JP6837781B2 - Liquid crystal sealant and liquid crystal display cell using it - Google Patents

Liquid crystal sealant and liquid crystal display cell using it Download PDF

Info

Publication number
JP6837781B2
JP6837781B2 JP2016169059A JP2016169059A JP6837781B2 JP 6837781 B2 JP6837781 B2 JP 6837781B2 JP 2016169059 A JP2016169059 A JP 2016169059A JP 2016169059 A JP2016169059 A JP 2016169059A JP 6837781 B2 JP6837781 B2 JP 6837781B2
Authority
JP
Japan
Prior art keywords
liquid crystal
sealant
dropping method
crystal sealant
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016169059A
Other languages
Japanese (ja)
Other versions
JP2018036468A5 (en
JP2018036468A (en
Inventor
祥行 竹居
祥行 竹居
正弘 内藤
正弘 内藤
正嘉 武藤
正嘉 武藤
勝大 田上
勝大 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2016169059A priority Critical patent/JP6837781B2/en
Priority to KR1020170107152A priority patent/KR20180025212A/en
Priority to CN201710741134.2A priority patent/CN107793954B/en
Publication of JP2018036468A publication Critical patent/JP2018036468A/en
Publication of JP2018036468A5 publication Critical patent/JP2018036468A5/ja
Application granted granted Critical
Publication of JP6837781B2 publication Critical patent/JP6837781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0607Rubber or rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0625Polyacrylic esters or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、液晶滴下工法に使用される液晶シール剤に関する。より詳細には、フレキシブルディスプレイや湾曲形状のディスプレイにも適用でき、更には、低液晶汚染性や接着強度等の一般的特性においても優れる液晶滴下工法用液晶シール剤に関する。 The present invention relates to a liquid crystal sealant used in a liquid crystal dropping method. More specifically, the present invention relates to a liquid crystal sealant for a liquid crystal dropping method, which can be applied to a flexible display or a curved display, and is also excellent in general characteristics such as low liquid crystal contamination and adhesive strength.

近年の液晶表示セルの大型化に伴い、液晶表示セルの製造法として、より量産性の高い、いわゆる液晶滴下工法が提案されていた(特許文献1、特許文献2参照)。具体的には、一方の基板に形成された液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせることにより液晶が封止される液晶表示セルの製造方法である。 With the increase in size of liquid crystal display cells in recent years, a so-called liquid crystal dropping method with higher mass productivity has been proposed as a method for manufacturing a liquid crystal display cell (see Patent Documents 1 and 2). Specifically, it is a method for manufacturing a liquid crystal display cell in which a liquid crystal is sealed by dropping a liquid crystal on the inside of a weir of a liquid crystal sealant formed on one substrate and then laminating the other substrate.

しかし、液晶滴下工法は、未硬化の状態の液晶シール剤が液晶に接触するため、その際に液晶シール剤の成分が液晶に溶解(溶出)して液晶の抵抗値を低下させ、シール近傍の表示不良を発生させるという問題点がある。 However, in the liquid crystal dropping method, since the liquid crystal sealant in an uncured state comes into contact with the liquid crystal, the components of the liquid crystal sealant dissolve (elute) in the liquid crystal at that time, lowering the resistance value of the liquid crystal and near the seal. There is a problem that display defects occur.

この課題を解決する為、現在は液晶滴下工法用の液晶シール剤として光熱併用型のものが用いられ、実用化されている(特許文献3、4)。この液晶シール剤を使用した液晶滴下工法では、基板に挟まれた液晶シール剤に光を照射して一次硬化させた後、加熱して二次硬化させることを特徴とする。この方法によれば、未硬化の液晶シール剤を光によって速やかに硬化でき、液晶シール剤成分の液晶への溶解(溶出)を抑えることが可能である。さらに、光硬化のみでは光硬化時の硬化収縮等による接着強度不足という問題も発生するが、光熱併用型であれば加熱による二次硬化によって応力緩和効果が得られ、そういった問題も解消できるという利点を有する。
この光熱硬化型の液晶滴下工法用液晶シール剤が実用化されたことによって、液晶滴下工法は、一般的に用いられる工法となった。
In order to solve this problem, a liquid crystal sealant for the liquid crystal dropping method is currently used in combination with light and heat and has been put into practical use (Patent Documents 3 and 4). The liquid crystal dropping method using this liquid crystal sealant is characterized in that the liquid crystal sealant sandwiched between the substrates is irradiated with light to be first cured, and then heated to be secondarily cured. According to this method, the uncured liquid crystal sealant can be rapidly cured by light, and the dissolution (elution) of the liquid crystal sealant component in the liquid crystal can be suppressed. Furthermore, photo-curing alone causes a problem of insufficient adhesive strength due to curing shrinkage during photo-curing, but the photo-heating combined type has the advantage that stress relaxation effect can be obtained by secondary curing by heating, and such a problem can be solved. Has.
With the practical application of this photothermally curable liquid crystal sealant for the liquid crystal dropping method, the liquid crystal dropping method has become a generally used method.

さらに最近では、液晶ディスプレイの分野において、フレキシブルディスプレイや湾曲した形状を有するディスプレイの開発が進んでいる。こういったディスプレイに使用される基板は、従来のガラスのような剛直なものに代わって、プラスチックフィルムのような柔軟なものが使用されている(特許文献5)。
こういった背景から、液晶滴下工法用液晶シール剤に対しても、基板のたわみ等に追従するような、すなわち硬化後においても柔軟であるという性質が要求されつつある。
More recently, in the field of liquid crystal displays, the development of flexible displays and displays having a curved shape has been progressing. As the substrate used for such a display, a flexible substrate such as a plastic film is used instead of a rigid substrate such as conventional glass (Patent Document 5).
Against this background, the liquid crystal sealant for the liquid crystal dropping method is also required to have a property of following the deflection of the substrate, that is, being flexible even after curing.

従来より、接着強度向上の観点から、柔軟性を有する液晶滴下工法用液晶シール剤の開発は行われてきた(特許文献6)。しかし、上記の柔軟な基板に適応するための十分な性能を備えた液晶滴下工法用液晶シール剤は未だ実現していない。 Conventionally, from the viewpoint of improving the adhesive strength, a liquid crystal sealant for a liquid crystal dropping method having flexibility has been developed (Patent Document 6). However, a liquid crystal sealant for a liquid crystal dropping method having sufficient performance for adapting to the above-mentioned flexible substrate has not yet been realized.

特開昭63−179323号公報Japanese Unexamined Patent Publication No. 63-179323 特開平10−239694号公報Japanese Unexamined Patent Publication No. 10-239694 特許第3583326号公報Japanese Patent No. 3583326 特開2004−61925号公報Japanese Unexamined Patent Publication No. 2004-61925 特開2012−238005号公報Japanese Unexamined Patent Publication No. 2012-238005 特開2016−24240号公報Japanese Unexamined Patent Publication No. 2016-24240

本発明は、フレキシブルディスプレイや湾曲形状のディスプレイにも適用でき、更には、低液晶汚染性や接着強度等の一般的特性においても優れる液晶滴下工法用液晶シール剤を提案するものである。 The present invention proposes a liquid crystal sealant for a liquid crystal dropping method, which can be applied to a flexible display or a curved display, and is also excellent in general characteristics such as low liquid crystal contamination and adhesive strength.

本発明者らは、鋭意検討の結果、ガラス転移点が二つ以上存在する硬化物は液晶汚染性や接着性に優れることを見出し、本発明を完成するに至った。
即ち本発明は、次の[1]〜[14]に関するものである。
なお本明細書において、「(メタ)アクリル」と記載した場合には、「アクリル」及び/又は「メタクリル」を意味するものとする。また「液晶滴下工法用液晶シール剤」は、単に「液晶シール剤」と記載する場合もある。
また上付きのRTMは登録商標を意味する。
As a result of diligent studies, the present inventors have found that a cured product having two or more glass transition points is excellent in liquid crystal contamination and adhesiveness, and have completed the present invention.
That is, the present invention relates to the following [1] to [14].
In addition, in this specification, when "(meth) acrylic" is described, it means "acrylic" and / or "methacryl". Further, the "liquid crystal sealant for the liquid crystal dropping method" may be simply described as "liquid crystal sealant".
The superscript RTM means a registered trademark.

すなわち本発明は、
[1](A)硬化性化合物、及び(B)液状ゴムを含有し、硬化物のガラス転移点が二つ以上存在する液晶滴下工法用液晶シール剤、
[2]前記ガラス転移点のうち、一つが10℃以下であり、一つが40℃以上である前項[1]に記載の液晶滴下工法用液晶シール剤、
[3]更に、(C)熱ラジカル重合開始剤を含有する前項[1]又は[2]に記載の液晶滴下工法用液晶シール剤、
[4]前記成分(A)硬化性化合物が、(A−1)(メタ)アクリル化合物である前項[1]乃至[3]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[5]更に、(D)有機フィラーを含有する前項[1]乃至[4]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[6]前記成分(D)が、ウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子、及びシリコーン微粒子からなる群より選択される1又は2以上の有機フィラーである前項[5]に記載の液晶滴下工法用液晶シール剤、
[7]更に、(E)無機フィラーを含有する前項[1]乃至[6]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[8]更に、(F)シランカップリング剤を含有する前項[1]乃至[7]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[9]前記成分(A)中に、(A−2)エポキシ化合物を含有する前項[1]乃至[8]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[10]更に、(H)熱硬化剤を含有する前項[1]乃至[9]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[11]前記成分(H)が有機酸ヒドラジド化合物である前項[10]に記載の液晶滴下工法用液晶シール剤、
[12]更に、(I)光ラジカル重合開始剤を含有する前項[1]乃至[11]のいずれか一項に記載の液晶滴下工法用液晶シール剤、
[13]2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された請求項1乃至12のいずれか一項に記載の液晶滴下工法用液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後熱により硬化することを特徴とする液晶表示セルの製造方法、
[14]前項[1]乃至[12]のいずれか一項に記載の液晶滴下工法用液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル、
に関する。
That is, the present invention
[1] A liquid crystal sealant for a liquid crystal dropping method, which contains (A) a curable compound and (B) a liquid rubber and has two or more glass transition points of a cured product.
[2] The liquid crystal sealant for the liquid crystal dropping method according to the preceding item [1], wherein one of the glass transition points is 10 ° C. or lower and one is 40 ° C. or higher.
[3] The liquid crystal sealant for the liquid crystal dropping method according to the above item [1] or [2], which further contains (C) a thermal radical polymerization initiator.
[4] The component (A) curable compound, (A-1) (meth) liquid crystal dropping process for a liquid crystal sealing material according to any one of items [1] to [3] is an acrylic compound,
[5] In addition, (D) containing an organic filler items [1] to the liquid crystal dropping process for a liquid crystal sealing material according to any one of [4],
[6] The liquid crystal according to the preceding item [5], wherein the component (D) is one or more organic fillers selected from the group consisting of urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles. Liquid crystal sealant for dripping method,
[7] In addition, (E) items [1] containing an inorganic filler to a liquid crystal dropping process for a liquid crystal sealing material according to any one of [6],
[8] In addition, (F) a silane coupling agent items [1] to the liquid crystal dropping process for a liquid crystal sealing material according to any one of [7],
[9] in said component (A), (A-2 ) containing an epoxy compound items [1] to the liquid crystal dropping process for a liquid crystal sealing material according to any one of [8],
[10] Furthermore, (H) containing a thermosetting agent items [1] to the liquid crystal dropping process for a liquid crystal sealing material according to any one of [9],
[11] The liquid crystal sealant for the liquid crystal dropping method according to the previous item [10], wherein the component (H) is an organic acid hydrazide compound.
[12] Furthermore, (I) contains a photo-radical polymerization initiator items [1] to [11] a liquid crystal dropping process for a liquid crystal sealing material according to any one of,
[13] In a liquid crystal display cell composed of two substrates, a liquid crystal is placed inside a weir of a liquid crystal sealant for a liquid crystal dropping method according to any one of claims 1 to 12 formed on one of the substrates. 2.
[14] A liquid crystal display cell sealed with a cured product obtained by curing the liquid crystal sealant for the liquid crystal dropping method according to any one of the preceding items [1] to [12].
Regarding.

