JPS63161137A - High tensile aluminum alloy having excellent heat resistance - Google Patents

High tensile aluminum alloy having excellent heat resistance

Info

Publication number
JPS63161137A
JPS63161137A JP30730986A JP30730986A JPS63161137A JP S63161137 A JPS63161137 A JP S63161137A JP 30730986 A JP30730986 A JP 30730986A JP 30730986 A JP30730986 A JP 30730986A JP S63161137 A JPS63161137 A JP S63161137A
Authority
JP
Japan
Prior art keywords
strength
alloy
heat resistance
excellent heat
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30730986A
Other languages
Japanese (ja)
Other versions
JPH032218B2 (en
Inventor
Kazuhiko Asano
浅野 和彦
Osamu Takezoe
竹添 修
Yoshinori Yasuda
安田 善則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30730986A priority Critical patent/JPS63161137A/en
Publication of JPS63161137A publication Critical patent/JPS63161137A/en
Publication of JPH032218B2 publication Critical patent/JPH032218B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high tensile aluminum alloy exhibiting high strength in a temp. area from the ordinary temp. to high temp. and having excellent heat resistance by specifying the compsn. consisting of Cu, Mg, Ni, Fe, Mn, Si, Zr and Al. CONSTITUTION:The high tensile Al alloy contains, by weight %, 2.5-4.0% Cu, 1.0-2.0% Mg 0.8-3.0% Ni, 0.8-1.5% Fe, 0.3-0.6% Mn and 0.1-0.3% Si, contains 0.006-0.3% Zr, further contains at need one or two kinds among 0.001-0.3% Cr and 0.001-0.3% V, and the balance consists of Al with inevitable impurities. Said alloy has the excellent heat resistance and has high strength in the temp. area from the ordinary temp. of about 200 deg.C. The Al alloy is thus optimum as the materials of the parts of engine, etc., and the constitutional parts of vacuum machinery, etc., to be used in a high temp. atmosphere.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性に優れた高力アルミ合金に係り、特に高
温雰囲気にて使用されるエンジン、コンプレッサー等の
部品並びに真空機器の構成部品などに使用される高力ア
ルミ合金に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a high-strength aluminum alloy with excellent heat resistance, and in particular to components of engines, compressors, etc. used in high-temperature atmospheres, and components of vacuum equipment. Regarding high-strength aluminum alloys used in

(従来の技術及び解決しようとする問題点)従来、エン
ジン、コンプレッサー等の部品には鉄系の材料が使用さ
れていたが、最近、それらの機械類の出力、燃料効率の
向上の観点から、部品の軽量化の要望が高くなってきて
おり、アルミ材料の利用が進められている。
(Conventional technology and problems to be solved) Traditionally, iron-based materials have been used for parts such as engines and compressors, but recently, from the perspective of improving the output and fuel efficiency of these machines, iron-based materials have been used. There is an increasing demand for lighter parts, and the use of aluminum materials is progressing.

また、真空機器についても、ガス発生率、残留放射能が
小さいことから、アルミ部材の利用が進んできている。
In addition, the use of aluminum members for vacuum equipment is increasing because of their low gas generation rate and low residual radioactivity.

ところで、これらの機器や部材は常温から200℃の温
度範囲で使用されることが多く、このため、使用材料と
しては常温のみならず高温においても強度の高い材料で
あることが必要である。
Incidentally, these devices and members are often used in a temperature range from room temperature to 200° C., and therefore, the materials used need to be materials with high strength not only at room temperature but also at high temperatures.

この点、Al材料の中でも7075等のAl−Zn−M
g系合金が常温において最も強度が高いことが知られて
いるが、これらの合金は高温で長時間保持した場合、強
度が急激に低下するという欠点がある。
In this respect, among Al materials, Al-Zn-M such as 7075
Although it is known that g-based alloys have the highest strength at room temperature, these alloys have the disadvantage that their strength rapidly decreases when kept at high temperatures for a long time.

一方、耐熱A2合金としては2618合金、2219合
金があるが、これらの材料も高温強度が十分でないとい
う欠点がある。
On the other hand, heat-resistant A2 alloys include 2618 alloy and 2219 alloy, but these materials also have the drawback of insufficient high-temperature strength.

