KR100510166B1 - Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater - Google Patents

Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater Download PDF

Info

Publication number
KR100510166B1
KR100510166B1 KR10-2003-0063328A KR20030063328A KR100510166B1 KR 100510166 B1 KR100510166 B1 KR 100510166B1 KR 20030063328 A KR20030063328 A KR 20030063328A KR 100510166 B1 KR100510166 B1 KR 100510166B1
Authority
KR
South Korea
Prior art keywords
wastewater
treated water
biological process
concentration
solids
Prior art date
Application number
KR10-2003-0063328A
Other languages
Korean (ko)
Other versions
KR20050026298A (en
Inventor
정윤철
정진영
박재철
설수일
Original Assignee
한국과학기술연구원
주식회사 와트렌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 주식회사 와트렌 filed Critical 한국과학기술연구원
Priority to KR10-2003-0063328A priority Critical patent/KR100510166B1/en
Publication of KR20050026298A publication Critical patent/KR20050026298A/en
Application granted granted Critical
Publication of KR100510166B1 publication Critical patent/KR100510166B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Abstract

본 발명은, 사육형태에 따라 폐수 중 고형물의 농도 변화가 큰 축산폐수를, 화학응집침전으로 고액분리를 수행한 후, 생물학적으로 유기물을 제거하는 공정으로서, 생화학적 산소요구량 (biochemical oxygen demand) 150 mg/L이하와 부유성 고형물 (suspended solids) 150 mg/L이하를 동시에 만족시킬 수 있는 방법을 제공한다.The present invention is a process for biologically removing organic matter after performing solid-liquid separation of livestock wastewater having a large change in the solids concentration in the wastewater according to the breeding form, biochemical oxygen demand (biochemical oxygen demand) 150 Provides a method to simultaneously satisfy <= mg / L and suspended solids <150 mg / L.

본 발명은 반응기내 pH를 반응인자로 하여 황산제이철을 무기응집제로 투입하는 화학적 고액분리장치를 통해 축산폐수내 존재하는 500-100,000 mg/L사이의 부유성 고형물의 농도를 지속적으로 50 mg/L이하로 제거하여 후속 생물학적 유기물 제거 공정의 안정적인 성능을 유지할 수 있을 뿐만 아니라 고형물에 의한 유기물 부하를 크게 감소시켜 수리학적 체류시간을 크게 단축시킬 수 있다. 그리고, 화학적 고액분리장치를 통해 처리수내 부유성 고형물의 완벽한 분리와 고분자 유기물 및 색도의 제거를 통해 생물학적 처리수의 수질을 안정적으로 유지할 수 있다. 또한, 수리학적 체류시간 1-24시간사이의 무산소 셀렉터를 호기성 생물반응조앞에 두어 안정적인 미생물 활성을 유지할 수 있다.The present invention continuously maintains the concentration of suspended solids between 500-100,000 mg / L in livestock wastewater through a chemical solid-liquid separator in which ferric sulfate is added as an inorganic coagulant using pH in the reactor as a reaction factor. It can be removed below to maintain stable performance of the subsequent biological organics removal process, as well as to significantly reduce the organic residence time by the solids can significantly shorten the hydraulic residence time. In addition, through the chemical solid-liquid separator, it is possible to stably maintain the water quality of the biologically treated water through the complete separation of the suspended solids in the treated water and removal of the polymer organic matter and color. In addition, anoxic selectors with a hydraulic retention time of 1-24 hours can be placed in front of the aerobic bioreactor to maintain stable microbial activity.

Description

화학응집과 생물학적 공정을 결합한 고농도 유기폐수 처리방법{Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater} Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater}

본 발명은 양돈폐수와 같이 부유성 고형물을 고농도로 함유한 폐수의 처리방법에 관한 것으로서, 더욱 상세하게는 종래의 기술보다 간단하고 경제적으로 폐수를 처리할 수 있으며, 특히 국내에서 가장 저렴하고 효과적인 황산제이철을 무기응집제로 하여 반응 pH를 운전인자로 자동화한 화학응집공정과 필터프레스를 이용한 고액분리 및 후단의 생물학적 처리공정으로 구성되어 양돈폐수의 종류에 관계없이 일정한 유출수질을 확보할 수 있는 처리방법에 관한 것이다.The present invention relates to a method for treating wastewater containing a high concentration of suspended solids, such as swine wastewater, and more specifically, it is possible to treat wastewater more simply and economically than the conventional technology, and in particular, the cheapest and most effective sulfuric acid in Korea. It is composed of chemical coagulation process that automated reaction pH as fertilizer with ferrous iron as a coagulant, and solid-liquid separation and biological treatment process at the rear stage by using filter press. It is about.

양돈폐수는 크게 슬러리형 돈사에서 발생하는 고농도 폐수와 스크랩퍼형 돈사에서 발생하는 저농도 폐수로 구분되며, 축사의 형태 및 청소방법에 따라 폐수중의 오염물의 농도가 크게 변하는 특성이 있기 때문에, 적절한 전처리없이 생물학적으로 폐수를 처리할 경우 잦은 운전실패 및 처리수질 악화를 초래할 수 있다. 특히 양돈폐수내 존재하는 고농도의 부유성 고형물의 경우 적절한 전처리 없이 생물반응기로 유입되면 생물반응기를 안정적으로 유지하기 어렵다.Swine wastewater is largely divided into high concentration wastewater from slurry type piglet and low concentration wastewater from scraper type piglet, and the concentration of contaminants in the wastewater varies greatly depending on the type of house and cleaning method. Biological treatment of wastewater can lead to frequent operational failures and poor water quality. In particular, high concentrations of suspended solids in swine wastewater are difficult to maintain if the bioreactor is introduced into the bioreactor without proper pretreatment.

