JP6828642B2 - 塗布方法 - Google Patents

塗布方法 Download PDF

Info

Publication number
JP6828642B2
JP6828642B2 JP2017172971A JP2017172971A JP6828642B2 JP 6828642 B2 JP6828642 B2 JP 6828642B2 JP 2017172971 A JP2017172971 A JP 2017172971A JP 2017172971 A JP2017172971 A JP 2017172971A JP 6828642 B2 JP6828642 B2 JP 6828642B2
Authority
JP
Japan
Prior art keywords
nozzle
cooler
opening
coating
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017172971A
Other languages
English (en)
Other versions
JP2019048258A (ja
Inventor
瑛 山下
瑛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017172971A priority Critical patent/JP6828642B2/ja
Publication of JP2019048258A publication Critical patent/JP2019048258A/ja
Application granted granted Critical
Publication of JP6828642B2 publication Critical patent/JP6828642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、塗布方法に関する。詳細には、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内である高粘度の塗布材料を、塗布対象面上に塗布して塗膜を形成する塗布方法に関する。
従来、塗布材料を吐出するノズルを備える塗布装置を用いて、平面状をなす塗布対象面の上方から塗布対象面上に塗布材料を塗布して塗膜を形成する塗布方法が提案されている(例えば、特許文献1参照)。
このような塗布方法としては、例えば、ノズルの先端部に位置する開口から、塗布材料を塗布対象面に向けて吐出しつつ、ノズルを移動方向に移動させることで、塗布対象面上に塗布材料を塗布して塗膜を形成する塗布方法が知られている。
特開2016−182535号公報
ところで、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内である高粘度の塗布材料を塗布対象面上に塗布して塗膜を形成する場合、ノズルの開口から吐出された塗布材料が塗布対象面に接する際に、塗布材料と塗布対象面との間に空気が巻き込まれることがあった。そして、巻き込まれた空気が気泡となって、塗布対象面と塗膜との間に残留してしまうことがあった。例えば、塗布材料が放熱用樹脂等の熱伝導材であって、塗膜を介して塗布対象面との熱伝導を行う場合には、塗布対象面と塗膜との間に多くの気泡が介在していると、塗布対象面と塗膜との接触面積が減少して伝熱効率が低下するという問題点があった。
本発明は、かかる現状に鑑みてなされたものであって、塗布材料を塗布して形成した塗膜と塗布対象面との間に介在する空気の量を低減することができる塗布方法を提供することを目的とする。
本発明の一態様は、塗布材料を吐出するノズルを備える塗布装置を用いて、平面状をなす塗布対象面の上方から前記塗布対象面上に塗布材料を塗布して塗膜を形成する塗布方法において、前記塗布材料は、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内である塗布材料であり、前記ノズルは、当該ノズルの直線状をなす軸線が延びる軸線方向の先端側に位置して、前記軸線方向の先端側を向く開口であって、前記塗布材料を吐出する開口を有し、前記塗布方法は、前記ノズルの前記開口から前記塗布材料を前記塗布対象面に向けて吐出しつつ、前記塗布対象面に対して、前記ノズルを、前記塗布対象面に沿った移動方向に相対的に移動させることで、前記塗布対象面上に前記塗布材料を塗布して前記塗膜を形成する塗布方法であって、前記ノズルの前記軸線と前記塗布対象面とのなす角が87.5〜89.0°の範囲内の第1角度となるように、前記ノズルの前記開口を、前記塗布対象面に垂直な方向よりも前記ノズルの前記移動方向側に向けた状態とし、且つ、前記ノズルの前記開口の位置が、前記塗布対象面上に形成する前記塗膜の表面よりも0.2〜1.0mmの範囲内の第1距離だけ高い位置となるようにして、前記ノズルの前記開口から前記塗布材料を吐出する塗布方法である。
上述の塗布方法は、塗布材料として、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内となる高粘度の塗布材料を用いる塗布方法である。具体的には、塗布材料を吐出するノズルを備える塗布装置を用いて、平面状をなす塗布対象面の上方から塗布対象面上に、上述の塗布材料を塗布して塗膜を形成する塗布方法である。なお、塗布装置のノズルは、当該ノズルの軸線(直線状をなす軸線)が延びる方向である軸線方向の先端側に位置して、前記軸線方向の先端側を向く開口を有する。ノズルとしては、例えば、軸線方向に真っ直ぐ延びる外側形状を有し、内側に塗布材料が流通する貫通孔(この貫通孔のうち軸線方向の先端部が前記開口となる)を有する筒状のノズルを挙げられる。また、開口の形状としては、例えば、ノズルの移動方向に直交する方向に延びる細長形状(例えば、スリット形状)が挙げられる。
より具体的には、上述の塗布方法では、ノズルの開口から塗布材料を塗布対象面に向けて吐出しつつ、塗布対象面に対して、ノズルを、塗布対象面に沿った移動方向に相対的に移動させることで、塗布対象面上に塗布材料を塗布して塗膜(塗布材料からなる塗膜)を形成する。ここで、「塗布対象面に対してノズルを移動方向に相対的に移動させる」態様としては、例えば、以下の2つの態様が挙げられる。1つ目の態様は、塗布対象面を固定して、ノズルを移動方向に移動させる態様である。2つ目の態様は、ノズルを固定して、塗布対象面を、移動方向とは反対の方向に移動させる態様である。これにより、塗布対象面に対してノズルが移動方向に移動することになる。
ところで、従来の塗布方法によって、上述のような高粘度の塗布材料を塗布した場合には、ノズルの開口から吐出された塗布材料が塗布対象面に接する際に、塗布材料と塗布対象面との間に空気が巻き込まれ、巻き込まれた空気が気泡となって、塗布対象面と塗膜との間に残留(介在)してしまうことがあった。
これに対し、上述の塗布方法では、ノズルの軸線と塗布対象面とのなす角が87.5〜89.0°の範囲内の第1角度となるように(すなわち、ノズルの開口面と塗布対象面とのなす角が1.0〜2.5°の範囲内の角度となるように)、ノズルの開口を、塗布対象面に垂直な方向よりもノズルの前記移動方向側に向けた状態とし、且つ、ノズルの開口(詳細には、開口のうち塗布対象面に最も近い部位)の位置が、塗布対象面上に形成する塗膜の表面よりも0.2〜1.0mmの範囲内の第1距離だけ高い位置(上方の位置)となるようにして、ノズルの開口から塗布材料を吐出する。このようにして、塗布材料を塗布対象面上に塗布して塗膜を形成することで、塗膜と塗布対象面との間に入る空気の量(塗膜と塗布対象面との間に介在する気泡の量)を低減することができる。
具体的には、ノズルの軸線と塗布対象面とのなす角が89.0°以下となるように、ノズルの開口を、塗布対象面に垂直な方向よりもノズルの前記移動方向側に向けた状態として、ノズルの開口から塗布材料を吐出することで、塗布対象面に垂直な方向よりもノズルの移動方向側に向かって、塗布材料が吐出される。このような方向に吐出された塗布材料は、塗布対象面に接触する際、塗布材料と塗布対象面との間に存在する空気を、ノズルの移動方向(すなわち、塗布材料が存在していない方向)に押し出すことができる。
さらに、ノズルの開口(詳細には、開口のうち塗布対象面に最も近い部位)の位置が、塗布対象面上に形成する塗膜の表面よりも0.2mm以上高い位置(上方の位置)となるようにして、ノズルの開口から塗布材料を吐出することで、ノズルの開口から吐出された塗布材料によって、塗布材料と塗布対象面との間に存在する空気を押し出すために必要な力を、十分に確保する(得る)ことができる。
一方、ノズルの開口(詳細には、開口のうち塗布対象面に最も近い部位)の位置を、塗布対象面上に形成する塗膜の表面よりも1.0mm高い位置(上方の位置)よりも高くすると、ノズルの開口から吐出する塗布材料と塗布対象面との間に存在する空気の量が増大し、塗布材料と塗布対象面との間に存在する空気が、塗布材料と塗布対象面との間に巻き込まれ易くなる。このため、上述の塗布方法では、ノズルの開口(詳細には、開口のうち塗布対象面に最も近い部位)の位置が、塗布対象面上に形成する塗膜の表面よりも0.2〜1.0mmの範囲内の第1距離だけ高い位置(上方の位置)となるようにして、ノズルの開口から塗布材料を吐出するようにしている。