本発明は、フレキシブルディスプレイや湾曲形状のディスプレイにも適用でき、更には、低液晶汚染性や接着強度等の一般的特性においても優れる液晶滴下工法用液晶シール剤を提案するものである。 The present invention proposes a liquid crystal sealant for a liquid crystal dropping method, which can be applied to a flexible display or a curved display, and is also excellent in general characteristics such as low liquid crystal contamination and adhesive strength.

[(A)硬化性化合物]
本発明の液晶シール剤は、(A)硬化性化合物を含有する(以下、単に成分(A)ともいう)。
成分(A)は、光又は熱によって重合反応するものであれば特に限定されず、例えば(メタ)アクリロイル基を有する硬化性化合物、エポキシ基を有する硬化性化合物、オキセタン基を有する化合物、アリル基を有する化合物等を挙げることができる。
[(A) Curable compound]
The liquid crystal sealant of the present invention contains (A) a curable compound (hereinafter, also simply referred to as component (A)).
The component (A) is not particularly limited as long as it polymerizes by light or heat, and is, for example, a curable compound having a (meth) acryloyl group, a curable compound having an epoxy group, a compound having an oxetane group, and an allyl group. Can be mentioned.

[(A−1)(メタ)アクリル化合物]
上記(A)硬化性化合物としては、(A−1)(メタ)アクリル化合物を含有する場合が好ましい。成分(A−1)としては、例えば、(メタ)アクリルエステル化合物、エポキシ(メタ)アクリレート化合物等が挙げられる。
(メタ)アクリルエステル化合物の具体例としては、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、アクリロイルモルホリン、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、シクロヘキサン−1,4−ジメタノールモノ(メタ)アクリレート、テトラヒドロフフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェニルポリエトキシ(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、o−フェニルフェノールモノエトキシ(メタ)アクリレート、o−フェニルフェノールポリエトキシ(メタ)アクリレート、p−クミルフェノキシエチル(メタ)アクリレート、イソボニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、ビスフェノールAポリエトキシジ(メタ)アクリレート、ビスフェノールAポリプロポキシジ(メタ)アクリレート、ビスフェノールFポリエトキシジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ネオペンチルグリコールとヒドロキシピバリン酸のエステルジアクリレートやネオペンチルグリコールとヒドロキシピバリン酸のエステルのε−カプロラクトン付加物のジアクリレート等のモノマー類を挙げることができる。好ましくは、N−アクリロイルオキシエチルヘキサヒドロフタルイミド、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートを挙げることができる。
エポキシ(メタ)アクリレート化合物は、エポキシ化合物と(メタ)アクリル酸との反応により公知の方法で得られる。原料となるエポキシ化合物としては、特に限定されるものではないが、2官能以上のエポキシ化合物が好ましく、例えば、レゾルシンジグリシジルエーテル、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ビスフェノールFノボラック型エポキシ化合物、脂環式エポキシ化合物、脂肪族鎖状エポキシ化合物、グリシジルエステル型エポキシ化合物、グリシジルアミン型エポキシ化合物、ヒダントイン型エポキシ化合物、イソシアヌレート型エポキシ化合物、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ化合物、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点から、ビスフェノールA型エポキシ樹脂やレゾルシンジグリシジルエーテルが好ましい。また、エポキシ基と(メタ)アクリロイル基との比率は限定されるものではなく、工程適合性及び液晶汚染性の観点から適切に選択される。
成分(A−1)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(A−1)を使用する場合には、液晶シール剤の総量中、通常10〜80質量%、好ましくは20〜70質量%である。
[(A-1) (meth) acrylic compound]
As the (A) curable compound, it is preferable that the (A-1) (meth) acrylic compound is contained. Examples of the component (A-1) include a (meth) acrylic ester compound and an epoxy (meth) acrylate compound.
Specific examples of the (meth) acrylic ester compound include N-acryloyloxyethyl hexahydrophthalimide, acryloylmorpholine, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and cyclohexane-1,4-dimethanol. mono (meth) acrylate, tetrahydrofuran Le furyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenyl polyethoxy (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, o- phenylphenol monoethoxy (Meta) acrylate, o-phenylphenol polyethoxy (meth) acrylate, p-cumylphenoxyethyl (meth) acrylate, isobonyl (meth) acrylate, tribromophenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) Acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol Di (meth) acrylate, tricyclodecanedimethanol (meth) acrylate, bisphenol A polyethoxydi (meth) acrylate, bisphenol A polypropoxydi (meth) acrylate, bisphenol F polyethoxydi (meth) acrylate, ethylene glycol di (meth) acrylate, Polyethylene glycol di (meth) acrylate, tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol hexa (meth) Acrylate, Tripentaerythritol Penta (meth) Acrylate, Trimethylol Propanetri (Meta) Acrylate, Trimethylol Propanepolyethoxytri (Meta) Acrylate, Ditrimethylol Propanetetra (Meta) Acrylate, Neopentyl Glycol and Hydroxy Pivalic Acid Ester Di Examples thereof include monomers such as acrylate and diacrylate of ε-caprolactone adduct of ester of neopentyl glycol and hydroxypivalic acid. Preferred examples include N-acryloyloxyethyl hexahydrophthalimide, phenoxyethyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
The epoxy (meth) acrylate compound is obtained by a known method by reacting the epoxy compound with (meth) acrylic acid. The epoxy compound as a raw material is not particularly limited, but a bifunctional or higher functional epoxy compound is preferable, and for example, resorcindiglycidyl ether, bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound. , Phenol novolac type epoxy compound, cresol novolac type epoxy compound, bisphenol A novolak type epoxy compound, bisphenol F novolac type epoxy compound, alicyclic epoxy compound, aliphatic chain epoxy compound, glycidyl ester type epoxy compound, glycidylamine type epoxy Compounds, hydant-in type epoxy compounds, isocyanurate type epoxy compounds, phenol novolac type epoxy compounds having a triphenol methane skeleton, diglycidyl ethers of bifunctional phenols such as catechol and resorcinol, diglycidyl ethers of bifunctional alcohols Examples thereof include compounds, their halides, and hydrogenated products. Of these, bisphenol A type epoxy resin and resorcinol diglycidyl ether are preferable from the viewpoint of liquid crystal contamination. Further, the ratio of the epoxy group to the (meth) acryloyl group is not limited, and is appropriately selected from the viewpoint of process compatibility and liquid crystal contamination.
The component (A-1) may be used alone or in combination of two or more. When the component (A-1) is used in the liquid crystal sealant of the present invention, it is usually 10 to 80% by mass, preferably 20 to 70% by mass, based on the total amount of the liquid crystal sealant.

[(A−2)エポキシ化合物]
上記(A)成分中には更に、(A−2)エポキシ化合物を含有する場合が好ましい。成分(A−2)としては、特に限定されるものではないが、2官能以上のエポキシ化合物が好ましく、例えば、レゾルシンジグリシジルエーテル、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ビスフェノールFノボラック型エポキシ化合物、脂環式エポキシ化合物、脂肪族鎖状エポキシ化合物、グリシジルエステル型エポキシ化合物、グリシジルアミン型エポキシ化合物、ヒダントイン型エポキシ化合物、イソシアヌレート型エポキシ化合物、トリフェノールメタン骨格を有するフェノールノボラック型エポキシ化合物、その他、カテコール、レゾルシノール等の二官能フェノール類のジグリシジルエーテル化物、二官能アルコール類のジグリシジルエーテル化物、およびそれらのハロゲン化物、水素添加物などが挙げられる。これらのうち液晶汚染性の観点から、ビスフェノールA型エポキシ樹脂やレゾルシンジグリシジルエーテルが好ましい。
成分(A−2)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(A−2)を使用する場合には、液晶シール剤総量中、通常5〜50質量%、好ましくは5〜30質量%である。
[(A-2) Epoxy compound]
It is preferable that the component (A) further contains the epoxy compound (A-2). The component (A-2) is not particularly limited, but a bifunctional or higher functional epoxy compound is preferable, and for example, resorcindiglycidyl ether, bisphenol A type epoxy compound, bisphenol F type epoxy compound, and bisphenol S type epoxy. Compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, bisphenol A novolak type epoxy compounds, bisphenol F novolac type epoxy compounds, alicyclic epoxy compounds, aliphatic chain epoxy compounds, glycidyl ester type epoxy compounds, glycidylamine type Epoxy compounds, hydantin type epoxy compounds, isocyanurate type epoxy compounds, phenol novolac type epoxy compounds having a triphenol methane skeleton, diglycidyl ether compounds of bifunctional phenols such as catechol and resorcinol, diglycidyl of bifunctional alcohols Examples thereof include ether compounds, their halides, and hydrogenated products. Of these, bisphenol A type epoxy resin and resorcinol diglycidyl ether are preferable from the viewpoint of liquid crystal contamination.
The component (A-2) may be used alone or in combination of two or more. When the component (A-2) is used in the liquid crystal sealant of the present invention, it is usually 5 to 50% by mass, preferably 5 to 30% by mass, based on the total amount of the liquid crystal sealant.

