JP6812262B2 - Substrate processing equipment and substrate processing method - Google Patents

Substrate processing equipment and substrate processing method Download PDF

Info

Publication number
JP6812262B2
JP6812262B2 JP2017022006A JP2017022006A JP6812262B2 JP 6812262 B2 JP6812262 B2 JP 6812262B2 JP 2017022006 A JP2017022006 A JP 2017022006A JP 2017022006 A JP2017022006 A JP 2017022006A JP 6812262 B2 JP6812262 B2 JP 6812262B2
Authority
JP
Japan
Prior art keywords
substrate
chemical solution
liquid
landing position
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017022006A
Other languages
Japanese (ja)
Other versions
JP2018129422A (en
Inventor
喬 太田
喬 太田
山田 邦夫
邦夫 山田
友明 相原
友明 相原
次郎 奥田
次郎 奥田
昌之 林
昌之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2017022006A priority Critical patent/JP6812262B2/en
Priority to CN201780083713.0A priority patent/CN110192267B/en
Priority to PCT/JP2017/041506 priority patent/WO2018146897A1/en
Priority to KR1020197020576A priority patent/KR102269436B1/en
Priority to TW106140563A priority patent/TWI686243B/en
Publication of JP2018129422A publication Critical patent/JP2018129422A/en
Application granted granted Critical
Publication of JP6812262B2 publication Critical patent/JP6812262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02343Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体ウェハ、液晶表示装置用ガラス基板、プラズマディスプレイ用ガラス基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、太陽電池用基板、等(以下、単に「基板」という)に、処理を施す基板処理技術に関する。 The present invention relates to a semiconductor wafer, a glass substrate for a liquid crystal display device, a glass substrate for a plasma display, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for a photomagnetic disk, a glass substrate for a photomask, a substrate for a solar cell, and the like (hereinafter, It relates to a substrate processing technique for processing a substrate (simply referred to as a "board").

特許文献1には、基板を洗浄する洗浄装置が開示されている。当該洗浄装置は、回転している基板の上面に向けて基板の上方の外側から洗浄液をそれぞれ吐出する第1ノズルと第2ノズルを備える。第1ノズルは、基板を上から見たときに基板の中心を通る斜め下向きの吐出方向に沿って、基板の中心よりも第1ノズル側の着液位置に当たるように液柱状の第1洗浄液を吐出する。基板の中心付近では遠心力が弱い。このため、第1洗浄液は、基板を上から見たときに吐出方向と重なる基板上の直線に沿って、着液位置から基板の中心に向かって流れて基板の中心上を通過し、さらに、基板の中心を越えた位置まで液柱状の形状を維持しつつ到達する。基板の周縁側は遠心力が強いため、基板の中心を越えた第1洗浄液は、液膜状に拡がっていくとともに、基板の回転方向の下流側へ曲がりながら基板の周縁に向けて流れる。 Patent Document 1 discloses a cleaning device for cleaning a substrate. The cleaning device includes a first nozzle and a second nozzle that discharge cleaning liquid from the upper outside of the substrate toward the upper surface of the rotating substrate, respectively. When the first nozzle is viewed from above, a liquid columnar first cleaning liquid is applied so as to hit the liquid landing position on the first nozzle side of the center of the substrate along the diagonally downward discharge direction passing through the center of the substrate. Discharge. Centrifugal force is weak near the center of the substrate. Therefore, the first cleaning liquid flows from the liquid landing position toward the center of the substrate along a straight line on the substrate that overlaps with the discharge direction when the substrate is viewed from above, passes over the center of the substrate, and further. It reaches a position beyond the center of the substrate while maintaining the shape of the liquid column. Since the centrifugal force is strong on the peripheral side of the substrate, the first cleaning liquid beyond the center of the substrate spreads like a liquid film and flows toward the peripheral edge of the substrate while bending to the downstream side in the rotation direction of the substrate.

第2ノズルが基板の外側から吐出した液柱状の第2洗浄液は、基板の中心の上方を通過して、基板上における第1洗浄液の液柱及び液膜に当たらない位置に着液する。第2洗浄液の着液位置は、第1洗浄液の着液位置よりも基板の回転方向の下流側の位置であって、第1洗浄液の着液位置よりも基板の中心から遠く、強い遠心力が作用する位置である。着液後の第2洗浄液は、遠心力の影響を受けて液膜状に拡がりながら基板上における第1洗浄液の流動を妨げることなく基板の回転方向の下流側へ曲がりながら基板の周縁に向けて流れる。 The liquid columnar second cleaning liquid discharged from the outside of the substrate by the second nozzle passes above the center of the substrate and lands on the substrate at a position where it does not hit the liquid column and the liquid film of the first cleaning liquid. The landing position of the second cleaning liquid is a position downstream of the landing position of the first cleaning liquid in the rotation direction of the substrate, and is farther from the center of the substrate than the liquid landing position of the first cleaning liquid, and a strong centrifugal force is applied. The position of action. After landing, the second cleaning liquid spreads like a liquid film under the influence of centrifugal force and bends toward the peripheral edge of the substrate while bending downstream in the rotational direction of the substrate without hindering the flow of the first cleaning liquid on the substrate. It flows.

特許文献1の洗浄装置は、上記の構成によって、基板の中心部を第1洗浄液によって洗浄し、基板の中心部より外側の周辺部を第2洗浄液によって洗浄することを図っている。また、当該洗浄装置は、第1洗浄液と第2洗浄液とが基板上で互いの流動を妨げないようにすることによって、洗浄度を向上させることも図っている。 According to the above configuration, the cleaning device of Patent Document 1 attempts to clean the central portion of the substrate with the first cleaning liquid and the peripheral portion outside the central portion of the substrate with the second cleaning liquid. Further, the cleaning device also aims to improve the degree of cleaning by preventing the first cleaning liquid and the second cleaning liquid from interfering with each other's flow on the substrate.

特開2015−201627号公報JP 2015-201627

特許文献1の洗浄装置においては、基板上における第1洗浄液の流動を、第2ノズルが吐出する第2洗浄液が妨げないようにする必要が有る。このためには、第2ノズルが吐出する液柱状の第2洗浄液は、基板の上方の外側から基板上で流動している第1処理液の液柱状の部分の上方を斜め下向きに横切って、基板の中心に対して第2ノズルとは反対側の着液位置に到達する必要が有る。一方、第2洗浄液の着液位置が基板の中心から遠すぎると、第2洗浄液によって洗浄できる範囲が狭くなってしまう。このため、第2洗浄液は、基板の中心からの距離が、基板の半径の4分の1以下となる位置に設定される着液位置に正確に到達する必要が有る。また、第1洗浄液も、第2洗浄液の着液位置よりもさらに内側の着液位置に、第2洗浄液とぶつからないように正確に吐出される必要が有る。このため、第1、第2ノズルが吐出する第1、第2洗浄液の各流量(各流速)は、各吐出口の口径等に応じて厳密に設定する必要が有る。 In the cleaning apparatus of Patent Document 1, it is necessary that the flow of the first cleaning liquid on the substrate is not obstructed by the second cleaning liquid discharged from the second nozzle. For this purpose, the liquid columnar second cleaning liquid discharged by the second nozzle crosses diagonally downward above the liquid columnar portion of the first treatment liquid flowing on the substrate from the outside above the substrate. It is necessary to reach the liquid landing position on the side opposite to the second nozzle with respect to the center of the substrate. On the other hand, if the landing position of the second cleaning liquid is too far from the center of the substrate, the range that can be cleaned by the second cleaning liquid is narrowed. Therefore, the second cleaning liquid needs to accurately reach the liquid landing position set at a position where the distance from the center of the substrate is one-fourth or less of the radius of the substrate. Further, the first cleaning liquid also needs to be accurately discharged to the landing position further inside the landing position of the second cleaning liquid so as not to collide with the second cleaning liquid. Therefore, it is necessary to strictly set each flow rate (each flow velocity) of the first and second cleaning liquids discharged by the first and second nozzles according to the diameter of each discharge port and the like.