また、ノズルの軸線と塗布対象面とのなす角が87.5°よりも小さくなるように、ノズルの開口を、塗布対象面に垂直な方向よりもノズルの前記移動方向側に向けた状態とした場合には、ノズルの開口の位置を、塗布対象面上に形成する塗膜の表面よりも0.2〜1.0mmの範囲内の第1距離だけ高い位置(上方の位置)としても、塗布材料と塗布対象面との間に存在する空気を押し出すために必要な力を、十分に確保する(得る)ことができなくなる。このため、上述の塗布方法では、ノズルの軸線と塗布対象面とのなす角が87.5〜89.0°の範囲内の第1角度となるように、ノズルの開口を、塗布対象面に垂直な方向よりもノズルの前記移動方向側に向けた状態とし、ノズルの開口から塗布材料を吐出するようにしている。
なお、塗布対象面上に形成する塗膜の表面の位置(すなわち、塗膜の厚み)は、ノズルの開口から吐出される塗布材料の吐出量(すなわち、単位時間あたりの塗布材料の体積)と、移動方向に移動するノズルの移動速度とによって定まる。従って、上述の塗布方法では、設定する塗布材料の吐出量とノズルの移動速度に基づいて、予め、塗布対象面上に形成する塗膜の表面の位置(すなわち、塗膜の厚み)を求め、この塗膜の表面よりも0.2〜1.0mmの範囲内の第1距離だけ高い位置にノズルの開口(詳細には、開口のうち塗布対象面に最も近い部位)が位置するように、ノズルの位置(高さ)を調整するのが好ましい。
実施形態にかかる塗布装置の概略構成図である。 実施形態にかかる塗布方法を説明する図である。 従来の塗布方法を説明する図である。
以下、本発明の実施形態について、図面を参照しつつ説明する。
まず、本実施形態において使用する塗布装置について説明する。図1は、本実施形態にかかる塗布装置100の概略構成を示す図である。図2は、実施形態にかかる塗布方法を説明する図であり、塗布対象面である冷却器101の表面101bに、塗布材料102を塗布しているときの様子を示している。図3は、従来の塗布方法を説明する図であり、塗布対象面である冷却器101の表面101bに、塗布材料102を塗布しているときの様子を示している。
本実施形態の塗布装置100は、図1に示すように、ノズル10と供給部20とを備える。このうち、供給部20は、ノズル10に塗布材料102を供給する部位である。また、ノズル10は、軸線方向DX(ノズル10の直線状の軸線AXに沿う方向)に真っ直ぐ延びる外側形状(具体的には、矩形状)で、内側に塗布材料102が流通する貫通孔15を有する筒状(具体的には、矩形筒状)をなしている(図2参照)。
このノズル10は、当該ノズル10の軸線方向DXの先端側DX1(ノズル10の先端部10b)に位置して、軸線方向DXの先端側DX1(図1及び図2において斜め下方)を向く開口11を有する。なお、開口11は、ノズル10の貫通孔15のうち軸線方向DXの先端側DX1(ノズル10の先端部10b)に開口する部位である。開口11は、ノズル10の移動方向DM(図2において右方向)に直交する方向(図2において紙面に直交する方向)に延びる細長形状で、平面視矩形状のスリットとされている。供給部20からノズル10に供給された塗布材料102は、この開口11から吐出される。なお、ノズル10の開口11の長さ(長手方向の寸法)は、60mmである。従って、本実施形態では、塗布材料102が、幅寸法60mmで、ノズル10の移動方向DMに塗布される。
また、本実施形態では、塗布材料102として、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内である高粘度の塗布材料を用いる。この塗布材料102は、シリコン系の放熱用樹脂からなり、その熱伝導率が3.2(W/m・K)の熱伝導材である。なお、本実施形態では、公知のE型粘度計を用いて、塗布材料102の粘度を測定している。
本実施形態では、上述の塗布装置100を用いて、平面状をなす塗布対象面である冷却器101の表面101bの上方から、冷却器101の表面101b(塗布対象面)上に、上述の塗布材料102を塗布することで、塗布材料102からなる塗膜103を形成する。より具体的には、ノズル10の開口11から、塗布材料102を冷却器101の表面101b(塗布対象面)に向けて吐出しつつ、ノズル10を、冷却器101の表面101bに沿った移動方向DM(図1及び図2において右方向)に移動させることで、冷却器101の表面101b(塗布対象面)上に塗布材料102を塗布する。これにより、幅寸法(図2において紙面に直交する方向の寸法)60mmで、移動方向DMに延びる帯状の塗膜103が形成される。
なお、本実施形態では、塗布装置100を用いて冷却器101の表面101b(塗布対象面)に塗布材料102を塗布するときは、冷却器101の表面101b(塗布対象面)に沿う方向を、水平方向に一致させている(すなわち、冷却器101の表面101bを重力方向の反対側に向けている)。さらに、本実施形態では、冷却器101を固定した状態で(従って、塗布対象面である冷却器101の表面101bを固定して)、ノズル10を移動方向DMに移動させている。
冷却器101は、平面状の表面101bを有する箱形状をなしている。この冷却器101の内部には、冷媒が流れる流路(図示なし)が形成されている。この冷却器101の表面101bには、上述の熱伝導材(塗布材料102)からなる塗膜103が形成され、さらに、この塗膜103の表面103b上には、図示しない二次電池(例えば、リチウムイオン二次電池)が、塗膜103の表面103bに密着する態様で配置される。これにより、二次電池と冷却器101との間で、塗膜103を通じて熱伝導(熱交換)が行われ、充放電により発熱する二次電池を冷却することができる。
なお、本実施形態では、ノズル10の開口11から吐出される塗布材料102の吐出量(すなわち、単位時間あたりの塗布材料102の体積)を、170〜425(cc/30秒)の範囲内の値としている。また、移動方向DMに移動するノズル10の移動速度を、0.75(m/分)としている。
ところで、従来の塗布方法で、上述のような高粘度の塗布材料102を塗布した場合には、図3に示すように、ノズル10の開口11から吐出された塗布材料102が、冷却器101の表面101b(塗布対象面)に接する際に、塗布材料102と冷却器101の表面101b(塗布対象面)との間に空気ARが巻き込まれ、巻き込まれた空気ARが気泡ABとなって、冷却器101の表面101bと塗膜103との間に残留(介在)してしまうことがあった。
そして、冷却器101の表面101b(塗布対象面)と塗膜103との間に多くの気泡ABが介在している場合には、この気泡ABが伝熱抵抗となるため、塗膜103の表面103b上に配置される二次電池と冷却器101との間の伝熱効率(熱交換効率)が低下し、二次電池を適切に冷却することができなくなることがあった。
なお、従来は、図3に示すように、ノズル10の開口11を重力方向(図3において真下の方向)に向けた状態で、ノズル10の開口11から塗布材料102を吐出しつつ、ノズル10を移動方向DMに移動させて、冷却器101の表面101b(塗布対象面)に塗膜103を形成している。
これに対し、本実施形態では、図2に示すように、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角が、87.5〜89.0°の範囲内の第1角度θ1となるように(すなわち、ノズル10の開口11によって構成される平面と冷却器101の表面101bとのなす角が1.0〜2.5°の範囲内の角度となるように)、ノズル10の開口11を、冷却器101の表面101b(塗布対象面)に垂直な方向(図2において真下の方向)よりも、ノズル10の移動方向DM側(図2において右側)に向けた状態とし、且つ、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)となるようにしつつ、ノズル10の開口11から塗布材料102を吐出する。
このようにして、塗布材料102を冷却器101の表面101b(塗布対象面)上に塗布して塗膜103を形成することで、塗膜103と冷却器101の表面101b(塗布対象面)との間に入る空気の量(塗膜103と冷却器101の表面101bとの間に介在する気泡の量)を低減することができる。その理由は、以下のように考えることができる。
具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角が89.0°以下となるように(すなわち、ノズル10の開口11によって構成される平面と冷却器101の表面101bとのなす角が1.0°以上の角度となるように)、ノズル10の開口11(吐出口)を、冷却器101の表面101b(塗布対象面)に垂直な方向(図2において真下の方向)よりもノズル10の移動方向DM側(図2において右側)に向けた状態として、ノズル10の開口11から塗布材料102を吐出することで、冷却器101の表面101b(塗布対象面)に垂直な方向よりもノズル10の移動方向DM側に向かって、塗布材料102が吐出される。このような方向に吐出された塗布材料102は、図2に白抜きの矢印で示すように、冷却器101の表面101bに接触する際、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを、ノズル10の移動方向DM(すなわち、塗布材料102が存在していない方向)に押し出すことができる。