[(B)液状ゴム]
本発明は、(B)液状ゴムを含有する(以下、単に成分(B)ともいう)。
液状ゴムとは、常温で液状であるゴム性化合物であり、例えばポリブタジエンやポリイソプレン等を挙げることができる。市場からは、TE−2000(日本曹達株式会社製)、TEAI−1000(日本曹達株式会社製)、UC−102(株式会社クラレ製)、UC−203(株式会社クラレ製)等を入手することができる。
成分(B)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(B)の含有量は、液晶シール剤総量中、通常5〜80質量%、好ましくは20〜80質量%である。
[(B) Liquid rubber]
The present invention contains (B) liquid rubber (hereinafter, also simply referred to as component (B)).
The liquid rubber is a rubber compound that is liquid at room temperature, and examples thereof include polybutadiene and polyisoprene. Obtain TE-2000 (manufactured by Nippon Soda Co., Ltd.), TEAI-1000 (manufactured by Nippon Soda Co., Ltd.), UC-102 (manufactured by Kuraray Co., Ltd.), UC-203 (manufactured by Kuraray Co., Ltd.), etc. from the market. Can be done.
The component (B) may be used alone or in combination of two or more. In the liquid crystal sealant of the present invention, the content of the component (B) is usually 5 to 80% by mass, preferably 20 to 80% by mass, based on the total amount of the liquid crystal sealant.

[硬化物のガラス転移温度]
本発明の液晶シール剤の硬化物は、DMA法によって測定したガラス転移点(温度)が二つ以上存在する。ガラス転移点が二つ以上存在するということは、上記成分(A)と成分(B)が不均一な状態で存在しており、その結果、フレキシブル基板への追従性が増す。
また、上記ガラス転移点のうち、一つが10℃以下であり、一つが40℃以上である場合が好ましく、更に好ましくは一つが0℃以下であり、一つが100℃以上の場合である。
なおDMAの測定条件は、例えば動的粘弾性測定装置(DMS−6100:エスアイアイ・ナノテクノロジー社製)を使用し、引っ張りモードにて周波数10Hz、昇温温度3℃/分の条件の条件で測定する。損失弾性率と貯蔵弾性率との比(JIS K 7244−1)から損失係数Tanδが得られる。得られた損失係数Tanδが最大値となる温度をガラス転移温度とした。
[Glass transition temperature of cured product]
The cured product of the liquid crystal sealant of the present invention has two or more glass transition points (temperatures) measured by the DMA method. The presence of two or more glass transition points means that the component (A) and the component (B) are present in a non-uniform state, and as a result, the followability to the flexible substrate is increased.
Further, among the above glass transition points, one is preferably 10 ° C. or lower and one is preferably 40 ° C. or higher, and more preferably one is 0 ° C. or lower and one is 100 ° C. or higher.
The DMA measurement conditions are, for example, using a dynamic viscoelasticity measuring device (DMS-6100: manufactured by SII Nanotechnology Co., Ltd.) under the conditions of a frequency of 10 Hz and a temperature rise temperature of 3 ° C./min in a tensile mode. Measure. The loss coefficient Tan δ can be obtained from the ratio of the loss elastic modulus to the storage elastic modulus (JIS K 7244-1). The temperature at which the obtained loss coefficient Tan δ became the maximum value was defined as the glass transition temperature.

[(C)熱ラジカル重合開始剤]
本発明の液晶シール剤は、成分(C)として、熱ラジカル重合開始剤を含有しても良い。当該熱ラジカル重合開始剤は、加熱によりラジカルを生じ、連鎖重合反応を開始させる化合物であれば特に限定されないが、有機過酸化物、アゾ化合物、ベンゾイン化合物、ベンゾインエーテル化合物、アセトフェノン化合物、ベンゾピナコール等が挙げられ、ベンゾピナコールが好適に用いられる。例えば、有機過酸化物としては、カヤメックRTMA、M、R、L、LH、SP-30C、パーカドックスCH−50L、BC−FF、カドックスB−40ES、パーカドックス14、トリゴノックスRTM22−70E、23−C70、121、121−50E、121−LS50E、21−LS50E、42、42LS、カヤエステルRTMP−70、TMPO−70、CND−C70、OO−50E、AN、カヤブチルRTMB、パーカドックス16、カヤカルボンRTMBIC−75、AIC−75(化薬アクゾ株式会社製)、パーメックRTMN、H、S、F、D、G、パーヘキサRTMH、HC、パTMH、C、V、22、MC、パーキュアーRTMAH、AL、HB、パーブチルRTMH、C、ND、L、パークミルRTMH、D、パーロイルRTMIB、IPP、パーオクタRTMND日油株式会社製)などが市販品として入手可能である。また、アゾ化合物としては、VA−044、V−070、VPE−0201、VSP−1001(和光純薬工業株式会社製)等が市販品として入手可能である。なお、本明細書中、上付きのRTMは登録商標を意味する。
[(C) Thermal Radical Polymerization Initiator]
The liquid crystal sealant of the present invention may contain a thermal radical polymerization initiator as the component (C). The thermal radical polymerization initiator is not particularly limited as long as it is a compound that generates radicals by heating and initiates a chain polymerization reaction, but is not limited to organic peroxides, azo compounds, benzoin compounds, benzoin ether compounds, acetophenone compounds, benzopinacol and the like. Benzopinacol is preferably used. For example, as organic peroxides, Kayamec RTM A, M, R, L, LH, SP-30C, Parkadox CH-50L, BC-FF, Cadox B-40ES, Parkadox 14, Trigonox RTM 22-70E, 23-C70, 121, 121-50E, 121-LS50E, 21-LS50E, 42, 42LS, Kayaester RTM P-70, TMPO-70, CND-C70, OO-50E, AN, Kayabutyl RTM B, Parkadox 16 , Kayacarbonate RTM BIC-75, AIC-75 (manufactured by Kayaku Akzo Corporation), Permec RTM N, H, S, F, D, G, Perhexa RTM H, HC, PATMH, C, V, 22, MC, Pakyua RTM AH, AL, HB, Perbutyl RTM H, C, ND, L , Percumyl RTM H, D, PEROYL RTM IB, IPP, Perocta RTM ND (manufactured by NOF Corporation) and the like are commercially available. As the azo compound, VA-044, V-070, VPE-0201, VSP-1001 (manufactured by Wako Pure Chemical Industries, Ltd.) and the like are available as commercial products. In this specification, the superscript RTM means a registered trademark.

成分(C)として好ましいものは、分子内に酸素−酸素結合(−O−O−)又は窒素−窒素結合(−N=N−)を有さない熱ラジカル重合開始剤である。分子内に酸素−酸素結合(−O−O−)や窒素−窒素結合(−N=N−)を有する熱ラジカル重合開始剤は、ラジカル発生時に多量の酸素や窒素を発するため、液晶シール剤中に気泡を残した状態で硬化し、接着強度等の特性を低下させる虞がある。ベンゾピナコール系の熱ラジカル重合開始剤(ベンゾピナコールを化学的に修飾したものを含む)が特に好適である。具体的には、ベンゾピナコール、1,2−ジメトキシ−1,1,2,2−テトラフェニルエタン、1,2−ジエトキシ−1,1,2,2−テトラフェニルエタン、1,2−ジフェノキシ−1,1,2,2−テトラフェニルエタン、1,2−ジメトキシ−1,1,2,2−テトラ(4−メチルフェニル)エタン、1,2−ジフェノキシ−1,1,2,2−テトラ(4−メトキシフェニル)エタン、1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタン、1,2−ビス(トリエチルシロキシ)−1,1,2,2−テトラフェニルエタン、1,2−ビス(t−ブチルジメチルシロキシ)−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリメチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1,2,2−テトラフェニルエタン等、が挙げられ、好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−トリエチルシロキシ−1,1,2,2−テトラフェニルエタン、1−ヒドロキシ−2−t−ブチルジメチルシロキシ−1,1,2,2−テトラフェニルエタン、1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタンであり、さらに好ましくは1−ヒドロキシ−2−トリメチルシロキシ−1,1,2,2−テトラフェニルエタン、1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタンであり、特に好ましくは1,2−ビス(トリメチルシロキシ)−1,1,2,2−テトラフェニルエタンである。
上記ベンゾピナコールは東京化成工業株式会社、和光純薬工業株式会社等から市販されている。また、ベンゾピナコールのヒドロキシ基をエーテル化することは、周知の方法によって容易に合成可能である。また、ベンゾピナコールのヒドロキシ基をシリルエーテル化することは、対応するベンゾピナコールと各種シリル化剤をピリジン等の塩基性触媒下で加熱させる方法により合成して得ることができる。シリル化剤としては、一般に知られているトリメチルシリル化剤であるトリメチルクロロシラン(TMCS)、ヘキサメチルジシラザン(HMDS)、N,O−ビス(トリメチルシリル)トリフルオロアセトアミド(BSTFA)やトリエチルシリル化剤としてトリエチルクロロシラン(TECS)、t−ブチルジメチルシリル化剤としてt−ブチルメチルシラン(TBMS)等が挙げられる。これらの試薬はシリコン誘導体メーカー等の市場から容易に入手することが出来る。シリル化剤の反応量としては対象化合物のヒドロキシ基1モルに対して1.0〜5.0倍モルが好ましい。さらに好ましくは1.5〜3.0倍モルである。1.0倍モルより少ないと反応効率が悪く、反応時間が長くなるため熱分解を促進してしまう。5.0倍モルより多いと回収の際に分離が悪くなったり、精製が困難になったりしてしまう。
A preferred component (C) is a thermal radical polymerization initiator that does not have an oxygen-oxygen bond (-O-O-) or a nitrogen-nitrogen bond (-N = N-) in the molecule. A thermal radical polymerization initiator having an oxygen-oxygen bond (-O-O-) or a nitrogen-nitrogen bond (-N = N-) in the molecule emits a large amount of oxygen or nitrogen when a radical is generated, and thus is a liquid crystal sealant. There is a risk that it will harden with air bubbles left inside, and properties such as adhesive strength will deteriorate. Benzopinacol-based thermal radical polymerization initiators (including chemically modified benzopinacol) are particularly suitable. Specifically, benzopinacol, 1,2-dimethoxy-1,1,2,2-tetraphenylethane, 1,2-diethoxy-1,1,2,2-tetraphenylethane, 1,2-diphenoxy- 1,1,2,2-tetraphenylethane, 1,2-dimethoxy-1,1,2,2-tetra (4-methylphenyl) ethane, 1,2-diphenoxy-1,1,2,2-tetra (4-methoxyphenyl) ethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, 1,2-bis (triethylsiloxy) -1,1,2,2-tetraphenyl Etan, 1,2-bis (t-butyldimethylsiloxy) -1,1,2,2-tetraphenylethane, 1-hydroxy-2-trimethylsiloxy-1,1,2,2-tetraphenylethane, 1- Hydroxy-2-triethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-t-butyldimethylsiloxy-1,1,2,2-tetraphenylethane and the like can be mentioned, preferably. 1-Hydroxy-2-trimethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-triethylsiloxy-1,1,2,2-tetraphenylethane, 1-hydroxy-2-t- Butyldimethylsiloxy-1,1,2,2-tetraphenylethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, more preferably 1-hydroxy-2-trimethyl. Syroxy-1,1,2,2-tetraphenylethane, 1,2-bis (trimethylsiloxy) -1,1,2,2-tetraphenylethane, and particularly preferably 1,2-bis (trimethylsiloxy). -1,1,2,2-tetraphenylethane.
The above benzopinacol is commercially available from Tokyo Chemical Industry Co., Ltd., Wako Pure Chemical Industries, Ltd., etc. Further, etherification of the hydroxy group of benzopinacol can be easily synthesized by a well-known method. Further, silyl etherification of the hydroxy group of benzopinacol can be obtained by synthesizing the corresponding benzopinacol and various silylating agents by heating under a basic catalyst such as pyridine. Examples of the silylating agent include trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), which are generally known trimethylsilylating agents, and triethylsilylating agent. Examples of triethylchlorosilane (TECS) and t-butyldimethylsilylating agent include t-butylmethylsilane (TBMS). These reagents can be easily obtained from the market such as silicon derivative manufacturers. The reaction amount of the silylating agent is preferably 1.0 to 5.0 times by mole with respect to 1 mol of the hydroxy group of the target compound. More preferably, it is 1.5 to 3.0 times the molar amount. If it is less than 1.0 times the molar amount, the reaction efficiency is poor and the reaction time becomes long, which promotes thermal decomposition. If it is more than 5.0 times the molar amount, separation will be poor at the time of recovery and purification will be difficult.