本発明は、上記従来技術の欠点を解消し、常温から20
0℃の如く高温までの温度域で、従来の耐熱Al合金2
618.2219よりも高強度で且つ耐熱性に優れた高
力アルミ合金を提供することを目的とするものである。
The present invention eliminates the drawbacks of the above-mentioned prior art and allows
In the temperature range up to high temperatures such as 0℃, conventional heat-resistant Al alloy 2
The purpose of this invention is to provide a high-strength aluminum alloy that has higher strength and superior heat resistance than 618.2219.

(問題点を解決するための手段) 上記目的を達成するため1本発明者は、従来のアルミ合
金が特に高温強度が充分でないことから。
(Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention found that conventional aluminum alloys do not have sufficient high-temperature strength.

その原因を分析すると共に、常温から高温まで高強度を
発揮し得る化学成分を見い出すべく鋭意研究を重ねた結
果、特に製造過程の押出加工、鍛造加工後に実施する溶
体化処理においても繊維組織を維持し、且つ再結晶化を
抑制できるように化学成分をバランスよく調整するなら
ば、常温での強度は勿論のこと、特に高温雰囲気に長時
間保持しても高強度を維持できる知見を得て、ここに本
発明をなしたものである。
In addition to analyzing the cause, we conducted extensive research to find chemical components that can exhibit high strength from room temperature to high temperatures.As a result, we found that the fiber structure is maintained even during the solution treatment performed after extrusion and forging during the manufacturing process. However, if the chemical components are adjusted in a well-balanced manner to suppress recrystallization, it is possible to maintain high strength not only at room temperature, but even when kept in a high-temperature atmosphere for a long time. This is where the present invention is made.

すなわち、本発明は、Cu:2.5〜4.0%、Mg:
1.0〜2.0%、Ni:0.8〜3.Q%、Fe:0
.8〜1.5%、Mn:0.3〜0.6%及びSi:0
.1〜0.3%を含有し、且つ、Zr:0.006〜0
.3%を含有し、更に必要に応じてCr:0.001〜
0.3%及びV:O,OOl 〜0.3%(7)うちの
1種又は2種を含有し、残部がAl及び不可避的不純物
からなることを特徴とする耐熱性に優れた高力アルミ合
金を要旨とするものである。
That is, in the present invention, Cu: 2.5 to 4.0%, Mg:
1.0-2.0%, Ni: 0.8-3. Q%, Fe: 0
.. 8-1.5%, Mn: 0.3-0.6% and Si: 0
.. Contains 1 to 0.3%, and Zr: 0.006 to 0
.. Contains 3%, and further contains Cr: 0.001-0.001 as necessary
0.3% and V: O, OOl ~ 0.3% (7) High strength with excellent heat resistance, characterized by containing one or two of them, with the remainder consisting of Al and inevitable impurities. The main focus is on aluminum alloys.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

まず、本発明に係る耐熱性に優れた高力アルミ合金の化
学成分の限定理由について説明する。
First, the reasons for limiting the chemical components of the high-strength aluminum alloy with excellent heat resistance according to the present invention will be explained.

Cuは常温強度及び高温強度を向上させるのに必要不可
欠の元素である。その含有量が2.5%未満では1強度
向上の効果は少なく、一方、4゜0%を超えて含有させ
ると、融点が低下するため。
Cu is an essential element for improving room temperature strength and high temperature strength. If the content is less than 2.5%, the effect of improving one strength is small, while if the content exceeds 4.0%, the melting point decreases.

逆に強度が低下することになる。従って、Cu含有量は
2.5〜4.0%とする。
On the contrary, the strength will decrease. Therefore, the Cu content is set to 2.5 to 4.0%.

MgはCuと同様に常温強度及び高温強度を向上させる
のに必要不可欠の元素である。その含有量が1.0%未
満では強度向上の効果は少なく、一方、2.0%を超え
て含有させると逆に強度が低下する。従って、Mg含有
量は1.0〜2.0%とする。
Like Cu, Mg is an essential element for improving room temperature strength and high temperature strength. If the content is less than 1.0%, the effect of improving strength will be small, while if it is contained in excess of 2.0%, the strength will decrease. Therefore, the Mg content is set to 1.0 to 2.0%.