축산폐수의 경우, 축산폐수 공공처리장의 방류수 기준과 개별처리시설에 대한 수질기준(2000년 1월 1일 시행)이 하기 표1과 같이 상이하며, 종래의 대부분의 기술개발은 축산폐수내의 질소와 인 및 잔류 CODMn을 제거할 수 있는 고도처리기술개발[대한민국 특허공고 특0142723 (막분리를 이용한 고농도 폐수처리 방법); 특10-0386224 (축산폐수 고도처리 시스템); 특2001-0036777 (토양미생물을 이용한 축산폐수의 순환처리 방법 및 시스템); 특0151928 (분뇨 및 유기성폐수 처리방법); 특10-0303765 (축산폐수 고도처리 장치 및 그 방법); 특10-0342667 (액상부식법에 있어서 축산폐수 또는 분뇨 고도처리의 질소 및 인 제거방법); 특10-0355880 (축산폐수의 정화 처리방법 및 처리장치)]에 중점을 두었기 때문에 공정의 복잡성으로 인한 유지관리의 어려움뿐만 아니라 높은 초기 투자비로 인해서 비교적 농장규모가 작은 허가대상지역의 기타지역과 규제대상지역의 농장규모에서는 이들 기술을 적용하기가 거의 불가능한 실정에 있다.In the case of livestock wastewater, the effluent standard of the livestock wastewater public treatment plant and the water quality standard for the individual treatment facility (implemented on January 1, 2000) are different as shown in Table 1 below. Development of advanced treatment technology to remove phosphorus and residual COD Mn [Korea Patent Publication No. 0142723 (High concentration wastewater treatment method using membrane separation); Japanese Patent Application No. 10-0386224 (Livestock Wastewater Treatment System); 2001-0036777 (circulation treatment method and system for livestock wastewater using soil microorganisms); Japanese Patent No. 0151928 (Manure and Organic Wastewater Treatment Method); Japanese Patent Application No. 10-0303765 (Livestock Wastewater Advanced Treatment Apparatus and Method); Japanese Patent Application No. 10-0342667 (Method for removing nitrogen and phosphorus in advanced livestock wastewater or manure in liquid corrosion method); 10-0355880 (Method and Apparatus for Purifying Livestock Wastewater), as well as the difficulty of maintenance due to the complexity of the process, as well as other areas of the target area where the farm size is relatively small due to the high initial investment cost. At farm scales in regulated areas, it is almost impossible to apply these technologies.

한편, 대한민국특허청 등록특허공보 10-0341467 (가수분해 및 금속염의 이온화 경향을 이용한 화학흡착반응에 의한 고농도 오폐수정화방법)는 화학응집에 의한 고액분리 및 암모니아 탈기에 의한 축산폐수 처리기술로서 고농도 오폐수내에 저분자 유기물의 농도간 낮은 경우에는 적용가능하였지만, 화학응집에 의한 고액분리시 휘발성 지방산과 같은 저분자유기물이 고농도로 존재하는 경우 효과적으로 유기물을 제거하기 어려운 점이 있었다.On the other hand, Korea Patent Publication No. 10-0341467 (high concentration wastewater purification method by chemical adsorption reaction using hydrolysis and ionization tendency of metal salts) is a livestock wastewater treatment technology by solid-liquid separation by agglomeration and ammonia degassing in high concentration wastewater. Although it was applicable in the case of low concentration between low molecular weight organic matters, it was difficult to remove organic matters effectively when low molecular weight organic matters such as volatile fatty acids were present in high concentrations during solid-liquid separation by chemical coagulation.

처리장 형태Treatment Plant Mode 개별처리장Individual treatment plant 공공처리장Public treatment plant 농장 규모Farm scale 허가대상 지역Permitted Area 규제대상 지역Regulated Area 지역area 특정지역Specific area 기타지역Other Area 특정지역Specific area 기타지역Other Area BOD5 (mg/L)BOD 5 (mg / L) 5050 150150 150150 350350 3030 CODMn (mg/L)COD Mn (mg / L) -- -- -- -- 5050 SS (mg/L)SS (mg / L) 5050 150150 150150 350350 3030 대장균군 (개/100mL)Coliform group (dog / 100mL) -- -- -- -- 3,0003,000 TN (mg/L)TN (mg / L) 260260 -- -- -- 6060 TP (mg/L)TP (mg / L) 5050 -- -- -- 88

본 발명은 상기와 같은 문제점을 해결하고자 하는 것으로서, 본 발명은 축산폐수와 같은 고농도 유기폐수를 효율적으로 하는 처리하는 것을 목적으로 한다. The present invention aims to solve the above problems, and the present invention aims to efficiently treat high concentration organic wastewater such as livestock wastewater.

상기의 목적을 달성하기 위하여, 본 발명에 의한 화학응집과 생물학적 공정을 결합한 고농도 유기폐수 처리방법은, 축산폐수와 같은 고농도 유기폐수의 처리 방법에 있어서, 폐수를 1,000 내지 3,000 rpm에서 황산제이철염을 폐수의 pH가 3.5이상 내지 5.0미만에 도달할 때까지 폐수가 함유된 반응기내에 투입하여 반응시키는 제1단계; 상기 제1단계를 통해 처리된 처리수에 알칼리제를 투입하여 처리수의 pH를 조정하는 제2단계; 상기 제2단계 이후 상기 처리수 내에 고분자 응집제를 투입하여 저속혼합 조건에서 플록을 형성시키고 형성된 플록을 고액분리하는 제3단계; 및 상기 제3단계를 통해 고액분리된 처리수를 활성슬러지를 이용한 호기성 생물학적 공정으로 처리하는 제4단계를 포함하며, 상기 제4단계의 호기성 생물학적 공정은, 무산소 셀렉터에 의한 플록 형성 박테리아 선별 공정에 의해 보조되어 슬러지 침강성이 향상되며, 상기 호기성 생물학적 공정의 활성 슬러지가 상기 무산소 셀렉터로 반송되는 것을 특징으로 한다.In order to achieve the above object, the high concentration organic wastewater treatment method combining the chemical coagulation and biological process according to the present invention, in the method for treating high concentration organic wastewater, such as livestock wastewater, the waste water at 1,000 to 3,000 rpm A first step of reacting the wastewater into the reactor containing the wastewater until the pH of the wastewater reaches 3.5 or more and less than 5.0; A second step of adjusting the pH of the treated water by adding an alkaline agent to the treated water treated in the first step; A third step of forming a floc under low-speed mixing conditions by introducing a polymer flocculant into the treated water after the second step and solid-liquid separation of the formed floc; And a fourth step of treating the treated water separated from the solid-liquid separated through the third step by an aerobic biological process using activated sludge, wherein the aerobic biological process of the fourth step is performed in a floc forming bacteria selection process by an anaerobic selector. To improve sludge settling properties, and the activated sludge of the aerobic biological process is returned to the oxygen-free selector.