成分(C)は粒径を細かくし、均一に分散することが好ましい。その平均粒径は、大きすぎると狭ギャップの液晶表示セル製造時に上下ガラス基板を貼り合わせる際のギャップ形成が上手くできない等の不良要因となるため、5μm以下が好ましく、より好ましくは3μm以下である。また、際限なく細かくしても差し支えないが、通常下限は0.1μm程度である。粒径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定できる。 It is preferable that the component (C) has a fine particle size and is uniformly dispersed. The average particle size is preferably 5 μm or less, more preferably 3 μm or less, because if it is too large, it causes defects such as poor formation of gaps when the upper and lower glass substrates are bonded together when manufacturing a liquid crystal display cell having a narrow gap. .. Further, although it may be made infinitely fine, the lower limit is usually about 0.1 μm. The particle size can be measured by a laser diffraction / scattering type particle size distribution measuring device (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).

成分(C)の含有量としては、液晶シール剤の総量中、0.0001〜10質量%であることが好ましく、さらに好ましくは0.0005〜5質量%であり、0.001〜3質量%が特に好ましい。 The content of the component (C) is preferably 0.0001 to 10% by mass, more preferably 0.0005 to 5% by mass, and 0.001 to 3% by mass in the total amount of the liquid crystal sealant. Is particularly preferable.

[(D)有機フィラー]
本願発明の液晶シール剤は、成分(D)として有機フィラーを含有しても良い。上記有機フィラーとしては、例えばウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子及びシリコーン微粒子が挙げられる。なおシリコーン微粒子としてはKMP−594、KMP−597、KMP−598(信越化学工業製)、トレフィルRTME−5500、9701、EP−2001(東レダウコーニング社製)が好ましく、ウレタン微粒子としてはJB−800T、HB−800BK(根上工業株式会社)、スチレン微粒子としてはラバロンRTMT320C、T331C、SJ4400、SJ5400、SJ6400、SJ4300C、SJ5300C、SJ6300C(三菱化学製)が好ましく、スチレンオレフィン微粒子としてはセプトンRTMSEPS2004、SEPS2063が好ましい。
これら有機フィラーは単独で用いても良いし、2種以上を併用しても良い。また2種以上を用いてコアシェル構造としても良い。これらのうち、好ましくは、アクリル微粒子、シリコーン微粒子である。
上記アクリル微粒子を使用する場合、2種類のアクリルゴムからなるコアシェル構造のアクリルゴムである場合が好ましく、特に好ましくはコア層がn−ブチルアクリレートであり、シェル層がメチルメタクリレートであるものが好ましい。これはゼフィアックRTMF−351としてアイカ工業株式会社から販売されている。
また、上記シリコーン微粒子としては、オルガノポリシロキサン架橋物粉体、直鎖のジメチルポリシロキサン架橋物粉体等があげられる。また、複合シリコーンゴムとしては、上記シリコーンゴムの表面にシリコーン樹脂(例えば、ポリオルガノシルセスキオキサン樹脂)を被覆したものがあげられる。これらの微粒子のうち、特に好ましいのは、直鎖のジメチルポリシロキサン架橋粉末のシリコーンゴム又はシリコーン樹脂被覆直鎖ジメチルポリシロキサン架橋粉末の複合シリコーンゴム微粒子である。これらのものは、単独で用いても良いし、2種以上を併用しても良い。また、好ましくは、ゴム粉末の形状は、添加後の粘度の増粘が少ない球状が良い。本発明の液晶シール剤において、成分(D)を使用する場合には、液晶シール剤の総量中、通常5〜50質量%、好ましくは5〜40質量%である。
[(D) Organic filler]
The liquid crystal sealant of the present invention may contain an organic filler as the component (D). Examples of the organic filler include urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles. The silicone fine particles are preferably KMP-594, KMP-597, KMP-598 (manufactured by Shin-Etsu Chemical Co., Ltd.), Trefil RTM E-5500, 9701, EP-2001 (manufactured by Toray Dow Corning), and the urethane fine particles are JB-. 800T, HB-800BK (Negami Kogyo Co., Ltd.), Lavalon RTM T320C, T331C, SJ4400, SJ5400, SJ6400, SJ4300C, SJ5300C, SJ6300C (manufactured by Mitsubishi Chemical) are preferable as styrene fine particles, and Septon RTM SEPS2004, as styrene olefin fine particles. SEPS2063 is preferable.
These organic fillers may be used alone or in combination of two or more. Further, a core-shell structure may be formed by using two or more types. Of these, acrylic fine particles and silicone fine particles are preferable.
When the acrylic fine particles are used, it is preferably an acrylic rubber having a core-shell structure composed of two types of acrylic rubber, and particularly preferably the core layer is n-butyl acrylate and the shell layer is methyl methacrylate. It is sold by Aica Kogyo Co., Ltd. as Zephyac RTM F-351.
Examples of the silicone fine particles include organopolysiloxane crosslinked powder and linear dimethylpolysiloxane crosslinked powder. Further, examples of the composite silicone rubber include those in which the surface of the silicone rubber is coated with a silicone resin (for example, polyorganosylsesquioxane resin). Of these fine particles, particularly preferable are silicone rubber of linear dimethylpolysiloxane crosslinked powder or composite silicone rubber fine particles of silicone resin-coated linear dimethylpolysiloxane crosslinked powder. These may be used alone or in combination of two or more. Further, preferably, the shape of the rubber powder is a spherical shape with less thickening of viscosity after addition. When the component (D) is used in the liquid crystal sealant of the present invention, it is usually 5 to 50% by mass, preferably 5 to 40% by mass, based on the total amount of the liquid crystal sealant.

[(E)無機フィラー]
本発明の液晶シール剤は、成分(E)として、無機フィラーを含有しても良い。本発明で含有する無機フィラーとしては、シリカ、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは溶融シリカ、結晶シリカ、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムが挙げられるが、より好ましくはシリカ、アルミナ、タルクである。これら無機フィラーは2種以上を混合して用いても良い。
無機フィラーの平均粒子径は、大きすぎると狭ギャップの液晶セル製造時に上下ガラス基板の貼り合わせ時のギャップ形成がうまくできない等の不良要因となるため、2000nm以下が適当であり、好ましくは1000nm以下、さらに好ましくは300nm以下である。また好ましい下限は10nm程度であり、さらに好ましくは100nm程度である。粒子径はレーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製;LMS−30)により測定することができる。
本発明の液晶シール剤において、無機フィラーを使用する場合には、液晶シール剤の総量中、通常5〜50質量%、好ましくは5〜40質量%である。無機フィラーの含有量が5質量%より低い場合、ガラス基板に対する接着強度が低下し、また耐湿信頼性も劣るために、吸湿後の接着強度の低下も大きくなる場合がある。又、無機フィラーの含有量が50質量%より多い場合、フィラー含有量が多すぎるため、つぶれにくく液晶セルのギャップ形成ができなくなってしまう場合がある。
[(E) Inorganic filler]
The liquid crystal sealant of the present invention may contain an inorganic filler as the component (E). Examples of the inorganic filler contained in the present invention include silica, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, and aluminum hydroxide. , Magnesium hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc., preferably molten silica, crystalline silica, silicon nitride, nitrided Examples thereof include boron, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate and aluminum silicate, but silica, alumina and talc are more preferable. Two or more kinds of these inorganic fillers may be mixed and used.
If the average particle size of the inorganic filler is too large, it may cause defects such as difficulty in forming a gap when the upper and lower glass substrates are bonded together when manufacturing a liquid crystal cell having a narrow gap. Therefore, 2000 nm or less is appropriate, preferably 1000 nm or less. , More preferably 300 nm or less. The lower limit is preferably about 10 nm, and more preferably about 100 nm. The particle size can be measured by a laser diffraction / scattering type particle size distribution measuring device (dry type) (manufactured by Seishin Enterprise Co., Ltd .; LMS-30).
When an inorganic filler is used in the liquid crystal sealant of the present invention, it is usually 5 to 50% by mass, preferably 5 to 40% by mass, based on the total amount of the liquid crystal sealant. When the content of the inorganic filler is lower than 5% by mass, the adhesive strength to the glass substrate is lowered, and the moisture resistance reliability is also poor, so that the adhesive strength after moisture absorption may be greatly reduced. Further, when the content of the inorganic filler is more than 50% by mass, the filler content is too large, so that the filler is hard to be crushed and the gap of the liquid crystal cell cannot be formed.

[(F)シランカップリング剤]
本発明の液晶シール剤は、成分(F)としてシランカップリング剤を添加して、接着強度や耐湿性の向上を図ることができる。
成分(F)としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N−(2−(ビニルベンジルアミノ)エチル)3−アミノプロピルトリメトキシシラン塩酸塩、3−メタクリロキシプロピルトリメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン等が挙げられる。これらのシランカップリング剤はKBMシリーズ、KBEシリーズ等として信越化学工業株式会社等によって販売されている為、市場から容易に入手可能である。本発明の液晶シール剤において、成分(F)を使用する場合には、液晶シール剤総量中、0.05〜3質量%が好適である。
[(F) Silane coupling agent]
In the liquid crystal sealant of the present invention, a silane coupling agent can be added as a component (F) to improve the adhesive strength and moisture resistance.
The component (F) includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltri. Methoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3- Aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, Examples thereof include 3-chloropropylmethyldimethoxysilane and 3-chloropropyltrimethoxysilane. Since these silane coupling agents are sold by Shin-Etsu Chemical Co., Ltd. as KBM series, KBE series, etc., they are easily available from the market. When the component (F) is used in the liquid crystal sealant of the present invention, 0.05 to 3% by mass is preferable in the total amount of the liquid crystal sealant.