ここで、エッチング液等の薬液を用いて基板の表面の処理を行う場合には、温度に応じて薬液の反応性が変動するため、基板表面の各部の処理レートは、基板の表面の温度分布に応じて変動する。このため、定められた温度に予め加熱された薬液を基板の全域に供給することによって、基板表面の全域の温度分布を所望の温度分布になるように制御しつつ、基板の処理を行うことが図られる。 Here, when the surface of the substrate is treated with a chemical solution such as an etching solution, the reactivity of the chemical solution varies depending on the temperature. Therefore, the treatment rate of each part of the substrate surface is the temperature distribution on the surface of the substrate. It fluctuates according to. Therefore, by supplying a chemical solution preheated to a predetermined temperature to the entire area of the substrate, it is possible to process the substrate while controlling the temperature distribution over the entire surface of the substrate so as to have a desired temperature distribution. It is planned.

しかしながら、特許文献1の洗浄装置は、第1、第2洗浄液の各流速が所望の値から僅かでもずれている場合、第1洗浄液と第2洗浄液とが基板上で衝突して、各洗浄液が流動する方向が変化するため、洗浄液を基板の中心上に供給できない。すなわち、特許文献1の装置には、第1、第2ノズルが吐出する各薬液の各流量の制御が厳密になされない場合には、基板の上面全域に薬液を供給できないといった問題や、基板の中央域に供給される薬液の均一性が悪化するといった問題が生ずる。 However, in the cleaning device of Patent Document 1, when the flow velocities of the first and second cleaning liquids deviate even slightly from the desired values, the first cleaning liquid and the second cleaning liquid collide with each other on the substrate, and each cleaning liquid is released. Since the direction of flow changes, the cleaning liquid cannot be supplied onto the center of the substrate. That is, the apparatus of Patent Document 1 has a problem that the chemical solution cannot be supplied to the entire upper surface of the substrate if the flow rate of each chemical solution discharged by the first and second nozzles is not strictly controlled, and the substrate. Problems such as deterioration of the uniformity of the chemical solution supplied to the central region arise.

本発明は、こうした問題を解決するためになされたもので、回転する基板の表面に薬液を吐出して基板を処理する基板処理装置において、基板の上面全域に薬液を供給しつつ、基板の中央域に供給される薬液の膜厚の均一性を向上出来る技術を提供することを目的とする。 The present invention has been made to solve such a problem. In a substrate processing apparatus for processing a substrate by discharging a chemical solution onto the surface of a rotating substrate, the chemical solution is supplied to the entire upper surface of the substrate while being supplied to the center of the substrate. It is an object of the present invention to provide a technique capable of improving the uniformity of the film thickness of the chemical solution supplied to the region.

上記の課題を解決するために、第1の態様に係る基板処理装置は、基板を略水平姿勢で保持しつつ回転可能な保持部材と、前記保持部材を、回転軸を中心に回転させる回転機構と、前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように前記基板よりも上方から薬液を液柱状の液流として吐出する第1ノズルと、前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2ノズルと、を備え、前記第1ノズルが前記薬液を吐出する際の吐出方向は、前記第1ノズルの上方から前記基板の前記回転軸方向に見て、前記回転軸を中心として前記第1着液位置を通る円の前記第1着液位置における接線方向に沿って前記基板の回転方向の上流側に向かう成分と、当該接線と直交する前記基板の径方向に沿って前記第1着液位置から前記回転軸に向かう成分とを有する方向であり、前記第1ノズルが前記薬液を吐出する際の吐出速度の前記接線方向の速度成分は、前記基板の回転によって前記第1着液位置上の前記薬液に作用する前記基板の回転方向の下流側向きの力に打ち勝って当該薬液が前記基板の回転方向の上流側に流れることができる大きさを有し、前記吐出速度の前記径方向の速度成分は、前記第1着液位置上の前記薬液に作用する前記基板の回転による遠心力に打ち勝って当該薬液が前記回転軸側に流れることができる大きさを有し、前記第2ノズルが前記薬液を吐出する際の吐出方向は、前記第2ノズルの上方から前記基板の回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する方向である。 In order to solve the above problems, the substrate processing apparatus according to the first aspect includes a holding member that can rotate while holding the substrate in a substantially horizontal posture, and a rotation mechanism that rotates the holding member about a rotation axis. And the first nozzle that discharges the chemical liquid as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the central region and the peripheral region of the rotation locus of the substrate. A second nozzle for discharging the chemical liquid as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region is provided, and the discharge direction when the first nozzle discharges the chemical liquid. Is viewed from above the first nozzle in the direction of the rotation axis of the substrate, and the substrate is along the tangential direction at the first liquidation position of a circle passing through the first liquidation position about the rotation axis. It is a direction having a component toward the upstream side in the rotation direction of the above and a component toward the rotation axis from the first liquid landing position along the radial direction of the substrate orthogonal to the tangent line, and the first nozzle is said. The tangential velocity component of the discharge rate at the time of discharging the chemical solution overcomes the force acting on the chemical solution on the first liquid landing position toward the downstream side in the rotational direction of the substrate due to the rotation of the substrate. The chemical solution has a size that allows the chemical solution to flow upstream in the rotation direction of the substrate, and the radial velocity component of the discharge rate is the rotation of the substrate that acts on the chemical solution on the first liquid landing position. It has a size that allows the chemical solution to flow toward the rotation shaft side by overcoming the centrifugal force caused by the above, and the discharge direction when the second nozzle discharges the chemical solution is from above the second nozzle to the substrate. Seen in the direction of the rotation axis, in a direction having a component toward the downstream side in the rotation direction of the substrate along the tangential direction at the second liquidation position of a circle passing through the second liquidation position about the rotation axis. is there.

第2の態様に係る基板処理装置は、第1の態様に係る基板処理装置であって、前記第1ノズルが吐出する前記薬液の前記第1着液位置と、前記第2ノズルが吐出する前記薬液の前記第2着液位置とは、前記回転軸から同じ距離である。 The substrate processing apparatus according to the second aspect is the substrate processing apparatus according to the first aspect, wherein the first landing position of the chemical solution discharged by the first nozzle and the discharge by the second nozzle. The second liquid landing position of the chemical solution is the same distance from the rotation axis.

第3の態様に係る基板処理装置は、第1の態様に係る基板処理装置であって、前記第1ノズルが吐出する前記薬液の前記第1着液位置と、前記基板の周縁のうち前記第1着液位置に最も近い点との中点によって着目中点を定義したとき、前記第2ノズルが吐出する前記薬液の前記第2着液位置は、前記第1着液位置よりも前記回転軸から遠く、前記着目中点よりも前記回転軸に近い。 The substrate processing apparatus according to the third aspect is the substrate processing apparatus according to the first aspect, wherein the first liquidation position of the chemical solution discharged by the first nozzle and the first of the peripheral edges of the substrate. When the midpoint of interest is defined by the midpoint of the point closest to the one landing position, the second liquidation position of the chemical solution discharged by the second nozzle is the rotation axis rather than the first liquidation position. Far from, closer to the rotation axis than the midpoint of interest.

第4の態様に係る基板処理装置は、第1から第3の何れか1つの態様に係る基板処理装置であって、前記第1ノズルが吐出する前記薬液の前記第1着液位置と、前記第2ノズルが吐出する前記薬液の前記第2着液位置とは、前記基板の直径を成す同一直線上に、前記回転軸を互いの間に挟んでそれぞれ位置する。 The substrate processing apparatus according to the fourth aspect is the substrate processing apparatus according to any one of the first to third aspects, wherein the first liquidation position of the chemical solution discharged by the first nozzle and the first liquidation position and the said The second liquid landing position of the chemical solution discharged by the second nozzle is located on the same straight line forming the diameter of the substrate with the rotation axes sandwiched between the two.

第5の態様に係る基板処理装置は、第1から第4の何れか1つの態様に係る基板処理装置であって、前記第2ノズルが吐出する前記薬液の前記第2着液位置は、前記第1ノズルが吐出した前記薬液が前記第1着液位置から周囲に拡がって前記基板上に形成している液膜の上に位置する。 The substrate processing apparatus according to the fifth aspect is the substrate processing apparatus according to any one of the first to fourth aspects, and the second liquidation position of the chemical solution discharged by the second nozzle is the said. The chemical solution discharged by the first nozzle spreads from the first landing position to the periphery and is located on a liquid film formed on the substrate.