삭제delete

삭제delete

삭제delete

상기한 본 발명에 의한 방법은, 상기 방법을 통해 처리된 처리수의 무기성 고형물의 농도가 3%를 초과하는 경우에, 상기 처리수를 상기 제1단계 내지 제3단계를 통해 재처리하는 것을 특징으로 한다.The method according to the present invention described above, when the concentration of the inorganic solids of the treated water treated through the method exceeds 3%, reprocessing the treated water through the first to third steps It features.

상기한 본 발명에 의한 방법은, 상기 제4단계를 수행하기 전에, 상기 처리수에 인산염을 첨가하는 것을 특징으로 한다.The method according to the present invention is characterized in that before performing the fourth step, phosphate is added to the treated water.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

(1) 제1단계 :황산제이철염 처리(1) First step: ferric sulfate treatment

본 발명자들은 양돈폐수의 처리에 있어서, 가장 큰 문제로 인식되는 폐수내 고형물의 분리를 위해 제이철염 (Ferric chloride, FeCl3), 피에이씨 (Poly aluminium chloride), 명반 (Alum, Aluminium sulfate, Al2(SO4)3)와 황산제이철 (Fe2(SO4)3)등의 다양한 무기응집제를 이용하여 응집시험을 수행하였으나, 최적 무기응집제 주입량을 결정하기 위해 복잡한 일련의 과정을 거쳐야 하는 회분식 실험 (Jar test)에 의존한 종래의 기술로는 시시각각으로 변하는 양돈폐수의 최적응집조건을 만족시키기 어려울 뿐만 아니라, 양돈농가에 따른 폐수성상의 변화를 수용하기 어려웠고, 다량으로 첨가되는 약품량에 의해 톤당 처리비가 급격하게 상승하는 어려움이 있었다. 따라서, 본 발명에서는 응집분리능이 우수하면서도 가장 저렴한 무기응집제로서 황산제이철염을 선정하였고, 최적약품량은 폐수와 응집제간의 반응특성을 이용하여 원폐수의 고속혼합조건에서 폐수의 pH가 3.0-5.5가 될 때까지 무기응집제를 투입하여 약 두시간 반응시킨다.The present inventors have found that ferric chloride (Ferric chloride, FeCl 3 ), polyaluminium chloride, alum (Alum, Aluminum sulfate, Al 2 ) for the separation of solids in the wastewater, which is recognized as the biggest problem in the treatment of swine wastewater. Although flocculation tests were carried out using various inorganic coagulants such as (SO 4 ) 3 ) and ferric sulfate (Fe 2 (SO 4 ) 3 ), a batch experiment was performed to determine the optimum amount of inorganic coagulant injection. It is difficult not only to satisfy the optimal conditions for swine wastewater changing from time to time, but also to accommodate the change of wastewater phase according to the pig farm, and the treatment cost per ton due to the amount of chemicals added in large quantities. There was a difficulty to rise sharply. Therefore, in the present invention, ferric sulfate was selected as the cheapest inorganic coagulant with excellent flocculation separation ability, and the optimum chemical amount was 3.0-5.5 when the wastewater pH was rapidly mixed under high-speed mixing conditions using the reaction characteristics between the wastewater and the flocculant. Add an inorganic coagulant until the reaction is about 2 hours.

폐수의 pH가 3.0 미만이 될 때까지 황산제이철염을 투입하게 되면 성능에는 큰 차이가 없지만 과량의 황산제이철염의 투입에 따른 슬러지 발생량의 증가 및 약품비용의 상승으로 인해 경제성이 급격하게 감소하게 되며, 폐수의 pH가 5.5 이상이 되도록 황산제이철염을 투입하게 되면 용액내에서 무기응집제의 역할을 담당하는 철이온의 농도가 폐수중 유, 무기물의 농도에 비해 크게 낮아서 응집효율이 감소할 뿐만 아니라 응결 후 슬러지의 탈수능이 저하되어 처리수내의 부유성 고형물의 농도가 증가하였다. 따라서 바람직한 pH 범위는 3.0 내지 5.5이다. 특히 바람직한 것은 pH가 3.5 내지 5.0이 될 때까지이다. If ferric sulphate is added until the pH of the wastewater is lower than 3.0, there is no big difference in performance, but the economic efficiency is drastically reduced due to the increase of sludge generation and the increase of chemical cost due to the addition of excess ferric sulphate. When ferric sulphate is added so that the pH of the wastewater is higher than 5.5, the concentration of iron ions, which play the role of inorganic coagulant in the solution, is significantly lower than the concentration of oil and minerals in the wastewater. The dewatering capacity of the sludge was then lowered to increase the concentration of suspended solids in the treated water. The preferred pH range is therefore 3.0 to 5.5. Especially preferred is until the pH is between 3.5 and 5.0.

상기 혼합시의 회전수 1,000 내지 3,000rpm인 것이 바람직하다. 회전수가 1,000rpm 미만인 경우에는 고형물과 용액이 슬러리 상태로 혼합된 축산폐수의 혼합 효과가 미약하여 응집반응이 효율적으로 일어나지 않으며, 회전수가 3,000rpm을 초과하는 경우에는 불필요한 에너지의 낭비뿐만 아니라 기계적인 저항이 증가되어 장기적 운전시에 회전축의 날개의 조기 교체를 초래한다. 따라서, 응집반응동안의 바람직한 회전수의 범위는 1,000내지 3000 rpm이 될 때까지 이다.It is preferable that the rotation speed at the time of the said mixing is 1,000-3,000 rpm. If the rotational speed is less than 1,000rpm, the mixing effect of the livestock wastewater in which the solids and the solution are mixed in the slurry state is insignificant, and the flocculation reaction does not occur efficiently.If the rotational speed exceeds 3,000rpm, not only waste of energy but also mechanical resistance This increases, resulting in premature replacement of the blades of the rotating shaft during long term operation. Thus, the preferred range of revolutions during the flocculation reaction is from 1,000 to 3000 rpm.