[(H)熱硬化剤]
本発明の液晶シール剤は、成分(H)として熱硬化剤を含有する。成分(H)は、上記成分(B)熱ラジカル重合開始剤とは異なり、加熱によってラジカルを発生しない熱硬化剤を意味する。具体的には、非共有電子対や分子内のアニオンによって、求核的に反応するものであって、例えば多価アミン類、多価フェノール類、有機酸ヒドラジド化合物等を挙げる事ができる。ただしこれらに限定されるものではない。これらのうち有機酸ヒドラジド化合物が特に好適に用いられる。例えば、芳香族ヒドラジドであるテレフタル酸ジヒドラジド、イソフタル酸ジヒドラジド、2,6−ナフトエ酸ジヒドラジド、2,6−ピリジンジヒドラジド、1,2,4−ベンゼントリヒドラジド、1,4,5,8−ナフトエ酸テトラヒドラジド、ピロメリット酸テトラヒドラジド等をあげることが出来る。また、脂肪族ヒドラジド化合物であれば、例えば、ホルムヒドラジド、アセトヒドラジド、プロピオン酸ヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、ピメリン酸ジヒドラジド、セバシン酸ジヒドラジド、1,4−シクロヘキサンジヒドラジド、酒石酸ジヒドラジド、リンゴ酸ジヒドラジド、イミノジ酢酸ジヒドラジド、N,N’−ヘキサメチレンビスセミカルバジド、クエン酸トリヒドラジド、ニトリロ酢酸トリヒドラジド、シクロヘキサントリカルボン酸トリヒドラジド、1,3−ビス(ヒドラジノカルボノエチル)−5−イソプロピルヒダントイン等のヒダントイン骨格、好ましくはバリンヒダントイン骨格(ヒダントイン環の炭素原子がイソプロピル基で置換された骨格)を有するジヒドラジド化合物、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(1−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレート、ビス(2−ヒドラジノカルボニルエチル)イソシアヌレート等をあげることができる。硬化反応性と潜在性のバランスから好ましくは、イソフタル酸ジヒドラジド、マロン酸ジヒドラジド、アジピン酸ジヒドラジド、トリス(1−ヒドラジノカルボニルメチル)イソシアヌレート、トリス(1−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(2−ヒドラジノカルボニルエチル)イソシアヌレート、トリス(3−ヒドラジノカルボニルプロピル)イソシアヌレートであり、特に好ましくはトリス(2−ヒドラジノカルボニルエチル)イソシアヌレートである。
成分(H)は単独で用いても良いし、2種類以上を混合しても良い。本発明の液晶シール剤において、成分(H)を使用する場合には、液晶シール剤総量中、通常0.1〜10質量%、好ましくは1〜5質量%である。
[(H) Thermosetting agent]
The liquid crystal sealant of the present invention contains a thermosetting agent as a component (H). The component (H) means a thermosetting agent that does not generate radicals by heating, unlike the above-mentioned component (B) thermal radical polymerization initiator. Specifically, it reacts nucleophilically with an unshared electron pair or an intramolecular anion, and examples thereof include polyvalent amines, polyphenols, and organic acid hydrazide compounds. However, it is not limited to these. Of these, organic acid hydrazide compounds are particularly preferably used. For example, the aromatic hydrazides terephthalic acid dihydrazide, isophthalic acid dihydrazide, 2,6-naphthoic acid dihydrazide, 2,6-pyridinedihydrazide, 1,2,4-benzenetrihydrazide, 1,4,5,8-naphthoic acid. Examples thereof include tetrahydrazide and tetrahydrazide pyromellitic acid. In the case of an aliphatic hydrazide compound, for example, formhydrazide, acetohydrazide, propionate hydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutarate dihydrazide, adipic acid dihydrazide, pimelliate dihydrazide, sebacic acid dihydrazide. 1,4-Cyclohexanedihydrazide, tartrate dihydrazide, malic acid dihydrazide, iminodiacetic acid dihydrazide, N, N'-hexamethylenebis semi-carbazide, citrate trihydrazide, nitriloacetate trihydrazide, cyclohexanetricarboxylic acid trihydrazide, 1,3-bis ( Tris (1-hydrazinocarbonylmethyl), a dihydrazide compound having a hydrandin skeleton such as hydradinocarbonoethyl) -5-isopropylhydranthin, preferably a valine hydrantin skeleton (a skeleton in which the carbon atom of the hydrandin ring is replaced with an isopropyl group). Isocyanurate, Tris (2-hydrazinocarbonylethyl) isocyanurate, Tris (1-hydrazinocarbonylethyl) isocyanurate, Tris (3-hydrazinocarbonylpropyl) isocyanurate, Bis (2-hydrazinocarbonylethyl) isocyanurate Etc. can be given. From the balance of curing reactivity and potential, preferably isophthalic acid dihydrazide, malonic acid dihydrazide, adipate dihydrazide, tris (1-hydrazinocarbonylmethyl) isocyanurate, tris (1-hydrazinocarbonylethyl) isocyanurate, tris (1-hydrazinocarbonylethyl) isocyanurate, tris (1-hydrazinocarbonylethyl) isocyanurate, tris (1-hydrazinocarbonylethyl) isocyanurate 2-Hydradinocarbonylethyl) isocyanurate, tris (3-hydrazinocarbonylpropyl) isocyanurate, and particularly preferably tris (2-hydrazinocarbonylethyl) isocyanurate.
The component (H) may be used alone or in combination of two or more. When the component (H) is used in the liquid crystal sealant of the present invention, it is usually 0.1 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the liquid crystal sealant.

[(I)光ラジカル重合開始剤]
本願発明の液晶シール剤は、成分(I)として光ラジカル重合開始剤を含有しても良い。光ラジカル重合開始剤としては、紫外線や可視光の照射によって、ラジカルや酸を発生し、連鎖重合反応を開始させる化合物であれば特に限定されないが、例えば、ベンジルジメチルケタール、1−ヒドロキシシクロヘキシルフェニルケトン、ジエチルチオキサントン、ベンゾフェノン、2−エチルアンスラキノン、2−ヒドロキシ−2−メチルプロピオフェノン、2−メチル−〔4−(メチルチオ)フェニル〕−2−モルフォリノ−1−プロパン、2,4,6−トリメチルベンゾイルジフェニルホスヒンオキサイド、カンファーキノン、9−フルオレノン、ジフェニルジスルヒド等を挙げることができる。具体的には、IRGACURERTM 651、184、2959、127、907、369、379EG、819、784、754、500、OXE01、OXE02、DAROCURERTM1173、LUCIRINRTM TPO(いずれもBASF社製)、セイクオールRTMZ、BZ、BEE、BIP、BBI(いずれも精工化学株式会社製)等を挙げることができる。
また、液晶汚染性の観点から、分子内に(メタ)アクリル基を有するものを使用する事が好ましく、例えば2−メタクリロイルオキシエチルイソシアネートと1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2メチル−1−プロパン−1−オンとの反応生成物が好適に用いられる。この化合物は国際公開第2006/027982号記載の方法にて製造して得ることができる。
本発明の液晶シール剤において、成分(I)を使用する場合には、液晶シール剤総量中、通常0.001〜3質量%、好ましくは0.002〜2質量%である。
[(I) Photoradical polymerization initiator]
The liquid crystal sealant of the present invention may contain a photoradical polymerization initiator as the component (I). The photoradical polymerization initiator is not particularly limited as long as it is a compound that generates radicals or acids by irradiation with ultraviolet rays or visible light to initiate a chain polymerization reaction, and is, for example, benzyldimethylketal or 1-hydroxycyclohexylphenylketone. , Diethylthioxanthone, benzophenone, 2-ethylanthraquinone, 2-hydroxy-2-methylpropiophenone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propane, 2,4,6- Examples thereof include trimethylbenzoyldiphenylphosphine oxide, camphorquinone, 9-fluorenone, diphenyldisulfide and the like. Specifically, IRGACURE RTM 651, 184, 2959, 127, 907, 369, 379EG, 819, 784, 754, 500, OXE01, OXE02, DAROCURE RTM 1173, LUCIRIN RTM TPO (all manufactured by BASF), Sakeall RTM Z, BZ, BEE, BIP, BBI (all manufactured by Seiko Kagaku Co., Ltd.) and the like can be mentioned.
Further, from the viewpoint of liquid crystal contamination, it is preferable to use one having a (meth) acrylic group in the molecule, for example, 2-methacryloyloxyethyl isocyanate and 1- [4- (2-hydroxyethoxy) -phenyl]-. The reaction product with 2-hydroxy-2methyl-1-propane-1-one is preferably used. This compound can be produced and obtained by the method described in International Publication No. 2006/027982.
When the component (I) is used in the liquid crystal sealant of the present invention, it is usually 0.001 to 3% by mass, preferably 0.002 to 2% by mass, based on the total amount of the liquid crystal sealant.

本発明の液晶シール剤には、さらに必要に応じて、有機酸やイミダゾール等の硬化促進剤、ラジカル重合防止剤、顔料、レベリング剤、消泡剤、溶剤などの添加剤を配合することができる。 The liquid crystal sealant of the present invention may further contain additives such as a curing accelerator such as an organic acid or imidazole, a radical polymerization inhibitor, a pigment, a leveling agent, a defoaming agent, and a solvent, if necessary. ..