第6の態様に係る基板処理装置は、基板を略水平姿勢で保持しつつ回転可能な保持部材と、前記保持部材を、回転軸を中心に回転させる回転機構と、前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように基板よりも上方から薬液を液柱状の液流として吐出する第1ノズルと、前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2ノズルと、を備え、前記第1ノズルは、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸側に向かう前記薬液の量が、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸とは反対側に向かう前記薬液の量よりも多くなるように、前記薬液を吐出し、前記第2ノズルが前記薬液を吐出する際の吐出方向は、前記第2ノズルの上方から前記基板の回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する方向である。 The substrate processing apparatus according to the sixth aspect includes a holding member that can rotate while holding the substrate in a substantially horizontal posture, a rotation mechanism that rotates the holding member about a rotation axis, and a rotation locus of the substrate. It corresponds to the first nozzle that discharges the chemical liquid as a liquid columnar liquid flow from above the substrate so as to correspond to the first liquid landing position in the intermediate region between the central region and the peripheral region, and the second liquid landing position in the intermediate region. A second nozzle for discharging the chemical solution as a liquid columnar liquid flow from above the substrate is provided, and the first nozzle is provided from the first liquid landing position immediately after hitting the first liquid landing position. The amount of the chemical solution toward the rotation axis side is larger than the amount of the chemical solution toward the side opposite to the rotation axis from the first landing position immediately after hitting the first landing position. The discharge direction when the chemical solution is discharged and the second nozzle discharges the chemical solution is the second liquid landing centered on the rotation axis when viewed from above the second nozzle in the rotation axis direction of the substrate. It is a direction having a component toward the downstream side in the rotation direction of the substrate along the tangential direction of the circle passing through the position at the second liquid landing position.

第7の態様に係る基板処理装置は、第1から第6の何れか1つの態様に係る基板処理装置であって、前記第2ノズルが吐出する前記薬液の流量が、前記第1ノズルが吐出する前記薬液の流量よりも多い。 The substrate processing apparatus according to the seventh aspect is the substrate processing apparatus according to any one of the first to sixth aspects, and the flow rate of the chemical solution discharged by the second nozzle is discharged by the first nozzle. It is larger than the flow rate of the chemical solution.

第8の態様に係る基板処理装置は、第1から第7の何れか1つの態様に係る基板処理装置であって、前記第2ノズルが前記薬液を吐出する際の吐出方向は、前記第2ノズルの上方から前記基板の回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分と、当該接線と直交する前記基板の径方向に沿って前記第2着液位置から前記回転軸とは反対側に向かう成分とを有する方向である。 The substrate processing apparatus according to the eighth aspect is the substrate processing apparatus according to any one of the first to seventh aspects, and the ejection direction when the second nozzle ejects the chemical solution is the second. Seen from above the nozzle in the direction of the rotation axis of the substrate, the downstream side of the substrate in the rotation direction along the tangential direction at the second liquidation position of a circle passing through the second liquidation position around the rotation axis. It is a direction having a component toward the direction of the second liquid and a component toward the side opposite to the rotation axis from the second liquid landing position along the radial direction of the substrate orthogonal to the tangent line.

第9の態様に係る基板処理装置は、第1から第8の何れか1つの態様に係る基板処理装置であって、前記第1ノズルと前記第2ノズルとの各ノズルが前記薬液を吐出する際の各吐出方向は、前記各ノズルに対して前記回転軸とは反対側の各位置から前記基板の径方向に見て、前記基板の上方から斜め下向きに向かう方向である。 The substrate processing apparatus according to the ninth aspect is the substrate processing apparatus according to any one of the first to eighth aspects, and each nozzle of the first nozzle and the second nozzle discharges the chemical solution. Each discharge direction is a direction diagonally downward from the upper side of the substrate when viewed in the radial direction of the substrate from each position on the side opposite to the rotation axis with respect to the nozzles.

第10の態様に係る基板処理方法は、基板を略水平姿勢で保持しつつ回転軸を中心に回転させる回転ステップと、前記回転ステップと並行して、前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように前記基板よりも上方から薬液を液柱状の液流として吐出する第1吐出ステップと、前記回転ステップおよび前記第1吐出ステップと並行して、前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2吐出ステップと、を備え、前記第1吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第1着液位置を通る円の前記第1着液位置における接線方向に沿って前記基板の回転方向の上流側に向かう成分と、前記接線と直交する前記基板の径方向に沿って前記第1着液位置から前記回転軸に向かう成分とを有する方向であり、前記第1吐出ステップにおいて吐出される前記薬液の吐出速度の前記接線方向の速度成分は、前記基板の回転によって前記第1着液位置上の前記薬液に作用する前記基板の回転方向の下流側向きの力に打ち勝って当該薬液が前記基板の回転方向の上流側に流れることができる大きさを有し、前記吐出速度の前記径方向の速度成分は、前記第1着液位置上の前記薬液に作用する前記基板の回転による遠心力に打ち勝って当該薬液が前記回転軸側に流れることができる大きさを有し、前記第2吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する吐出方向に前記薬液を吐出するステップである。 The substrate processing method according to the tenth aspect includes a rotation step of rotating the substrate around a rotation axis while holding the substrate in a substantially horizontal posture, and in parallel with the rotation step, a central region and a periphery of the rotation locus of the substrate. In parallel with the rotation step and the first discharge step, the first discharge step of discharging the chemical liquid as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the regions. The chemical solution is provided with a second discharge step of discharging the chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region, and the chemical solution is discharged in the first discharge step. The discharge direction is such that the chemical solution is viewed from above in the direction of the rotation axis, and the substrate rotates along the tangential direction at the first liquidation position of a circle passing through the first liquidation position around the rotation axis. It is a direction having a component toward the upstream side in the direction and a component toward the rotation axis from the first liquid landing position along the radial direction of the substrate orthogonal to the tangent line, and is discharged in the first discharge step. The velocity component of the discharge rate of the chemical solution in the tangential direction overcomes the force acting on the chemical solution on the first liquid landing position toward the downstream side in the rotational direction of the substrate due to the rotation of the substrate. The radial velocity component of the discharge rate, which has a size capable of flowing upstream in the rotation direction of the substrate, is centrifugal due to the rotation of the substrate acting on the chemical solution on the first liquid landing position. The chemical solution has a size that can overcome the force and flow toward the rotation axis side, and the discharge direction of the chemical solution discharged in the second discharge step is such that the chemical solution is viewed from above in the rotation axis direction. , The chemical liquid is discharged in the discharge direction having a component toward the downstream side in the rotation direction of the substrate along the tangential direction at the second liquid landing position of a circle passing through the second liquid landing position about the rotation axis. It's a step.

第11の態様に係る基板処理方法は、第10の態様に係る基板処理方法であって、前記第1吐出ステップにおいて吐出される前記薬液の前記第1着液位置と、前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置とは、前記回転軸から同じ距離である。 The substrate processing method according to the eleventh aspect is the substrate processing method according to the tenth aspect, in which the first liquidation position of the chemical solution discharged in the first discharge step and the second discharge step. The second liquid landing position of the chemical solution to be discharged is the same distance from the rotation axis.

第12の態様に係る基板処理方法は、第10の態様に係る基板処理方法であって、前記第1吐出ステップにおいて吐出される前記薬液の前記第1着液位置と、前記基板の周縁のうち前記第1着液位置に最も近い点との中点によって着目中点を定義したとき、前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置は、前記第1着液位置よりも前記回転軸から遠く、前記着目中点よりも前記回転軸に近い。 The substrate processing method according to the twelfth aspect is the substrate processing method according to the tenth aspect, which is among the first landing position of the chemical solution discharged in the first discharge step and the peripheral edge of the substrate. When the midpoint of interest is defined by the midpoint with the point closest to the first liquidation position, the second liquidation position of the chemical solution discharged in the second discharge step is from the first liquidation position. Is also far from the rotation axis and closer to the rotation axis than the midpoint of interest.