(2) 제2단계: pH 조정(2) second step: pH adjustment

상기 제1단계에서 황산제이철염을 투입함으로써 pH가 3.0 내지 5.5로 된 원수에 NaOH 등의 알칼리제를 반응기에 투입하여 반응기내의 pH를 7.0 내지 8.0까지 상승시킨다. pH가 7.0 미만이면 응결반응 후 잔류하는 철이온의 농도가 증가하여 처리수내 철농도가 증가하였고, 플럭의 강도도 약해지는 단점이 나타났다. pH가 8.0을 초과하면 NaOH 등의 알카리제의 사용량이 급격하게 늘어나서 경비가 증가하는 것으로 나타났다. 따라서, 응결반응이후의 바람직한 pH 범위는 7에서 8사이이다.By adding ferric sulfate in the first step, an alkaline agent such as NaOH is introduced into the reactor into raw water having a pH of 3.0 to 5.5, thereby increasing the pH in the reactor to 7.0 to 8.0. If the pH was less than 7.0, the iron concentration remaining after the condensation reaction was increased, the iron concentration in the treated water was increased, and the strength of the floc was also weakened. When the pH exceeds 8.0, the amount of alkaline agents such as NaOH is rapidly increased to increase the cost. Thus, the preferred pH range after the condensation reaction is between 7 and 8.

(3) 제3단계: 플록형성 및 고액분리 단계(3) step 3: floc forming and solid-liquid separation

상기 제2단계에서 pH가 조절된 원수를 저속혼합조건에서 음이온성 고분자응집제를 투입하여 응결시킨 후 필터프레스로서 고액분리를 수행한다.In the second step, the raw water of which pH is adjusted is condensed by adding an anionic polymer coagulant under low speed mixing conditions, and then solid-liquid separation is performed as a filter press.

상기 혼합시의 회전수는 100 내지 500rpm인 것이 바람직하다. 100rpm 미만이면 응결효율이 떨어지고, 500rpm을 초과하면 응결된 플록이 깨어져서 탈수효율이 감소한다. 따라서, 바람직한 저속교반속도는 100 내지 300 rpm사이이다.It is preferable that the rotation speed at the time of the said mixing is 100-500 rpm. If it is less than 100rpm, the condensation efficiency falls, and if it exceeds 500rpm, the condensed floc is broken and the dewatering efficiency decreases. Thus, the preferred slow stirring speed is between 100 and 300 rpm.

(4) 생물학적 처리 공정(4) biological treatment process

상기와 같은 무기응집제에 의한 양돈폐수의 고액분리 이후, 폐수내에 잔류하는 유기물과 질소는 대부분 휘발성지방산으로 구성된 저분자 유기물들과 용존성 암모니아성 질소로 구성되어 있으나, 약품첨가에 따른 폐수내 무기물 농도의 증가 (1-5%)로 인해 기존 활성슬러지공정으로 처리할 경우 심각한 미생물 유실현상이 초래되었다. 따라서, 본 발명에 의한 방법에서는, 수리학적 체류시간이 1시간에서 24시간이내의 무산소 셀렉터 (selector)(20)를 두어 침전조(23)의 슬러지를 무산소 셀렉터(20)로 반송(22)시킴에 의해 슬러지의 침강성과 플럭형성을 크게 향상시킨다. 무산소 셀렉터(20)는 호기조(21) 앞에 위치되며 호기조의 활성슬러지가 무산소 셀렉터로 반송되어 유입수와 혼합된다. 무산소 셀렉터는 후단의 침전지로부터 반송된 부유성 미생물과 교반시설로 구성되어 있다. 무산소 셀렉터는 플록-형성 미생물의 성장에 적합한 환경을 제공함으로써 플록-형성 미생물만을 성장시키고 사상 박테리아는 사멸시킨다. 이를 통해 슬러지의 침강성을 향상시킨다. After solid-liquid separation of swine wastewater by the inorganic coagulant as described above, organic matter and nitrogen remaining in the wastewater are mostly composed of low molecular weight organic matter composed of volatile fatty acids and dissolved ammonia nitrogen, The increase (1-5%) resulted in severe microbial losses when treated with conventional activated sludge processes. Therefore, in the method according to the present invention, the hydraulic residence time is set to be an oxygen-free selector 20 within 1 hour to 24 hours to convey the sludge of the settling tank 23 to the oxygen-free selector 20. This greatly improves the sedimentation and flocculation of the sludge. The anaerobic selector 20 is located in front of the aerobic tank 21 and the activated sludge of the aerobic tank is returned to the anaerobic selector and mixed with the influent. The oxygen-free selector is composed of floating microorganisms and agitation facility returned from the sedimentation basin at the next stage. The anaerobic selector grows only the floc-forming microorganisms and kills filamentous bacteria by providing an environment suitable for the growth of the floc-forming microorganisms. This improves the settling properties of the sludge.

(5) 후처리 공정(5) post-treatment process

상기 (4)의 단계에서 운전초기 유출수의 탁도가 높을 때나 화학적 처리후 무기물의 농도가 3%를 초과할 때, 생물학적 처리수를 황산제이철로서 응집침전시켜 처리수내의 고분자 유기물과 탁도 및 색도를 제거하는 단계이다. When the turbidity of the initial run-off water in the step (4) is high or the concentration of inorganic matter after chemical treatment exceeds 3%, the biologically treated water is coagulated and precipitated with ferric sulfate to remove the polymer organic matter, turbidity and color in the treated water. It's a step.

무산소 셀렉터를 포함하는 호기성 생물학적 처리공정은 순응되면 우수한 침강성과 함께 안정적인 수질을 보장하지만, 운전초기 폐수내의 높은 무기물 농도에 기인하여 폭기조의 거품의 다량발생 및 침강성의 악화 등이 발생될 수 있으므로, 운전초기에 상기 (1) 내지 (3)에서 기술한 방법과 동일한 방법으로 처리수를 화학응집시켜 처리수내의 고분자 유기물, 색도유발물질, 탁도, 부유성 고형물 등을 제거하는 것이 바람직하다.The aerobic biological treatment process including an oxygen free selector ensures stable water quality with excellent sedimentation when it is acclimatized, but due to the high concentration of minerals in the initial wastewater, large amounts of bubbles in the aeration tank and deterioration of sedimentation may occur. Initially, the treated water is chemically agglomerated in the same manner as described in the above (1) to (3) to remove the polymer organic matter, chromaticity-inducing substance, turbidity, and suspended solids.