さらに、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm以上高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出することで、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを押し出すために必要な力を、十分に確保する(得る)ことができる。
一方、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高い位置(上方の位置)よりも高くすると、ノズル10の開口11から吐出する塗布材料102と冷却器101の表面101bとの間に存在する空気ARの量が増大し、塗布材料102と冷却器101の表面101bとの間に存在する空気ARが、塗布材料102と冷却器101の表面101bとの間に巻き込まれ易くなる。このため、本実施形態では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出するようにしている。
また、ノズル10の軸線AXと冷却器101の表面101bとのなす角が87.5°よりも小さくなるように(すなわち、ノズル10の開口11によって構成される平面と冷却器101の表面101bとのなす角が2.5°よりも大きくなるように)、ノズル10の開口11を、冷却器101の表面101bに垂直な方向よりも、より一層、ノズル10の移動方向DM側(図2において右側)に向けた状態とした場合には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)にしても、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを押し出すために必要な力を、十分に確保する(得る)ことができなくなる。これにより、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを十分に押し出すことができなくなる。
このため、本実施形態では、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角が、87.5〜89.0°の範囲内の第1角度θ1となるように(すなわち、ノズル10の開口11によって構成される平面と冷却器101の表面101bとのなす角が1.0〜2.5°の範囲内の角度となるように)、ノズル10の開口11を、冷却器101の表面101b(塗布対象面)に垂直な方向(図2において真下の方向)よりも、ノズル10の移動方向DM側(図2において右側)に向けた状態として、ノズル10の開口11から塗布材料102を吐出するようにしている。
なお、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bの位置(すなわち、塗膜103の厚みT)は、ノズル10の開口11から吐出される塗布材料102の吐出量(すなわち、単位時間あたりの塗布材料102の体積)と、移動方向DMに移動するノズル10の移動速度とによって定まる。従って、本実施形態では、塗布装置100において設定する塗布材料102の吐出量とノズル10の移動速度に基づいて、予め、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bの位置(すなわち、塗膜103の厚みT)を求め、この塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置にノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)が位置するように、ノズル10の位置(高さ)を調整(設定)している。
(実施例1)
実施例1では、ノズル10の開口11から吐出される塗布材料102の吐出量を、170(cc/30秒)とし、移動方向DMに移動するノズル10の移動速度を、0.75(m/分)として、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。また、ノズル10について、第1角度θ1(図2参照)=89.0°、第1距離H1(図2参照)=0.2mmとしている。すなわち、ノズル10の軸線AXと冷却器101の表面101bとのなす角を89.0°とし、且つ、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm高くなる位置(上方となる位置)として、ノズル10の開口11から冷却器101の表面101bに塗布材料102を吐出するようにした。また、塗布材料102として、剪断速度2.51(1/s)における粘度が672(Pa/秒)である塗布材料を用いた。なお、塗布材料102の粘度は、公知のE型粘度計を用いて測定している。
なお、実施例1では、塗布材料102の吐出量の値(=170cc/30秒)と、ノズル10の移動速度の値(=0.75m/分)とに基づいて、予め、冷却器101の表面101b上に形成される塗膜103の表面103bの位置(すなわち、塗膜103の厚みTの値)を算出している。そして、塗膜103の厚みT=2.0mmであるので、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから2.2mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm高くなる位置(上方となる位置)にすることができる。
(実施例2)
実施例2では、実施例1と比較して、ノズル10の第1角度θ1(図2参照)のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、第1角度θ1を87.5°とした。
(実施例3)
実施例3では、実施例1と比較して、ノズル10の開口11の第1距離H1(図2参照)のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、第1距離H1を1.0mmとした。すなわち、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから3.0mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高くなる位置(上方となる位置)にした。
(実施例4)
実施例4では、実施例3と比較して、ノズル10の第1角度θ1(図2参照)のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、第1角度θ1を87.5°とした。
(実施例5)
実施例5では、実施例4と比較して、塗布材料102の粘度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、塗布材料102として、剪断速度2.51(1/s)における粘度が1708(Pa/秒)である塗布材料を用いた。
(実施例6)
実施例6では、実施例1と比較して、塗布材料102の吐出量のみを異ならせ、その他の条件は同等にして、厚みTが5.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、塗布材料102の吐出量を425(cc/30秒)としている。
なお、実施例6では、塗布材料102の吐出量の値(=425cc/30秒)と、ノズル10の移動速度の値(=0.75m/分)とに基づいて、予め、冷却器101の表面101b上に形成される塗膜103の表面103bの位置(すなわち、塗膜103の厚みTの値)を算出している。そして、塗膜103の厚みT=5.0mmであるので、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから5.2mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm高くなる位置(上方となる位置)にすることができる。
(実施例7)
実施例7では、実施例6と比較して、ノズル10の開口11の第1距離H1(図2参照)のみを異ならせ、その他の条件は同等にして、厚みTが5.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、第1距離H1を1.0mmとした。すなわち、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから6.0mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高くなる位置(上方となる位置)にした。
(比較例1)