第13の態様に係る基板処理方法は、第10から第12の何れか1つの態様に係る基板処理方法であって、前記第1吐出ステップにおいて吐出される前記薬液の前記第1着液位置と、前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置とは、前記基板の直径を成す同一直線上に、前記回転軸を互いの間に挟んでそれぞれ位置する。 The substrate processing method according to the thirteenth aspect is the substrate processing method according to any one of the tenth to twelfth aspects, and is the same as the first landing position of the chemical solution discharged in the first discharge step. The second liquid landing position of the chemical solution discharged in the second discharge step is located on the same straight line forming the diameter of the substrate with the rotation axes sandwiched between the two.

第14の態様に係る基板処理方法は、第10から第13の何れか1つの態様に係る基板処理方法であって、前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置は、前記第1吐出ステップにおいて吐出される前記薬液が前記第1着液位置から周囲に拡がって前記基板上に形成している液膜の上に位置する。 The substrate processing method according to the fourteenth aspect is the substrate processing method according to any one of the tenth to thirteenth aspects, and the second liquidation position of the chemical solution discharged in the second discharge step is The chemical solution discharged in the first discharge step spreads from the first landing position to the periphery and is located on the liquid film formed on the substrate.

第15の態様に係る基板処理方法は、基板を略水平姿勢で保持しつつ回転軸を中心に回転させる回転ステップと、前記回転ステップと並行して、前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように基板よりも上方から薬液を液柱状の液流として吐出する第1吐出ステップと、前記回転ステップおよび前記第1吐出ステップと並行して、前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2吐出ステップと、を備え、前記第1吐出ステップは、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸側に向かう前記薬液の量が、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸とは反対側に向かう前記薬液の量よりも多くなるように、前記薬液を吐出するステップであり、前記第2吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する方向である。 The substrate processing method according to the fifteenth aspect includes a rotation step of rotating the substrate around a rotation axis while holding the substrate in a substantially horizontal posture, and in parallel with the rotation step, a central region and a periphery of the rotation locus of the substrate. In parallel with the rotation step and the first discharge step, a first discharge step of discharging the chemical liquid as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the regions. A second discharge step of discharging the chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region is provided, and the first discharge step comprises the first liquid landing. Immediately after hitting the position, the amount of the chemical solution from the first liquid landing position toward the rotating shaft side is on the side opposite to the rotating shaft from the first liquid landing position immediately after hitting the first liquid landing position. It is a step of discharging the chemical solution so as to be larger than the amount of the chemical solution toward, and the discharge direction of the chemical solution discharged in the second discharge step is when the chemical solution is viewed from above in the rotation axis direction. , A direction having a component toward the downstream side in the rotation direction of the substrate along the tangential direction at the second liquidation position of a circle passing through the second liquidation position about the rotation axis.

第16の態様に係る基板処理方法は、第10から第15の何れか1つの態様に係る基板処理方法であって、前記第2吐出ステップにおいて吐出される前記薬液の流量が、前記第1吐出ステップにおいて吐出される前記薬液の流量よりも多い。

The substrate processing method according to the sixteenth aspect is the substrate processing method according to any one of the tenth to fifteenth aspects, and the flow rate of the chemical solution discharged in the second discharge step is the flow rate of the first discharge. It is higher than the flow rate of the chemical solution discharged in the step.

第17の態様に係る基板処理方法は、第10から第16の何れか1つの態様に係る基板処理方法であって、前記第2吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分と、当該接線と直交する前記基板の径方向に沿って前記第2着液位置から前記回転軸とは反対側に向かう成分とを有する方向である。 The substrate processing method according to the seventeenth aspect is the substrate processing method according to any one of the tenth to sixteenth aspects, and the discharge direction of the chemical solution discharged in the second discharge step is the chemical solution. When viewed from above in the direction of the rotation axis, the component of the circle passing through the second liquidation position about the rotation axis toward the downstream side in the rotation direction of the substrate along the tangential direction at the second liquidation position. , A direction having a component extending from the second liquid landing position to the side opposite to the rotation axis along the radial direction of the substrate orthogonal to the tangent line.

第18の態様に係る基板処理方法は、第10から第17の何れか1つの態様に係る基板処理方法であって、前記第1吐出ステップと前記第2吐出ステップとの各吐出ステップにおいて前記薬液が吐出される際の各吐出方向は、前記各吐出ステップにおいて吐出されている各薬液に対して前記回転軸とは反対側から前記基板の径方向に前記各薬液を見て、前記基板の上方から斜め下向きに向かう方向である。 The substrate processing method according to the eighteenth aspect is the substrate processing method according to any one of the tenth to the seventeenth aspects, and the chemical solution in each discharge step of the first discharge step and the second discharge step. The discharge direction at the time of discharging is the upper side of the substrate when the chemicals are viewed in the radial direction of the substrate from the side opposite to the rotation axis with respect to the chemicals discharged in each discharge step. The direction is diagonally downward from.

第1の態様に係る発明によれば、第1ノズルから吐出された薬液の少なくとも一部は、第1着液位置に当たった直後に、当該薬液に作用する基板の回転方向の下流側向きの力と遠心力との双方の力に打ち勝って、第1着液位置から液膜状に拡がりながら基板の回転方向の上流側、かつ、回転軸側に流れ、その後、基板の中央域を通過して基板の周縁に到達する。これにより、第1着液位置には多量の薬液が供給され、基板の中央部分の各位置には第1着液位置よりも少量の薬液が供給される。基板の各箇所の周方向への回転速度は、回転軸から基板の周縁に向かって増加する。また、基板の各位置に供給された薬液は、各位置の周方向への回転速度が増加するにつれて周方向に引き伸ばされて膜厚が減少する。従って、第1着液位置には基板の中央域よりも多量の薬液が供給されるが、その膜厚は基板の中央域よりも薄くなり易い一方、基板の中央域には第1着液位置よりも少量の薬液が供給されるが、その膜厚は第1着液位置に比べて薄くなりにくい。このため、基板表面のうち第1着液位置よりも基板の中心側の部分における薬液の膜厚の均一性を、第1ノズルによって向上することができる。また、第2ノズルから吐出された薬液の多くは、第2着液位置から液膜状に拡がりながら基板の周辺域を基板の回転方向下流側に流れつつ基板の周縁部に到達する。従って、第1ノズルと第2ノズルとによって基板の表面の全体に薬液を供給しつつ、第1着液位置よりも回転軸側部分、すなわち基板の中央域と、基板の中間域のうち第1着液位置よりも回転軸側部分とに供給される薬液の膜厚の均一性を第1ノズルによって向上せさることができる。 According to the invention according to the first aspect, at least a part of the chemical solution discharged from the first nozzle is directed to the downstream side in the rotation direction of the substrate acting on the chemical solution immediately after hitting the first liquid landing position. Overcoming both the force and the centrifugal force, it flows from the first liquid landing position to the upstream side in the rotation direction of the substrate and to the rotation axis side while spreading like a liquid film, and then passes through the central region of the substrate. To reach the periphery of the substrate. As a result, a large amount of chemical solution is supplied to the first landing position, and a smaller amount of chemical solution than the first landing position is supplied to each position in the central portion of the substrate. The rotational speed of each part of the substrate in the circumferential direction increases from the rotation axis toward the peripheral edge of the substrate. Further, the chemical solution supplied to each position of the substrate is stretched in the circumferential direction as the rotational speed of each position in the circumferential direction increases, and the film thickness decreases. Therefore, a larger amount of chemical solution is supplied to the first liquidation position than in the central region of the substrate, but the film thickness tends to be thinner than the central region of the substrate, while the first liquidation position is in the central region of the substrate. Although a smaller amount of the chemical solution is supplied, the film thickness is less likely to be thinner than that of the first liquid landing position. Therefore, the uniformity of the film thickness of the chemical solution on the portion of the substrate surface on the center side of the substrate with respect to the first liquid landing position can be improved by the first nozzle. In addition, most of the chemicals discharged from the second nozzle reach the peripheral edge of the substrate while spreading in the form of a liquid film from the second landing position and flowing downstream in the rotational direction of the substrate. Therefore, while supplying the chemical solution to the entire surface of the substrate by the first nozzle and the second nozzle, the portion on the rotation axis side from the first liquid landing position, that is, the central region of the substrate and the first of the intermediate regions of the substrate. The uniformity of the film thickness of the chemical solution supplied to the portion on the rotation shaft side of the liquid landing position can be improved by the first nozzle.