특히, 화학적 처리 후 처리수내의 무기물 농도가 3%를 초과할 경우에는 반응기내의 심각한 거품발생과 함께 처리수내 부유성 고형물과 탁도가 증가된다. 따라서, 안정적인 수질의 확보를 위해서는 본 단계에 의한 화학적 후처리가 필수적이다. In particular, if the concentration of inorganic matter in the treated water after the chemical treatment exceeds 3%, the suspended solids and turbidity in the treated water increases with serious foaming in the reactor. Therefore, chemical post-treatment by this step is essential to ensure stable water quality.

이하, 본 발명의 실시예를 기재한다. 그러나 하기의 실시예는 본 발명의 이해를 돕기 위한 본 발명의 바람직한 예일 뿐, 본 발명이 이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the Example of this invention is described. However, the following examples are only preferred examples of the present invention for the purpose of understanding the present invention, and the present invention is not limited by these examples.

<실시예><Example>

본 발명에 따른 폐수처리 시스템을 평가하기 위해서, 먼저 고농도의 고형물을 함유한 슬러지형 양돈폐수를 적용하였다.In order to evaluate the wastewater treatment system according to the present invention, first, sludge type swine wastewater containing a high concentration of solids was applied.

하기 실시예에 대해서는 다음의 분석 방법을 사용하였다.The following analysis method was used for the following examples.

. pH: pH 미터 (유리전극법, Corning 120, TOA HM71). pH: pH meter (glass electrode method, Corning 120, TOA HM71)

.SS (부유성 고형물): GF/C 필터를 사용하여 103-105℃의 건조 오븐에서 2시간동안 건조시킨 부유성 고형물의 총량.SS (floating solids): Total amount of suspended solids dried for 2 hours in a drying oven at 103-105 ° C. using a GF / C filter.

.TDS (총 용존 고형물): GF/C 필터 여과액을 180℃에서 수분이 완전히 증발될 때까지 건조시킨 용존 고형물의 총량.TDS (Total Dissolved Solids): Total amount of dissolved solids where the GF / C filter filtrate was dried at 180 ° C. until water completely evaporated.

.FDS (무기 용존 고형물): 용존 고형물의 총량을 550 ±50 ℃의 전기로에서 15-20분동안 태운 후 남아있는 용존 고형물의 양.FDS (Inorganic Dissolved Solids): The amount of dissolved solids remaining after burning the total amount of dissolved solids for 15-20 minutes in an electric furnace at 550 ± 50 ° C.

.BOD5: 5일 경과후의 BOD측정법BOD 5 : Determination of BOD after 5 days

.CODcr: 적정법 K2Cr2O7 폐쇄환류 (Closed reflux)CODcr: Titration K 2 Cr 2 O 7 Closed reflux

.NH4 +-N: 증류 및 적정법 (Nonorganic Kjeldahl Method)NH 4 + -N: Distillation and titration (Nonorganic Kjeldahl Method)

.PO4 3--P (총인성분 함량): 염화제일주석법 (Stannous Chloride Method, λ=690 nm).PO 4 3- -P (Total Phosphorus Content): Stannous Chloride Method (λ = 690 nm)

<실시예 1><Example 1>

화학적 산소 요구량 42,000 mg/L, 생물학적 산소요구량 30,600 mg/L, 부유성 고형물 함량 23,000 mg/L, 총질소 2,200 mg/L, 총인 약 1,000 mg/L인 슬러리형 돈사폐수를 상기에 기술된 방법으로 스테인레스 스틸로 제작된 50L의 화학적 반응조에서 11% 황산제이철을 첨가하여 1,500 rpm의 조건에서 2시간동안 급속혼합시킨 후 35% NaOH를 첨가하여 반응물의 pH를 7.3까지 조절한 후 300 rpm으로 교반속도를 줄이면서 음이온 고분자 응집제로서 이양화학의 A601P를 투입하였다. 플록이 형성된 반응물은 필터프레스 등의 고액분리기를 이용하여 고액분리를 수행하였다. 그 결과는 하기 표2에 나타내었다.Slurry pig wastewater with a chemical oxygen demand of 42,000 mg / L, a biological oxygen demand of 30,600 mg / L, a suspended solids content of 23,000 mg / L, total nitrogen of 2,200 mg / L and a total phosphorus of about 1,000 mg / L was prepared by the method described above. In a 50L chemical reactor made of stainless steel, 11% ferric sulfate was added and rapidly mixed at 1,500 rpm for 2 hours. 35% NaOH was added to adjust the pH of the reaction to 7.3. While reducing, an A601P of Yiyang Chemical was added as an anionic polymer flocculant. The floc formed reactants were subjected to solid-liquid separation using a solid-liquid separator such as a filter press. The results are shown in Table 2 below.

항목(mg/L)시료종류     Item (mg / L) Sample Type SSSS BOD5 BOD 5 CODCr COD Cr T-NT-N T-PT-P 원폐수Wastewater 23,00023,000 30,56330,563 44,20044,200 2,2202,220 1,0171,017 반응 pH 2.5Reaction pH 2.5 6363 10,63210,632 18,42118,421 1,6931,693 0.20.2 반응 pH 3.0Reaction pH 3.0 6464 10,54510,545 18,77018,770 1,6701,670 0.20.2 반응 pH 3.5Reaction pH 3.5 33 10,34510,345 15,36315,363 1,5411,541 0.20.2 반응 pH 4.5Reaction pH 4.5 22 10,81510,815 15,56015,560 1,5901,590 0.20.2 반응 pH 5.0Reaction pH 5.0 2020 11,01211,012 17,94517,945 1,6171,617 0.10.1 반응 pH 5.5Reaction pH 5.5 2525 11,47511,475 18,53018,530 1,6801,680 0.10.1 반응 pH 6.0Reaction pH 6.0 1,2001,200 17,20017,200 24,38024,380 1,7201,720 52.652.6