比較例1では、実施例1と比較して、ノズル10の開口11の位置(高さ)と、ノズル10の角度と、塗布材料の粘度とを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから2.0mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bと高さが等しい位置にした。また、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、90.0°とした。すなわち、ノズル10の開口11を真下(重力方向)に向けて、開口11から塗布材料102を吐出するようにした。また、塗布材料として、剪断速度2.51(1/s)における粘度が603(Pa/秒)である塗布材料を用いた。
(比較例2)
比較例2では、比較例1と比較して、塗布材料の粘度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、塗布材料として、実施例1と同様に、剪断速度2.51(1/s)における粘度が672(Pa/秒)である塗布材料を用いた。
(比較例3)
比較例3では、実施例1と比較して、ノズル10の開口11の位置(高さ)のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから2.0mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bと高さが等しい位置にした。
(比較例4)
比較例4では、比較例3と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、第1角度θ1=88.0°とした。
(比較例5)
比較例5では、実施例2と比較して、ノズル10の開口11の位置(高さ)のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから2.0mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bと高さが等しい位置にした。
(比較例6)
比較例6では、実施例1と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、90.0°とした。すなわち、ノズル10の開口11を真下(重力方向)に向けて、開口11から塗布材料102を吐出するようにした。
(比較例7)
比較例7では、実施例1と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、89.5°とした。
(比較例8)
比較例8では、実施例1と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、87.3°とした。
(比較例9)
比較例9では、実施例3と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、90.0°とした。すなわち、ノズル10の開口11を真下(重力方向)に向けて、開口11から塗布材料102を吐出するようにした。
(比較例10)
比較例10では、実施例3と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、89.5°とした。
(比較例11)
比較例11では、実施例3と比較して、ノズル10の角度のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の軸線AXと冷却器101の表面101b(塗布対象面)とのなす角を、87.3°とした。
(比較例12)
比較例12では、実施例7と比較して、ノズル10の開口11の位置(高さ)のみを異ならせ、その他の条件は同等にして、厚みTが2.0mmである塗膜103を、冷却器101の表面101bに形成した。具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101bから6.0mm高い位置にすることで、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高い位置とした。
(冷却試験)
次に、実施例1〜7の塗布方法によって表面101b上に塗膜103を形成した冷却器101を用意し、各々の冷却器101を用いて二次電池(リチウムイオン二次電池)を冷却する試験を行った。具体的には、まず、各々の冷却器101の塗膜103の表面103b上に、複数の二次電池を、塗膜103の表面103bに密着する態様で配置して固定する。そして、各々の冷却器101の内部の流路内に10℃の冷媒を流しつつ、複数の二次電池について所定のサイクル充放電を行った。すなわち、サイクル充放電を行うことによって発熱する(昇温する)複数の二次電池について、各々の冷却器101によって冷却しつつ、サイクル充放電を行った。サイクル充放電を2000秒間行った時、各々の二次電池の温度を測定し、測定された温度のうち最も高い温度を、各々の実施例のセル温度として取得した。これらの結果を表1に示す。なお、本試験では、セル温度(すなわち、試験終了時の二次電池の最高温度)を33℃以下にすることができた場合は、合格(判定を○)とし、セル温度が33℃を上回った場合は、不合格(判定を×)とした。
Figure 0006828642
さらに、比較例1〜12の塗布方法によって表面101bに塗膜103を形成した冷却器101を用意し、各々の冷却器101を用いて二次電池(リチウムイオン二次電池)を冷却する試験を行った。具体的には、上述した実施例1〜7の冷却器101を用いた冷却試験と同様に、各々の冷却器101の内部の流路内に10℃の冷媒を流しつつ、複数の二次電池について所定のサイクル充放電を行った。そして、サイクル充放電を2000秒間行った時、各々の二次電池の温度を測定し、測定された温度のうち最も高い温度を、各々の比較例のセル温度として取得した。これらの結果を表2に示す。前述のように、セル温度(すなわち、試験終了時の二次電池の最高温度)を33℃以下にすることができた場合は、合格(判定を○)とし、セル温度が33℃を上回った場合は、不合格(判定を×)としている。
Figure 0006828642
ここで、冷却試験の結果について検討する。まず、比較例1と比較例2の結果を比較する。表2に示すように、比較例1と比較例2とは、塗布材料102の粘度のみが異なり、その他は同様である。剪断速度2.51(1/s)における粘度が603(Pa/秒)である塗布材料102を用いて塗膜103を形成した比較例1では、セル温度(すなわち、二次電池の最高温度)が35℃であった。これに対し、剪断速度2.51(1/s)における粘度が672(Pa/秒)である塗布材料102を用いて塗膜103を形成した比較例2では、セル温度(すなわち、二次電池の最高温度)が37℃となり、比較例1よりも2℃高くなった。
この結果より、比較例1よりも比較例2のほうが、冷却性能(冷却効率)が悪いといえる。そのようになった理由は、比較例2では、剪断速度2.51(1/s)における粘度が650(Pa/秒)以上である高粘度の塗布材料102を用いて、塗膜103を形成したためであると考えられる。具体的には、剪断速度2.51(1/s)における粘度が650(Pa・s)以上である高粘度の塗布材料102を用いた比較例2では、剪断速度2.51(1/s)における粘度が650(Pa・s)未満の塗布材料102を用いた比較例1に比べて、ノズル10の開口11から吐出された塗布材料102が、冷却器101の表面101b(塗布対象面)に接する際に、塗布材料102と冷却器101の表面101bとの間に、より多くの空気が巻き込まれ、塗膜103と冷却器101の表面101bとの間に、より多くの気泡が残留(介在)しているためであると考えられる。その結果、塗布材料102と冷却器101の表面101bとの接触面積が減少して、塗布材料102と冷却器101の表面101bとの間の伝熱効率(熱交換率)が低下したためであると考えられる。
次に、実施例1と比較例3の結果を比較する。表1及び表2に示すように、実施例1と比較例3とは、ノズル10の開口11の位置(高さ)のみが異なり、その他は同様としている。具体的には、表1に示すように、実施例1では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm高い位置にしている。一方、表2に示すように、比較例3では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bと高さが等しい位置にしている。
表2に示すように、比較例3では、セル温度(二次電池の最高温度)が37℃となり、不合格(判定×)となった。これに対し、実施例1では、表1に示すように、セル温度(二次電池の最高温度)が32℃となり、合格(判定○)となった。このような結果となった理由は、以下のように考えられる。
具体的には、比較例3では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bと高さが等しい位置となるようにして、ノズル10の開口11から塗布材料102を吐出したため、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101b(塗布対象面)との間に存在する空気ARを押し出すために必要な力を十分に確保する(得る)ことができず、塗膜103と冷却器101の表面101bとの間に多くの空気AR(気泡)が介在したと考えられる。
これに対し、実施例1では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも0.2mm高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出したことにより、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101b(塗布対象面)との間に存在する空気ARを押し出すために必要な力を十分に確保する(得る)ことができ、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)を、比較例3に比べて少なくすることができたと考えられる。
また、比較例3と比較して、ノズル10の角度のみが異なる比較例4及び比較例5でも、セル温度(二次電池の最高温度)が37℃及び35℃となり、不合格(判定×)となった。比較例4,5でも、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bと高さが等しい位置となるようにして、ノズル10の開口11から塗布材料102を吐出したために、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101b(塗布対象面)との間に存在する空気ARを押し出すために必要な力を十分に確保する(得る)ことができず、塗膜103と冷却器101の表面101bとの間に多くの空気AR(気泡)が介在したと考えられる。
以上の結果より、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも0.2mm以上高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出するのが好ましいといえる。
次に、実施例1,2と比較例6〜8との結果を比較する。表1及び表2に示すように、実施例1,2及び比較例6〜8は、ノズル10の角度のみが異なり、その他は同様である。なお、実施例1,2及び比較例6〜8では、いずれも、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも0.2mm高い位置(上方の位置)となるようにしている。
表1に示すように、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)を89.0°とした実施例1では、セル温度(二次電池の最高温度)が32℃となり、合格(判定○)となった。また、ノズル10の角度を87.5°とした実施例2では、セル温度(二次電池の最高温度)が30℃となり、合格(判定○)となった。このように、ノズル10の角度を87.5〜89.0°の範囲内として塗膜103を形成した実施例1,2では、二次電池を良好に冷却することができた。
これに対し、表2に示すように、ノズル10の角度を90.0°とした比較例6では、セル温度(二次電池の最高温度)が39℃となり、不合格(判定×)となった。さらに、ノズル10の角度を89.5°とした比較例7では、セル温度(二次電池の最高温度)が34℃となり、不合格(判定×)となった。さらに、ノズル10の角度を87.3°とした比較例8では、セル温度(二次電池の最高温度)が40℃となり、不合格(判定×)となった。このように、ノズル10の角度を87.5〜89.0°の範囲外として塗膜103を形成した比較例6〜8では、二次電池を適切に冷却することができなかった。
このような結果となった理由は、以下のように考えられる。
具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも0.2mm以上高い位置(上方の位置)となるようにし、且つ、ノズル10の角度を87.5°以下として、ノズル10の開口11から塗布材料102を吐出することで、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101b(塗布対象面)との間に存在する空気ARを押し出すために必要な力を十分に確保する(得る)ことができると共に、冷却器101の表面101b(塗布対象面)に垂直な方向よりもノズル10の移動方向DM側に向けて、塗布材料102を確実に吐出することができたからであると考えられる。このように吐出された塗布材料102は、図2に太い矢印で示すように、冷却器101の表面101bに接触する際、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを、ノズル10の移動方向DM(すなわち、塗布材料102が存在していない方向)に、十分に押し出すことができたと考えられる。
しかしながら、ノズル10の角度を87.5°よりも小さくしてしまうと、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを押し出すために必要な力を、十分に確保する(得る)ことができなくなると考えられる。これにより、比較例8では、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを十分に押し出すことができず、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)の量が多くなったと考えられる。
以上の結果より、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)は、87.5〜89.0°の範囲内の角度にするのが好ましいといえる。より具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも0.2mm以上高い位置(上方の位置)となるようにし、且つ、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)を87.5〜89.0°の範囲内とすることで、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)の量を少なくすることができるといえる。
次に、実施例3,4と比較例9〜11の結果を比較する。表1及び表2に示すように、実施例3,4と比較例9〜11とは、ノズル10の角度のみが異なり、その他は同様である。なお、実施例3,4及び比較例9〜11では、いずれも、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも1.0mm高い位置(上方の位置)となるようにしている。
表1に示すように、ノズル10の角度を89.0°とした実施例3では、セル温度(二次電池の最高温度)が33℃となり、合格(判定○)となった。また、ノズル10の角度を87.5°とした実施例4では、セル温度(二次電池の最高温度)が31℃となり、合格(判定○)となった。このように、ノズル10の角度を87.5〜89.0°の範囲内として塗膜103を形成した実施例3,4では、二次電池を良好に冷却することができた。
これに対し、表2に示すように、ノズル10の角度を90.0°とした比較例9では、セル温度(二次電池の最高温度)が39℃となり、不合格(判定×)となった。さらに、ノズル10の角度を89.5°とした比較例10では、セル温度(二次電池の最高温度)が35℃となり、不合格(判定×)となった。さらに、ノズル10の角度を87.3°とした比較例11では、セル温度(二次電池の最高温度)が40℃となり、不合格(判定×)となった。このように、ノズル10の角度を87.5〜89.0°の範囲外として塗膜103を形成した比較例9〜11では、二次電池を適切に冷却することができなかった。
以上の結果からも、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)は、87.5〜89.0°の範囲内の角度にするのが好ましいといえる。より具体的には、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも0.2mm以上(具体的には、1.0mm)高い位置(上方の位置)となるようにし、且つ、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)を87.5〜89.0°の範囲内とすることで、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)の量を少なくすることができるといえる。
次に、実施例7と比較例12の結果を比較する。表1及び表2に示すように、実施例7と比較例12とは、ノズル10の開口11の位置(高さ)のみが異なり、その他は同様としている。具体的には、表1に示すように、実施例1では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高い位置にしている。一方、表2に示すように、比較例12では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.2mm高い位置にしている。
表2に示すように、比較例12では、セル温度(二次電池の最高温度)が35℃となり、不合格(判定×)となった。これに対し、実施例7では、表1に示すように、セル温度(二次電池の最高温度)が33℃となり、合格(判定○)となった。このような結果となった理由は、以下のように考えられる。