第2の態様に係る発明によれば、第1ノズルが吐出する薬液の第1着液位置と、第2ノズルが吐出する薬液の第2着液位置とは、回転軸から同じ距離である。従って、双方のノズルからそれぞれ吐出された薬液を基板の表面の全体に供給することがより容易になる。 According to the invention according to the second aspect, the first landing position of the chemical solution discharged by the first nozzle and the second landing position of the chemical solution discharged by the second nozzle are the same distance from the rotation axis. Therefore, it becomes easier to supply the chemical solutions discharged from both nozzles to the entire surface of the substrate.

第4の態様に係る発明によれば、第1ノズルが吐出する薬液の第1着液位置と、第2ノズルが吐出する薬液の第2着液位置とは、基板の直径を成す同一直線上に、回転軸を互いの間に挟んでそれぞれ位置する。従って、例えば、双方のノズルが吐出する薬液が、基板の上方から見て、互いに平行で、かつ、同じ向きに吐出された場合には、第2ノズルが吐出した薬液の吐出方向を、基板の上方から見て、基板の中心側に向かう成分を有さない方向とすることができる。従って、第2ノズルから基板の周辺域に薬液を効率的に供給することが出来る。 According to the invention according to the fourth aspect, the first landing position of the chemical solution discharged by the first nozzle and the second landing position of the chemical solution discharged by the second nozzle are on the same straight line forming the diameter of the substrate. The rotation axes are sandwiched between each other. Therefore, for example, when the chemicals discharged by both nozzles are parallel to each other and discharged in the same direction when viewed from above the substrate, the discharge direction of the chemicals discharged by the second nozzle is set on the substrate. When viewed from above, the direction may be such that there is no component toward the center side of the substrate. Therefore, the chemical solution can be efficiently supplied from the second nozzle to the peripheral area of the substrate.

第5の態様に係る発明によれば、第2ノズルが吐出する薬液の第2着液位置は、第1ノズルが吐出した薬液が第1着液位置から周囲に拡がって基板上に形成している液膜の上に位置する。これにより、第2着液位置が、基板上において第1ノズルから吐出された薬液が形成する液膜以外の部分に位置する場合に比べて、第2ノズルから吐出された薬液の液跳ねを低減できる。 According to the invention according to the fifth aspect, the second liquidation position of the chemical liquid discharged by the second nozzle is formed on the substrate by the chemical liquid discharged by the first nozzle spreading from the first liquidation position to the periphery. Located on the liquid film. As a result, the splashing of the chemical solution discharged from the second nozzle is reduced as compared with the case where the second liquid landing position is located on the substrate other than the liquid film formed by the chemical solution discharged from the first nozzle. it can.

第6の態様に係る発明によれば、第1ノズルから吐出された薬液が、第1着液位置から液膜状に拡がりつつ基板の中心に向かって流れ、さらに基板の中心に対して第1着液位置とは反対側の基板の周縁に到達することが容易となる。これにより、第1着液位置には多量の薬液が供給され、基板の中央部分の各位置には第1着液位置よりも少量の薬液が供給される。基板の各箇所の周方向への回転速度は、回転軸から基板の周縁に向かって増加する。また、基板の各位置に供給された薬液は、各位置の周方向への回転速度が増加するにつれて周方向に引き伸ばされて膜厚が減少する。従って、第1着液位置には基板の中央域よりも多量の薬液が供給されるが、その膜厚は基板の中央域よりも薄くなり易い一方、基板の中央域には第1着液位置よりも少量の薬液が供給されるが、その膜厚は第1着液位置に比べて薄くなりにくい。このため、基板表面のうち第1着液位置よりも基板の中心側の部分における薬液の膜厚の均一性を、第1ノズルによって向上することができる。また、第2ノズルから吐出された薬液の一部は、第2着液位置から液膜状に拡がりながら基板の周辺域を基板の回転方向下流側に流れつつ基板の周縁部に到達する。従って、第1ノズルと第2ノズルとによって基板の表面の全体に薬液を供給しつつ、第1着液位置よりも回転軸側部分、すなわち基板の中央域と、基板の中間域のうち第1着液位置よりも回転軸側部分とに供給される薬液の膜厚の均一性を第1ノズルによって向上せさることができる。 According to the invention according to the sixth aspect, the chemical solution discharged from the first nozzle flows from the first landing position toward the center of the substrate while spreading like a liquid film, and further, the first with respect to the center of the substrate. It becomes easy to reach the peripheral edge of the substrate on the side opposite to the liquid landing position. As a result, a large amount of chemical solution is supplied to the first landing position, and a smaller amount of chemical solution than the first landing position is supplied to each position in the central portion of the substrate. The rotational speed of each part of the substrate in the circumferential direction increases from the rotation axis toward the peripheral edge of the substrate. Further, the chemical solution supplied to each position of the substrate is stretched in the circumferential direction as the rotational speed of each position in the circumferential direction increases, and the film thickness decreases. Therefore, a larger amount of chemical solution is supplied to the first liquidation position than in the central region of the substrate, but the film thickness tends to be thinner than the central region of the substrate, while the first liquidation position is in the central region of the substrate. Although a smaller amount of the chemical solution is supplied, the film thickness is less likely to be thinner than that of the first liquid landing position. Therefore, the uniformity of the film thickness of the chemical solution on the portion of the substrate surface on the center side of the substrate with respect to the first liquid landing position can be improved by the first nozzle. Further, a part of the chemical solution discharged from the second nozzle reaches the peripheral edge of the substrate while spreading in a liquid film shape from the second landing position and flowing downstream in the rotation direction of the substrate. Therefore, while supplying the chemical solution to the entire surface of the substrate by the first nozzle and the second nozzle, the portion on the rotation axis side from the first liquid landing position, that is, the central region of the substrate and the first of the intermediate regions of the substrate. The uniformity of the film thickness of the chemical solution supplied to the portion on the rotation shaft side of the liquid landing position can be improved by the first nozzle.

第7の態様に係る発明によれば、第2ノズルが吐出する薬液の流量が、第1ノズルが吐出する薬液の流量よりも多いので、基板の周辺域に対して、第2ノズルからより多くの薬液を供給することが出来る。 According to the invention according to the seventh aspect, since the flow rate of the chemical solution discharged by the second nozzle is larger than the flow rate of the chemical solution discharged by the first nozzle, the flow rate from the second nozzle is larger than that in the peripheral area of the substrate. Chemical solution can be supplied.

第8の態様に係る発明によれば、第2ノズルが薬液を吐出する際の吐出方向は、第2ノズルの上方から基板の回転軸方向に見て、回転軸を中心として第2着液位置を通る円の第2着液位置における接線方向に沿って基板の回転方向の下流側に向かう成分と、当該接線と直交する基板の径方向に沿って第2着液位置から回転軸とは反対側に向かう成分とを有する方向である。従って、第2ノズルから基板の周辺域に対して効率的に薬液を供給することができる。 According to the invention according to the eighth aspect, the discharge direction when the second nozzle discharges the chemical liquid is the second liquid landing position centered on the rotation axis when viewed from above the second nozzle in the rotation axis direction of the substrate. The component toward the downstream side of the rotation direction of the substrate along the tangential direction at the second liquidation position of the circle passing through the above, and the axis of rotation from the second liquidation position along the radial direction of the substrate orthogonal to the tangent line. It is a direction having a component toward the side. Therefore, the chemical solution can be efficiently supplied from the second nozzle to the peripheral area of the substrate.

第9の態様に係る発明によれば、第1ノズルと第2ノズルとの各ノズルが薬液を吐出する際の各吐出方向は、各ノズルに対して回転軸とは反対側の各位置から基板の径方向に見て、基板の上方から斜め下向きに向かう方向である。第1ノズル、第2ノズルは、第1着液位置、第2着液位置に向けて、より正確に薬液を吐出することが出来る。 According to the invention according to the ninth aspect, each ejection direction when each nozzle of the first nozzle and the second nozzle ejects the chemical liquid is a substrate from each position on the side opposite to the rotation axis with respect to each nozzle. When viewed in the radial direction of, the direction is diagonally downward from above the substrate. The first nozzle and the second nozzle can more accurately discharge the chemical solution toward the first liquid landing position and the second liquid landing position.

