液を好気性生物処理法で処理する
第2工程と、第2工程処理液に第2鉄塩を主とする凝集
剤を添加LPHを3〜5.5の範囲に調整した後、懸濁
物質、有機、物質、及び色度成分を水酸化第2鉄フロツ
クと共に凝集分離する第6エ程と、卯5工程処理液に過
酸化水素と酸化触媒としての鉄塩を添加して、有機物質
及び色度成分を酸化分解する第4工程と、この酸化処理
液にアルカリを加えてPH4以上で前記鉄塩を水酸化第
、2鉄として析出分離する第5工程とを包含することを
勃徴とする糖蜜廃液の処理方法。 3)糖蜜廃液をメタン発酵法で処理して廃液中の有機物
質を除去する第1工程と、第1工程処理液を好気性生物
処理法で処理する第2工程と、第2工程処理液に第2鉄
塩を主とする凝集剤を添加し、PHを3〜5,5の範囲
に調整した後、懸濁物質、有機物質、及び色度成分を水
酸化第2鉄フロツクと共に凝集分離する第3工程と、第
3工程処理液に過酸化水素及び酸化触媒としての鉄塩を
添加して、有機物質及び色度成分を酸化分解する第4工
程と、この酸化処理液にアルカリを加えてPH4以上で
前記鉄塩を水酸化第2鉄として析出分離する第5工程と
を鎮含することを特徴とする糖蜜廃液の処理方法。
[Claims] 1) A first step in which molasses waste liquid is treated by an aerobic biological treatment method to reduce the soluble BOD of the waste liquid to 50 μ/t J-,); After adding a flocculant mainly consisting of diiron salt and adjusting the pH to a range of 3 to 5.5, suspended solids,
A second step in which organic substances and chromaticity components are coagulated and separated together with ferric hydroxide flocs, and a second step in which hydrogen peroxide and iron salt as an oxidation catalyst are added to the treatment liquid to separate organic substances and chromaticity components. A molasses waste liquid characterized by comprising a sixth step of reducing the oxidized content, and a fourth step of adding an alkali to the oxidized solution to precipitate and separate the iron salt as ferric hydroxide at a pH of 4 or higher. processing method. 2) The first step of heating the molasses waste liquid to 95°C or higher and then cooling it.
a second step in which the first step treatment liquid is treated with an aerobic biological treatment method; and a flocculant mainly containing ferric salt is added to the second step treatment liquid to bring the LPH in the range of 3 to 5.5. After the adjustment, there is a 6th step in which suspended solids, organic substances, and color components are coagulated and separated together with ferric hydroxide flocs, and hydrogen peroxide and iron salt as an oxidation catalyst are added to the 5th step treatment solution. a fourth step in which organic substances and chromaticity components are oxidized and decomposed; and a fifth step in which an alkali is added to the oxidation treatment solution to precipitate and separate the iron salt as ferric and ferric hydroxide at a pH of 4 or higher. A method for treating molasses waste liquid in which inclusion is an erectile symptom. 3) A first step in which molasses waste liquid is treated with a methane fermentation method to remove organic substances in the waste liquid, a second step in which the first step treated liquid is treated with an aerobic biological treatment method, and a second step treated liquid is After adding a flocculant mainly consisting of ferric salt and adjusting the pH to a range of 3 to 5.5, suspended solids, organic substances, and color components are coagulated and separated together with ferric hydroxide flocs. A third step, a fourth step in which hydrogen peroxide and an iron salt as an oxidation catalyst are added to the third step treatment solution to oxidize and decompose organic substances and chromaticity components, and an alkali is added to the oxidation treatment solution. A method for treating molasses waste liquid, comprising a fifth step of precipitating and separating the iron salt as ferric hydroxide at a pH of 4 or higher.
JP57167848A 1982-09-27 1982-09-27 Treatment of waste syrup liquid Granted JPS5959299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167848A JPS5959299A (en) 1982-09-27 1982-09-27 Treatment of waste syrup liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167848A JPS5959299A (en) 1982-09-27 1982-09-27 Treatment of waste syrup liquid

Publications (2)

Publication Number Publication Date
JPS5959299A true JPS5959299A (en) 1984-04-05
JPH0125638B2 JPH0125638B2 (en) 1989-05-18

Family

ID=15857204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167848A Granted JPS5959299A (en) 1982-09-27 1982-09-27 Treatment of waste syrup liquid

Country Status (1)

Country Link
JP (1) JPS5959299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161197A (en) * 1985-01-11 1986-07-21 Kankyo Eng Kk Treatment of organic waste water
JPS6470196A (en) * 1987-09-10 1989-03-15 Hitachi Plant Eng & Constr Co Treatment of waste water of alcohol distillation
JPH0278488A (en) * 1988-06-03 1990-03-19 Kankyo Eng Kk Complete treatment of waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161197A (en) * 1985-01-11 1986-07-21 Kankyo Eng Kk Treatment of organic waste water
JPH0585240B2 (en) * 1985-01-11 1993-12-06 Kankyo Eng
JPS6470196A (en) * 1987-09-10 1989-03-15 Hitachi Plant Eng & Constr Co Treatment of waste water of alcohol distillation
JPH0438475B2 (en) * 1987-09-10 1992-06-24
JPH0278488A (en) * 1988-06-03 1990-03-19 Kankyo Eng Kk Complete treatment of waste water

Also Published As

Publication number Publication date
JPH0125638B2 (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US3617559A (en) Neutralization of ferrous iron-containing acid wastes
US7563373B2 (en) Removal of phosphorous from wastewater
JP2683991B2 (en) Dyeing wastewater treatment method
US6106717A (en) Method for treating organic waste water
JPH04349997A (en) Treatment of organic waste water
JP2002316173A (en) Method for treating wastewater containing arsenic and hydrogen peroxide
JPS5959299A (en) Treatment of waste syrup liquid
CN109368870B (en) Method for treating RO concentrated water of printing and dyeing wastewater by Fenton technology
JPS6135894A (en) Removal of arsenic in waste water
JP2621090B2 (en) Advanced wastewater treatment method
KR100208477B1 (en) Method for treating industrial waste water by flocculation and oxidation
KR910004127B1 (en) Concentrated organic waste water treating method
KR100510166B1 (en) Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater
JPH0487685A (en) Treatment of used galvanizing solution
JPH1076275A (en) Wastewater treatment agent
JPH03275200A (en) Thickening and dehydrating method for organic sludge
CN115259550A (en) Comprehensive treatment method for refined sugar waste brine
CN114315039B (en) High-salt wastewater treatment system
CN110143688B (en) Nanofiltration concentrate treatment method
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JPS61161197A (en) Treatment of organic waste water
JP2937438B2 (en) Sludge dewatering method
JPS591117B2 (en) How to treat organic wastewater
JPH0679713B2 (en) Biological treatment method of organic wastewater
JPH07108278A (en) Method for flocculating waste water of low turbidity of power plant