Niは常温強度及び高温強度を向上させる元素であるが
、その含有量が0.8%未満では、強度向上の効果は少
なく、一方、3.0%を超えると合金中のCuと結び付
いて晶出物となるため、逆に強度が低下する。従って、
N1含有量は0.8〜3.0%とする。
Ni is an element that improves room temperature strength and high temperature strength, but if its content is less than 0.8%, the effect of improving strength is small; on the other hand, if it exceeds 3.0%, it will combine with Cu in the alloy and cause crystallization. On the contrary, the strength decreases because it becomes a product. Therefore,
The N1 content is 0.8 to 3.0%.

Feは高温強度を向上させる元素であるが、含有量が0
.8%未満では、その効果は少なく、一方、1.5%を
超えて含有させると巨大品出物が発生して強度が低下す
る。従って、Fe含有量は0.8〜1.5%とする。
Fe is an element that improves high temperature strength, but when the content is 0
.. If the content is less than 8%, the effect will be small, while if the content exceeds 1.5%, giant pieces will occur and the strength will decrease. Therefore, the Fe content is set to 0.8 to 1.5%.

Mnは材料組織を繊維状とし、かつ、再結晶化を抑制し
て高温強度を向上させる元素である。再結晶は鍛造後の
熱処理(溶体化処理)において発生しやすいが、このよ
うな再結晶化を抑制する点でMnは特に有効な元素であ
る。しかし、その含有量が0.3%未満では高温強度の
向上の効果は少なく、一方、0.6%を超えて多量に含
有させると押出加工性、鍛造加工性を劣化させることに
なる。従って、Mn含有量は0.3〜0.6%とする。
Mn is an element that makes the material structure fibrous, suppresses recrystallization, and improves high-temperature strength. Although recrystallization tends to occur during heat treatment (solution treatment) after forging, Mn is a particularly effective element in suppressing such recrystallization. However, if the content is less than 0.3%, the effect of improving high-temperature strength will be small, while if it is contained in a large amount exceeding 0.6%, extrusion workability and forging workability will be deteriorated. Therefore, the Mn content is set to 0.3 to 0.6%.

Siは主に常温において強度を向上させる元素であるが
、含有量が0.1%未満ではその効果は少なく、一方、
0.3%を超えて含有させるとMg固溶量が低下するた
め、高温強度が低下する。従って、Si含有量は0.1
〜0.3%とする。
Si is an element that mainly improves strength at room temperature, but if the content is less than 0.1%, the effect is small;
If the content exceeds 0.3%, the solid solution amount of Mg decreases, resulting in a decrease in high temperature strength. Therefore, the Si content is 0.1
~0.3%.

Zrは材料を繊維組織化し、再結晶化を抑制する元素で
あり、常温から高温において強度を向上させる元素であ
る。含有量が0.06%未満ではその効果は小さく、一
方、0.3%を超えて含有させると巨大晶出物の発生し
て強度が低下する。
Zr is an element that forms a fiber structure in the material and suppresses recrystallization, and is an element that improves strength from room temperature to high temperature. If the content is less than 0.06%, the effect will be small, while if the content exceeds 0.3%, giant crystallized substances will be generated and the strength will be reduced.

従って、Zr含有量は、0.06〜0.3%とする。Therefore, the Zr content is set to 0.06 to 0.3%.

なお、Cr、Vは材料を繊維組織化し、再結晶化を抑制
する元素であり、常温から高温において強度を向上させ
る元素であるので、必要に応じて、それらの1種又は2
種を適量で含有させることができる。各元素とも含有量
が0.01%未満では上記効果は少なく、一方、0.3
%を超えて含有させると巨大晶出物の発生により強度が
低下するので、それぞれの含有量は0.01〜0.3%
とする。
Note that Cr and V are elements that form a fiber structure in the material and suppress recrystallization, and are elements that improve strength from room temperature to high temperature, so one or both of them may be used as necessary.
Seeds can be contained in an appropriate amount. When the content of each element is less than 0.01%, the above effect is small;
If the content exceeds 0.01 to 0.3%, the strength will decrease due to the generation of giant crystallized substances.
shall be.

また、これらの上記成分以外に、鋳塊組織を微細化し、
機械的性質を安定させるためにTiを0゜01〜0.1
0%含有させてもよい。
In addition to these above-mentioned components, we also refine the ingot structure,
Ti is added in the range of 0°01 to 0.1 to stabilize mechanical properties.
It may be contained at 0%.