第10の態様に係る発明によれば、第1吐出ステップにおいて吐出された薬液の少なくとも一部は、第1着液位置に当たった直後に、当該薬液に作用する基板の回転方向の下流側向きの力と遠心力との双方の力に打ち勝って、第1着液位置から液膜状に拡がりながら基板の回転方向の上流側、かつ、回転軸側に流れ、その後、基板の中央域を通過して基板の周縁に到達する。これにより、第1着液位置には多量の薬液が供給され、基板の中央部分の各位置には第1着液位置よりも少量の薬液が供給される。基板の各箇所の周方向への回転速度は、回転軸から基板の周縁に向かって増加する。また、基板の各位置に供給された薬液は、各位置の周方向への回転速度が増加するにつれて周方向に引き伸ばされて膜厚が減少する。従って、第1着液位置には基板の中央域よりも多量の薬液が供給されるが、その膜厚は基板の中央域よりも薄くなり易い一方、基板の中央域には第1着液位置よりも少量の薬液が供給されるが、その膜厚は第1着液位置に比べて薄くなりにくい。このため、基板表面のうち第1着液位置よりも基板の中心側の部分における薬液の膜厚の均一性を、第1吐出ステップによって向上することができる。また、第2吐出ステップにおいて吐出された薬液の多くは、第2着液位置から液膜状に拡がりながら基板の周辺域を基板の回転方向下流側に流れつつ基板の周縁部に到達する。従って、第1吐出ステップと第2吐出ステップとによって基板の表面の全体に薬液を供給しつつ、第1着液位置よりも回転軸側部分、すなわち基板の中央域と、基板の中間域のうち第1着液位置よりも回転軸側部分とに供給される薬液の膜厚の均一性を第1吐出ステップによって向上せさることができる。 According to the invention according to the tenth aspect, at least a part of the chemical solution discharged in the first discharge step faces the downstream side in the rotation direction of the substrate acting on the chemical solution immediately after hitting the first liquid landing position. Overcomes both the force of the substrate and the centrifugal force, it spreads like a liquid film from the first liquid landing position and flows to the upstream side in the rotation direction of the substrate and to the rotation axis side, and then passes through the central region of the substrate. To reach the periphery of the substrate. As a result, a large amount of chemical solution is supplied to the first landing position, and a smaller amount of chemical solution than the first landing position is supplied to each position in the central portion of the substrate. The rotational speed of each part of the substrate in the circumferential direction increases from the rotation axis toward the peripheral edge of the substrate. Further, the chemical solution supplied to each position of the substrate is stretched in the circumferential direction as the rotational speed of each position in the circumferential direction increases, and the film thickness decreases. Therefore, a larger amount of chemical solution is supplied to the first liquidation position than in the central region of the substrate, but the film thickness tends to be thinner than the central region of the substrate, while the first liquidation position is in the central region of the substrate. Although a smaller amount of the chemical solution is supplied, the film thickness is less likely to be thinner than that of the first liquid landing position. Therefore, the uniformity of the film thickness of the chemical solution on the portion of the substrate surface on the center side of the substrate with respect to the first liquid landing position can be improved by the first discharge step. In addition, most of the chemicals discharged in the second discharge step reach the peripheral edge of the substrate while spreading in the form of a liquid film from the second landing position and flowing downstream in the rotational direction of the substrate. Therefore, while supplying the chemical solution to the entire surface of the substrate by the first discharge step and the second discharge step, the portion on the rotation axis side from the first liquid landing position, that is, the central region of the substrate and the intermediate region of the substrate. The uniformity of the film thickness of the chemical solution supplied to the rotation shaft side portion from the first liquid landing position can be improved by the first discharge step.

第15の態様に係る発明によれば、第1吐出ステップにおいて吐出された薬液が、第1着液位置から液膜状に拡がりつつ基板の中心に向かって流れ、さらに基板の中心に対して第1着液位置とは反対側の基板の周縁に到達することが容易となる。これにより、第1着液位置には多量の薬液が供給され、基板の中央部分の各位置には第1着液位置よりも少量の薬液が供給される。基板の各箇所の周方向への回転速度は、回転軸から基板の周縁に向かって増加する。また、基板の各位置に供給された薬液は、各位置の周方向への回転速度が増加するにつれて周方向に引き伸ばされて膜厚が減少する。従って、第1着液位置には基板の中央域よりも多量の薬液が供給されるが、その膜厚は基板の中央域よりも薄くなり易い一方、基板の中央域には第1着液位置よりも少量の薬液が供給されるが、その膜厚は第1着液位置に比べて薄くなりにくい。このため、基板表面のうち第1着液位置よりも基板の中心側の部分における薬液の膜厚の均一性を、第1吐出ステップによって向上することができる。また、第2吐出ステップにおいて吐出された薬液の一部は、第2着液位置から液膜状に拡がりながら基板の周辺域を基板の回転方向下流側に流れつつ基板の周縁部に到達する。従って、第1吐出ステップと第2吐出ステップとによって基板の表面の全体に薬液を供給しつつ、第1着液位置よりも回転軸側部分、すなわち基板の中央域と、基板の中間域のうち第1着液位置よりも回転軸側部分とに供給される薬液の膜厚の均一性を第1吐出ステップによって向上せさることができる。 According to the invention according to the fifteenth aspect, the chemical solution discharged in the first discharge step flows from the first liquid landing position toward the center of the substrate while spreading like a liquid film, and further with respect to the center of the substrate. 1 It becomes easy to reach the peripheral edge of the substrate on the side opposite to the liquid landing position. As a result, a large amount of chemical solution is supplied to the first landing position, and a smaller amount of chemical solution than the first landing position is supplied to each position in the central portion of the substrate. The rotational speed of each part of the substrate in the circumferential direction increases from the rotation axis toward the peripheral edge of the substrate. Further, the chemical solution supplied to each position of the substrate is stretched in the circumferential direction as the rotational speed of each position in the circumferential direction increases, and the film thickness decreases. Therefore, a larger amount of chemical solution is supplied to the first liquidation position than in the central region of the substrate, but the film thickness tends to be thinner than the central region of the substrate, while the first liquidation position is in the central region of the substrate. Although a smaller amount of the chemical solution is supplied, the film thickness is less likely to be thinner than that of the first liquid landing position. Therefore, the uniformity of the film thickness of the chemical solution on the portion of the substrate surface on the center side of the substrate with respect to the first liquid landing position can be improved by the first discharge step. Further, a part of the chemical solution discharged in the second discharge step reaches the peripheral edge of the substrate while spreading in a liquid film shape from the second liquid landing position and flowing to the downstream side in the rotation direction of the substrate. Therefore, while supplying the chemical solution to the entire surface of the substrate by the first discharge step and the second discharge step, the portion on the rotation axis side from the first liquid landing position, that is, the central region of the substrate and the intermediate region of the substrate. The uniformity of the film thickness of the chemical solution supplied to the rotation shaft side portion from the first liquid landing position can be improved by the first discharge step.

実施形態に係る基板処理装置の構成例を説明するための側面模式図である。It is a side schematic diagram for demonstrating the structural example of the substrate processing apparatus which concerns on embodiment. 図1の基板処理装置の構成例を説明するための上面模式図である。It is a top surface schematic diagram for demonstrating the configuration example of the substrate processing apparatus of FIG. 基板の上面の中間域の一例を説明するための図である。It is a figure for demonstrating an example of the intermediate region of the upper surface of a substrate. 基板上に吐出された薬液の流れの一例を示す図である。It is a figure which shows an example of the flow of the chemical liquid discharged on a substrate. 基板の半径と熱損失との関係の一例をグラフ形式で示す図である。It is a figure which shows an example of the relationship between the radius of a substrate and heat loss in a graph format. 薬液の吐出態様と、基板の温度分布との関係の一例をグラフ形式で示す図である。It is a figure which shows an example of the relationship between the discharge mode of a chemical solution, and the temperature distribution of a substrate in a graph format. 2つのノズルの配置の他の例を示す上面模式図である。It is a top view which shows another example of the arrangement of two nozzles. 2つのノズルの配置の他の例を示す上面模式図である。It is a top view which shows another example of the arrangement of two nozzles. 2つのノズルの配置の他の例を示す上面模式図である。It is a top view which shows another example of the arrangement of two nozzles. 2つのノズルが吐出する薬液の基板の径方向における膜厚分布の一例をグラフ形式で示す図である。It is a figure which shows an example of the film thickness distribution in the radial direction of the substrate of the chemical liquid discharged by two nozzles in a graph format. 実施形態に係る基板処理装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation of the substrate processing apparatus which concerns on embodiment.

