JP6833439B2 - 振動型駆動装置とその制御方法及び電子機器 - Google Patents

振動型駆動装置とその制御方法及び電子機器 Download PDF

Info

Publication number
JP6833439B2
JP6833439B2 JP2016197199A JP2016197199A JP6833439B2 JP 6833439 B2 JP6833439 B2 JP 6833439B2 JP 2016197199 A JP2016197199 A JP 2016197199A JP 2016197199 A JP2016197199 A JP 2016197199A JP 6833439 B2 JP6833439 B2 JP 6833439B2
Authority
JP
Japan
Prior art keywords
frequency
vibrating
moving body
vibration
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016197199A
Other languages
English (en)
Other versions
JP2018061347A5 (ja
JP2018061347A (ja
Inventor
悠貴 小田
悠貴 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016197199A priority Critical patent/JP6833439B2/ja
Priority to US15/704,470 priority patent/US10695799B2/en
Publication of JP2018061347A publication Critical patent/JP2018061347A/ja
Publication of JP2018061347A5 publication Critical patent/JP2018061347A5/ja
Application granted granted Critical
Publication of JP6833439B2 publication Critical patent/JP6833439B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0648Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element of rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、動型駆動装置とその制御方法及び電子機器に関する。
振動体と被駆動体とを加圧接触させ、振動体に所定の駆動振動を励起することにより被駆動体と振動体とを相対的に移動させる振動型アクチュエータとして、種々の形態のものが知られている。図12は、リニア駆動型の振動型アクチュエータの一例である振動型アクチュエータ300の概略構成と駆動原理を説明する図である。後述する本発明の実施形態に係る並進駆動装置は、振動型アクチュエータ300を用いて構成されるため、ここで、振動型アクチュエータ300の構成と駆動原理について説明する。
図12(a)は、振動型アクチュエータ300の概略構成を示す斜視図である。図12(b)は、振動型アクチュエータ300を構成する圧電素子304に形成された電極パタ−ンと分極方向を説明する図である。図12(c)は、振動型アクチュエータ300を構成する振動体305に励起される第1の振動モードを説明する図である。図12(d)は、振動体305に励起される第2の振動モードを説明する図である。
振動型アクチュエータ300は、振動体305と被駆動体301を有する。振動体305は、弾性体303と、2つの突起部302と、圧電素子304とを有する。説明の便宜上、ここでは、振動体305は不図示の固定手段に固定されており、被駆動体301が振動体305に対して相対的に移動するものとする。突起部302は、矩形板状の弾性体303の一方の面に弾性体303と一体的に形成され又は溶接等により接合されている。電気−機械エネルギ変換素子である圧電素子304は、弾性体303において突起部302が設けられている面の反対側の面に接着剤等により接合されている。振動体305と被駆動体301とは、突起部302の上面において、不図示の加圧手段によって突起部302の突出方向(Z方向)を加圧方向として加圧接触している。
圧電素子304に2相の交流電圧VA,VBを印加して振動体305に第1の振動モード及び第2の振動モードの振動を発生させることで、突起部302と加圧接触する被駆動体301を2つの突起部302を結ぶ駆動方向(X方向)に移動させることができる。具体的には、圧電素子304には、2つの突起部302を結ぶX方向に2等分された電極領域が形成されており、各電極領域における分極方向は、同一方向(+)となっている。圧電素子304の2つの電極領域のうち、図12(b)の右側の電極領域には交流電圧VBが印加され、左側の電極領域には交流電圧VAが印加される。
交流電圧VB,VAを、第1の振動モードの共振周波数付近の周波数とし、且つ、同位相とすると、圧電素子304全体がある瞬間には伸びて別の瞬間には縮む。その結果、図12(c)に示す第1の振動モードの振動が振動体305に励起される。ここで、突起部302は、第1の振動モードの振動で腹となる位置の近傍に設けられているため、Z方向に振動(変位)する。また、交流電圧VB,VAを第2の振動モードの共振周波数付近の周波数とし、且つ、180°ずれた位相とすると、ある瞬間には圧電素子304の右側の電極領域が縮むと同時に左側の電極領域が伸び、別の瞬間には逆の関係となる。この結果、振動体305には第2の振動モードの振動が発生する。突起部302は、第2の振動モードの振動で節となる位置の近傍に設けられているため、X方向に振動(変位)する。
したがって、第1の振動モードと第2の振動モードの各共振周波数に近い周波数の交流電圧を圧電素子304の電極に印加することにより、第1の振動モードと第2の振動モードの各振動とが合成された振動を振動体305励起することができる。これにより、突起部302はZ−X面内で楕円運動を行う。被駆動体301は、突起部302に励起された楕円運動によって摩擦駆動され、振動体305に対してX方向に相対移動する。
2相の交流電圧VB,VAの位相差を変えることによって、第1の振動モードの振幅と第2の振動モードの振動との振幅比を変えることができ、これにより、被駆動体301の速度(移動速度)を調整することができる。交流電圧VB,VAの位相差を変更することにより被駆動体301の速度を制御する方法の1つが特許文献1に記載されている。図13は、振動型アクチュエータ300の駆動時における位相差、周波数、速度の関係を説明する図である。図13(a)は、制御量と位相差及び周波数の関係を表している。ここでは、制御量の絶対値が小さい領域では位相差を変化させ(位相差制御領域)、制御量の絶対値が大きい領域では周波数を変化させ(周波数制御領域)ており、制御量に応じて位相差による制御と周波数による制御とを切り換えている。位相差制御領域では、周波数は周波数上限値に固定され、位相差が位相差上限値から下限値(例えば+120度〜−120度)の範囲で調整されることで、駆動方向の反転や停止と低速領域での速度が制御される。また、周波数制御領域では、位相差は位相差下限値又は上限値に固定され、周波数が周波数上限値から下限値(例えば98〜95kHz)の範囲で調整されることで、高速領域での速度が制御される。