上記化学成分を有する高力アルミ合金は、従来と同様に
、鋳造、押出加工、鍛造加工、溶体化処理等を含む工程
により製造され、製品加工に供される。
A high-strength aluminum alloy having the above-mentioned chemical components is produced in a conventional manner through processes including casting, extrusion, forging, solution treatment, etc., and is subjected to product processing.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 第1表に示す化学成分(wt%)を有するアルミニウム
合金を通常の方法により溶製し、155φのビレットに
鋳造した後、所定の均質化処理を行い、押出温度450
℃の条件で40φの丸棒を押出した。
(Example) An aluminum alloy having the chemical components (wt%) shown in Table 1 was melted by a normal method, cast into a 155φ billet, then subjected to a predetermined homogenization treatment, and extruded at a temperature of 450.
A 40φ round bar was extruded at ℃.

次いで、この丸棒を厚さ17m+w、幅74mmの断面
形状に熱間鍛造した。鍛造温度は370℃である。
Next, this round bar was hot forged into a cross-sectional shape with a thickness of 17 m+w and a width of 74 mm. Forging temperature is 370°C.

その後、丸棒引張試験片を作成し、T6処理を行い、常
温強度並びに高温長時間保持後(150”CX 100
hr)の高温強度を測定した。その結果を第1表に示す
、なお、比較のため、2618合金、2219合金及び
7075合金についても併記した。
After that, a round bar tensile test piece was prepared and subjected to T6 treatment, and the strength at room temperature and after being kept at high temperature for a long time (150"CX 100
hr) was measured. The results are shown in Table 1. For comparison, 2618 alloy, 2219 alloy, and 7075 alloy are also listed.

同表より1本発明合金Nα1〜4は、常温でも高温でも
従来の耐熱合金である2618合金、2219合金より
も強度が高く、特に耐熱性に優れた高力アルミ合金であ
ることがわかる。
From the same table, it can be seen that the alloys Nα1 to Nα4 of the present invention have higher strength than the conventional heat-resistant alloys 2618 alloy and 2219 alloy both at room temperature and high temperature, and are high-strength aluminum alloys with particularly excellent heat resistance.

また、7075合金との比較においては、常温強度が若
干劣るものの、高温強度においては遥かに優れた耐熱性
を有している。
Also, in comparison with 7075 alloy, although its room temperature strength is slightly inferior, it has far superior heat resistance in terms of high temperature strength.

更に、Mn含有量が少ない比較合金勲5は1本発明合金
よりも高温強度が低い。
Furthermore, comparative alloy No. 5, which has a low Mn content, has lower high temperature strength than the invention alloy.

(発明の効果) 以上詳述したように、本発明の高力アルミ合金は、従来
の高力アルミ合金と比較して特に高温強度に優れており
、また常温強度においても遜色がない。したがって、高
温雰囲気にて使用されるエンジン、コンプレッサー等の
部品並びに真空機器の構成部品等の材料として最適のも
のであり、その材料用途の拡大に貢献するところが大き
い。
(Effects of the Invention) As detailed above, the high-strength aluminum alloy of the present invention is particularly superior in high-temperature strength compared to conventional high-strength aluminum alloys, and is comparable in room-temperature strength. Therefore, it is optimal as a material for parts such as engines and compressors used in high-temperature atmospheres, as well as components of vacuum equipment, and will greatly contribute to the expansion of the material's applications.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Cu:2.5〜4.0
%、Mg:1.0〜2.0%、Ni:0.8〜3.0%
、Fe:0.8〜1.5%、Mn:0.3〜0.6%、
及びSi:0.1〜0.3%を含有し、且つ、Zr:0
.006〜0.3%を含有し、残部がAl及び不可避的
不純物からなることを特徴とする耐熱性に優れた高力ア
ルミ合金。
(1) In weight% (the same applies hereinafter), Cu: 2.5 to 4.0
%, Mg: 1.0-2.0%, Ni: 0.8-3.0%
, Fe: 0.8-1.5%, Mn: 0.3-0.6%,
and Si: 0.1 to 0.3%, and Zr: 0
.. A high-strength aluminum alloy with excellent heat resistance, characterized by containing 0.006 to 0.3%, with the remainder consisting of Al and inevitable impurities.
(2)Cu:2.5〜4.0%、Mg:1.0〜2.0
%、Ni:0.8〜3.0%、Fe:0.8〜1.5%
、Mn:0.3〜0.6%及びSi:0.1〜0.3%
を含有し、且つ、Zr:0.006〜0.3%を含有し
、更にCr:0.001〜0.3%及びV:0.001
〜0.3%の1種又は2種を含有し、残部がAl及び不
可避的不純物からなることを特徴とする耐熱性に優れた
高力アルミ合金。
(2) Cu: 2.5-4.0%, Mg: 1.0-2.0
%, Ni: 0.8-3.0%, Fe: 0.8-1.5%
, Mn: 0.3-0.6% and Si: 0.1-0.3%
and further contains Zr: 0.006 to 0.3%, further Cr: 0.001 to 0.3% and V: 0.001
A high-strength aluminum alloy with excellent heat resistance, characterized in that it contains ~0.3% of one or two types, with the remainder consisting of Al and inevitable impurities.
JP30730986A 1986-12-23 1986-12-23 High tensile aluminum alloy having excellent heat resistance Granted JPS63161137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30730986A JPS63161137A (en) 1986-12-23 1986-12-23 High tensile aluminum alloy having excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30730986A JPS63161137A (en) 1986-12-23 1986-12-23 High tensile aluminum alloy having excellent heat resistance