以下、図面を参照しながら、実施の形態について説明する。以下の実施の形態は、本発明を具体化した一例であり、本発明の技術的範囲を限定する事例ではない。また、以下に参照する各図では、理解容易のため、各部の寸法や数が誇張または簡略化して図示されている場合がある。上下方向は鉛直方向であり、スピンチャックに対して基板側が上である。 Hereinafter, embodiments will be described with reference to the drawings. The following embodiments are examples that embody the present invention, and are not examples that limit the technical scope of the present invention. Further, in each figure referred to below, the dimensions and numbers of each part may be exaggerated or simplified for easy understanding. The vertical direction is the vertical direction, and the substrate side is above the spin chuck.

<実施形態について>
<1.基板処理装置1の全体構成>
基板処理装置1の構成について、図1、図2を参照しながら説明する。図1、図2は、実施形態に係る基板処理装置1の構成を説明するための図である。図1、図2は、基板処理装置1の側面模式図、上面模式図である。
<About the embodiment>
<1. Overall configuration of substrate processing device 1>
The configuration of the substrate processing apparatus 1 will be described with reference to FIGS. 1 and 2. 1 and 2 are diagrams for explaining the configuration of the substrate processing apparatus 1 according to the embodiment. 1 and 2 are a schematic side view and a schematic top view of the substrate processing device 1.

図1、図2では、ノズル51、52が基板9の上方の処理位置に配置された状態で、基板9がスピンチャック21によって回転軸a1周りに所定の回転方向(矢印AR1の方向)に回転している状態が示されている。ノズル51(52)は、液柱状の薬液L1(L2)を基板9の上面に吐出している。図2では、基板処理装置1の構成要素のうち制御部130等の一部の構成要素の記載は省略されている。 In FIGS. 1 and 2, with the nozzles 51 and 52 arranged at the processing positions above the substrate 9, the substrate 9 is rotated around the rotation axis a1 by the spin chuck 21 in a predetermined rotation direction (direction of arrow AR1). The state of doing is shown. The nozzle 51 (52) discharges the liquid columnar chemical liquid L1 (L2) onto the upper surface of the substrate 9. In FIG. 2, the description of some components such as the control unit 130 among the components of the substrate processing device 1 is omitted.

基板9の表面形状は略円形である。基板9の基板処理装置1への搬入搬出は、ノズル51、52が不図示のノズル移動機構によって待避位置に配置された状態で、ロボット等により行われる。基板処理装置1に搬入された基板9は、スピンチャック21により着脱自在に保持される。 The surface shape of the substrate 9 is substantially circular. The loading / unloading of the substrate 9 into the substrate processing device 1 is performed by a robot or the like with the nozzles 51 and 52 arranged at the shelter position by a nozzle moving mechanism (not shown). The substrate 9 carried into the substrate processing device 1 is detachably held by the spin chuck 21.

基板処理装置1は、回転保持機構2、処理部5、および制御部130を備える。これら各部2、5は、制御部130と電気的に接続されており、制御部130からの指示に応じて動作する。制御部130としては、例えば、一般的なコンピュータと同様のものを採用できる。すなわち、制御部130は、例えば、各種演算処理を行うCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAM、制御用ソフトウェアやデータなどを記憶しておく磁気ディスク、等を備えている。制御部130においては、プログラムに記述された手順に従って主制御部としてのCPUが演算処理を行うことにより、基板処理装置1の各部を制御する。 The substrate processing device 1 includes a rotation holding mechanism 2, a processing unit 5, and a control unit 130. Each of these units 2 and 5 is electrically connected to the control unit 130 and operates in response to an instruction from the control unit 130. As the control unit 130, for example, the same one as a general computer can be adopted. That is, the control unit 130 stores, for example, a CPU that performs various arithmetic processes, a ROM that is a read-only memory that stores basic programs, a RAM that is a read / write memory that stores various information, control software, data, and the like. It is equipped with a magnetic disk, etc. In the control unit 130, each unit of the board processing device 1 is controlled by the CPU as the main control unit performing arithmetic processing according to the procedure described in the program.

<2.基板9>
基板処理装置1にて処理対象とされる基板9の表面形状は略円形である。基板9の半径は、例えば、150mmである。基板処理装置1は、ノズル51、52から基板9の上面に処理液を供給して基板9の処理を行う。
<2. Board 9>
The surface shape of the substrate 9 to be processed by the substrate processing apparatus 1 is substantially circular. The radius of the substrate 9 is, for example, 150 mm. The substrate processing apparatus 1 supplies the processing liquid from the nozzles 51 and 52 to the upper surface of the substrate 9 to process the substrate 9.

図3は、基板9の上面の中間域K2の一例を説明するための図である。中間域K2は、基板9の回転軌跡のうち中央域K1と周辺域K3との間の領域である。基板9の中心c1から中央域K1と中間域K2との境界までの長さは、例えば、基板9の半径の3分の1である。また、周辺域K3の幅、すなわち、中間域K2と周辺域K3との境界から基板9の周縁までの長さは、例えば、基板9の半径の3分の1である。従って、この場合には、中間域K2の幅、すなわち、中央域K1と中間域K2との境界から中間域K2と周辺域K3との境界までの長さは、基板9の半径の3分の1である。 FIG. 3 is a diagram for explaining an example of the intermediate region K2 on the upper surface of the substrate 9. The intermediate region K2 is an region between the central region K1 and the peripheral region K3 in the rotation locus of the substrate 9. The length from the center c1 of the substrate 9 to the boundary between the central region K1 and the intermediate region K2 is, for example, one-third of the radius of the substrate 9. Further, the width of the peripheral region K3, that is, the length from the boundary between the intermediate region K2 and the peripheral region K3 to the peripheral edge of the substrate 9, is, for example, one-third of the radius of the substrate 9. Therefore, in this case, the width of the intermediate region K2, that is, the length from the boundary between the central region K1 and the intermediate region K2 to the boundary between the intermediate region K2 and the peripheral region K3 is 3/4 of the radius of the substrate 9. It is 1.

<3.基板処理装置1の各部の構成>
<回転保持機構2>
回転保持機構2は、基板9を、その一方の主面を上方に向けた状態で、略水平姿勢に保持しつつ回転可能な機構である。回転保持機構2は、基板9を、主面の中心c1を通る鉛直な回転軸a1を中心に回転させる。回転保持機構2は、ノズル51、52が薬液L1、L2を吐出しているときは、例えば、200rpm〜400rpmの回転速度で基板9を回転させる。
<3. Configuration of each part of the substrate processing device 1>
<Rotation holding mechanism 2>
The rotation holding mechanism 2 is a mechanism capable of rotating the substrate 9 while holding the substrate 9 in a substantially horizontal posture with one main surface facing upward. The rotation holding mechanism 2 rotates the substrate 9 around the vertical rotation axis a1 passing through the center c1 of the main surface. When the nozzles 51 and 52 discharge the chemical solutions L1 and L2, the rotation holding mechanism 2 rotates the substrate 9 at a rotation speed of, for example, 200 rpm to 400 rpm.