실험결과에 나타난 바와 같이 반응조내 pH가 5.5가 될 때까지 황산제이철염을 투입한 경우에는 99.7%이상의 안정적인 부유성고형물의 제거율을 나타내었지만 반응조내 pH가 6.0가 될 때까지만 주입하였을 때에는 슬러지의 탈수능이 급격하게 나빠졌고, 처리수내 부유성 고형물의 농도도 증가하였다. 화학응집처리시 화학적 산소요구량의 제거율은 축산폐수내 부유물 및 고분자 유기물의 함량에 의존하였고, 잔류하는 유기물은 대부분 휘발성 지방산으로 나타났다. 한편, 반응조내 pH가 2.5가 될 때까지 황산제이철염을 투입한 경우에는 pH가 3.5가 될 때까지 주입한 경우와 성능면에서 큰 차이가 없었고 오히려 처리 효율이 낮아지기도 하였다. As shown in the experimental results, when ferric sulfate was added until the pH in the reactor reached 5.5, the removal rate of the suspended solids was more than 99.7%, but when sludge was injected only until the pH in the reactor reached 6.0, The water content rapidly deteriorated, and the concentration of suspended solids in the treated water also increased. The removal rate of chemical oxygen demand in the chemical coagulation process was dependent on the content of suspended solids and macromolecular organic matter in the livestock wastewater, and the remaining organic matter was mostly volatile fatty acids. On the other hand, when ferric sulfate was added until the pH in the reactor was 2.5, there was no significant difference in performance compared to the case where the ferric sulfate was injected until the pH was 3.5, and the treatment efficiency was lowered.

<실시예 2><Example 2>

화학적 산소 요구량 42,000 mg/L, 생물학적 산소요구량 30,600 mg/L, 부유성 고형물 함량 23,000 mg/L, 총질소 2,200 mg/L, 총인 약 1,000 mg/L인 슬러리형 돈사폐수를 스테인레스 스틸로 제작된 50L의 화학적 반응조에서 반응 pH가 4.5가 될 때까지 11% 황산제이철을 첨가하여 1,500 rpm의 조건에서 2시간동안 급속혼합시킨 후 35% NaOH를 첨가하여 반응물의 pH를 7.3까지 조절한 후 300 rpm으로 교반속도를 줄이면서 음이온 고분자 응집제를 투여하였다. 플록이 형성된 반응물은 필터프레스 등의 고액분리기를 이용하여 고액분리를 수행하였다. 후속의 생물학적 처리시스템의 유입수로 사용된 고액분리된 화학 처리수는 일정량의 인산염 인을 첨가하여 인부족에 의한 미생물 활성의 저하를 방지하였다. 0.5리터의 무산소 셀렉터와 5.5리터의 호기성 반응조를 가진 유효용적 6리터의 아크릴 반응기를 제작하였고, 여기에 고액분리를 거친 폐수를 도입시켜 22.5 ℃에서 1.4 kg COD/m3·일의 유기물 용적부하로 운전하였다. 운전초기에는 상기에 명시된 유입수를 사용하였으나, 운전 후반부에는 동일한 운전조건에서 상기의 유입수보다 약 2배정도 농도가 높은 양돈폐수에 대한 실험을 수행하였다.50L of slurry-type pig wastewater made of stainless steel with chemical oxygen demand of 42,000 mg / L, biological oxygen demand of 30,600 mg / L, suspended solids content of 23,000 mg / L, total nitrogen of 2,200 mg / L and total phosphorus of about 1,000 mg / L 11% ferric sulfate was added until the reaction pH was 4.5 in the chemical reaction tank of the reaction mixture and rapidly mixed at 1,500 rpm for 2 hours, and then the reaction product was adjusted to 7.3 by addition of 35% NaOH and stirred at 300 rpm. The anionic polymer flocculant was administered while slowing down. The floc formed reactants were subjected to solid-liquid separation using a solid-liquid separator such as a filter press. The solid-liquid separated chemically treated water used as influent for subsequent biological treatment systems added a certain amount of phosphate phosphorus to prevent degradation of microbial activity due to phosphorus deficiency. An effective volume 6-liter acrylic reactor with 0.5 liters of anoxic selector and 5.5 liters of aerobic reactor was fabricated, and the wastewater after solid-liquid separation was introduced into the organic material load of 1.4 kg COD / m 3 · day at 22.5 ℃. Drive. In the beginning of operation, the influent specified above was used, but in the latter part of the experiment, experiments were made on pig wastewater having a concentration approximately twice that of the influent under the same operating conditions.

<비교예1>Comparative Example 1

생물학적 반응기로서, 무산소 셀렉터가 없는 6리터의 아크릴 반응조를 사용한 것을 제외하고는 상기 실시예2와 동일하게 실험하였다. As a biological reactor, the experiment was performed in the same manner as in Example 2, except that a 6 liter acrylic reactor without an oxygen free selector was used.

상기와 같이 실험한 결과, 최종적으로, 무산소 셀렉터가 없는 생물반응조는 슬러지의 침강성이 크게 악화되면서 슬러지의 유실이 심화되어 정상적인 운전이 불가능하였으나 무산소 셀렉터가 있는 생물반응조는 약 30일간의 순응기간이후 BOD 70 mg/L이하, SS 50 mg/L이하를 지속적으로 유지할 수 있었다. 이 때 유출수내의 무기성 고형물의 농도는 2.0-2.5%를 나타내었다. As a result of the experiment, the bioreactor without anoxic selector was greatly deteriorated in sludge settling and the sludge was intensified. Less than 70 mg / L, SS 50 mg / L could be maintained continuously. At this time, the concentration of inorganic solids in the effluent was 2.0-2.5%.

즉, 고농도 축산폐수의 화학적 처리후의 생물학적 처리공정은 상기 비교예 1과 같이 무산소 셀렉터가 없는 경우, 침강성 악화로 인한 심각한 미생물의 유실로 인해 정상적인 운전이 불가능하였다. 반면, 상기 실시예2와 같이 무산소 셀렉터가 있는 경우에는 일정시간의 순응기간이 지난 후 안정적인 처리수질을 확보할 수 있었다. That is, in the biological treatment process after the chemical treatment of high concentration livestock wastewater, there was no oxygen selector as in Comparative Example 1, the normal operation was impossible due to severe microorganisms loss due to settling deterioration. On the other hand, when there is an oxygen-free selector as in Example 2, it was possible to secure a stable treated water quality after a certain period of compliance.