[硬化促進剤]
上記硬化促進剤としては、有機酸やイミダゾール等を挙げることができる。
有機酸としては、有機カルボン酸や有機リン酸等が挙げられるが、有機カルボン酸である場合が好ましい。具体的には、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、フランジカルボン酸等の芳香族カルボン酸、コハク酸、アジピン酸、ドデカン二酸、セバシン酸、チオジプロピオン酸、シクロヘキサンジカルボン酸、トリス(2−カルボキシメチル)イソシアヌレート、トリス(2−カルボキシエチル)イソシアヌレート、トリス(2−カルボキシプロピル)イソシアヌレート、ビス(2−カルボキシエチル)イソシアヌレート等を挙げることができる。
また、イミダゾール化合物としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−ウンデシルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−エチル−4−メチルイミダゾール(1’))エチル−s−トリアジン、2,4−ジアミノ−6(2’−メチルイミダゾール(1’))エチル−s−トリアジン・イソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾール等が挙げられる。
本発明の液晶シール剤において、硬化促進剤を使用する場合には、液晶シール剤の総量中、通常0.1〜10質量%、好ましくは1〜5質量%である。
[Curing accelerator]
Examples of the curing accelerator include organic acids and imidazoles.
Examples of the organic acid include an organic carboxylic acid and an organic phosphoric acid, and an organic carboxylic acid is preferable. Specifically, aromatic carboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, benzophenonetetracarboxylic acid, and flangecarboxylic acid, succinic acid, adipic acid, dodecanedioic acid, sebacic acid, and thiodipropionic acid. , Cyclohexanedicarboxylic acid, tris (2-carboxymethyl) isocyanurate, tris (2-carboxyethyl) isocyanurate, tris (2-carboxypropyl) isocyanurate, bis (2-carboxyethyl) isocyanurate and the like. ..
Examples of the imidazole compound include 2-methylimidazole, 2-phenylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 2-phenyl-4-methyl imidazole, 1-benzyl-2-phenyl imidazole and 1-benzyl. -2-Methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2'-methylimidazole (1') )) Ethyl-s-triazine, 2,4-diamino-6 (2'-undecylimidazole (1')) ethyl-s-triazine, 2,4-diamino-6 (2'-ethyl-4-methylimidazole) (1')) Ethyl-s-triazine, 2,4-diamino-6 (2'-methylimidazole (1')) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 Additives, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3,5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5- Examples thereof include dicyanoethoxymethylimidazole.
When a curing accelerator is used in the liquid crystal sealant of the present invention, it is usually 0.1 to 10% by mass, preferably 1 to 5% by mass, based on the total amount of the liquid crystal sealant.

[ラジカル重合防止剤]
上記ラジカル重合防止剤としては、光ラジカル重合開始剤や熱ラジカル重合開始剤等から発生するラジカルと反応して重合を防止する化合物であれば特に限定されるものではなく、キノン系、ピペリジン系、ヒンダードフェノール系、ニトロソ系等を用いることができる。具体的には、ナフトキノン、2−ヒドロキシナフトキノン、2−メチルナフトキノン、2−メトキシナフトキノン、2,2,6,6−テトラメチルピペリジン−1−オキシル、2,2,6,6−テトラメチル−4−ヒドロキシピペリジン−1−オキシル、2,2,6,6−テトラメチル−4−メトキシピペリジン−1−オキシル、2,2,6,6−テトラメチル−4−フェノキシピペリジン−1−オキシル、ハイドロキノン、2−メチルハイドロキノン、2−メトキシハイドロキノン、パラベンゾキノン、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−ブチルクレゾール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、3,9−ビス[1,1−ジメチル−2−[β―(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル]、2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニルプロピオネート)メタン、1,3,5−トリス(3’,5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−sec−トリアジン−2,4,6−(1H,3H,5H)トリオン、パラメトキシフェノール、4−メトキシ−1−ナフトール、チオジフェニルアミン、N−ニトロソフェニルヒドロキシアミンのアルミニウム塩、商品名アデカスタブLA−81、商品名アデカスタブLA−82(株式会社アデカ製)等が挙げられるが、これらに限定されるものではない。これらのうちナフトキノン系、ハイドロキノン系、ニトロソ系ピペラジン系のラジカル重合防止剤が好ましく、ナフトキノン、2−ヒドロキシナフトキノン、ハイドロキノン、2,6−ジ−t−ブチル−P−クレゾール、ポリストップ7300P(伯東株式会社製)が更に好ましく、ポリストップ7300P(伯東株式会社製)が最も好ましい。
ラジカル重合防止剤の含有量としては本発明の液晶シール剤総量中、0.0001〜1質量%が好ましく、0.001〜0.5質量%が更に好ましく、0.01〜0.2質量%が特に好ましい。
[Radical polymerization inhibitor]
The radical polymerization inhibitor is not particularly limited as long as it is a compound that reacts with radicals generated from a photoradical polymerization initiator, a thermal radical polymerization initiator, or the like to prevent polymerization, and is not particularly limited. Hindered radical type, nitroso type and the like can be used. Specifically, naphthoquinone, 2-hydroxynaphthoquinone, 2-methylnaphthoquinone, 2-methoxynaphthoquinone, 2,2,6,6 - tetramethylpiperidin-1-oxyl, 2,2,6,6 - tetramethyl-4. -Hydroxypiperidine-1-oxyl, 2,2,6,6 - tetramethyl-4-methoxypiperidine-1-oxyl, 2,2,6,6 - tetramethyl-4-phenoxypiperidine-1-oxyl, hydroquinone, 2-Methylhydroquinone, 2-methoxyhydroquinone, parabenzoquinone, butylated hydroxyanisol, 2,6-di-t-butyl-4-ethylphenol, 2,6-di-t-butylcresol, stearyl-β- (3) , 5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis ( 3-methyl-6-t-butylphenol) ), 4,4'-Butylidenebis (3-methyl-6-t-butylphenol), 3,9-bis [1,1-dimethyl-2- [β- (3-t-butyl-4-hydroxy-5-) Methylphenyl) propionyloxy] ethyl], 2,4,8,10-tetraoxaspiro [5,5] undecane, tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-) Hydroxyphenylpropionate) Methyl ] , 1,3,5-tris (3', 5'-di-t-butyl-4'-hydroxybenzyl) -sec-triazine-2,4,6- (1H, 3H, 5H) Trion, paramethoxyphenol, 4-methoxy-1-naphthol, thiodiphenylamine, aluminum salt of N-nitrosophenylhydroxyamine, trade name Adecastab LA-81, trade name Adecastab LA-82 (manufactured by Adeca Co., Ltd.), etc. However, it is not limited to these. Of these, naphthoquinone-based, hydroquinone-based, and nitroso-based piperazine-based radical polymerization inhibitors are preferable, and naphthoquinone, 2-hydroxynaphthoquinone, hydroquinone, 2,6-di-t-butyl-P-cresol, and Polystop 7300P (Hakuto Co., Ltd.) (Manufactured by a company) is more preferable, and Polystop 7300P (manufactured by Hakuto Co., Ltd.) is most preferable.
The content of the radical polymerization inhibitor is preferably 0.0001 to 1% by mass, more preferably 0.001 to 0.5% by mass, and 0.01 to 0.2% by mass, based on the total amount of the liquid crystal sealant of the present invention. Is particularly preferable.

本発明の液晶シール剤を得る方法の一例としては、次に示す方法がある。まず、(A)成分、必要に応じて(C)成分、(G)成分、(I)成分を加熱溶解する。次いで室温まで冷却後、必要に応じて(B)成分、(D)成分、(E)成分、(F)成分、(H)成分、消泡剤、及びレベリング剤、溶剤等を添加し、公知の混合装置、例えば3本ロール、サンドミル、ボールミル等により均一に混合し、金属メッシュにて濾過することにより本発明の液晶シール剤を製造することができる。 As an example of the method for obtaining the liquid crystal sealant of the present invention, there is the following method. First, the component (A),, if necessary, the component (C), the component (G), and the component (I) are melted by heating. Then, after cooling to room temperature, the component (B), the component (D), the component (E), the component (F), the component (H), the defoaming agent, the leveling agent, the solvent and the like are added as necessary, and the known components The liquid crystal sealant of the present invention can be produced by uniformly mixing with a mixing device such as a three-roll, sand mill, ball mill or the like and filtering with a metal mesh.

本発明の液晶表示セルは、基板に所定の電極を形成した一対の基板を所定の間隔に対向配置し、周囲を本発明の液晶シール剤でシールし、その間隙に液晶が封入されたものである。封入される液晶の種類は特に限定されない。ここで、基板とはガラス、石英、プラスチック、シリコン等からなる少なくとも一方に光透過性がある組み合わせの基板から構成される。その製法としては、本発明の液晶シール剤に、グラスファイバー等のスペーサ(間隙制御材)を添加後、該一対の基板の一方にディスペンサー、またはスクリーン印刷装置等を用いて該液晶シール剤を塗布した後、必要に応じて、80〜120℃で仮硬化を行う。その後、該液晶シール剤の堰の内側に液晶を滴下し、真空中にてもう一方のガラス基板を重ね合わせ、ギャップ出しを行う。ギャップ形成後、90〜130℃で1時間〜2時間硬化することにより本発明の液晶表示セルを得ることができる。また光熱併用型として使用する場合は、紫外線照射機により液晶シール剤部に紫外線を照射させて光硬化させる。紫外線照射量は、好ましくは500〜6000mJ/cm、より好ましくは1000〜4000mJ/cmの照射量が好ましい。その後必要に応じて、90〜130℃で1〜2時間硬化することにより本発明の液晶表示セルを得ることができる。このようにして得られた本発明の液晶表示セルは、液晶汚染による表示不良が無く、接着性、耐湿信頼性に優れたものである。スペーサとしては、例えばグラスファイバー、シリカビーズ、ポリマービーズ等があげられる。その直径は、目的に応じ異なるが、通常2〜8μm、好ましくは4〜7μmである。その使用量は、本発明の液晶シール剤100質量部に対し通常0.1〜4質量部、好ましくは0.5〜2質量部、更に、好ましくは0.9〜1.5質量部程度である。 The liquid crystal display cell of the present invention is formed by arranging a pair of substrates having predetermined electrodes formed on the substrates facing each other at predetermined intervals, sealing the periphery with the liquid crystal sealant of the present invention, and enclosing the liquid crystal in the gap. is there. The type of liquid crystal to be enclosed is not particularly limited. Here, the substrate is composed of a combination of substrates made of glass, quartz, plastic, silicon, etc., which has light transmission in at least one of them. As a manufacturing method thereof, after adding a spacer (gap control material) such as glass fiber to the liquid crystal sealant of the present invention, the liquid crystal sealant is applied to one of the pair of substrates using a dispenser, a screen printing device or the like. After that, if necessary, temporary curing is performed at 80 to 120 ° C. After that, the liquid crystal is dropped inside the weir of the liquid crystal sealant, and the other glass substrate is overlapped in vacuum to create a gap. After forming the gap, the liquid crystal display cell of the present invention can be obtained by curing at 90 to 130 ° C. for 1 to 2 hours. When used as a combined type with light and heat, the liquid crystal sealant portion is irradiated with ultraviolet rays by an ultraviolet irradiator to be photocured. UV irradiation dose is preferably 500~6000mJ / cm 2, more preferably the dose of 1000~4000mJ / cm 2 is preferred. Then, if necessary, the liquid crystal display cell of the present invention can be obtained by curing at 90 to 130 ° C. for 1 to 2 hours. The liquid crystal display cell of the present invention thus obtained is excellent in adhesiveness and moisture resistance and reliability without display defects due to liquid crystal contamination. Examples of the spacer include glass fiber, silica beads, polymer beads and the like. Its diameter varies depending on the purpose, but is usually 2 to 8 μm, preferably 4 to 7 μm. The amount used is usually 0.1 to 4 parts by mass, preferably 0.5 to 2 parts by mass, and more preferably 0.9 to 1.5 parts by mass with respect to 100 parts by mass of the liquid crystal sealant of the present invention. is there.