図13(b)は、制御量に基づく被駆動体301の速度の変化を表している。低速領域(−50mm/s〜+50mm/s)では位相差制御が行われ、それ以外の高速領域では周波数制御が行われる。位相差制御では、突起部302に生じる楕円運動は楕円比が変化するように制御され、位相差の符号が反転することで楕円運動の方向が変化する。周波数制御では、楕円運動の楕円比は一定のまま、楕円振幅が変化するように制御される。このとき、制御量に対して被駆動体301の速度ができる限り線形になるように、位相差と周波数が設定される。このとき、周波数上限値の設定で振動型アクチュエータ300の特性が変わることが知られており、例えば、特許文献2に記載されているように、周波数上限値を設定することができる。
特許第5328259号公報 特開平07−95778号公報
上記特許文献1に記載された技術では、共振周波数よりも高い周波数を周波数上限値(以下「起動周波数」という)として振動型アクチュエータを起動し、駆動周波数を下げていく制御を行うことにより所望の速度に達するまで加速させている。また、上記特許文献2に記載された技術では、振動型アクチュエータにかかる負荷を判別し、その負荷に応じた起動周波数を設定している。具体的には、負荷が小さいときには起動周波数を低くして素早い起動を実現し、負荷が大きいときには起動周波数を高くして起動不能に陥ることを防いでいる。
しかし、負荷に応じて最適な起動周波数を設定した場合であっても、駆動周波数を下げていく制御では、駆動周波数を下げたときに推力(トルク)が低下してしまい、動作不能になるおそれがある。また、位相差制御と組み合わせて起動周波数を最適化した場合であっても、動作途中で負荷が増加する等して速度が低下した場合には、駆動周波数を下げる制御が行われてしまう。この場合も、駆動周波数を下げると推力が低下するため、負荷に抗して被駆動体を駆動することができる推力を得ることができずに、動作不能になるおそれがある。
本発明は、駆動中の振動型アクチュエータが動作不能に陥ることを回避することができる技術を提供することを目的とする。
本発明に係る振動型駆動装置は、移動体と、振動型アクチュエータを備える複数の駆動ユニットと、前記複数の駆動ユニットを支持する支持部材と、前記振動型アクチュエータを制御する制御装置と、を有し、前記振動型アクチュエータは、電気−機械エネルギ変換素子を有する振動体と、前記振動体と接触する接触体と、を備え、前記複数の駆動ユニットはそれぞれ、前記制御装置により制御される交流電圧が前記電気−機械エネルギ変換素子に印加されて前記振動体に振動が励起されることにより、前記振動体と前記接触体とが相対移動することで生じる推力を出力し、前記移動体と前記支持部材とは、前記移動体が前記複数の駆動ユニットからの推力を受けることによって相対的に移動可能に配置された振動型駆動装置であって、前記制御装置により前記振動型アクチュエータを制御する場合には、前記移動体を摩擦により所定の位置に係合させる動作または係合された状態を解除する動作を行う第1の場合と、前記移動体の前記摩擦による前記係合が解除された状態を維持して、前記複数の駆動ユニットと前記移動体とを相対移動させる動作を行う第2の場合と、があり、前記制御装置は、前記第1の場合には、前記振動型アクチュエータの推力が最大となる周波数を含む周波数範囲にある第1の周波数を前記交流電圧の起動周波数に設定して位相差のみを変更することにより、前記振動体と前記接触体との相対的な移動速度を制御し、前記第2の場合には、前記第1の周波数よりも低く且つ第2の周波数よりも高い第3の周波数を前記交流電圧の起動周波数に設定して周波数を変更することにより、前記振動体と前記接触体との相対的な移動速度を制御し、前記第2の周波数は、前記振動体と前記接触体の相対的な移動速度が最大となる周波数であることを特徴とする。
本発明によれば、駆動中の振動型アクチュエータが動作不能に陥ることを回避することができる。
駆動ユニットの概略構成を示す斜視図及び分解斜視図である。 駆動ユニットを用いた並進駆動装置の概略構成を示す平面図である。 並進駆動装置が備える回転規制部の概略構成を示す分解斜視図である。 並進駆動装置における駆動ユニットの駆動形態を模式的に示す図である。 並進駆動装置を用いた手振れ補正装置を備える撮像装置の概略構成を説明する上面図である。 並進駆動装置において移動体がロック状態にあるときの平面図である。 並進駆動装置の駆動制御のフローチャートである。 駆動ユニットの駆動周波数に対する起動推力及び無負荷速度の特性を示す図である。 並進駆動装置において移動体をロックする際の駆動条件と支持部材の回転量との関係を示すグラフである。 並進駆動装置を駆動する際の指令値と変位の関係を示すグラフである。 別の並進駆動装置の概略構成を示す平面図である。 周知の振動型アクチュエータの概略構成と駆動原理を説明する図である。 振動型アクチュエータの位相差、周波数、速度の関係を説明する図である。
以下、本発明の実施形態について、添付図面を参照して説明する。本実施形態では、本発明に係る振動型駆動装置として、図12を参照して説明した振動型アクチュエータ300と同様の構成を有する振動型アクチュエータを用いて構成された駆動ユニットを備える並進駆動装置を取り上げることとする。最初に、並進駆動装置駆動ユニット構成について説明する。
図1(a)は、並進駆動装置に用いられる駆動ユニット1の概略構成を示す斜視図である。図1(b)は、駆動ユニット1の分解斜視図である。駆動ユニット1は、振動体30と被駆動体(接触体)であるスライダ29とを備える振動型アクチュエータを、並進駆動装置に設置することができるようにユニット化したものである。振動体30の基本的な構成は、図12を参照して説明した振動体305に準ずる。つまり、振動体30は、平板状の弾性体と、弾性体の一方の面に設けられた電気−機械エネルギ変換素子(圧電素子)と、弾性体の他方の面に設けられてスライダ29と加圧接触する突起部とを有しており、駆動原理等についての説明は省略する。また、スライダ29は、図12を参照して説明した被駆動体301に相当する。
駆動ユニット1において、振動体30により摩擦駆動されるスライダ29の上面(振動体30との摩擦摺動面の反対側の面)には出力軸10が設けられており、出力軸10を介して出力を外部に取り出すことが可能となっている。振動体30の長手方向の両端は、振動体30を構成する弾性体(振動体305の弾性体303に相当する)よりも剛性の小さい弾性体21に連結されており、弾性体21の一部は基台20に固定されている。これにより、振動体30は駆動方向(2つの突起部(振動体305の突起部302に相当する)を結ぶ方向)に対してロール方向の自由度を持ち、スライダ29の表面に倣うことができる。そのため、スライダ29と振動体30とを安定した加圧接触状態で維持することができる。
3つの転動ボール24がそれぞれ、スライダ29において3カ所に形成されたボール受部33と第1の固定レール22において2カ所に形成された溝部27及び第2の固定レール23に設けられた1カ所の溝部28よって転動可能に挟持されている。第1の固定レール22と第2の固定レール23は基台20に固定され、これにより、スライダ29の駆動方向と位置が定められている。なお、スライダ29の移動方向と位置を決める方法は、転動ボール24を用いる方法に限定されず、スライドレールのように直線的な移動が可能な部材を用いても構わない。
押圧部材31は、板バネ25による加圧力を受けて、押圧部材31に接着された振動絶縁部材32を介して振動体30をスライダ29に加圧接触させている。板バネ25が発生する加圧力は、板バネ保持部材26が基台20の所定位置に固定されることによって決定される。なお、振動絶縁部材32は、押圧部材31ではなく、振動体30に接着されていてもよい。また、板ばね25に代えて、圧縮コイルバネや円錐バネ等を用いてもよい。駆動ユニット1では、振動体30に図12(c),(d)を参照して説明した第1の振動モードと第2の振動モードの振動を所定の位相差で励起することにより、駆動ユニット1の長手方向にスライダ29を移動させることができる。