Publications (2)

Publication Number Publication Date
JPS63161137A true JPS63161137A (en) 1988-07-04
JPH032218B2 JPH032218B2 (en) 1991-01-14

Family

ID=17967595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30730986A Granted JPS63161137A (en) 1986-12-23 1986-12-23 High tensile aluminum alloy having excellent heat resistance

Country Status (1)

Country Link
JP (1) JPS63161137A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557567A3 (en) * 2004-01-26 2010-12-29 Furukawa-Sky Aluminum Corporation Cast aluminum alloy compressor wheel for a turbocharger
JP2013204085A (en) * 2012-03-28 2013-10-07 Rinascimetalli:Kk Method for producing metal molding
JP2017078216A (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020090727A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020090726A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2021025085A (en) * 2019-08-05 2021-02-22 株式会社神戸製鋼所 Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1557567A3 (en) * 2004-01-26 2010-12-29 Furukawa-Sky Aluminum Corporation Cast aluminum alloy compressor wheel for a turbocharger
JP2013204085A (en) * 2012-03-28 2013-10-07 Rinascimetalli:Kk Method for producing metal molding
JP2017078216A (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
WO2017068865A1 (en) * 2015-10-22 2017-04-27 昭和電工株式会社 Method for manufacturing heat-resistant aluminum alloy material
JP2021025085A (en) * 2019-08-05 2021-02-22 株式会社神戸製鋼所 Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JP2020090727A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material
JP2020090726A (en) * 2020-03-05 2020-06-11 昭和電工株式会社 Manufacturing method of heat resistant aluminum alloy material

Also Published As

Publication number Publication date
JPH032218B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
JPS63157831A (en) Heat-resisting aluminum alloy
JPH04202729A (en) Ti alloy excellent in heat resistance
JP2569710B2 (en) Ti-A1 intermetallic compound type cast alloy having room temperature toughness
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPH05279773A (en) High strength titanium alloy having fine and uniform structure
JPS63161137A (en) High tensile aluminum alloy having excellent heat resistance
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JPH07242976A (en) Aluminum alloy for elongation, excellent in heat resistance, and its production
JPH01147039A (en) Wear-resistant aluminum alloy and its manufacture
JPH08144003A (en) High strength aluminum alloy excellent in heat resistance
JP2021025085A (en) Al-Cu-Mg-BASED ALUMINUM ALLOY EXTRUSION MATERIAL EXCELLENT IN HIGH-TEMPERATURE FATIGUE CHARACTERISTICS
JPH01272743A (en) High tensile aluminum alloy having excellent heat resistance
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JPH04501440A (en) Improved nickel aluminide alloy for high temperature structural materials
JPH04358036A (en) Alpha plus beta ti alloy
JPS6311643A (en) High strength aluminum alloy having superior heat resistance
JP3626507B2 (en) High strength and high ductility TiAl intermetallic compound
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JP2005154850A (en) High strength beta-type titanium alloy
JPH08144002A (en) High strenght aluminum alloy excellent in heat resistance
JPH01290738A (en) Aluminum alloy having excellent heat resistance
JPH02258938A (en) Heat-resistant material
JPS63190148A (en) Manufacture of structural al-zn-mg alloy extruded material