本発明の液晶シール剤は、熱硬化性が非常に良好であり、液晶滴下工法における加熱工程において速やかに硬化し、その硬化物は接着性に優れ、且つ液晶汚染性が良好なため、本発明の液晶シール剤を用いることにより、信頼性に優れる液晶表示セルを作成することが可能である。 The liquid crystal sealant of the present invention has very good thermosetting property, cures quickly in the heating step in the liquid crystal dropping method, and the cured product has excellent adhesiveness and good liquid crystal contamination. By using the liquid crystal sealant of No. 1, it is possible to produce a liquid crystal display cell having excellent reliability.

以下、実施例により本発明を更に詳細に説明するが、本発明は実施例に限定されるものではない。なお、特別の記載のない限り、本文中「部」及び「%」とあるのは質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples. Unless otherwise specified, "part" and "%" in the text are based on mass.

[合成例1]
[ビスフェノールA型エポキシ化合物の全アクリル化物の合成]
ビスフェノールA型エポキシ化合物282.5g(製品名:YD−8125、新日鉄化学株式会社製)をトルエン266.8gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン0.8gを加え、60℃まで昇温した。その後、エポキシ基の100%当量のアクリル酸117.5gを加え更に80℃まで昇温し、これに反応触媒であるトリメチルアンモニウムクロライド0.6gを添加して、98℃で約30時間攪拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とするビスフェノールA型エポキシ化合物のアクリルエステル化物395gを得た。
[Synthesis Example 1]
[Synthesis of all acrylates of bisphenol A type epoxy compounds]
282.5 g of bisphenol A type epoxy compound (product name: YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.) was dissolved in 266.8 g of toluene, 0.8 g of dibutylhydroxytoluene was added as a polymerization inhibitor, and the temperature was raised to 60 ° C. It was warm. Then, 117.5 g of acrylic acid equivalent to 100% of the epoxy group was added, the temperature was further raised to 80 ° C., 0.6 g of trimethylammonium chloride as a reaction catalyst was added thereto, and the mixture was stirred at 98 ° C. for about 30 hours. A reaction solution was obtained. This reaction solution was washed with water and toluene was distilled off to obtain 395 g of an acrylic esterified product of the target bisphenol A type epoxy compound.

[合成例2]
[ビスフェノールA型エポキシ化合物のハーフアクリル化物の合成]
ビスフェノールA型エポキシ樹脂836g(日本化薬株式会社製RE−310S)をトルエン1000gに溶解し、これに重合禁止剤としてジブチルヒドロキシトルエン3gを加え、60℃まで昇温した。その後、エポキシ基の50%当量のアクリル酸165g(株式会社日本触媒製)と反応触媒であるトリプロピルアンモニウムヒドロキシドの40%水溶液5gを添加して、98℃で約10時間攪拌し、反応液を得た。この反応液を水洗し、トルエンを留去することにより、目的とする部分アクリル化ビスフェノールA型エポキシ樹脂995gを得た。
[Synthesis Example 2]
[Synthesis of half-acrylic compound of bisphenol A type epoxy compound]
836 g of bisphenol A type epoxy resin (RE-310S manufactured by Nippon Kayaku Co., Ltd.) was dissolved in 1000 g of toluene, 3 g of dibutylhydroxytoluene was added as a polymerization inhibitor, and the temperature was raised to 60 ° C. Then, 165 g of acrylic acid equivalent to 50% of the epoxy group (manufactured by Nippon Shokubai Co., Ltd.) and 5 g of a 40% aqueous solution of tripropylammonium hydroxide as a reaction catalyst were added, and the mixture was stirred at 98 ° C. for about 10 hours to prepare a reaction solution. Got The reaction solution was washed with water and toluene was distilled off to obtain 995 g of the target partially acrylicized bisphenol A type epoxy resin.

[合成例3]
[ポリエステル型ウレタンアクリレートの合成]
還流冷却器、攪拌機、温度計、温度調節装置を備えた反応器に、ポリオール化合物としてポリメチルペンタンジオールアジペート((株)クラレ製:P−3010、水酸基価:37.9mg・KOH/g)を2961g(1.00mol)、イソシアネート化合物としてイソホロンジイソシアネートを289g(1.30mol)、ウレタン化反応触媒としてオクチル酸スズを0.5g添加し80℃で8時間反応させた。次に、重合禁止剤として4−メトキシフェノールを1.7g、少なくとも1つ以上の水酸基を有する(メタ)アクリレート化合物として大阪有機化学工業(株)製2−ヒドロキシエチルアクリレートを71g(0.61mol)添加し、80℃で反応させ、NCO含有量が0.1%以下となったところを反応の終点とし、ポリウレタン化合物を得た。
[Synthesis Example 3]
[Synthesis of polyester type urethane acrylate]
Polymethylpentanediol adipate (manufactured by Kuraray Co., Ltd .: P-3010, hydroxyl value: 37.9 mg, KOH / g) was added as a polyol compound to a reactor equipped with a reflux condenser, a stirrer, a thermometer, and a temperature controller. 2961 g (1.00 mol), 289 g (1.30 mol) of isophorone diisocyanate as an isocyanate compound, and 0.5 g of tin octylate as a urethanization reaction catalyst were added and reacted at 80 ° C. for 8 hours. Next, 1.7 g of 4-methoxyphenol as a polymerization inhibitor and 71 g (0.61 mol) of 2-hydroxyethyl acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd. as a (meth) acrylate compound having at least one hydroxyl group. The mixture was added and reacted at 80 ° C., and a polyurethane compound was obtained when the NCO content was 0.1% or less as the end point of the reaction.

[実施例1〜4、比較例1〜2の調製]
下記表1に示す割合で、合成例1で合成した化合物、合成例2、合成例3で合成した化合物等の硬化性化合物(成分(A))、及び液状ゴム(成分(B))に、光ラジカル重合開始剤(成分(I))を加え、90℃で加熱溶解した。室温まで冷却し、熱ラジカル重合開始剤(成分(C))、シランカップリング剤(成分(F))、熱硬化剤(成分(H))、有機フィラー(成分(D))、無機フィラー(成分(E))等を加え、攪拌した後、3本ロールミルにて分散させ、金属メッシュ(635メッシュ)で濾過し、液晶滴下工法用シール剤(実施例1〜4、比較例1〜2)を調製した。
[Preparation of Examples 1 to 4 and Comparative Examples 1 and 2]
In the ratios shown in Table 1 below, curable compounds (component (A)) such as the compound synthesized in Synthesis Example 1, Synthesis Example 2, and the compound synthesized in Synthesis Example 3, and liquid rubber (component (B)) are added. A photoradical polymerization initiator (component (I)) was added, and the mixture was heated and dissolved at 90 ° C. Cool to room temperature, thermal radical polymerization initiator (component (C)), silane coupling agent (component (F)), thermosetting agent (component (H)), organic filler (component (D)), inorganic filler ( Component (E)) and the like are added, stirred, dispersed with a three-roll mill, filtered with a metal mesh (635 mesh), and a sealant for a liquid crystal dropping method (Examples 1 to 4, Comparative Examples 1 to 2). Was prepared.

[ガラス転移温度]
実施例、比較例で製造された液晶シール剤をポリエチレンテレフタレート(PET)フィルムに挟み厚み100μmの薄膜としたものにメタルハライドランプ(ウシオ電機株式会社製)にて3000mJ/cm(100mW/cmで30秒)の紫外線を照射したのち120℃のオーブンに40分間投入して硬化させた。硬化後PETフィルムをはがしシール剤硬化膜を得られたのち、これを50mm×5mmの短冊状にカットしサンプル片とした。このサンプル片を動的粘弾性測定装置(DMS−6100:エスアイアイ・ナノテクノロジー社製)の引っ張りモードにて周波数10Hz、昇温温度3℃/分の条件で測定を行い、損失弾性率と貯蔵弾性率との比(JIS K 7244−1)から損失係数Tanδが得られる。得られた損失係数Tanδが最大値となる温度をガラス転移温度とした。結果を表1に示す。
[Glass transition temperature]
The liquid crystal sealant produced in Examples and Comparative Examples was sandwiched between polyethylene terephthalate (PET) films to form a thin film with a thickness of 100 μm, and then a metal halide lamp (manufactured by Ushio Denki Co., Ltd.) was used at 3000 mJ / cm 2 (100 mW / cm 2) . After irradiating with ultraviolet rays (30 seconds), the film was placed in an oven at 120 ° C. for 40 minutes to cure. After curing, the PET film was peeled off to obtain a sealant cured film, which was cut into strips of 50 mm × 5 mm to prepare sample pieces. This sample piece was measured in the tensile mode of a dynamic viscoelasticity measuring device (DMS-6100: manufactured by SII Nanotechnology) under the conditions of a frequency of 10 Hz and a temperature rise temperature of 3 ° C./min, and the loss elastic modulus and storage. The loss coefficient Tan δ can be obtained from the ratio with the elastic modulus (JIS K 7244-1). The temperature at which the obtained loss coefficient Tan δ became the maximum value was defined as the glass transition temperature. The results are shown in Table 1.