具体的には、実施例7では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bよりも1.0mm高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出したことにより、ノズル10の開口11から吐出された塗布材料102によって、塗布材料102と冷却器101の表面101b(塗布対象面)との間に存在する空気ARを押し出すために必要な力を十分に確保する(得る)ことができ、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)を、比較例12に比べて少なくすることができたと考えられる。
これに対し、比較例12では、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.2mm高い位置(上方の位置)としたため、ノズル10の開口11から吐出する塗布材料102と冷却器101の表面101bとの間に存在する空気ARの量が増えると共に、塗布材料102と冷却器101の表面101bとの間に存在する空気ARが、塗布材料102と冷却器101の表面101bとの間に巻き込まれ易くなり、塗布材料102と冷却器101の表面101bとの間に存在する空気ARを十分に押し出すことができなかったと考えられる。このために、比較例12では、塗膜103と冷却器101の表面101bとの間に多くの空気AR(気泡)が介在し、冷却器101の表面101bと二次電池との間の伝熱効率(熱交換率)が低下したと考えられる。
以上の結果より、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の表面103bから1.0mm高い位置(上方の位置)よりも高くしないようにして、ノズル10の開口11から塗布材料102を吐出するのが好ましいといえる。従って、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置が、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出するのが好ましいといえる。
次に、実施例2と実施例6の結果を比較する。
実施例6は、実施例2と比較して、塗布材料102の吐出量を増大することによって、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の厚みを異ならせた点のみが異なり、その他は同様である。より具体的には、実施例2と実施例6は、形成する塗膜103の厚みは異なるが、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置は、いずれも、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm高い位置(上方の位置)としている。
表1に示すように、実施例2では、セル温度(二次電池の最高温度)が30℃となり、合格(判定○)となった。さらに、実施例6でも、セル温度(二次電池の最高温度)が33℃となり、合格(判定○)となった。この結果より、形成する塗膜103の厚みに拘わらず、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2mm高い位置(上方の位置)とすることで、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)の量を少なくすることができるといえる。
次に、実施例4と実施例7の結果を比較する。
実施例7は、実施例4と比較して、塗布材料102の吐出量を増大することによって、冷却器101の表面101b(塗布対象面)上に形成する塗膜103の厚みを異ならせた点のみが異なり、その他は同様である。より具体的には、実施例4と実施例7は、形成する塗膜103の厚みは異なるが、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置は、いずれも、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高い位置(上方の位置)としている。
表1に示すように、実施例4では、セル温度(二次電池の最高温度)が31℃となり、合格(判定○)となった。さらに、実施例7でも、セル温度(二次電池の最高温度)が33℃となり、合格(判定○)となった。この結果より、形成する塗膜103の厚みに拘わらず、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも1.0mm高い位置(上方の位置)とすることで、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)の量を少なくすることができるといえる。
以上説明したことから、冷却器101の表面101b上に形成する塗膜103の厚みに拘わらず、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置は、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)となるようにして、ノズル10の開口11から塗布材料102を吐出するのが好ましいといえる。さらには、前述したように、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)は、87.5〜89.0°の範囲内の角度にするのが好ましいといえる。
次に、実施例4と実施例5の結果について検討する。実施例5は、実施例4と比較して、使用した塗布材料102の粘度が異なり、その他は同様である。具体的には、表1に示すように、実施例4では、剪断速度2.51(1/s)における粘度が672(Pa/秒)である塗布材料102を用いて塗膜103を形成した。一方、実施例5では、剪断速度2.51(1/s)における粘度が1708(Pa/秒)である塗布材料102を用いて塗膜103を形成した。なお、実施例4と実施例5では、いずれも、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)となるようにして、且つ、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)を、87.5〜89.0°の範囲内の角度として、ノズル10の開口11から塗布材料102を吐出させている。
表1に示すように、実施例4では、セル温度(二次電池の最高温度)が31℃となり、合格(判定○)となった。さらに、実施例5でも、セル温度(二次電池の最高温度)が30℃となり、合格(判定○)となった。このように、剪断速度2.51(1/s)における粘度が1708(Pa/秒)である塗布材料102を用いた実施例5でも、剪断速度2.51(1/s)における粘度が672(Pa/秒)である塗布材料102を用いた実施例4と同程度に、二次電池(セル)を適切に冷却することができた。
この結果より、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内である高粘度の塗布材料102を用いる場合において、ノズル10の開口11(詳細には、開口11のうち冷却器101の表面101bに最も近い部位11b)の位置を、冷却器101の表面101b上に形成する塗膜103の表面103bよりも0.2〜1.0mmの範囲内の第1距離H1だけ高い位置(上方の位置)となるようにして、且つ、ノズル10の角度(ノズル10の軸線AXと冷却器101の表面101bとのなす角)を、87.5〜89.0°の範囲内の角度として、ノズル10の開口11から塗布材料102を吐出させることで、塗膜103と冷却器101の表面101bとの間に介在する空気AR(気泡)の量を低減することができるといえる。
以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、ノズル10の開口11の形状を、ノズル10の移動方向DM(図2において右方向)に直交する方向(図2において紙面に直交する方向)に延びる細長形状(平面視矩形状)とした。しかしながら、本発明では、ノズルの開口の形状は、このような形状に限定されるものではなく、いずれの形状であっても良い。
また、実施形態では、塗膜103を形成する際、冷却器101の表面101b(塗布対象面)を移動させることなく(冷却器101を固定して)、ノズル10を移動方向DM(図2において右方向)に移動させた。しかしながら、ノズル10を固定して、冷却器101の表面101b(塗布対象面)を、移動方向DMとは反対の方向(図2において左方向)に移動させるようにしても良い。本発明では、塗布対象面(冷却器101の表面101b)に対して、ノズル10が移動方向DMに相対的に移動するようにすれば良い。
10 ノズル
10b ノズルの先端部
11 ノズルの開口(吐出口)
100 塗布装置
101 冷却器
101b 冷却器の表面(塗布対象面)
102 塗布材料
103 塗膜
103b 塗膜の表面
AX 軸線
DX 軸線方向
DX1 軸線方向の先端側
DM ノズルの移動方向
θ1 第1角度
H1 第1距離
AR 空気
T 塗膜の厚み