<실시예 3><Example 3>

본 실시예에서는, 처리수 내의 무기물 농도가 3%를 초과하는 경우에 상기 처리수에 대해 본 발명에 의한 방법의 제1 내지 제3단계에 의한 화학적 응집의 후처리를 시행한 경우와 시행하지 아니한 경우의 폐수 처리 효율을 비교하였다. 그 결과는 다음과 같다.In this embodiment, when the concentration of inorganic matter in the treated water exceeds 3%, the treated water is subjected to the post-treatment of the chemical flocculation according to the first to third steps of the method according to the present invention. The wastewater treatment efficiency of the case was compared. the results are as follow.

처리수내 무기물 농도3% 이하 Inorganic concentration of treated water 3% or less 처리수내 무기물농도3-5%Mineral concentration in treated water 3-5% 상기 (5)단계의 후처리전Before the post-treatment of step (5) 상기 (5)단계의 후처리후After the post-treatment of step (5) BOD5(mg/L)BOD 5 (mg / L) 70 이하70 or less 500-1,000500-1,000 100 이하100 or less SS (mg/L)SS (mg / L) 50 이하50 or less 1,000-2,0001,000-2,000 50 이하50 or less CODCr(mg/L)COD Cr (mg / L) 1,000 이하1,000 or less 2,000-3,0002,000-3,000 1,000 이하1,000 or less

상기 표에 나타난 바와 같이, 처리수 내의 무기물 농도가 3% 이하인 경우에는 화학적 응집의 후처리 없이도 양호한 수질을 나타내는 반면, 처리수 내의 무기물 농도가 3-5%인 경우에는 양호한 수질을 위해서는 화학적 응집의 후처리가 필수적임을 알 수 있었다. 즉, 처리수 내의 무기물 농도가 3%를 초과하는 경우에는, 심한 거품의 발생 및 처리수내 탁도가 증가하였다. 이 때에는 후속의 화학적 처리가 필수적이었으며, 폐수내 무기물의 농도가 5%까지 증가하여도 후속의 화학적 처리를 통해 지속적으로 생화학적 산소요구량 100 mg/L이하, 부유성 고형물 50 mg/L이하의 안정적인 수질을 확보할 수 있었다.As shown in the table above, when the concentration of inorganic matter in the treated water is 3% or less, good water quality is shown without post-treatment of chemical flocculation, whereas when the concentration of inorganic matter in the treated water is 3-5%, It was found that post-treatment is essential. That is, when the concentration of minerals in the treated water exceeds 3%, the generation of severe bubbles and turbidity in the treated water increased. Subsequent chemical treatments were essential at this time, and even though the concentration of minerals in the wastewater increased to 5%, subsequent chemical treatments continued to stabilize biochemical oxygen demands of less than 100 mg / L and suspended solids of 50 mg / L. Water quality could be secured.

본 발명에 의한 화학응집과 생물학적 공정을 결합한 고농도 유기폐수 처리방법을 이용하면, 중소규모의 농장에서 배출되는 다양한 특성의 축산폐수를 생화학적 산소요구량과 부유성 고형물의 농도를 150 mg/L이하로 안정적으로 처리할 수 있다. 저렴한 무기응집제를 이용하여 화학처리에 의한 고액분리로 인해 후단 생물반응기로 유입되는 유기물의 부하를 크게 감소시켜, 톤당 처리비를 크게 절감할 수 있다. 또한, 원폐수의 화학적 산소요구량과 부유성 고형물의 농도에 의해 결정되는 화학적 처리시의 무기물의 농도는 3%까지는 후속의 처리없이도 우수한 생화학적 산소요구량 및 부유성 고형물의 제거율을 나타낼 수 있으며, 3-5%까지는 후속의 화학응집처리를 통해 생화학적 산소요구량 100 mg/L이하, 부유성 고형물 50 mg/L이하의 안정적인 수질을 확보할 수 있다. 본 발명에 의하면 부유성 고형물 20,000 mg/L정도를 포함한 화학적 산소요구량 50,000 mg/L이하의 양돈폐수의 경우, 후속의 화학응집처리없이 우수하면서도 지속적인 오염물질 제거율을 나타낼 수 있다.By using the high concentration organic wastewater treatment method combining the chemical coagulation and biological process according to the present invention, the livestock wastewater of various characteristics discharged from small and medium-sized farms has a biochemical oxygen demand and a concentration of suspended solids of 150 mg / L or less. Can be processed stably. The use of inexpensive inorganic coagulant greatly reduces the load of organic material flowing into the rear stage bioreactor due to the solid-liquid separation by chemical treatment, thereby greatly reducing the treatment cost per ton. In addition, the concentration of inorganic matter during chemical treatment, which is determined by the chemical oxygen demand of the raw wastewater and the concentration of the suspended solids, can represent an excellent biochemical oxygen demand and the removal rate of the suspended solids without further treatment. Subsequent chemical aggregation up to -5% ensures stable water quality of less than 100 mg / L of biochemical oxygen demand and less than 50 mg / L of suspended solids. According to the present invention, in the case of swine wastewater having a chemical oxygen demand of 50,000 mg / L or less, including about 20,000 mg / L of suspended solids, it is possible to exhibit excellent and continuous removal of contaminants without subsequent chemical coagulation treatment.