次に、駆動ユニット1を用いた並進駆動装置について説明する。図2は、並進駆動装置100の概略構成を示す平面図である。説明の便宜上、図2に示すように直交座標系(X軸,Y軸)を定める。なお、並進駆動装置100の厚み方向は、X軸方向及びY軸方向の両方向と直交する方向であり、Z軸方向(不図示)とする。
並進駆動装置100は、駆動ユニット1A,1B、支持部材2、固定部材3、移動体4、第1の変位センサ6a,6b、第2の変位センサ7及び回転規制部40を備える。駆動ユニット1A,1Bはそれぞれ、実質的に図1を参照して説明した駆動ユニット1と同じであるため、詳細な説明は省略する。2つの駆動ユニット1Aはそれぞれ、出力軸10Aの駆動方向がXY平面内においてX軸及びY軸と略等角度で交差する方向となるように支持部材2に取り付けられている。また、2つの駆動ユニット1Bはそれぞれ、出力軸10Bの駆動方向が、XY平面内において出力軸10Aの駆動方向と略直交する方向となるように支持部材2に取り付けられている。支持部材2は、XY平面内において固定部材3に対して相対的に回転可能に配置されると共に、Z軸方向においては固定部材3に対して実質的に変位が生じないように配置されている。
移動体4には支持コロ5が設けられており、支持コロ5は固定部材3に設けられたコロ受け部に係合している。コロ受け部は、固定部材3の円周方向に沿って一定の長さを有すると共に支持コロ5のZ軸方向での移動を規制する長孔状に形成されている。よって、支持コロ5は、コロ受け部内を滑らかに摺動可能となっている。駆動ユニット1A,1Bの出力軸10A,10B(駆動ユニット1の出力軸10に対応する)はそれぞれ、移動体4に設けられた長孔状の推力受け部11A,11Bに対して摺動可能に係合している。推力受け部11A,11Bの長手方向はそれぞれ、出力軸10A,10Bの駆動方向と直交する方向となっている。出力軸10A,10Bが実質的に推力受け部11A,11BからZ軸方向での押圧力を受けないように、推力受け部11A,11Bの幅(短手方向長さ)は、出力軸10A,10Bの外径と同等に設計されている。
よって、駆動ユニット1A,1Bを駆動すると、移動体4は、駆動ユニット1A,1B以外から推力を受けることなく、推力受け部11A,11Bを介して出力軸10A,10Bから推力を受けてXY平面内を移動することができる。つまり、並進駆動装置100では、移動体4は、支持コロ5とコロ受け部との摺動嵌合と出力軸10A,10Bと推力受け部11A,11Bとの摺動嵌合により、Z軸方向での移動が規制された状態でXY平面内の一定範囲において移動可能となっている。
一方で、移動体4のXY平面内での回転は、回転規制部40によって規制されている。図3は、回転規制部40の概略構成を示す分解斜視図である。回転規制部40は、基台36とスライド部材35を有する。基台36が固定部材3に固定されることで、回転規制部40は固定部材3に取り付けられる。基台36には、基台36が固定部材3に固定された状態で駆動ユニット1Bの出力軸10Bの駆動方向と略平行な方向に延在するように、長孔状の摺動溝部16bが設けられている。また、基台36のスライド部材35側の面には、3カ所にボール受部37Aが設けられており、3カ所のボール受部37Aのそれぞれに不図示のボール(ベアリング)が配置される。ボール受部37Aに配置されるボールは、スライド部材35と摺動する。
スライド部材35の上面(基台36側の面の反対側の面)には、基台36が固定部材3に固定された状態で駆動ユニット1Aの出力軸10Aの駆動方向と略平行な方向に並ぶように2つの球軸受け17が配置されている。また、スライド部材35の上面には、1カ所にボール受部37Bが設けられており、ボール受部37Bには不図示のボール(ベアリング)が配置される。ボール受部37Bに配置されるボールは、移動体4と摺動する。スライド部材35の下面(基台36側の面)には、2つの球軸受け17と同等の構造を有し、移動体4に設けられた長孔状の摺動溝部16aと摺動可能に係合する不図示の2つの球軸受けが設けられている。
回転規制部40が固定部材3に取り付けられた状態では、スライド部材35の上面に設けられた2つの球軸受け17は、図2に示されるように、移動体4に設けられた摺動溝部16aと摺動可能に係合する。スライド部材35の下面に設けられた不図示の2つの球軸受けは基台36に設けられた摺動溝部16bに係合しており、これにより、出力軸10Aの駆動方向と平行な方向へのスライド部材35の移動が規制されている。よって、駆動ユニット1Aを駆動すると、スライド部材35の上面に設けられた2つの球軸受け17が摺動溝部16a内で転動し、移動体4は、出力軸10Aの駆動方向へ移動する。一方、駆動ユニット1Bを駆動すると、スライド部材35の下面に設けられた不図示の2つの球軸受けが基台36に設けられた摺動溝部16b内を転動し、移動体4とスライド部材35とが一体となって出力軸10Bの駆動方向へ移動する。こうして、回転規制部40を設けることにより、移動体4を、XY平面内で回転させることなく、XY平面内の任意の方向に移動させることができる。
並進駆動装置100では、移動体4とスライド部材35の間に1つのボールが配置され、スライド部材35と基台36との間に3つのボールが配置されているため、移動体4、スライド部材35及び基台36の位置関係は適切に保たれる。これにより、2つの球軸受け17と摺動溝部16aとのクリアランスと、不図示の2つの球軸受けと摺動溝部16bとのクリアランスのそれぞれを小さくして、がたつきの発生を抑制すると共に摺動負荷を低減させている。なお、本実施形態では、球軸受け17とボールを用いているが、これに代えて、PTFE等の摩擦係数の小さい材料からなる棒材や摺動ベアリングを用いた構成としてもよい。また、ボールの数は、上記の例に限定されるものではない。更に、移動体4と回転規制部40に設けた摺動溝部16a,16bの長手方向は、上記のように駆動ユニット1A,1Bの駆動方向と一致していなくともよく、例えば、X軸方向とY軸方向にそれぞれ略平行となるように設ける等、任意の方向に設けることができる。
第1の変位センサ6a,6bは、固定部材3に取り付けられている。第2の変位センサ7は、支持部材2に取り付けられている。第1の変位センサ6aは、移動体4のY軸方向への移動量を検出し、第1の変位センサ6bは、移動体4のX軸方向への移動量を検出し、第2の変位センサ7は、支持部材2のθ方向の変位(回転角度)を検出する。なお、移動体4を所定位置にロックするために支持部材2を固定部材3に対して回転させる動作については後述する。
次に、移動体4の駆動方法について具体的に説明する。図4は、移動体4を所定の方向に駆動する際の駆動ユニット1A,1Bの駆動形態を模式的に示す平面図である。図4(a)は、移動体4をθ=315°方向に駆動する際の駆動ユニット1A,1Bの駆動形態を示している。この場合、駆動ユニット1Bは駆動されず、2つの駆動ユニット1Aのそれぞれに、出力軸10Aに実線矢印で示す駆動力D1,D3を発生させる。これにより、合成された駆動力D1+D3によって移動体4を315°方向に駆動することができる。図4(b)は、移動体4をθ=45°方向に駆動する際の駆動ユニット1A,1Bの駆動形態を示している。この場合、駆動ユニット1Aは駆動されず、2つの駆動ユニット1Bのそれぞれに、出力軸10Bに実線矢印で示す駆動力D2,D4を発生させる。これにより、合成された駆動力D2+D4によって移動体4を45°方向に駆動することができる。