Claims (1)

  1. 塗布材料を吐出するノズルを備える塗布装置を用いて、平面状をなす塗布対象面の上方から前記塗布対象面上に塗布材料を塗布して塗膜を形成する塗布方法において、
    前記塗布材料は、剪断速度2.51(1/s)における粘度が650(Pa・s)以上1708(Pa・s)以下の範囲内である塗布材料であり、
    前記ノズルは、当該ノズルの直線状をなす軸線が延びる軸線方向の先端側に位置して、前記軸線方向の先端側を向く開口であって、前記塗布材料を吐出する開口を有し、
    前記塗布方法は、
    前記ノズルの前記開口から前記塗布材料を前記塗布対象面に向けて吐出しつつ、前記塗布対象面に対して、前記ノズルを、前記塗布対象面に沿った移動方向に相対的に移動させることで、前記塗布対象面上に前記塗布材料を塗布して前記塗膜を形成する塗布方法であって、
    前記ノズルの前記軸線と前記塗布対象面とのなす角が87.5〜89.0°の範囲内の第1角度となるように、前記ノズルの前記開口を、前記塗布対象面に垂直な方向よりも前記ノズルの前記移動方向側に向けた状態とし、且つ、
    前記ノズルの前記開口の位置が、前記塗布対象面上に形成する前記塗膜の表面よりも0.2〜1.0mmの範囲内の第1距離だけ高い位置となるようにして、前記ノズルの前記開口から前記塗布材料を吐出する
    塗布方法。
JP2017172971A 2017-09-08 2017-09-08 塗布方法 Active JP6828642B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017172971A JP6828642B2 (ja) 2017-09-08 2017-09-08 塗布方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172971A JP6828642B2 (ja) 2017-09-08 2017-09-08 塗布方法

Publications (2)

Publication Number Publication Date
JP2019048258A JP2019048258A (ja) 2019-03-28
JP6828642B2 true JP6828642B2 (ja) 2021-02-10

Family

ID=65905314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172971A Active JP6828642B2 (ja) 2017-09-08 2017-09-08 塗布方法

Country Status (1)

Country Link
JP (1) JP6828642B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122572A (ja) * 1995-11-08 1997-05-13 Teijin Ltd 塗布方法及びその装置
JPH11135006A (ja) * 1997-10-27 1999-05-21 Tokyo Ohka Kogyo Co Ltd プラズマディスプレイパネル用無機ペースト層の形成方法
PL2403817T3 (pl) * 2009-03-06 2015-10-30 Dsm Ip Assets Bv Sposób powlekania głowicą szczelinową
JP2014096302A (ja) * 2012-11-12 2014-05-22 Toyota Motor Corp 電極ペースト塗工装置及び電極ペースト塗工方法

Also Published As

Publication number Publication date
JP2019048258A (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
US7522417B2 (en) Multi-mode fluid cooling system and method
EP2713118A2 (en) Vortex tube
KR102085716B1 (ko) 열 교환기 및 그 제조 방법
RU2604445C2 (ru) Головка для выброса жидкости
JP2010156525A5 (ja)
JP2007281163A5 (ja)
KR20110117598A (ko) 배터리 팩 및 배터리 팩 용 냉각 시스템
US9392729B2 (en) Cooling apparatus
CN203862491U (zh) 涂敷装置
Günay et al. Cloaking dynamics on lubricant‐infused surfaces
JP6828642B2 (ja) 塗布方法
KR102073188B1 (ko) 전지용 활물질 도포장치 및 이용방법
JP2018538227A (ja) 冷却デバイスを備えたガラス製造装置及びその使用方法
JP2006159616A (ja) インクジェット記録ヘッド
EP3255362B1 (en) Semiconductor cooling refrigerator
US11024834B2 (en) Electrode coating apparatus
JP7015284B2 (ja) 水散布冷却装置
WO2017017789A1 (ja) 熱交換器及び冷凍サイクル装置
EP3666451A1 (en) Additive manufacturing machine and cooling method
JP2005214578A (ja) 熱交換器およびこれを備えた空気調和装置の室外機
Pungaiya et al. A review of surface coating technology to increase the heat transfer
US20160257139A1 (en) Liquid ejecting head, recording apparatus, and recording method
WO2019039089A1 (ja) 電池冷却器
CN210121546U (zh) 点胶阀用冷却装置及具有它的点胶阀
CN104701275A (zh) 用于杯架的散热器以及使用该散热器的杯架

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R151 Written notification of patent or utility model registration

Ref document number: 6828642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151