[実施例1〜4、比較例1〜2の評価]
[透湿度]
実施例及び比較例で製造された液晶シール剤をポリエチレンテレフタレート(PET)フィルムに挟み厚み100μmの薄膜としたものにUV照射機により3000mJ/cmの紫外線を照射後、オーブンに投入して120℃40分熱硬化させ、硬化後PETフィルムを剥がしてサンプルとした。サンプルの60℃90%での透湿度を透湿度測定機(Lessy社製:L80−5000)にて測定した。結果を表1に示す。
[透湿度の評価]
○:200g/m ・24時間 未満
×:200g/m ・24時間 以上
[Evaluation of Examples 1 to 4 and Comparative Examples 1 and 2]
[Humidity permeability]
The liquid crystal sealant produced in Examples and Comparative Examples was sandwiched between polyethylene terephthalate (PET) films to form a thin film having a thickness of 100 μm, which was irradiated with ultraviolet rays of 3000 mJ / cm 2 by a UV irradiator and then put into an oven at 120 ° C. It was heat-cured for 40 minutes, and after curing, the PET film was peeled off to prepare a sample. The moisture permeability of the sample at 60 ° C. and 90% was measured with a moisture permeability measuring machine (manufactured by Lessy: L80-5000). The results are shown in Table 1.
[Evaluation of moisture permeability]
○: 200g / m 2 · 24 hours less ×: 200g / m 2 · 24 hours or more

[屈曲性]
ガラス転移点測定方法と同様の方法によりシール剤硬化膜を作製し、長さ50mm、幅5mm、厚さ0.1mmの長方形にカットし、サンプル片とした。得られたサンプルを2mmΦの棒に巻き付け、10秒間固定した。試験片が割れていないものを○、試験片が割れたものを×として評価した。結果を表1に示す。
[屈曲性の評価]
○:試験片にひび割れがないもの
×:試験片が割れたもの
[Flexibility]
A cured sealant film was prepared by the same method as the glass transition point measurement method, and cut into a rectangular shape having a length of 50 mm, a width of 5 mm, and a thickness of 0.1 mm to prepare a sample piece. The obtained sample was wound around a 2 mmΦ rod and fixed for 10 seconds. Those with unbroken test pieces were evaluated as ◯, and those with broken test pieces were evaluated as x. The results are shown in Table 1.
[Evaluation of flexibility]
◯: The test piece is not cracked ×: The test piece is cracked

[せん断接着強度]
実施例及び比較例で製造された液晶シール剤100gにスペーサとして5μmのグラスファイバー1gを添加して混合撹拌を行う。50mm×50mmの素ガラス上にシール剤を滴下し、その上から2mm×2mmのガラスチップを載せて、UV照射器により3000mJ/cm の紫外線を照射することで試験片を得た。
得られた試験片のせん断接着強度をボンドテスター(西進商事株式会社製:SS−30WD)にて測定した。結果を表1に示す。
[Shear adhesive strength]
1 g of 5 μm glass fiber is added as a spacer to 100 g of the liquid crystal sealant produced in Examples and Comparative Examples, and mixing and stirring are performed. A test piece was obtained by dropping a sealant on a 50 mm × 50 mm raw glass, placing a 2 mm × 2 mm glass chip on the glass chip, and irradiating with an ultraviolet ray of 3000 mJ / cm 2 with a UV irradiator.
The shear adhesive strength of the obtained test piece was measured with a bond tester (manufactured by Seishin Shoji Co., Ltd .: SS-30WD). The results are shown in Table 1.

Figure 0006837781
Figure 0006837781

表1の結果より、(A)硬化性化合物、及び(B)液状ゴムを含有し、硬化物のガラス転移点が二つ以上存在するシール剤は透湿度が低く、屈曲性が高い。また、接着強度等の一般特性においても優れる。 From the results in Table 1, the sealant containing (A) a curable compound and (B) a liquid rubber and having two or more glass transition points of the cured product has low moisture permeability and high flexibility. It is also excellent in general properties such as adhesive strength.

本発明の液晶シール剤は透湿度が低く、屈曲性が高い為フレキシブルディスプレイや湾曲形状のディスプレイにも適用することができる。
Since the liquid crystal sealant of the present invention has low moisture permeability and high flexibility, it can be applied to flexible displays and curved displays.

Claims (11)

(A)硬化性化合物、(B)液状ゴム、及び(I)光ラジカル重合開始剤を含有し、前記成分(A)中に、(A−1)(メタ)アクリル化合物、及び(A−2)エポキシ化合物を含有する液晶滴下工法用液晶シール剤であって、当該液晶シール剤の硬化物のガラス転移点が二つ以上存在する液晶滴下工法用液晶シール剤。 It contains (A) a curable compound , ( B) a liquid crystal , and (I) a photoradical polymerization initiator , and (A-1) (meth) acrylic compound and (A-2) are contained in the component (A). ) A liquid crystal sealant for a liquid crystal dripping method containing an epoxy compound, which has two or more glass transition points of a cured product of the liquid crystal sealant. 前記ガラス転移点のうち、一つが10℃以下であり、一つが40℃以上である請求項1に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for a liquid crystal dropping method according to claim 1, wherein one of the glass transition points is 10 ° C. or lower and one is 40 ° C. or higher. 更に、(C)熱ラジカル重合開始剤を含有する請求項1又は2に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for the liquid crystal dropping method according to claim 1 or 2, further comprising (C) a thermal radical polymerization initiator. 更に、(D)有機フィラーを含有する請求項1乃至のいずれか一項に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for the liquid crystal dropping method according to any one of claims 1 to 3 , further comprising (D) an organic filler. 前記成分(D)が、ウレタン微粒子、アクリル微粒子、スチレン微粒子、スチレンオレフィン微粒子、及びシリコーン微粒子からなる群より選択される1又は2以上の有機フィラーである請求項に記載の液晶滴下工法用液晶シール剤。 The liquid crystal for the liquid crystal dropping method according to claim 4 , wherein the component (D) is one or more organic fillers selected from the group consisting of urethane fine particles, acrylic fine particles, styrene fine particles, styrene olefin fine particles, and silicone fine particles. Sealant. 更に、(E)無機フィラーを含有する請求項1乃至のいずれか一項に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for the liquid crystal dropping method according to any one of claims 1 to 5 , further comprising (E) an inorganic filler. 更に、(F)シランカップリング剤を含有する請求項1乃至のいずれか一項に記載の晶滴下工法用液晶シール剤。 The liquid crystal sealant for the crystal dropping method according to any one of claims 1 to 6 , further comprising (F) a silane coupling agent. 更に、(H)熱硬化剤を含有する請求項1乃至のいずれか一項に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for the liquid crystal dropping method according to any one of claims 1 to 7 , further comprising (H) a thermosetting agent. 前記成分(H)が有機酸ヒドラジド化合物である請求項8に記載の液晶滴下工法用液晶シール剤。 The liquid crystal sealant for a liquid crystal dropping method according to claim 8, wherein the component (H) is an organic acid hydrazide compound. 2枚の基板により構成される液晶表示セルにおいて、一方の基板に形成された請求項1乃至のいずれか一項に記載の液晶滴下工法用液晶シール剤の堰の内側に液晶を滴下した後、もう一方の基板を貼り合わせ、その後熱により硬化することを特徴とする液晶表示セルの製造方法。 In a liquid crystal display cell composed of two substrates, after dropping liquid crystal into the weir of the liquid crystal sealant for the liquid crystal dropping method according to any one of claims 1 to 9, which is formed on one of the substrates. A method for manufacturing a liquid crystal display cell, which comprises bonding the other substrate and then curing by heat. 請求項1乃至のいずれか一項に記載の液晶滴下工法用液晶シール剤を硬化して得られる硬化物でシールされた液晶表示セル。 A liquid crystal display cell sealed with a cured product obtained by curing the liquid crystal sealant for the liquid crystal dropping method according to any one of claims 1 to 9.
JP2016169059A 2016-08-31 2016-08-31 Liquid crystal sealant and liquid crystal display cell using it Active JP6837781B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016169059A JP6837781B2 (en) 2016-08-31 2016-08-31 Liquid crystal sealant and liquid crystal display cell using it
KR1020170107152A KR20180025212A (en) 2016-08-31 2017-08-24 Liquid crystal sealing agent and liquid crystal display cell using the same, and manufacturing method for liquid crystal display cell
CN201710741134.2A CN107793954B (en) 2016-08-31 2017-08-25 Liquid crystal sealing agent and liquid crystal display cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169059A JP6837781B2 (en) 2016-08-31 2016-08-31 Liquid crystal sealant and liquid crystal display cell using it

Publications (3)

Publication Number Publication Date
JP2018036468A JP2018036468A (en) 2018-03-08
JP2018036468A5 JP2018036468A5 (en) 2019-03-22
JP6837781B2 true JP6837781B2 (en) 2021-03-03

Family

ID=61532185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169059A Active JP6837781B2 (en) 2016-08-31 2016-08-31 Liquid crystal sealant and liquid crystal display cell using it

Country Status (3)

Country Link
JP (1) JP6837781B2 (en)
KR (1) KR20180025212A (en)
CN (1) CN107793954B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149041B2 (en) * 2019-03-15 2022-10-06 日本化薬株式会社 display sealant
JP7164469B2 (en) * 2019-03-15 2022-11-01 日本化薬株式会社 Liquid crystal sealant for liquid crystal dropping method
JP7164470B2 (en) * 2019-03-15 2022-11-01 日本化薬株式会社 Liquid crystal sealant for liquid crystal drop method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258780A (en) * 1999-03-05 2000-09-22 Mitsubishi Electric Corp Liquid crystal display device and its production
JP2001064483A (en) * 1999-08-27 2001-03-13 Sumitomo Bakelite Co Ltd Sealing material composition for liquid crystal display device
TW200303439A (en) * 2002-02-04 2003-09-01 Mitsui Chemicals Inc Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell
JP2009013282A (en) * 2007-07-04 2009-01-22 Nippon Kayaku Co Ltd Liquid crystal sealing agent and liquid crystal display cell using the same
EP2756050A4 (en) * 2011-09-15 2015-06-03 Henkel Ag & Co Kgaa Sealant composition
JP5685346B1 (en) * 2013-05-15 2015-03-18 積水化学工業株式会社 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP2016109996A (en) * 2014-12-10 2016-06-20 日本化薬株式会社 Liquid crystal sealant and liquid crystal cells using the same
JP6793470B2 (en) * 2016-06-02 2020-12-02 三井化学株式会社 Sealing material for liquid crystal dripping method, liquid crystal display panel and manufacturing method of liquid crystal display panel

Also Published As

Publication number Publication date
KR20180025212A (en) 2018-03-08
JP2018036468A (en) 2018-03-08
CN107793954A (en) 2018-03-13
CN107793954B (en) 2021-07-27

Similar Documents

Publication Publication Date Title
JP6478313B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6744167B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6979326B2 (en) Adhesives for resin compositions and electronic components
WO2014014013A1 (en) Liquid-crystal sealant and lcd cell using same
JP6238850B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP6289372B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2016024243A (en) Liquid crystal sealant and liquid crystal cell using the same
JP2016109997A (en) Liquid crystal sealant and liquid crystal cells using the same
JP6837781B2 (en) Liquid crystal sealant and liquid crystal display cell using it
JP2020147643A (en) Resin composition and adhesive for electronic components
JP6744168B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2019137849A (en) Display sealant
JP2018036469A (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2022074989A (en) Sealant for display
JP2022092916A (en) Liquid crystal sealant for liquid crystal dropping method
JP6710125B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP7136536B2 (en) display sealant
JP2016109996A (en) Liquid crystal sealant and liquid crystal cells using the same
JP2016038509A (en) Liquid crystal sealing agent and liquid crystal display cell having the same
JP6785281B2 (en) Liquid crystal sealant and liquid crystal display cell using it
JP7164469B2 (en) Liquid crystal sealant for liquid crystal dropping method
JP7164470B2 (en) Liquid crystal sealant for liquid crystal drop method
JP2024115813A (en) Liquid crystal sealant for liquid crystal dropping method and liquid crystal display cell using same
JP6341603B2 (en) Liquid crystal sealant and liquid crystal display cell using the same
JP2016206474A (en) Liquid crystal sealant and liquid crystal display cell using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6837781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250