図4(c)は、移動体4をθ=0°方向(X軸方向のプラス方向)に駆動する際の駆動ユニット1A,1Bの駆動形態を示している。この場合、2つの駆動ユニット1Aにそれぞれ実線矢印で示す駆動力D1,D3を発生させ、且つ、2つの駆動ユニット1Bにそれぞれ実線矢印で示す駆動力D2,D4を発生させる。これにより、合成された駆動力D1+D2+D3+D4により、移動体4を0°方向に駆動することができる。図4(d)は、移動体4をθ=90°方向(Y軸方向のプラス方向)に駆動する際の駆動ユニット1A,1Bの駆動形態を示している。この場合、駆動ユニット1Aのそれぞれに実線矢印で示す駆動力D1´,D3´を発生させ、且つ、2つの駆動ユニット1Bのそれぞれに実線矢印で示す駆動力D2,D4を発生させる。これにより、合成された駆動力D1´+D2+D3´+D4により、移動体4を90°方向に駆動することができる。
図4(e)は、移動体4をXY平面内で回転させるための推力を発生させる際の駆動ユニット1A,1Bの駆動形態を示している。駆動ユニット1Aのそれぞれに実線矢印で示す駆動力D1,D3´を発生させ、且つ、2つの駆動ユニット1Bのそれぞれに実線矢印で示す駆動力D2,D4´を発生させる。これにより、合成された駆動力D1´+D2+D3´+D4により、図4(e)に破線矢印で示すように反時計まわりに移動体4をXY平面内で回転させる推力が移動体4に与えられる。しかしながら、上述したように、移動体4のXY平面内での回転は回転規制部40により規制されている。一方で、駆動ユニット1A,1Bが配置されている支持部材2は、XY平面内で固定部材3に対して回転可能となっている。その結果、駆動ユニット1A,1Bが移動体4からの反力を受けて、支持部材2が破線矢印方向の逆方向に回転することになる。
このようにして支持部材2を回転させることで、並進駆動装置100では、移動体4がロックされた状態(以下「ロック状態」という)とアンロックされた状態(以下「アンロック状態」という)とを切り替えることができる。例えば、並進駆動装置100を用いた像ぶれ補正装置を備える撮像装置を三脚等で固定して撮影する場合、意図せずに移動体4が動いてしまうと、画像や映像にぶれが生じてしまうおそれがある。よって、移動体4が動かないように、移動体4を所定位置にロック(固定)する必要が生じる。
図5は、並進駆動装置100を用いた手振れ補正装置を備える撮像装置200の概略構成を説明する上面図である。撮像装置200は、大略的に、撮像素子(不図示)を有する撮像装置本体51と、撮像装置本体51に対して着脱自在なレンズ鏡筒52から構成されている。レンズ鏡筒52は、複数のレンズ群53と、並進駆動装置100を用いた像ぶれ補正装置を有する。レンズ鏡筒52を通過した光束は、撮像素子に結像する。撮像素子は、結像した光学像を光電変換により電気信号に変換し、撮像装置200が備える画像処理回路へ出力する。画像処理回路は、受信した電気信号から画像データを生成する。
像ぶれ補正装置は、並進駆動装置100の移動体4の中心孔に像ぶれ補正レンズ54が取り付けられることによって形成されている。並進駆動装置100は、図1に示したXY平面がレンズ鏡筒52の光軸方向と略直交するようにレンズ鏡筒52に配置される。よって、像ぶれ補正レンズ54を光軸と直交する面内で移動させることによって、手ぶれ等に起因する像ぶれを補正して、明瞭な画像を撮像することができる。なお、像ぶれ補正装置は、像ぶれ補正レンズ54を光軸と直交する面内で駆動する構成に限られず、撮像素子を光軸と直交する面内で駆動する構成によって実現してもよい。この場合、移動体4の中心孔に撮像素子を配置した並進駆動装置100を撮像装置本体51に配設すればよい。
図6は、移動体4がロック状態にあるときの並進駆動装置100の平面図である。図2にも示されているが、並進駆動装置100の支持部材2には3本の係合ピン8が設けられており、移動体4には3カ所に係合部9が設けられている。図4(e)を参照して説明したように、移動体4を反時計まわりに回転させようとすると、その反力によって支持部材2が時計まわりに回転することで係合ピン8と係合部9とが係合し、移動体4はロック状態となる。なお、移動体4がどの位置にあったとしても、係合ピン8と係合部9とが係合する際には、支持部材2の外径円と移動体4の中心に設けられた中空円とが同心円となる位置に調整されるようになっている。
移動体4のロック状態を解除して移動体4をアンロック状態にするためには、支持部材2を反時計まわりに回転させればよい。つまり、図4(e)に示されているすべての駆動力を逆向きに発生させればよい。図2に示すアンロック状態から図6に示すロック状態へ移行させる際の支持部材2の回転角度を第2の変位センサ7によって検出し、検出角度を並進駆動装置100の制御装置(不図示)に記憶しておく。移動体4をロック状態からアンロック状態に戻す際には、記憶しておいた支持部材2の回転角度と等しい回転角度だけ、アンロック状態からロック状態へ移行させる際の支持部材2の回転方向とは逆の方向に支持部材2を回転させればよい。なお、本実施形態では、係合ピン8と係合部9との係合により移動体4をロックする構成としているが、移動体4のロック状態とアンロック状態とを切り替えることができれば、その手段や方法は制限されない。
次に、並進駆動装置100の制御方法について説明する。図7は、並進駆動装置100の駆動制御のフローチャートである。並進駆動装置を備える電子機器では、電源オフの状態にあるとき(非使用時)には、並進駆動装置100の移動体4はロック状態で保持されていることが望ましい。そこで、ここでは、電子機器の電源がオフからオンに切り替えられることにより、ステップS1の処理が開始されるものとする。
図7のフローチャートの各処理は、並進駆動装置の制御装置(不図示)が、第1の変位センサ6a,6b及び第2の変位センサ7からの出力信号に基づき、駆動ユニット1A,1Bの駆動を制御することによって実現される。制御装置は、演算処理部と、演算処理部からの指令に従って駆動ユニット1A,1Bへの給電を行う電源回路を有する。演算処理部は、CPU、ROM、RAM、電子部品及び電気部品を有し、CPUがROMに記憶されたプログラムをRAMに展開することにより、制御装置を構成する各種部品の動作が制御される。なお、演算処理部は、各部の処理の全部又は一部を論理回路により実現するASIC等の専用プロセッサであってもよい。また、演算処理部は、ソフトウェア(プログラム)による実装とハードウェアによる実装のいずれも可能であり、ソフトウェアとハードウェアとの組合せによって実装されていてもよい。
ステップS1において制御装置は、第1の変位センサ6a,6b及び第2の変位センサ7の原点をリセットし、各センサの読み取り値をX=X、Y=Y、θ=θに設定し、これらの値を制御原点として記憶する。ステップS2において制御装置は、移動体4のロック状態を解除するか否かを判定する。移動体4を駆動する必要がない場合にはロック状態を解除する必要はない。そのため、制御装置は、ロック状態を解除しないと判定した場合(S2でNO)、処理をステップS3へ進め、ロック状態を解除する判定した場合(S2でYES)、処理をステップS4へ進める。ステップS3において制御装置は、ロック状態を解除する指令(ロック解除指令)を受信したか否かを判定する。ロック解除指令は、例えば、電子機器のユーザが、電子機器の入力手段を操作することによって、入力手段を介して制御装置に指示される。制御装置は、ロック解除指令を受信するまで待機し(S3の判定を繰り返し)(S3でNO)、ロック解除指令を受信したと判定した場合(S3でYES)、処理をステップS4へ進める。
ステップS4において制御装置は、起動周波数として第1の周波数を設定し、また、駆動ユニット1A,1Bの振動体30に励起する2つの振動モード(図12を参照して説明した第1の振動モードと第2の振動モード)の位相差を設定する。位相差は、例えば−90°〜90°の範囲とすることができ、具体的には、70°或いは110°とすることができる。続くステップS5において制御装置は、移動体4のロック状態を解除するために、ステップS4で設定した駆動条件での駆動ユニット1A,1Bの駆動を開始する。ステップS6において制御装置は、支持部材2が所望の角度θ=θとなるまで移動したことを第2の変位センサ7で検知した時点で駆動ユニット1A,1Bの駆動を停止し、これにより、ロック解除動作は停止される。ロック解除動作では、確実に移動体4を動作させるために、速度よりも推力を重視し、図13を参照して説明した位相差制御のみを使っており、これにより、所謂オーバーシュート量を抑制して、支持部材2の位置決めを行うことができる。
ステップS7において制御装置は、ロック解除された状態での第1の変位センサ6a,6b及び第2の変位センサ7によ検出位置を移動体4の並進動作時の原点として再設定する。具体的には、ステップS6でロック解除が終了したときに検出されたX=X、Y=YをX→X、Y→Yとなるように再設定する。但し、θについては、再度、ロック動作を行う際に必要となるためにリセットせず、検出されたθをそのまま記憶しておく。なお、ステップS5において、移動体4の位置がX=X、Y=Yとなるように移動体4のX軸方向及びY軸方向への移動量を制御してもよい。X軸方向及びY軸方向への移動量を制御するのは、ロック解除動作の直後に行ってもよいし、ロック解除動作中にX軸方向及びY軸方向への移動を制御することによって行ってもよい。その場合、ロック状態とロック解除状態とでは、移動体4のXとX、YとYの値がそれぞれ略等しくなるため、ステップS7で行っている原点の再設定を省略することが可能となる。
続くステップS8において制御装置は、第2の周波数、第3の周波数及び位相差を設定する。ステップS8での位相差は、ステップS4での設定よりも移動体4を高速駆動させることができるように、ステップS4で設定した位相差よりも大きな範囲、例えば−120°〜120°に設定される。
ここで、ステップS4で設定される第1の周波数とステップS8で設定される第2の周波数及び第3の周波数について説明する。図8は、駆動周波数を変えながら駆動ユニット1の起動推力と無負荷速度を測定した結果を示すグラフである。起動推力とは、駆動ユニット1のスライダ29に所定の負荷(例えば、1kgf)をかけた状態で駆動ユニット1に発生する推力であり、図8において破線で示されている。なお、起動推力は、スライダ29を引張試験機のロードセルに接続し、スライダ29を駆動したときにロードセルを引っ張る力の強さによって計測してもよい。無負荷速度とは、駆動ユニット1のスライダ29に外部から負荷を与えずにスライダ29を往復させた際のスライダ29の速度であり、図8において実線で示されている。図8から、起動推力が最大となる駆動周波数と無負荷速度が最大となる駆動周波数とにはずれ(差)があることがわかる。ここで、起動推力がロック解除動作に必要な推力より大きくなる周波数の範囲を第1の周波数の範囲とし、この範囲内の任意の周波数が第1の周波数として設定される。同様に、無負荷速度が最大となるときの周波数は、第2の周波数として設定される。
第3の周波数について、第3の周波数を第1の周波数と一致させると、推力の最も大きい領域を使うことができるが、瞬時に速度を上げることができない。一方、第3の周波数を第2の周波数と一致させると、速度の最も大きくなる領域を使うことができるが、推力が小さくなり起動不能になるおそれがある。また、一般的に、駆動周波数が共振周波数に近付くにしたがって消費電力が大きくなる。そのため、前述したように並進駆動装置100が像ぶれ補正装置として組み込まれている撮像装置200では、オートフォーカスやズーム等の他の用途に使える余剰電力が小さくなってしまうと考えられる。よって、並進駆動装置100での駆動に必要な電力は小さいことが望ましい。速度、推力及び消費電力の3つの要素のバランスを考慮すると、図8に示すように、第3の周波数を第1の周波数と第2の周波数の中間の周波数とすることが望ましい。例えば、第1の周波数として第2の周波数より2.0kHz高い周波数を設定し、第3の周波数として第2の周波数より1.0kHz高い周波数を設定することができる。
なお、駆動ユニット1を構成する振動体30には、構成部品である弾性体や圧電素子等の加工公差等の影響によって、共振周波数等の特性に個体差が生じる。そのため、第1の周波数、第2の周波数及び第3の周波数が、並進駆動装置100を構成する4つの駆動ユニット1A,1Bのそれぞれで異なる可能性がある。そこで、4つの駆動ユニット1A,1Bのそれぞれについて、起動推力及び無負荷速度を測定し、測定結果に基づいて4つの駆動ユニット1A,1Bごとに第1の周波数、第2の周波数及び第3の周波数を設定することが望ましい。並進駆動装置100では、このような周波数設定を行った場合であっても、各周波数の差を最大でも約1.0kHz程度に抑えることができる。なお、4つの駆動ユニット1A,1Bの特性が略一致している場合には、第1の周波数、第2の周波数及び第3の周波数のそれぞれに、すべての駆動ユニット1A,1Bで共通の値を用いることができる。
図7の説明に戻る。ステップS9において制御装置は、移動体4を駆動する指令があったか否かを判定する。例えば、並進駆動装置100が像ぶれ補正装置として撮像装置200に組み込まれている場合には、撮像装置200又は像ぶれ補正装置に設けられた加速度センサがぶれを検知する。すると、撮像装置200の制御装置は像ぶれを補正するために移動体4を駆動する指令を並進駆動装置100へ送る。並進駆動装置100がXYテーブル等のステージに用いられている場合には、ステージを所定の方向に移動させる入力信号が移動体4を駆動する指令となる。制御装置は、移動体4を駆動する指令があるまで待機し(S9でNO)、移動体4を駆動する指令があったと判定した場合(S9でYES)、処理をステップS10へ進める。
ステップS10において制御装置は、移動体4の駆動を開始する。ステップS11において制御装置は、必要な移動体4の移動距離、移動方向及び速度が得られるように制御量を設定し、指令速度を算出し、起動周波数を第3の周波数として、指令速度が得られるように位相差を制御する。位相差制御では、図13を参照して説明したように、制御量の絶対値が増えると位相差が大きくなる。そのため、位相差が予め定められた上限値又は下限値に達したときには、位相差制御から周波数制御への切り替えが必要となる。よって、ステップS12において制御装置は、第1の変位センサ6a,6b及び第2の変位センサ7が検知した変位量とステップS11で指令した操作量とを比較し、制御量と移動体4の移動量との偏差が所定の閾値以上か否かを判定する。制御装置は、偏差が閾値以上であると判定した場合(S12でYES)、処理をステップS13へ進め、偏差が閾値未満であると判定した場合(S12でNO)、処理をステップS14へ進める。
ステップS13において制御装置は、駆動周波数を変更する制御を行う。制御装置は、例えば、位相差を−120°又は120°に固定し、且つ、周波数の下限を第2の周波数に設定することにより、駆動周波数を下げ過ぎて速度が低下することのないようにする。ステップS14において制御装置は、移動体4の駆動が終了したか否かを判定する。制御装置は、第1の変位センサ6a,6b及び第2の変位センサ7の検知信号に基づき、移動体4が目標位置へ移動したと判定した場合に、移動体4の駆動が終了したと判定する。制御装置は、移動体4の駆動が終了していないと判定した場合(S14でNO)、処理をステップS9へ戻し、移動体4の駆動が終了したと判定した場合(S14でYES)、処理をステップS15へ進める。
ステップS15において制御装置は、移動体4をロックするか否かを判定する。例えば、並進駆動装置100が像ぶれ補正装置として組み込まれている撮像装置200の場合、電源オフの指示(操作)が行われると、移動体4がロックされた後に電源が落とされる。制御装置は、移動体4をロックしないと判定した場合(S15でNO)、本処理を終了させ、移動体4をロックすると判定した場合(S15でYES)、処理をステップS16へ進める。ステップS16において制御装置は、駆動ユニット1A,1Bの起動周波数として第1の周波数を設定すると共にその位相差を設定する。ステップS17において制御装置は、ステップS16で設定した駆動条件で駆動ユニット1A,1Bの駆動を開始する。
ステップS18において制御装置は、回転量がθ=θとなったところでロック動作を停止し、これにより本処理は終了となる。このとき、移動体4の位置が(X,Y)にないときには、係合ピン8が移動体4を押して(X,Y)の位置へ移動させることになる。この場合、係合ピン8と移動体4との間に摩擦負荷が発生し、より強い力が必要になるため、ロック動作を行う前にX=X、Y=Yとなるように制御を行ってもよい。これにより、ロック動作の最後の係合ピン8と係合部9とが係合するときにだけ摩擦負荷が発生するようになり、ロック動作に必要な力を小さくすることができる。
図9は、移動体4のロック動作を行う際の駆動条件と支持部材2の回転量との関係を示すグラフである。図9に示す破線は、制御方法として、周波数範囲を96kHz〜95kHz(起動周波数を第3の周波数、下限周波数を第2の周波数)として周波数制御を行ったときの結果を示す参考例である。この場合には、移動体4が目標値の手前で停止してしまっている。これに対し、図9に示す実線は、第1の周波数として97kHzを設定し、位相差制御のみを用いて駆動したときの結果を示す実施例であり、目標値まで確実に移動させることが可能となっている。これらのことから、起動時の位相差を小さくし、負荷が大きいとき(例えば、速度が低下したときや駆動不能なとき等)には位相差を大きくすることで、位相差制御の効果を最大限に引き出すことができることがわかる。こうして、移動体4のロック動作を行うときに大きな推力が得られるように制御することで、係合ピン8と係合部9とが係合する際の摩擦力を大きくする設計が可能となり、より強い力で移動体4をロックすることが可能になる。
図10は、図5に示した像ぶれ補正装置としての並進駆動装置100を駆動する際の指令値と実際の変位との関係を示すグラフである。図10(a)は、ぶれとして正弦波を発生させたときの指令値をプロットしている。図10(b)は、指令値に対してぶれ補正を行ったときの、偏差(補正精度)に与える起動周波数の影響を示すグラフである。図10(b)中の破線のグラフは、起動周波数を第1の周波数(例えば97kHz)とし、最低周波数を第2の周波数(例えば95kHz)として位相差制御及び周波数制御を用いて駆動した結果を示している。一方、図10(b)中の実線のグラフは、起動周波数を第3の周波数(例えば96kHz)とし、最低周波数を第2の周波数(例えば95kHz)として位相差制御及び周波数制御を用いて駆動したときの結果を示している。起動周波数を低くした場合(実線のグラフ)に偏差の絶対値が小さくなっており、このことは、目標値に対するずれが小さく、高い精度でぶれが補正されていることを示している。つまり、像ぶれ補正を行う場合には、ロック動作やアンロック動作とは異なり、共振周波数に近い周波数領域を用いて移動体4の速度が大きくなる制御を行うことにより、振幅の大きいぶれや周波数の高いぶれに対して高い精度でぶれを補正することができる。
上記説明の通り、本実施形態では、駆動ユニット1A,1Bを、起動時の負荷が大きい場合や負荷の変化が大きいときには、推力が大きくなる周波数で起動し、位相差を制御して低速で駆動させる。一方、負荷が小さく、且つ、負荷の変化が小さいときには、推力が大きくなる周波数から共振周波数までの範囲内で位相差又は周波数を制御して駆動ユニット1A,1Bを駆動する。その具体例として、並進駆動装置100では、移動体4のロック動作を行うときは、推力が低下する周波数制御を行わずに、速度よりも推力を重視して推力が最も高くなる第1の周波数を用いて位相差制御のみを行う。これにより、移動体4のロック動作を確実に行うことができ、移動体4が動作不能になるのを防止することができる。また、移動体4のアンロック状態を維持したままで移動体4を駆動する際には、図10を参照して説明したように、移動体4の速度が最大となる第2の周波数を含むように周波数制御も行うことで、高速且つ高精度な動作を実現することができる。
次に、上述した並進駆動装置100の変形例について説明する。図11は、並進駆動装置100Aの概略構成を示す平面図である。並進駆動装置100Aは、図2に示した並進駆動装置100が備える回転規制部40を備えておらず、支持部材2が固定部材3に対して回転不能となっている点で並進駆動装置100と異なっているが、その他の構成は同じである。そのため、並進駆動装置100Aの構成要素のうち並進駆動装置100の構成要素と同じ構成要素については同じ符号を付して説明を省略し、以下に並進駆動装置100Aに特有の動作についてのみ説明する。なお、並進駆動装置100Aは、並進駆動装置100と比較すると、部品点数が減少するために、組み立てが容易になり、また、コストダウンを図ることができ、更に摺動負荷が小さくなるためにより高精度な駆動が可能となる。
並進駆動装置100Aの駆動制御は、図7に示したフローチャートに従うが、移動体4のロック動作の態様が、並進駆動装置100での移動体4のロック動作の態様と異なる。具体的には、並進駆動装置100Aには、並進駆動装置100と同様に、支持部材2に3本の係合ピン8が設けられ、移動体4には3カ所に係合部9が形成されている。よって、移動体4をロックするためには、係合ピン8と係合部9とを摩擦力により係合させる必要がある。ここで、並進駆動装置100Aでは、回転規制部40を備えていないために、移動体4を回転させることができる。そこで、図4(e)に示したように、移動体4を反時計まわりに駆動させるための駆動力を駆動ユニット1A,1Bに発生させることにより、移動体4を反時計まわりに回転させて、係合ピン8と係合部9とを係合させる。これにより、移動体4をロック状態とすることができる。移動体4のロック状態を解除してアンロック状態とする際には、移動体4を時計まわりに回転させるように、駆動ユニット1A,1Bを駆動すればよい。なお、移動体4のロック時の回転量を記憶しておき、アンロック時の回転量をロック時に記憶しておいた回転量と等しくなるようにすることで、ロック前の状態に戻すことができる。並進駆動装置100Aでの移動体4のアンロック動作とロック動作とのそれぞれに図7のステップS4,S16の条件を採用することで、確実に移動体4を駆動することができる。
以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。例えば、上記実施形態では、複数の駆動ユニット1を用いて駆動対象物である移動体4を駆動する形態について説明したが、駆動対象物は駆動ユニット1を構成するスライダ29(被駆動体)自体であってもよい。つまり、スライダ29を負荷が相対的に大きい状態で駆動する場合(第1の場合)、負荷が相対的に小さい状態で駆動する場合とがあれば、主に図7乃至図10を参照して説明した本発明に係る振動型アクチュエータの制御方法を用いることができる。また、本発明に係る振動型アクチュエータの制御方法は、図12に示した振動型アクチュエータ300とは異なる構造を有する振動型アクチュエータの駆動制御にも用いることができる。例えば、円環状の振動体と被駆動体とが加圧接触し、振動体における被駆動体との摩擦摺動面に楕円振動又は進行波を生成させることで振動体と被駆動体とを相対的に回転変位させる振動型アクチュエータにも、本発明の適用は可能である。
更に、駆動ユニット1を用いた並進駆動装置100の応用例として、撮像装置の像ぶれ補正装置とXYテーブル等のステージを取り上げた。しかし、並進駆動装置100は、これらに限られず、XY平面内での駆動や位置決めが必要な部材を備える各種の電子機器に適用することができる。並進駆動装置100,100Aとして、4個の駆動ユニット1を備える構成を取り上げたが、駆動ユニット1の数は、例えば、3個であってもよく、その場合でも4個の駆動ユニット1を備える構成と同様の制御を行うことができる。