도1은 본 발명에 따른 축산폐수 처리 방법의 구성을 개략적으로 도시한 도면이다.1 is a view schematically showing the configuration of a livestock wastewater treatment method according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10: 화학적 반응기 11: 교반기10: chemical reactor 11: stirrer

12: pH 미터 13: 황산제이철12: pH meter 13: ferric sulfate

14: 수산화나트륨 15: 음이온 고분자응집제14: sodium hydroxide 15: anionic polymer coagulant

16: 필터프레스 17: 저류조16: filter press 17: reservoir

18: 화학적 처리시의 발생슬러지 20: 무산소 셀렉터(selector)18: Sludge generated during chemical treatment 20: Oxygen-free selector

21: 호기성 생물학적 반응조 22: 재순환 펌프21: Aerobic Biological Reactor 22: Recirculation Pump

23: 침전조 24: 생물학적 처리시의 잉여슬러지23: sedimentation tank 24: excess sludge during biological treatment

25: 생물학적 처리수25: biologically treated water

Claims (6)

축산폐수와 같은 고농도 유기폐수의 처리 방법에 있어서,In the method of treating high concentration organic wastewater, such as livestock wastewater, 폐수를 1,000 내지 3,000 rpm에서 황산제이철염을 폐수의 pH가 3.5이상 내지 5.0미만에 도달할 때까지 폐수가 함유된 반응기내에 투입하여 반응시키는 제1단계;A first step of reacting the wastewater with ferric sulfate at 1,000 to 3,000 rpm in a reactor containing the wastewater until the pH of the wastewater reaches 3.5 or more and less than 5.0; 상기 제1단계를 통해 처리된 처리수에 알칼리제를 투입하여 처리수의 pH를 조정하는 제2단계;A second step of adjusting the pH of the treated water by adding an alkaline agent to the treated water treated in the first step; 상기 제2단계 이후 상기 처리수 내에 고분자 응집제를 투입하여 저속혼합 조건에서 플록을 형성시키고 형성된 플록을 고액분리하는 제3단계; 및 A third step of forming a floc under low-speed mixing conditions by introducing a polymer flocculant into the treated water after the second step and solid-liquid separation of the formed floc; And 상기 제3단계를 통해 고액분리된 처리수를 활성슬러지를 이용한 호기성 생물학적 공정으로 처리하는 제4단계를 포함하며, And a fourth step of treating the treated water separated through the third step by an aerobic biological process using activated sludge. 상기 제4단계의 호기성 생물학적 공정은, 무산소 셀렉터에 의한 플록 형성 박테리아 선별 공정에 의해 보조되어 슬러지 침강성이 향상되며, 상기 호기성 생물학적 공정의 활성 슬러지가 상기 무산소 셀렉터로 반송되는 것을 특징으로 하는 화학응집과 생물학적 공정을 결합한 고농도 유기폐수 처리방법. The aerobic biological process of the fourth step is aided by a floc forming bacteria screening process by an anoxic selector to improve sludge settling, and the activated sludge of the aerobic biological process is returned to the anoxic selector. High concentration organic wastewater treatment method combining biological process. 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 방법을 통해 처리된 처리수의 무기성 고형물의 농도가 3%를 초과하는 경우에, 상기 처리수를 상기 제1단계 내지 제3단계를 통해 재처리하는 것을 특징으로 하는 화학응집과 생물학적 공정을 결합한 고농도 유기폐수 처리방법. The method of claim 1, wherein when the concentration of inorganic solids in the treated water treated by the method exceeds 3%, the treated water is reprocessed through the first to third steps. High concentration organic wastewater treatment method combining chemical coagulation and biological process. 제1항에 있어서, 상기 제4단계를 수행하기 전에, 상기 처리수에 인산염을 첨가하는 것을 특징으로 하는 화학응집과 생물학적 공정을 결합한 고농도 유기폐수 처리방법. The method of claim 1, wherein phosphate is added to the treated water before performing the fourth step.
KR10-2003-0063328A 2003-09-09 2003-09-09 Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater KR100510166B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0063328A KR100510166B1 (en) 2003-09-09 2003-09-09 Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0063328A KR100510166B1 (en) 2003-09-09 2003-09-09 Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater

Publications (2)

Publication Number Publication Date
KR20050026298A KR20050026298A (en) 2005-03-15
KR100510166B1 true KR100510166B1 (en) 2005-08-26

Family

ID=37384219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0063328A KR100510166B1 (en) 2003-09-09 2003-09-09 Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater

Country Status (1)

Country Link
KR (1) KR100510166B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837731B1 (en) * 2016-06-29 2018-03-13 주식회사 수처리월드 The Disposal system of dyeing wastewater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663873A (en) * 2013-12-09 2014-03-26 山东华亚环保科技有限公司 Water quality purification method
KR101420999B1 (en) * 2014-02-11 2014-07-17 (주)에스엠엔지니어링 System for improving sludge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837731B1 (en) * 2016-06-29 2018-03-13 주식회사 수처리월드 The Disposal system of dyeing wastewater

Also Published As

Publication number Publication date
KR20050026298A (en) 2005-03-15

Similar Documents

Publication Publication Date Title
Hoa et al. The effect of nutrients on extracellular polymeric substance production and its influence on sludge properties
Zhao et al. Advanced primary treatment of waste water using a bio‐flocculation‐adsorption sedimentation process
CN101700951A (en) Emulsified liquid waste water treatment method
CN112010493A (en) Novel process for treating electroplating wastewater
CN107352745A (en) Kitchen garbage fermentation waste water processing method
CN103159372A (en) Treatment method for wheat straw pulping black liquor
CN114477641A (en) Treatment method of comprehensive sewage of fine chemical industry park
US20050112740A1 (en) Waste metals recycling-methods, processed and systems for the recycle of metals into coagulants
WO2004108608A1 (en) Method and apparatus for treating wastewater containing organic compound of high concentration
KR100510166B1 (en) Combined treatment method with chemical coagulation and biological process for high-strength organic wastewater
CN107352744A (en) Kitchen garbage slurry fermentation waste water processing method
KR100523338B1 (en) Method for treating and reusing high-strength organic wastewater
CN110240365A (en) A kind of coal chemical industry high concentration wastewater treatment system and its method
KR100747682B1 (en) Method for treatment of livestock excrements using thermophilic aerobic fermentation, lime solidification and separation by reverse osmosis membrane
KR100439903B1 (en) The method and equipment of wastewater treatment contained organic compound of high concentration
CN109179874A (en) Fenton oxidation combination constructed wetland plant handles coking wastewater technique
CN214990938U (en) Miamide original medicine waste water processing apparatus
JP5742254B2 (en) Organic wastewater treatment method
KR20010094836A (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
JPS6320600B2 (en)
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
KR100280075B1 (en) Sanitary Landfill Leachate Treatment Method
JPH0661552B2 (en) Organic wastewater treatment method
Zahrim et al. Calcium lactate as a promising coagulant for the pretreatment of lignin-containing wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100818

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee