JP6829783B2 - Manufacturing method of heat-resistant aluminum alloy material - Google Patents

Manufacturing method of heat-resistant aluminum alloy material Download PDF

Info

Publication number
JP6829783B2
JP6829783B2 JP2020037375A JP2020037375A JP6829783B2 JP 6829783 B2 JP6829783 B2 JP 6829783B2 JP 2020037375 A JP2020037375 A JP 2020037375A JP 2020037375 A JP2020037375 A JP 2020037375A JP 6829783 B2 JP6829783 B2 JP 6829783B2
Authority
JP
Japan
Prior art keywords
mass
heat
aluminum alloy
resistant aluminum
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020037375A
Other languages
Japanese (ja)
Other versions
JP2020090727A (en
Inventor
崇史 藤井
崇史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2020037375A priority Critical patent/JP6829783B2/en
Publication of JP2020090727A publication Critical patent/JP2020090727A/en
Application granted granted Critical
Publication of JP6829783B2 publication Critical patent/JP6829783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Forging (AREA)

Description

この発明は、自動車等における輸送機器の内燃機関としてのターボチャージャーのターボコンプレッサーインペラー用の材料等に用いられる耐熱性アルミニウム合金材の製造方法およびその関連技術に関する。 The present invention relates to a method for producing a heat-resistant aluminum alloy material used as a material for a turbo compressor impeller of a turbocharger as an internal combustion engine of a transportation device in an automobile or the like, and a related technique thereof.

自動車の内燃機関としてのターボチャージャーにおけるコンプレッサーホイール等のコンプレッサーインペラーは、150℃程度の高温状況下において10000rpmを超える高速回転が与えられるため、高温下において高強度および高剛性を有することが要求される。加えてコンプレッサーインペラーは、エネルギー損失の低減を図るために軽量化も要求されるとともに、高速回転に耐えことができる強度も要求される。 A compressor impeller such as a compressor wheel in a turbocharger as an internal combustion engine of an automobile is required to have high strength and high rigidity at a high temperature because it is given a high speed rotation of over 10,000 rpm under a high temperature condition of about 150 ° C. .. In addition, the compressor impeller is required to be lightweight in order to reduce energy loss, and is also required to have strength capable of withstanding high-speed rotation.

例えば従来において、コンプレッサーインペラーは、2618合金(Cu:1.9質量%〜2.7質量%、Mg:1.3質量%〜1.8質量%、Ni:0.9質量%〜1.2質量%、Fe:0.9質量%〜1.3質量%、Si:0.1質量%〜0.25質量%、Ti:0.04質量%〜0.1質量%、Al:残部)の合金組成を備えた鋳造・鍛造品を切削加工して製造していた。しかしながら近年における切削加工の高速化により、アルミニウム合金押出材の切削品化が進んできており、切削性の向上、高温強度の改善がさらに必要となってきた。 For example, conventionally, the compressor impeller is a 2618 alloy (Cu: 1.9% by mass to 2.7% by mass, Mg: 1.3% by mass to 1.8% by mass, Ni: 0.9% by mass to 1.2). Mass%, Fe: 0.9% by mass to 1.3% by mass, Si: 0.1% by mass to 0.25% by mass, Ti: 0.04% by mass to 0.1% by mass, Al: balance) It was manufactured by cutting cast and forged products with an alloy composition. However, with the recent increase in the speed of cutting, the extruded aluminum alloy material has been made into a cut product, and it has become necessary to further improve the machinability and the high temperature strength.

例えば下記特許文献1には、高温である160℃での強度が従来以上に向上したAl−Cu−Mg系アルミニウム合金押出材を提供する技術が開示されている。 For example, Patent Document 1 below discloses a technique for providing an extruded Al—Cu—Mg-based aluminum alloy having higher strength at a high temperature of 160 ° C. than before.

特許第5284935号Patent No. 5284935

しかしながら、自動車等の内燃機関の技術分野においてコンプレッサーインペラーは、今以上の高速回転化が求められ、使用温度のさらなる上昇に耐えることができるアルミニウム合金材が求められているのが現状である。 However, in the technical field of internal combustion engines such as automobiles, compressor impellers are required to rotate at higher speeds, and aluminum alloy materials capable of withstanding a further rise in operating temperature are currently required.

この発明は、高温使用に十分に耐えることができ、高温強度に優れた耐熱性アルミニウム合金材の製造方法およびその関連技術を提供することを目的とする。 An object of the present invention is to provide a method for producing a heat-resistant aluminum alloy material which can sufficiently withstand high-temperature use and has excellent high-temperature strength, and related techniques thereof.

上記目的を達成するため、本発明は以下の構成を要旨とするものである。 In order to achieve the above object, the gist of the present invention is as follows.

[1]Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.4質量%、Zr:0.01質量%〜0.3質量%、Si:0.3質量%未満、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、熱処理を行った後、塑性加工を行うことによって、交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整された耐熱性アルミニウム合金材を得るようにしたことを特徴とする耐熱性アルミニウム合金材の製造方法。 [1] Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0. 5% by mass to 1.5% by mass, Mn: 0.1% by mass to 0.4% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: less than 0.3% by mass, Ti: 0 .06% by mass, balance: Al and unavoidable impurities The alloy composition of the continuous cast material is heat-treated and then plastically processed to increase the aluminum crystal grain length by the cross-linking method to 250 μm to 2000 μm. A method for producing a heat-resistant aluminum alloy material, which comprises obtaining an adjusted heat-resistant aluminum alloy material.

[2]前記塑性加工により得られた塑性加工材に対し切削加工を行って耐熱性アルミニウム合金材を得るようにした前項1に記載の耐熱性アルミニウム合金材の製造方法。 [2] The method for producing a heat-resistant aluminum alloy material according to item 1 above, wherein a heat-resistant aluminum alloy material is obtained by cutting the plastic processed material obtained by the plastic working.

[3]前記塑性加工材に対し切削加工を施す前に熱処理を施すようにした前項2に記載の耐熱性アルミニウム合金材の製造方法。 [3] The method for producing a heat-resistant aluminum alloy material according to item 2 above, wherein the plastic working material is heat-treated before being cut.

[4]前記熱処理として、溶体化処理、焼き入れ処理および時効処理を順次行う一方、
溶体化処理において485℃〜530℃の温度で0.5時間〜6時間加熱し、焼き入れ処理において10℃〜90℃の水で冷却し、時効処理において170℃〜230℃で1時間〜20時間加熱するようにした前項3に記載の耐熱性アルミニウム合金材の製造方法。
[4] As the heat treatment, solution treatment, quenching treatment, and aging treatment are sequentially performed, while the heat treatment is performed.
In the solution treatment, it is heated at a temperature of 485 ° C to 530 ° C for 0.5 hours to 6 hours, in the quenching treatment, it is cooled with water at 10 ° C to 90 ° C, and in the aging treatment, it is cooled at 170 ° C to 230 ° C for 1 hour to 20. The method for producing a heat-resistant aluminum alloy material according to item 3 above, which is heated for an hour.

[5]前記塑性加工における軸方向の加工率が20%〜80%である前項1〜4のいずれか1項に記載の耐熱性アルミニウム合金材の製造方法。 [5] The method for producing a heat-resistant aluminum alloy material according to any one of the above items 1 to 4, wherein the processing rate in the axial direction in the plastic working is 20% to 80%.

[6]前記塑性加工は軸方向に圧縮する据込加工である前項1〜5のいずれか1項に記載の耐熱性アルミニウム合金材の製造方法。 [6] The method for producing a heat-resistant aluminum alloy material according to any one of items 1 to 5 above, wherein the plastic working is a stationary working that compresses in the axial direction.

[7]前記塑性加工は型鍛造である前項1〜6のいずれか1項に記載の耐熱性アルミニウム合金材の製造方法。 [7] The method for producing a heat-resistant aluminum alloy material according to any one of items 1 to 6 above, wherein the plastic working is mold forging.

[8]Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.4質量%、Zr:0.01質量%〜0.3質量%、Si:0.3質量%未満、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、熱処理を行った後、塑性加工を行って塑性加工材を得るとともに、
その塑性加工材に対し切削加工を行うことによって、交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整されたコンプレッサーインペラーを得るようにしたことを特徴とするコンプレッサーインペラーの製造方法。
[8] Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0. 5% by mass to 1.5% by mass, Mn: 0.1% by mass to 0.4% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: less than 0.3% by mass, Ti: 0 .06% by mass, balance: Al and unavoidable impurities A continuous cast material having an alloy composition is heat-treated and then plastically processed to obtain a plastically processed material.
A method for manufacturing a compressor impeller, characterized in that a compressor impeller whose aluminum crystal grain length is adjusted to 250 μm to 2000 μm by the line of intersection method is obtained by cutting the plastic work material.

[9]Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.4質量%、Zr:0.01質量%〜0.3質量%、Si:0.3質量%未満、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、熱処理および塑性加工されて得られ、かつ交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整されていることを特徴とするコンプレッサーインペラー用アルミニウム合金材。 [9] Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0. 5% by mass to 1.5% by mass, Mn: 0.1% by mass to 0.4% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: less than 0.3% by mass, Ti: 0 .06% by mass, balance: obtained by heat treatment and plastic processing on a continuous cast material having an alloy composition of Al and unavoidable impurities, and the aluminum crystal grain length adjusted by the crossing method to 250 μm to 2000 μm. Aluminum alloy material for compressor impeller, which is characterized by being

[10]Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.4質量%、Zr:0.01質量%〜0.3質量%、Si:0.3質量%未満、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、熱処理および型鍛造されて得られ、かつ交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整されていることを特徴とするコンプレッサーインペラー用鍛造素形材。 [10] Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0. 5% by mass to 1.5% by mass, Mn: 0.1% by mass to 0.4% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: less than 0.3% by mass, Ti: 0 .06% by mass, balance: obtained by heat treatment and die forging of a continuous cast material having an alloy composition of Al and unavoidable impurities, and the aluminum crystal grain length adjusted by the crossing method to 250 μm to 2000 μm. Forged material for compressor impeller, which is characterized by being

[11]Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.4質量%、Zr:0.01質量%〜0.3質量%、Si:0.3質量%未満、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、熱処理、型鍛造および切削加工されて得られ、かつ交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整されていることを特徴とするコンプレッサーインペラー。 [11] Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0. 5% by mass to 1.5% by mass, Mn: 0.1% by mass to 0.4% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: less than 0.3% by mass, Ti: 0 .06% by mass, balance: obtained by heat treatment, die forging and cutting of a continuous cast material having an alloy composition of Al and unavoidable impurities, and the aluminum crystal grain length by the crossing method is 250 μm to 2000 μm. A compressor impeller characterized by being tuned.

発明[1]の耐熱性アルミニウム合金材の製造方法によれば、高温使用に十分に耐えることができて高温強度に優れ、かつコンプレッサーインペラー用の材料として好適な耐熱性アルミニウム合金材を得ることができる。 According to the method for producing a heat-resistant aluminum alloy material according to the invention [1], it is possible to obtain a heat-resistant aluminum alloy material that can sufficiently withstand high-temperature use, has excellent high-temperature strength, and is suitable as a material for a compressor impeller. it can.

発明[2]〜[7]の耐熱性アルミニウム合金材の製造方法によれば、上記の効果をより確実に得ることができる。 According to the method for producing a heat-resistant aluminum alloy material according to the inventions [2] to [7], the above effect can be obtained more reliably.

発明[8]のコンプレッサーインペラーの製造方法によれば、高温使用に十分に耐えることができて高温強度に優れたコンプレッサーインペラーを得ることができる。 According to the method for manufacturing a compressor impeller according to the invention [8], it is possible to obtain a compressor impeller that can sufficiently withstand high temperature use and has excellent high temperature strength.

発明[9]のコンプレッサーインペラー用アルミニウム合金材によれば、高温使用に十分に耐えることができ、かつ優れた高温強度を備えている。 According to the aluminum alloy material for a compressor impeller of the present invention [9], it can sufficiently withstand high temperature use and has excellent high temperature strength.

発明[10]のコンプレッサーインペラー用鍛造素形材によれば、高温使用に十分に耐えることができ、かつ優れた高温強度を備えている。 According to the forged material for a compressor impeller of the present invention [10], it can sufficiently withstand high temperature use and has excellent high temperature strength.

発明[11]のコンプレッサーインペラーによれば、高温使用に十分に耐えることができ、かつ優れた高温強度を備えている。 According to the compressor impeller of the invention [11], it can sufficiently withstand high temperature use and has excellent high temperature strength.

図1は実施例および比較例に採用された供試材を示す斜視図であって、図(a)は製作方法1によって得られた供試材を示す斜視図、図(b)は製作方法2〜5によって得られた供試材を示す斜視図である。FIG. 1 is a perspective view showing a test material adopted in Examples and Comparative Examples, FIG. 1A is a perspective view showing a test material obtained by the manufacturing method 1, and FIG. 1B is a manufacturing method. It is a perspective view which shows the test material obtained by 2-5. 図2は実施例および比較例の供試材に対する試験片の位置関係を説明するための図であって、図(a−1)は製作方法1による供試材に対する試験片の位置関係を説明するための斜視図、図(a−2)は製作方法1による供試材に対する試験片の位置関係を説明するための側面図、図(b−1)は製作方法2〜4による供試材に対する試験片の位置関係を説明するための斜視図、図(b−2)は製作方法2〜4による供試材に対する試験片の位置関係を説明するための側面図である。FIG. 2 is a diagram for explaining the positional relationship of the test piece with respect to the test material of Examples and Comparative Examples, and FIG. 2A-1 is a diagram for explaining the positional relationship of the test piece with respect to the test material according to the manufacturing method 1. FIG. 2A-2 is a side view for explaining the positional relationship of the test piece with respect to the test material according to the manufacturing method 1, and FIG. (B-1) is a side view for explaining the positional relationship of the test piece with respect to the test material according to the manufacturing method 1. The perspective view and FIG. (B-2) for explaining the positional relationship of the test piece with respect to the test piece are side views for explaining the positional relationship of the test piece with respect to the test material according to the manufacturing methods 2 to 4. 図3は実施例および比較例の供試材に対するJIS4号試験片の位置関係を説明するための図であって、図(a−1)は製作方法1による供試材に対するJIS4号試験片の位置関係を説明するための斜視図、図(a−2)は製作方法1による供試材に対するJIS4号試験片の位置関係を説明するための平面図、図(b−1)は製作方法2〜4による供試材に対するJIS4号試験片の位置関係を説明するための斜視図、図(b−2)は製作方法2〜4による供試材に対するJIS4号試験片の位置関係を説明するための平面図である。FIG. 3 is a diagram for explaining the positional relationship of the JIS No. 4 test piece with respect to the test material of Examples and Comparative Examples, and FIG. 3 (a-1) is a diagram of the JIS No. 4 test piece with respect to the test material according to the manufacturing method 1. A perspective view for explaining the positional relationship, FIG. (a-2) is a plan view for explaining the positional relationship of the JIS No. 4 test piece with respect to the test material according to the manufacturing method 1, and FIG. (B-1) is a manufacturing method 2. The perspective view for explaining the positional relationship of the JIS No. 4 test piece with respect to the test material according to 4 and FIG. 4 (b-2) is for explaining the positional relationship of the JIS No. 4 test piece with respect to the test material according to the manufacturing methods 2 to 4. It is a plan view of.

次に本発明に関連したコンプレッサーインペラーの製造方法について詳細に説明する。 Next, a method for manufacturing a compressor impeller related to the present invention will be described in detail.

本発明のコンプレッサーインペラーは、Al−Cu−Mg系の合金からなる耐熱性アルミニウム合金材によって構成されている。 The compressor impeller of the present invention is made of a heat-resistant aluminum alloy material made of an Al—Cu—Mg-based alloy.

本発明の耐熱性アルミニウム合金材は、Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.4質量%、Zr:0.01質量%〜0.3質量%、Si:0.3質量%未満、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えている。 The heat-resistant aluminum alloy material of the present invention has Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, and Ni: 0.6% by mass to 2.6% by mass. Mass%, Fe: 0.5% by mass to 1.5% by mass, Mn: 0.1% by mass to 0.4% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: 0.3 It has an alloy composition of less than mass%, Ti: less than 0.06 mass%, balance: Al and unavoidable impurities.

上記の合金組成において、Cuは常温強度および高温強度を向上させるために添加する必要がある元素である。このCuの含有量が3.0%質量未満では十分な強度向上の効果を得ることができず、好ましくない。またCuの含有量が5.5質量%を超えると強度は飽和状態となり、それ以上の添加は無意味である。従ってCuの含有量は3.0質量%〜5.5質量%とする必要があり、好ましくは3.2質量%〜4.7質量%とするのが良い。 In the above alloy composition, Cu is an element that needs to be added in order to improve the normal temperature strength and the high temperature strength. If the Cu content is less than 3.0% by mass, the effect of sufficiently improving the strength cannot be obtained, which is not preferable. Further, when the Cu content exceeds 5.5% by mass, the strength becomes saturated, and addition of more than that is meaningless. Therefore, the Cu content needs to be 3.0% by mass to 5.5% by mass, preferably 3.2% by mass to 4.7% by mass.

MgはCuと同様、常温強度および高温強度を向上させるのに添加する必要がある元素である。このMgの含有量が1.1質量%未満では十分な強度向上の効果を得ることができず、好ましくない。またMgの含有量が2.5質量%を超えると、鍛造加工性等の塑性加工性や鋳造性が劣化するため好ましくない。従ってMg含有量は1.1質量%〜2.5%質量%とする必要がある。 Like Cu, Mg is an element that needs to be added to improve normal temperature strength and high temperature strength. If the Mg content is less than 1.1% by mass, the effect of sufficiently improving the strength cannot be obtained, which is not preferable. Further, if the Mg content exceeds 2.5% by mass, plastic workability such as forging workability and castability deteriorate, which is not preferable. Therefore, the Mg content needs to be 1.1% by mass to 2.5% by mass.

Niは常温強度および高温強度を向上させるために添加する元素である。Niの含有量は0.6質量%未満では十分な強度向上の効果を得ることができず、好ましくない。またNiの含有量が2.6質量%を超えると合金中のCuと結びつき晶出物となり、逆に強度が低下するため好ましくない。従ってNiの含有量は0.6質量%〜2.6質量%とする。 Ni is an element added to improve normal temperature strength and high temperature strength. If the Ni content is less than 0.6% by mass, the effect of sufficiently improving the strength cannot be obtained, which is not preferable. Further, if the Ni content exceeds 2.6% by mass, it binds to Cu in the alloy to form crystallization, and conversely, the strength decreases, which is not preferable. Therefore, the Ni content is set to 0.6% by mass to 2.6% by mass.

Feは高温強度を向上させるために添加する元素である。Feの含有量が0.5質量%未満では十分な強度向上の効果を得ることができず、好ましくない。またFeの含有量が1.5質量%を超えると巨大晶出物が発生し、逆に強度は低下してしまい、好ましくない。従って、Feの含有量は0.5質量%〜1.5質量%とする必要があり、好ましくは0.8質量%〜1.2質量%とするのが良い。 Fe is an element added to improve high temperature strength. If the Fe content is less than 0.5% by mass, the effect of sufficiently improving the strength cannot be obtained, which is not preferable. On the other hand, if the Fe content exceeds 1.5% by mass, giant crystallization is generated, and conversely, the strength is lowered, which is not preferable. Therefore, the Fe content needs to be 0.5% by mass to 1.5% by mass, preferably 0.8% by mass to 1.2% by mass.

Mnは高温強度を向上させるために添加する元素である。Mnの含有量が0.1質量%未満では十分な強度向上の効果を得ることができず、好ましくない。またMnの含有量が0.4質量%を超えると巨大晶出物が発生し、逆に強度は低下してしまい、好ましくない。従ってMnの含有量は0.1質量%〜0.4質量%とする必要があり、好ましくは0.2質量%〜0.35質量%とするのが良い。 Mn is an element added to improve high temperature strength. If the Mn content is less than 0.1% by mass, the effect of sufficiently improving the strength cannot be obtained, which is not preferable. On the other hand, if the Mn content exceeds 0.4% by mass, huge crystallization is generated, and conversely, the strength is lowered, which is not preferable. Therefore, the Mn content needs to be 0.1% by mass to 0.4% by mass, preferably 0.2% by mass to 0.35% by mass.

Zrは塑性変形させた連続鋳造材(連鋳材)の再結晶化を抑制し、かつ常温から高温において強度を向上させるために添加する元素である。Zrの含有量が0.01質量%未満ではその効果を十分に得ることができず、好ましくない。またZrの含有量が0.3質量%を超えると、巨大晶出物が発生して強度が低下するため好ましくない。従ってZrの含有量は0.01質量%〜0.3質量%とする必要があり、好ましくは0.1質量%〜0.25質量%とするのが良い。 Zr is an element added to suppress recrystallization of a plastically deformed continuous cast material (continuous cast material) and to improve the strength from room temperature to high temperature. If the Zr content is less than 0.01% by mass, the effect cannot be sufficiently obtained, which is not preferable. Further, if the Zr content exceeds 0.3% by mass, huge crystallization is generated and the strength is lowered, which is not preferable. Therefore, the content of Zr needs to be 0.01% by mass to 0.3% by mass, preferably 0.1% by mass to 0.25% by mass.

SiはMgと金属間化合物Mg2Siを生成し、高温での使用が続くうちに粗大化し、これにより特に高温強度が低下する可能性がある。従って本発明では添加元素または不可避不純物としてのSiの含有量を0.3質量%未満(0質量%を含む)に制限することにより、Mg2Siの生成そのものを抑えて高温使用に伴うMg2Siの粗大化を回避し、高温強度および疲労強度の低下(高温不安定性)を防止することができる。好ましくはSiの含有量は0.1質量%以下とするのが良い。 Si produces Mg and an intermetallic compound Mg2Si, which coarsens as it continues to be used at high temperatures, which may result in a particularly low high temperature strength. Therefore, in the present invention, by limiting the content of Si as an additive element or an unavoidable impurity to less than 0.3% by mass (including 0% by mass), the formation of Mg2Si itself is suppressed and Mg2Si is coarsened due to high temperature use. It is possible to prevent a decrease in high temperature strength and fatigue strength (high temperature instability). The Si content is preferably 0.1% by mass or less.

Tiは鋳塊組織の結晶粒を微細化して機械的性質を安定化させる元素であるが、本発明では結晶粒を微細化させずに積極的に粗大化させることで、高温変形時の粒界すべりを抑制するようにしている。従って本発明においてはTiの含有量を0.06質量%未満(0質量%を含む)に制限する必要がある。すなわちTiの含有量をこのように制限することにより、Al3Tiの生成を回避し、結晶粒の微細化を防ぐことができ、十分な高温強度を確実に得ることができる。特に本発明においてTiの含有量を0.04質量%未満に制限する場合には、結晶粒長を後述する規定範囲内により確実に調整することができる。 Ti is an element that refines the crystal grains of the ingot structure to stabilize the mechanical properties. However, in the present invention, the grain boundaries at the time of high temperature deformation are formed by positively coarsening the crystal grains without making them finer. I try to suppress slippage. Therefore, in the present invention, it is necessary to limit the Ti content to less than 0.06% by mass (including 0% by mass). That is, by limiting the Ti content in this way, the formation of Al3Ti can be avoided, the refinement of crystal grains can be prevented, and sufficient high-temperature strength can be reliably obtained. In particular, when the Ti content is limited to less than 0.04% by mass in the present invention, the crystal grain length can be reliably adjusted within the specified range described later.

ところで、実操業で得られるアルミニウム合金には、種々の不可避不純物元素が含まれる。本発明に係るAl−Cu−Mg系アルミニウム合金材においても、JIS2000系アルミニウム合金とほぼ同様な不可避不純物元素が含まれているが、特に悪影響が及ぶことはない。具体的には本発明のアルミニウム合金材の合金組成においては、Cr、Znが個々に0.05質量%未満、Pb、Bi、Snが個々に0.01質量%未満、その他の元素が個々に0.05質量%未満、Siを除く不可避不純物トータルで0.15質量%未満であれば特に問題は生じない。 By the way, various unavoidable impurity elements are contained in the aluminum alloy obtained in the actual operation. The Al—Cu—Mg-based aluminum alloy material according to the present invention also contains unavoidable impurity elements that are almost the same as those of the JIS2000-based aluminum alloy, but has no particular adverse effect. Specifically, in the alloy composition of the aluminum alloy material of the present invention, Cr and Zn are individually less than 0.05% by mass, Pb, Bi and Sn are individually less than 0.01% by mass, and other elements are individually. If it is less than 0.05% by mass and the total unavoidable impurities excluding Si is less than 0.15% by mass, no particular problem occurs.

本発明においては例えば、周知の方法で溶製することによって上記の合金組成の連続鋳造材(ビレット)を製作して、その連続鋳造材に対し熱処理を行い、さらに鍛造加工等の塑性加工を行うことによって、本発明に関連したコンプレッサーインペラー用の耐熱性アルミニウム合金材が得られるものである。 In the present invention, for example, a continuous cast material (billet) having the above alloy composition is produced by melting by a well-known method, the continuous cast material is heat-treated, and further plastic working such as forging is performed. Thereby, a heat-resistant aluminum alloy material for a compressor impeller related to the present invention can be obtained.

上記熱処理は、溶体化処理、焼き入れ処理および時効処理であり、上記連続鋳造材に対しこの順で処理される。 The heat treatment is a solution treatment, a quenching treatment, and an aging treatment, and the continuous cast material is treated in this order.

溶体化処理においては加熱温度を485℃〜530℃とし、処理時間を0.5時間(hr)〜6時間とするのが良い。 In the solution treatment, the heating temperature is preferably 485 ° C. to 530 ° C., and the treatment time is preferably 0.5 hours (hr) to 6 hours.

焼き入れ処理においては10℃〜90℃の水で急冷するのが良い。 In the quenching process, it is preferable to quench with water at 10 ° C to 90 ° C.

時効処理においては加熱時間を170℃〜230℃とし、処理時間を1時間〜20時間加熱するのが良い。 In the aging treatment, the heating time is preferably 170 ° C. to 230 ° C., and the treatment time is preferably 1 hour to 20 hours.

こうして熱処理されたアルミニウム合金連続鋳造材が適宜の寸法に切断されて、塑性加工用素材(鍛造素材)を得た後、その素材に対し塑性加工が行われる。本発明において塑性加工としては、据込加工や型鍛造等の鍛造加工が実施される。 The aluminum alloy continuous cast material heat-treated in this way is cut to an appropriate size to obtain a material for plastic working (forging material), and then plastic working is performed on the material. In the present invention, as the plastic working, forging processing such as stationary processing and mold forging is carried out.

例えば鍛造素材に対し型鍛造が行われることによって得られた鍛造素形材が、本発明のコンプレッサーインペラー用の鍛造素形材として構成されるものである。 For example, the forged material formed by performing mold forging on the forged material is configured as the forged material for the compressor impeller of the present invention.

また本発明の塑性加工においては軸方向の加工率(据込率)を20%〜80%に設定するのが良い。この加工率を上記の規定範囲内に設定することにより、十分な常温強度および高温強度を確実に得ることができる。換言すると、加工率が上記の規定範囲を逸脱する場合には、十分な常温強度および高温強度を確実に得ることができないおそれがある。 Further, in the plastic working of the present invention, it is preferable to set the machining rate (installation rate) in the axial direction to 20% to 80%. By setting this processing rate within the above-mentioned specified range, sufficient normal temperature strength and high temperature strength can be surely obtained. In other words, if the processing rate deviates from the above-mentioned specified range, it may not be possible to reliably obtain sufficient normal temperature strength and high temperature strength.

また本発明の鍛造素形材(塑性加工材)においては、交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整する必要がある。すなわち結晶粒長が250μmに満たない場合には、クリープ変形により高温使用に耐えることができず、十分な高温強度を得ることができないおそれがあり、結晶粒長が2000μmを超える場合には、冷間鍛造等の塑性加工における成形性が低下するおそれがあるため、好ましくない。 Further, in the forged material (plastic working material) of the present invention, it is necessary to adjust the aluminum crystal grain length to 250 μm to 2000 μm by the line of intersection method. That is, if the crystal grain length is less than 250 μm, it may not be able to withstand high temperature use due to creep deformation, and sufficient high temperature strength may not be obtained. If the crystal grain length exceeds 2000 μm, it may be cold. It is not preferable because the formability in plastic working such as interforging may decrease.

本発明においては、上記のコンプレッサーインペラー用の鍛造素形材を切削加工することによって、ターボチャージャーのコンプレッサーホイール等のコンプレッサーインペラーを製作するものである。 In the present invention, a compressor impeller such as a compressor wheel of a turbocharger is manufactured by cutting the forged material for the compressor impeller described above.

以上のように製造された本発明のコンプレッサーインペラー用鍛造素形材においては、常温強度、高温強度、剛性に優れ、とりわけ軸方向(L方向)に対して直交する径方向(LT方向)の強度が高くなる。従ってこの鍛造素形材を用いてターボチャージャーのコンプレッサーホイール等のコンプレッサーインペラーを製造すれば、全体的に室温強度(常温強度)、高温強度に優れると同時に、高速回転時の動的バランスに優れ、しかも各部分についての、それぞれ異なる要求特性や望まれる特性に応じた最適な性能を有し、特に羽根部の強度、剛性、とりわけ羽根部先端(チップエッジ部)の強度、剛性が高いコンプレッサーインペラーを得ることができる。具体的には、高速回転に伴う170℃程度での高温使用に耐えることができ、耐熱強度に優れたコンプレッサーインペラーを得ることができる。 The forged material for the compressor impeller of the present invention manufactured as described above is excellent in normal temperature strength, high temperature strength, and rigidity, and in particular, the strength in the radial direction (LT direction) orthogonal to the axial direction (L direction). Will be higher. Therefore, if a compressor impeller such as a compressor wheel of a turbocharger is manufactured using this forged material, the overall room temperature strength (normal temperature strength) and high temperature strength are excellent, and at the same time, the dynamic balance at high speed rotation is excellent. Moreover, a compressor impeller that has the optimum performance for each part according to different required characteristics and desired characteristics, especially the strength and rigidity of the blade part, especially the strength and rigidity of the tip of the blade part (chip edge part). Obtainable. Specifically, it is possible to obtain a compressor impeller that can withstand high-temperature use at about 170 ° C. due to high-speed rotation and has excellent heat resistance.

このように本発明の製造方法によれば、上記の優れた性能を有するコンプレッサーインペラー用の耐熱性アルミニウム合金材および鍛造素形材や、コンプレッサーインペラーを製造することができる。 As described above, according to the manufacturing method of the present invention, a heat-resistant aluminum alloy material and a forged material for a compressor impeller having the above-mentioned excellent performance, and a compressor impeller can be manufactured.

以下、本発明に関連した実施例および実施例と対比する比較例について詳細に説明する。 Hereinafter, examples related to the present invention and comparative examples to be compared with the examples will be described in detail.

Figure 0006829783
Figure 0006829783

表1に示すように、合金組成がAタイプとBタイプとの2種類の合金を準備した。なお合金組成自体は、Aタイプの合金もBタイプの合金も共に本発明の要旨に含まれるものではあるが、Bタイプの合金は、Aタイプの合金と比較してTiの含有量がより少量に制限されている。 As shown in Table 1, two types of alloys having an alloy composition of A type and B type were prepared. As for the alloy composition itself, both the A type alloy and the B type alloy are included in the gist of the present invention, but the B type alloy has a smaller Ti content than the A type alloy. Is limited to.

Figure 0006829783
Figure 0006829783

<実施例1〜5>
表2に示すようにBタイプの合金組成を有するアルミニウム合金を直径φ50mmの棒状に鋳造し、さらに470℃×7hrのソーキングを行い連続鋳造材を得た。
<Examples 1 to 5>
As shown in Table 2, an aluminum alloy having a B-type alloy composition was cast into a rod shape having a diameter of φ50 mm, and further soaked at 470 ° C. × 7 hr to obtain a continuous cast material.

このBタイプの合金組成を有する連続鋳造棒を所定の長さに切断して切断品を得る方法を製作方法1とし、この製作方法1によって図1(a)に示すように軸方向Lの長さ(厚み)Tが50mmの実施例1の円柱状の供試材(熱処理前の供試材)Wを製作した。 A method of obtaining a cut product by cutting a continuously cast rod having a B-type alloy composition to a predetermined length is defined as a manufacturing method 1, and the length L in the axial direction is as shown in FIG. 1A by this manufacturing method 1. A columnar test material (test material before heat treatment) W of Example 1 having a (thickness) T of 50 mm was produced.

また表2に示すように製作方法1によって得られた切断品に対し、25%の加工率で軸方向Lに熱間据込鍛造を行って熱間据込鍛造品を得る方法を製作方法2とし、この製作方法2によって図1(b)に示すように厚みTが37.5mmの実施例2の太鼓状の供試材(熱処理前の供試材)Wを製作した。 Further, as shown in Table 2, a method of obtaining a hot-installed forged product by hot-installing forging in the axial direction L at a processing rate of 25% with respect to the cut product obtained by the manufacturing method 1 is obtained. As shown in FIG. 1 (b), the drum-shaped test material (test material before heat treatment) W of Example 2 having a thickness T of 37.5 mm was manufactured by this manufacturing method 2.

また表2に示すように製作方法1によって得られた切断品に対し、50%、75%、90%の加工率で軸方向に熱間据込鍛造を行って熱間据込鍛造品を得る方法をそれぞれ製作方法3〜5とし、各製作方法3〜5によって図1(b)に示すように、厚みTが25mm、12.5mm、5mmの実施例3〜5の太鼓型の供試材(熱処理前の供試材)Wをそれぞれ製作した。 Further, as shown in Table 2, the cut product obtained by the manufacturing method 1 is subjected to hot stationary forging in the axial direction at a processing rate of 50%, 75%, and 90% to obtain a hot stationary forged product. The methods were set to manufacturing methods 3 to 5, respectively, and as shown in FIG. 1 (b) according to each manufacturing method 3 to 5, the drum-shaped test material of Examples 3 to 5 having a thickness T of 25 mm, 12.5 mm, and 5 mm. (Test material before heat treatment) W was produced respectively.

<比較例1〜5>
表2に示すようにAタイプの合金組成を有するアルミニウム合金を用いて上記実施例と同様に、連続鋳造材を得た。このAタイプの合金組成を有する連続鋳造棒に対し、上記実施例と同様の製作方法1〜5をそれぞれ適用して比較例1〜5の円筒状ないし太鼓状の供試材(熱処理前の供試材)Wをそれぞれ製作した。
<Comparative Examples 1 to 5>
As shown in Table 2, a continuous cast material was obtained in the same manner as in the above Examples using an aluminum alloy having an A type alloy composition. Cylindrical or drum-shaped test materials of Comparative Examples 1 to 5 (supplied before heat treatment) by applying the same manufacturing methods 1 to 5 as in the above examples to the continuously cast rod having the A type alloy composition. (Test material) W was manufactured respectively.

<熱処理>
次いで、製作方法1〜5で得られた実施例1〜5および比較例1〜5の熱処理前の供試材を510℃で3時間加熱する溶体化処理を施した後、80℃の水で急冷する焼入処理を施し、さらに200℃で10時間加熱する時効処理を行って実施例1〜5および比較例1〜5の供試材W(熱処理後の供試材)をそれぞれ製作した。
<Heat treatment>
Next, the test materials before heat treatment of Examples 1 to 5 and Comparative Examples 1 to 5 obtained in the production methods 1 to 5 were subjected to a solution treatment by heating at 510 ° C. for 3 hours, and then with water at 80 ° C. Quenching treatment for quenching was performed, and further aging treatment was performed by heating at 200 ° C. for 10 hours to produce test materials W (test materials after heat treatment) of Examples 1 to 5 and Comparative Examples 1 to 5, respectively.

こうして得られた実施例1〜4および比較例1〜4の熱処理後の供試材Wに対して、結晶粒長、室温引張強度および高温引張強度を、下記要領で測定した。その結果を表2に併せて示す。なお実施例5および比較例5の供試材Wについては、加工率(据込率)が90%と非常に高く、素形材の歩留まりが悪くなるため、実用に不向きである。この実用上の理由から、実施例5および比較例5の供試材Wについては、下記の測定は実施しなかった。 The crystal grain length, room temperature tensile strength, and high temperature tensile strength of the heat-treated test materials W of Examples 1 to 4 and Comparative Examples 1 to 4 thus obtained were measured as follows. The results are also shown in Table 2. The test material W of Example 5 and Comparative Example 5 is not suitable for practical use because the processing rate (installation rate) is as high as 90% and the yield of the raw material is poor. For this practical reason, the following measurements were not performed on the test material W of Example 5 and Comparative Example 5.

<結晶粒長の測定>
図2(a−1)(a−2)は製作方法1による供試材Wに対する試験片S1の位置関係を説明するための図、図2(b−1)(b−2)は製作方法2〜4による供試材Wに対する試験片S1の位置関係を説明するための図である。これらの図に示すように実施例1〜4および比較例1〜4の各供試材Wの軸方向Lおよび径方向(軸方向Lに対し直交するLT方向)の中心部から15mm角に削り出して実施例1〜4および比較例1〜4のサイコロ状(立方形状)の各試験片S1を得た。さらにこれらの各試験片S1を研磨および電解エッチングした後、軸方向Lに垂直な面を観察面として、倍率25倍の偏光顕微鏡により試料表面の顕微鏡像を取得した。
<Measurement of crystal grain length>
2 (a-1) and 2 (a-2) are diagrams for explaining the positional relationship of the test piece S1 with respect to the test material W according to the manufacturing method 1, and FIGS. 2 (b-1) and 2 (b-2) are manufacturing methods. It is a figure for demonstrating the positional relationship of the test piece S1 with respect to the test material W by 2-4. As shown in these figures, each of the test materials W of Examples 1 to 4 and Comparative Examples 1 to 4 is cut into a 15 mm square from the central portion in the axial direction L and the radial direction (LT direction orthogonal to the axial direction L). Each test piece S1 having a dice shape (cubic shape) of Examples 1 to 4 and Comparative Examples 1 to 4 was obtained. Further, after each of these test pieces S1 was polished and electrolytically etched, a microscope image of the sample surface was obtained by a polarizing microscope having a magnification of 25 times, with the plane perpendicular to the axial direction L as the observation plane.

こうして取得した実施例1〜4および比較例1〜4の各試験片S1の顕微鏡像に対し画像解析を行い、JISG0551に規定された切断法に準じて各試験片S1の金属組織を構成する結晶粒の平均粒長を求めた。その結晶粒長は軸方向Xに対し垂直とする。 Image analysis was performed on the microscopic images of the test pieces S1 of Examples 1 to 4 and Comparative Examples 1 to 4 thus obtained, and the crystals constituting the metal structure of each test piece S1 according to the cutting method specified in JIS G0551. The average grain length was calculated. The crystal grain length is perpendicular to the axial direction X.

<室温引張強度の測定>
図3(a−1)(a−2)は製作方法1による供試材Wに対するJIS4号試験片S2の位置関係を説明するための図、図3(b−1)(b−2)は製作方法2〜4による供試材Wに対するJIS4号試験片S2の位置関係を説明するための図である。これらの図に示すように供試材Wの軸方向の中心部から、径方向に沿って延びるJIS4号試験片S2をそれぞれ切り出し、各JIS4号試験片S3に対し、JISZ2241の規定に準拠して室温で引張試験を行い、引張強度を測定した。
<Measurement of room temperature tensile strength>
3 (a-1) and 3 (a-2) are views for explaining the positional relationship of the JIS No. 4 test piece S2 with respect to the test material W according to the manufacturing method 1, and FIGS. 3 (b-1) and 3 (b-2) are shown. It is a figure for demonstrating the positional relationship of JIS No. 4 test piece S2 with respect to the test material W by manufacturing method 2-4. As shown in these figures, JIS No. 4 test piece S2 extending along the radial direction is cut out from the axial center of the test material W, and each JIS No. 4 test piece S3 is in accordance with the provisions of JIS Z2241. A tensile test was performed at room temperature to measure the tensile strength.

<150℃引張強度の測定>
上記室温引張強度の測定と同様に供試材Wから切り出したJIS4号試験片S2(図3参照)に対し、150℃×100hr保持した後、同温度においてJISZ2241の規定に準拠して引張試験を行い、引張強度を測定した。
<Measurement of tensile strength at 150 ° C>
Similar to the measurement of the room temperature tensile strength, the JIS No. 4 test piece S2 (see FIG. 3) cut out from the test material W was held at 150 ° C. for 100 hr, and then the tensile test was performed at the same temperature in accordance with the JIS Z2241 regulations. And the tensile strength was measured.

<170℃引張強度の測定)
上記室温引張強度の測定と同様に供試材Wから切り出したJIS4号試験片S3(図3参照)に対し、170℃×100hr保持した後、同温度においてJISZ2241の規定に準拠して引張試験を行い、引張強度を測定した。
<Measurement of tensile strength at 170 ° C)
Similar to the measurement of the room temperature tensile strength, the JIS No. 4 test piece S3 (see FIG. 3) cut out from the test material W was held at 170 ° C. for 100 hr, and then the tensile test was performed at the same temperature in accordance with the JIS Z2241 regulations. And the tensile strength was measured.

<評価>
表2から明らかなように、比較例1〜4の試験片は、結晶粒長が全て250μm未満であり、本件発明の規定範囲を逸脱するものであった。そのため比較例1〜4のものは、クリープ変形によって高温使用に耐えられず、高温強度が低下するおそれがあると思われる。
<Evaluation>
As is clear from Table 2, the test pieces of Comparative Examples 1 to 4 had crystal grain lengths of less than 250 μm, which deviated from the specified range of the present invention. Therefore, those of Comparative Examples 1 to 4 cannot withstand high temperature use due to creep deformation, and it is considered that the high temperature strength may decrease.

これに対し実施例1〜4の試験片は、結晶粒長が全て250μm以上であり、本件発明の要旨に含まれるものである。従ってクリープ変形を抑制できるため、高温使用に耐えることができ、十分な高温高強を確保できると判断できる。よって本件発明に関連した実施例のアルミニウム合金材は、特に常温強度および高温強度に優れているため、コンプレッサーインペラー用の材料として好適である。 On the other hand, the test pieces of Examples 1 to 4 have crystal grain lengths of 250 μm or more, which are included in the gist of the present invention. Therefore, since creep deformation can be suppressed, it can be judged that it can withstand high temperature use and can secure sufficient high temperature and high strength. Therefore, the aluminum alloy material of the examples related to the present invention is particularly excellent in normal temperature strength and high temperature strength, and is therefore suitable as a material for a compressor impeller.

また既述した通り、加工率が90%の実施例5および比較例5は、素形材の歩留まりが悪くなるため、実用には不向きであると思われる。 Further, as described above, Example 5 and Comparative Example 5 having a processing rate of 90% are considered to be unsuitable for practical use because the yield of the raw material is poor.

この発明の製造方法は、コンプレッサーインペラー用の材料として用いられる耐熱性アルミニウム合金材を製造する際に好適に用いることができる。 The production method of the present invention can be suitably used when producing a heat-resistant aluminum alloy material used as a material for a compressor impeller.

L:軸方向
L: Axial direction

Claims (7)

Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.40質量%、Zr:0.01質量%〜0.3質量%、Si:0.1質量%以下、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、ソーキングを行った後、塑性加工を行うことによって、交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整された耐熱性アルミニウム合金材を得るものとし、
前記塑性加工における軸方向の加工率が50%〜80%であることを特徴とする耐熱性アルミニウム合金材の製造方法。
Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0.5% by mass ~ 1.5% by mass, Mn: 0.1% by mass to 0.40% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: 0.1% by mass or less, Ti: 0.06% by mass %, Remaining mass: A continuous cast material having an alloy composition of Al and unavoidable impurities was soaked and then plastically processed to adjust the aluminum crystal grain length by the crossing method to 250 μm to 2000 μm. A heat-resistant aluminum alloy material shall be obtained.
A method for producing a heat-resistant aluminum alloy material, wherein the machining rate in the axial direction in the plastic working is 50% to 80%.
前記塑性加工により得られた塑性加工材に対し切削加工を行って耐熱性アルミニウム合金材を得るようにした請求項1に記載の耐熱性アルミニウム合金材の製造方法。 The method for producing a heat-resistant aluminum alloy material according to claim 1, wherein a heat-resistant aluminum alloy material is obtained by cutting the plastic processed material obtained by the plastic working. 前記塑性加工材に対し切削加工を施す前に熱処理を施すようにした請求項2に記載の耐熱性アルミニウム合金材の製造方法。 The method for producing a heat-resistant aluminum alloy material according to claim 2, wherein the plastically worked material is heat-treated before being cut. 前記熱処理として、溶体化処理、焼き入れ処理および時効処理を順次行う一方、
溶体化処理において485℃〜530℃の温度で0.5時間〜6時間加熱し、焼き入れ処理において10℃〜90℃の水で冷却し、時効処理において170℃〜230℃で1時間〜20時間加熱するようにした請求項3に記載の耐熱性アルミニウム合金材の製造方法。
As the heat treatment, solution treatment, quenching treatment and aging treatment are sequentially performed, while
In the solution treatment, it is heated at a temperature of 485 ° C to 530 ° C for 0.5 hours to 6 hours, in the quenching treatment, it is cooled with water at 10 ° C to 90 ° C, and in the aging treatment, it is cooled at 170 ° C to 230 ° C for 1 hour to 20. The method for producing a heat-resistant aluminum alloy material according to claim 3, wherein the material is heated for an hour.
前記塑性加工は軸方向に圧縮する据込加工である請求項1〜4のいずれか1項に記載の耐熱性アルミニウム合金材の製造方法。 The method for producing a heat-resistant aluminum alloy material according to any one of claims 1 to 4, wherein the plastic working is a stationary working that compresses in the axial direction. 前記塑性加工は型鍛造である請求項1〜5のいずれか1項に記載の耐熱性アルミニウム合金材の製造方法。 The method for producing a heat-resistant aluminum alloy material according to any one of claims 1 to 5, wherein the plastic working is mold forging. Cu:3.0質量%〜5.5%質量%、Mg:1.1質量%〜2.5質量%、Ni:0.6質量%〜2.6質量%、Fe:0.5質量%〜1.5質量%、Mn:0.1質量%〜0.40質量%、Zr:0.01質量%〜0.3質量%、Si:0.1質量%以下、Ti:0.06質量%未満、残部:Alおよび不可避不純物の合金組成を備えた連続鋳造材に対し、ソーキングを行った後、塑性加工を行って塑性加工材を得るとともに、
その塑性加工材に対し切削加工を行うことによって、交線法によるアルミニウム結晶粒長が250μm〜2000μmに調整されたコンプレッサーインペラーを得るものとし、
前記塑性加工における軸方向の加工率が50%〜80%であることを特徴とするコンプレッサーインペラーの製造方法。
Cu: 3.0% by mass to 5.5% by mass, Mg: 1.1% by mass to 2.5% by mass, Ni: 0.6% by mass to 2.6% by mass, Fe: 0.5% by mass ~ 1.5% by mass, Mn: 0.1% by mass to 0.40% by mass, Zr: 0.01% by mass to 0.3% by mass, Si: 0.1% by mass or less, Ti: 0.06% by mass %, Remaining mass: A continuous cast material having an alloy composition of Al and unavoidable impurities is soaked and then plastically processed to obtain a plastically processed material.
By cutting the plastic working material, it is assumed that a compressor impeller whose aluminum crystal grain length is adjusted to 250 μm to 2000 μm by the line of intersection method is obtained.
A method for manufacturing a compressor impeller, characterized in that the machining rate in the axial direction in the plastic working is 50% to 80%.
JP2020037375A 2020-03-05 2020-03-05 Manufacturing method of heat-resistant aluminum alloy material Active JP6829783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037375A JP6829783B2 (en) 2020-03-05 2020-03-05 Manufacturing method of heat-resistant aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037375A JP6829783B2 (en) 2020-03-05 2020-03-05 Manufacturing method of heat-resistant aluminum alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015207614A Division JP6718219B2 (en) 2015-10-22 2015-10-22 Method for manufacturing heat resistant aluminum alloy material

Publications (2)

Publication Number Publication Date
JP2020090727A JP2020090727A (en) 2020-06-11
JP6829783B2 true JP6829783B2 (en) 2021-02-10

Family

ID=71012487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037375A Active JP6829783B2 (en) 2020-03-05 2020-03-05 Manufacturing method of heat-resistant aluminum alloy material

Country Status (1)

Country Link
JP (1) JP6829783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584362A (en) * 2021-07-29 2021-11-02 山东创新金属科技有限公司 High-temperature-resistant corrosion-resistant aluminum alloy for automobile engine and preparation method thereof
CN115831434B (en) * 2022-12-14 2024-09-27 广西电网有限责任公司电力科学研究院 Technological method of high-conductivity heat-resistant aluminum alloy wire with high-conductivity heat-resistant aluminum-clad steel core

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161137A (en) * 1986-12-23 1988-07-04 Kobe Steel Ltd High tensile aluminum alloy having excellent heat resistance
JP3997009B2 (en) * 1998-10-07 2007-10-24 株式会社神戸製鋼所 Aluminum alloy forgings for high-speed moving parts
JP5284935B2 (en) * 2009-12-08 2013-09-11 株式会社神戸製鋼所 Heat-resistant aluminum alloy extruded material with excellent high-temperature strength and fatigue properties
JP2013142168A (en) * 2012-01-11 2013-07-22 Furukawa-Sky Aluminum Corp Aluminum alloy excellent in creep resistance
JP2013220472A (en) * 2012-04-19 2013-10-28 Furukawa-Sky Aluminum Corp Al-Cu BASED ALUMINUM ALLOY FORGED OBJECT

Also Published As

Publication number Publication date
JP2020090727A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP3336209B1 (en) Heat-resistant ti alloy and process for producing the same
CN113106299B (en) Method for producing Ni-based wrought alloy material
WO2016129485A1 (en) METHOD FOR MANUFACTURING Ni-BASED SUPER-HEAT-RESISTANT ALLOY
JP6445542B2 (en) Method for manufacturing titanium-aluminum alloy parts
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
JP6540179B2 (en) Hot-worked titanium alloy bar and method of manufacturing the same
JP6057855B2 (en) Aluminum alloy extruded material for cutting
JP6829783B2 (en) Manufacturing method of heat-resistant aluminum alloy material
WO2014203714A1 (en) Hot-forged ti-al-based alloy and method for producing same
WO2020195049A1 (en) Method for producing ni-based super-heat-resistant alloy, and ni-based super-heat-resistant alloy
JP6491452B2 (en) Aluminum alloy continuous cast material and method for producing the same
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP6718219B2 (en) Method for manufacturing heat resistant aluminum alloy material
WO2017033663A1 (en) Aluminum alloy extruded material and method for producing same
JP5477519B1 (en) Resource-saving titanium alloy member excellent in strength and toughness and manufacturing method thereof
JP2017128789A (en) Heat resistant aluminum alloy shape material and aluminum alloy member
WO2020031579A1 (en) Method for producing ni-based super-heat-resisting alloy, and ni-based super-heat-resisting alloy
JP2011122180A (en) Extruded material of heat-resistant aluminum alloy superior in high-temperature strength and high-temperature fatigue characteristic
JP6829782B2 (en) Manufacturing method of heat-resistant aluminum alloy material
GB2467312A (en) An alpha-titanium alloy comprising aluminium, oxygen and carbon
US20190368006A1 (en) PREFORM AND METHOD FOR PRODUCING TiAl-BASED TURBINE WHEEL
KR101842922B1 (en) Ti-Al BASE ALLOY CONTAINING MISCH METAL
JP7131161B2 (en) Extruded material for impeller and manufacturing method thereof
JP7259262B2 (en) Extruded material for impeller and manufacturing method thereof
JP7131160B2 (en) Cold forged material for impeller and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210122

R150 Certificate of patent or registration of utility model

Ref document number: 6829783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350