1,1A,1B 駆動ユニット
2 支持部材
3 固定部材
4 移動体
8 係合ピン
9 係合部
10,10A,10B 出力軸
29 スライダ
30 振動体
100,100A 並進駆動装置

Claims (11)

  1. 移動体と、
    振動型アクチュエータを備える複数の駆動ユニットと、
    前記複数の駆動ユニットを支持する支持部材と、
    前記振動型アクチュエータを制御する制御装置と、を有し、
    前記振動型アクチュエータは、
    電気−機械エネルギ変換素子を有する振動体と、
    前記振動体と接触する接触体と、を備え、
    前記複数の駆動ユニットはそれぞれ、前記制御装置により制御される交流電圧が前記電気−機械エネルギ変換素子に印加されて前記振動体に振動が励起されることにより、前記振動体と前記接触体とが相対移動することで生じる推力を出力し、
    前記移動体と前記支持部材とは、前記移動体が前記複数の駆動ユニットからの推力を受けることによって相対的に移動可能に配置された振動型駆動装置であって、
    前記制御装置により前記振動型アクチュエータを制御する場合には、前記移動体を摩擦により所定の位置に係合させる動作または係合された状態を解除する動作を行う第1の場合と、前記移動体の前記摩擦による前記係合が解除された状態を維持して、前記複数の駆動ユニットと前記移動体とを相対移動させる動作を行う第2の場合と、があり、
    前記制御装置は、
    前記第1の場合には、前記振動型アクチュエータの推力が最大となる周波数を含む周波数範囲にある第1の周波数を前記交流電圧の起動周波数に設定して位相差のみを変更することにより、前記振動体と前記接触体との相対的な移動速度を制御し、
    前記第2の場合には、前記第1の周波数よりも低く且つ第2の周波数よりも高い第3の周波数を前記交流電圧の起動周波数に設定して周波数を変更することにより、前記振動体と前記接触体との相対的な移動速度を制御し、
    前記第2の周波数は、前記振動体と前記接触体の相対的な移動速度が最大となる周波数であることを特徴とする振動型駆動装置。
  2. 前記第1の周波数は、前記第1の場合に、前記振動体と前記接触体とを相対移動させるための負荷の大きさを超える推力を発生することができる周波数の範囲内の周波数であることを特徴とする請求項1に記載の振動型駆動装置。
  3. 前記第2の周波数は、前記接触体に対して外部から負荷を与えない状態で前記振動体と前記接触体とを相対移動させたときの速度が最大となる周波数であることを特徴とする請求項1又は2に記載の振動型駆動装置。
  4. 前記制御装置は、前記交流電圧の起動周波数を前記第1の周波数に設定して前記振動型アクチュエータを起動した場合には、予め設定された位相差の上限値から下限値までの範囲で前記第1の周波数の位相差を制御することを特徴とする請求項1乃至3のいずれか1項に記載の振動型駆動装置。
  5. 前記制御装置は、前記交流電圧の起動周波数を前記第3の周波数に設定して前記振動型アクチュエータを起動した場合には、予め設定された位相差の上限値から下限値までの範囲で前記第3の周波数の位相差を変更することにより、前記振動体と前記接触体との相対的な移動速度を制御することを特徴とする請求項1乃至4のいずれか1項に記載の振動型駆動装置。
  6. 前記制御装置は、前記交流電圧の位相差が前記予め設定された位相差の上限値または下限値となった場合、前記第2の周波数を下限として前記交流電圧の周波数を変更することにより前記振動体と前記接触体との相対的な移動速度を制御することを特徴とする請求項5に記載の振動型駆動装置。
  7. 前記第1の場合とは、前記振動体と前記接触体とを相対移動させるための負荷が相対的に大きい状態で前記振動型アクチュエータを駆動する場合であり、
    前記第2の場合とは、前記負荷が相対的に小さい状態で前記振動型アクチュエータを駆動する場合であることを特徴とする請求項1乃至6のいずれか1項に記載の振動型駆動装置。
  8. 前記振動体は、
    平板状の弾性体と、
    前記弾性体の一方の面に設けられ、前記接触体と接触する突起部と、を有し、
    前記電気−機械エネルギ変換素子は、前記弾性体の他方の面に設けられ、
    前記振動体に2つの異なる振動モードの振動を同時に励起することによって前記突起部に生じさせた楕円振動により前記接触体が摩擦駆動されることを特徴とする請求項1乃至のいずれか1項に記載の振動型駆動装置。
  9. 移動体と、
    振動型アクチュエータを備える複数の駆動ユニットと、
    前記複数の駆動ユニットを支持する支持部材と、
    前記振動型アクチュエータを制御する制御装置と、を有し、
    前記振動型アクチュエータは、
    電気−機械エネルギ変換素子を有する振動体と、
    前記振動体と接触する接触体と、を備え、
    前記複数の駆動ユニットは、前記制御装置により制御される交流電圧が前記電気−機械エネルギ変換素子に印加されて前記振動体に振動が励起されることにより、前記振動体と前記接触体とが相対移動することで生じる推力を出力し、
    前記移動体と前記支持部材とは、前記移動体が前記複数の駆動ユニットからの推力を受けることによって相対的に移動可能に配置された振動型駆動装置の制御方法であって、
    前記制御装置により前記振動型アクチュエータを制御する場合には、前記移動体を摩擦により所定の位置に係合させる動作または係合された状態を解除する動作を行う第1の場合と、前記移動体の前記摩擦による前記係合が解除された状態を維持して、前記複数の駆動ユニットと前記移動体とを相対移動させる動作を行う第2の場合と、があり、
    前記第1の場合には、前記振動型アクチュエータの推力が最大となる周波数を含む周波数範囲にある第1の周波数を前記交流電圧の起動周波数に設定して位相差のみを変更することにより、前記振動体と前記接触体との相対的な移動速度を制御し、
    前記第2の場合には、前記第1の周波数よりも低く且つ第2の周波数よりも高い第3の周波数を前記交流電圧の起動周波数に設定して周波数を変更することにより、前記振動体と前記接触体との相対的な移動速度を制御し、
    前記第2の周波数は、前記振動体と前記接触体の相対的な移動速度が最大となる周波数であることを特徴とする振動型駆動装置の制御方法。
  10. 前記第1の場合とは、前記振動体と前記接触体とを相対移動させるための負荷が相対的に大きい状態で前記振動型アクチュエータを駆動する場合であり、
    前記第2の場合とは、前記負荷が相対的に小さい状態で前記振動型アクチュエータを駆動する場合であることを特徴とする請求項9に記載の振動型駆動装置の制御方法。
  11. 請求項1乃至のいずれか1項に記載の振動型駆動装置と、
    前記振動型駆動装置が備える振動型アクチュエータの出力を用いて位置決めされる部材と、を備えることを特徴とする電子機器。
JP2016197199A 2016-10-05 2016-10-05 振動型駆動装置とその制御方法及び電子機器 Active JP6833439B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016197199A JP6833439B2 (ja) 2016-10-05 2016-10-05 振動型駆動装置とその制御方法及び電子機器
US15/704,470 US10695799B2 (en) 2016-10-05 2017-09-14 Control method for vibration-type actuator capable of avoiding becoming inoperable during operation, vibration-type driving apparatus, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197199A JP6833439B2 (ja) 2016-10-05 2016-10-05 振動型駆動装置とその制御方法及び電子機器

Publications (3)

Publication Number Publication Date
JP2018061347A JP2018061347A (ja) 2018-04-12
JP2018061347A5 JP2018061347A5 (ja) 2019-11-14
JP6833439B2 true JP6833439B2 (ja) 2021-02-24

Family

ID=61757645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197199A Active JP6833439B2 (ja) 2016-10-05 2016-10-05 振動型駆動装置とその制御方法及び電子機器

Country Status (2)

Country Link
US (1) US10695799B2 (ja)
JP (1) JP6833439B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0795778A (ja) 1993-09-22 1995-04-07 Canon Inc 振動波駆動装置
JP2007037356A (ja) * 2005-07-29 2007-02-08 Fujifilm Holdings Corp 圧電アクチュエータ、レンズ駆動装置、および撮影装置
JP5328259B2 (ja) 2007-09-12 2013-10-30 キヤノン株式会社 振動波駆動装置の制御装置、及び、振動波駆動装置の制御方法
JP5185650B2 (ja) * 2008-02-14 2013-04-17 セイコーインスツル株式会社 圧電振動片の製造方法及びウエハ
KR101257456B1 (ko) * 2008-04-22 2013-04-23 삼성테크윈 주식회사 렌즈 구동 유닛 및 이를 구비하는 이미지 촬영 모듈
JP5641800B2 (ja) * 2010-07-15 2014-12-17 キヤノン株式会社 振動型駆動装置
JP2014018027A (ja) * 2012-07-11 2014-01-30 Canon Inc 振動型アクチュエータ、撮像装置、及びステージ

Also Published As

Publication number Publication date
JP2018061347A (ja) 2018-04-12
US20180093299A1 (en) 2018-04-05
US10695799B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
US7786648B2 (en) Semi-resonant driving systems and methods thereof
RU2587153C1 (ru) Устройство привода вибрационного типа, устройство двухмерного привода, устройство коррекции размытости изображения, сменный объектив, устройство захвата изображения и автоматический предметный столик
US9843276B2 (en) Drive control circuit that drives vibrator, driving method, vibration-type driving apparatus, and image pickup apparatus
EP1806793A1 (en) Exciting method for elastic vibration member and vibratory driving device
JP6771939B2 (ja) 振動型アクチュエータ及び電子機器
US10120178B2 (en) Vibration drive device in which separation between members by external force is suppressed, lens barrel, image pickup apparatus, and stage device
CN106569371B (zh) 平移驱动装置和使用该平移驱动装置的电子装置
US9247140B2 (en) Vibration-type driving unit, two-dimensional driving apparatus, image-blur correction apparatus, interchangeable lens, image capturing apparatus, and automatic stage
US10510944B2 (en) Vibration actuator reduced in cost and size, and electronic device
US10742139B2 (en) Method of driving vibration actuator, drive device, and image pickup apparatus
JP6833439B2 (ja) 振動型駆動装置とその制御方法及び電子機器
WO2021079799A1 (ja) 振動波モータ、光学機器及び電子機器
JP6765849B2 (ja) 振動型アクチュエータ及び電子機器
US8224173B2 (en) Imaging apparatus
US10419676B2 (en) Vibration-type actuator that drives vibrating body in combination of two bending vibration modes, and electronic apparatus
JP6659164B2 (ja) リニア駆動装置、レンズ鏡筒及び撮像装置
JP6849424B2 (ja) 振動型アクチュエータ、これを有するレンズ鏡筒、撮像装置及びステージ装置
JP7091498B2 (ja) 駆動装置、像ぶれ補正装置、レンズ鏡筒及び撮像装置
JP7027052B2 (ja) 振動型アクチュエータ及びこれを用いた電子機器
JP2018101094A (ja) 振動型アクチュエータ、レンズ駆動装置、光学機器及び電子機器
JP2018106116A (ja) 並進駆動装置及び電子機器
EP4356184A1 (en) Optical system and method for image stabilization of such an optical system
JP2016140141A (ja) 振動型駆動装置及びその駆動方法、並びに撮像装置
JP2020178496A (ja) 振動波アクチュエータ及びそれを備える撮像装置
JP2018061347A5 (ja)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R151 Written notification of patent or utility model registration

Ref document number: 6833439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151