回転保持機構2は、基板9より小さい円板状の部材であるスピンチャック(「保持部材」、「基板保持部」)21を備える。スピンチャック21は、その上面が略水平となり、その中心軸が回転軸a1に一致するように設けられている。スピンチャック21の下面には、円筒状の回転軸部22が連結されている。回転軸部22は、その軸線を鉛直方向に沿わすような姿勢で配置される。回転軸部22の軸線は、回転軸a1と一致する。また、回転軸部22には、回転駆動部(例えば、サーボモータ)23が接続される。回転駆動部23は、回転軸部22をその軸線まわりに回転駆動する。従って、スピンチャック21は、回転軸部22とともに回転軸a1を中心に回転可能である。回転駆動部23と回転軸部22とは、スピンチャック21を、回転軸a1を中心に回転させる回転機構231である。回転軸部22および回転駆動部23は、不図示の筒状のケーシング内に収容されている。 The rotation holding mechanism 2 includes a spin chuck (“holding member”, “board holding portion”) 21 which is a disk-shaped member smaller than the substrate 9. The spin chuck 21 is provided so that its upper surface is substantially horizontal and its central axis coincides with the rotation axis a1. A cylindrical rotating shaft portion 22 is connected to the lower surface of the spin chuck 21. The rotating shaft portion 22 is arranged in a posture such that its axis is along the vertical direction. The axis of the rotating shaft portion 22 coincides with the rotating shaft a1. Further, a rotation drive unit (for example, a servomotor) 23 is connected to the rotation shaft unit 22. The rotation drive unit 23 rotationally drives the rotation shaft unit 22 around its axis. Therefore, the spin chuck 21 can rotate about the rotation shaft a1 together with the rotation shaft portion 22. The rotation drive unit 23 and the rotation shaft unit 22 are rotation mechanisms 231 that rotate the spin chuck 21 around the rotation shaft a1. The rotary shaft portion 22 and the rotary drive portion 23 are housed in a cylindrical casing (not shown).

スピンチャック21の中央部には、図示省略の貫通孔が設けられており、回転軸部22の内部空間と連通している。内部空間には、図示省略の配管、開閉弁を介して図示省略のポンプが接続されている。当該ポンプ、開閉弁は、制御部130に電気的に接続されている。制御部130は、当該ポンプ、開閉弁の動作を制御する。当該ポンプは、制御部130の制御に従って、負圧と正圧とを選択的に供給可能である。基板9がスピンチャック21の上面に略水平姿勢で置かれた状態でポンプが負圧を供給すると、スピンチャック21は、基板9を下方から吸着保持する。ポンプが正圧を供給すると、基板9は、スピンチャック21の上面から取り外し可能となる。 A through hole (not shown) is provided in the central portion of the spin chuck 21 and communicates with the internal space of the rotating shaft portion 22. A pump (not shown) is connected to the internal space via a pipe (not shown) and an on-off valve. The pump and on-off valve are electrically connected to the control unit 130. The control unit 130 controls the operation of the pump and the on-off valve. The pump can selectively supply negative pressure and positive pressure according to the control of the control unit 130. When the pump supplies a negative pressure while the substrate 9 is placed on the upper surface of the spin chuck 21 in a substantially horizontal posture, the spin chuck 21 sucks and holds the substrate 9 from below. When the pump supplies positive pressure, the substrate 9 becomes removable from the upper surface of the spin chuck 21.

この構成において、スピンチャック21が基板9を吸着保持した状態で、回転駆動部23が回転軸部22を回転すると、スピンチャック21が鉛直方向に沿った軸線周りで回転される。これによって、スピンチャック21上に保持された基板9が、その面内の中心c1を通る鉛直な回転軸a1を中心に矢印AR1方向に回転される。スピンチャック21として、基板9の周縁部を把持するための複数個(3個以上)のチャックピンが、回転軸a1を中心に回転する円板状のスピンベースの周縁部から立設されたものが採用されてもよい。 In this configuration, when the rotation drive unit 23 rotates the rotation shaft portion 22 while the spin chuck 21 sucks and holds the substrate 9, the spin chuck 21 is rotated around the axis along the vertical direction. As a result, the substrate 9 held on the spin chuck 21 is rotated in the direction of arrow AR1 about the vertical rotation axis a1 passing through the center c1 in the plane thereof. As the spin chuck 21, a plurality of (three or more) chuck pins for gripping the peripheral edge of the substrate 9 are erected from the peripheral edge of a disk-shaped spin base that rotates around the rotation axis a1. May be adopted.

<処理部5>
処理部(「薬液供給機構」)5は、スピンチャック21上に保持された基板9に対する処理を行う。具体的には、処理部5は、スピンチャック21上に保持された基板9の上面に薬液を供給する。処理部5は、ノズル51、52、および薬液供給部53を備えている。
<Processing unit 5>
The processing unit (“chemical solution supply mechanism”) 5 processes the substrate 9 held on the spin chuck 21. Specifically, the processing unit 5 supplies the chemical solution to the upper surface of the substrate 9 held on the spin chuck 21. The processing unit 5 includes nozzles 51 and 52, and a chemical solution supply unit 53.

ノズル51、52は、例えば、不図示のノズル移動機構が備える長尺のアームの先端に取り付けられている。当該ノズル移動機構は、ノズル51、52を、それぞれの処理位置と退避位置との間で移動させる機構である。 The nozzles 51 and 52 are attached to, for example, the tip of a long arm provided in a nozzle moving mechanism (not shown). The nozzle moving mechanism is a mechanism for moving the nozzles 51 and 52 between the respective processing positions and the retracted positions.

処理部5は、基板9の上方から基板9の上面(表面)に薬液L1(L2)を吐出するノズル51(52)を備える。ノズル51(52)は、例えば、基板9の上面に向かって延在する筒状の先端側部分をそれぞれ備えており、当該先端側部分の先端に形成された吐出口から、基板9の上面に当たるように薬液L1(L2)を吐出する。 The processing unit 5 includes a nozzle 51 (52) that discharges the chemical solution L1 (L2) from above the substrate 9 onto the upper surface (surface) of the substrate 9. The nozzle 51 (52) is provided with, for example, a tubular tip-side portion extending toward the upper surface of the substrate 9, and hits the upper surface of the substrate 9 from a discharge port formed at the tip of the tip-side portion. The chemical solution L1 (L2) is discharged as described above.

ノズル51は、基板9の中間域K2における着液位置P1に当たるように基板9よりも上方から薬液L1を吐出する。ノズル52は、中間域K2における着液位置P2に当たるように基板9よりも上方から薬液L2を吐出する。ノズル51、52が薬液L1、L2を吐出する際の各吐出方向u1、v1は、各ノズル51、52に対して回転軸a1とは反対側の各位置から基板9の径方向に見て、基板9の上方から斜め下向きに向かう方向である。 The nozzle 51 discharges the chemical solution L1 from above the substrate 9 so as to hit the liquid landing position P1 in the intermediate region K2 of the substrate 9. The nozzle 52 discharges the chemical solution L2 from above the substrate 9 so as to hit the liquid landing position P2 in the intermediate region K2. The discharge directions u1 and v1 when the nozzles 51 and 52 discharge the chemical liquids L1 and L2 are viewed in the radial direction of the substrate 9 from the positions on the opposite side of the rotation axis a1 with respect to the nozzles 51 and 52. The direction is diagonally downward from above the substrate 9.

薬液供給部53は、ノズル51、52に薬液L1、L2を供給する。薬液供給部53は、具体的には、薬液供給源531、532、配管541、542、および開閉弁521、522を、組み合わせて構成されている。薬液供給源531(532)は、配管541(542)を介してノズル51(52)に薬液L1(L2)を供給する。配管541(542)の経路途中には、開閉弁521(522)が設けられている。薬液L1、L2として、例えば、SPM、SC−1、DHF、SC−2などが用いられる。薬液L1と薬液L2とは、同じ種類の薬液である。 The chemical solution supply unit 53 supplies the chemical solutions L1 and L2 to the nozzles 51 and 52. Specifically, the chemical solution supply unit 53 is configured by combining the chemical solution supply sources 531 and 532, the pipes 541 and 542, and the on-off valves 521 and 522. The chemical solution supply source 531 (532) supplies the chemical solution L1 (L2) to the nozzle 51 (52) via the pipe 541 (542). An on-off valve 521 (522) is provided in the middle of the path of the pipe 541 (542). As the chemical solutions L1 and L2, for example, SPM, SC-1, DHF, SC-2 and the like are used. The chemical solution L1 and the chemical solution L2 are the same type of chemical solution.

薬液供給源531(532)から薬液L1(L2)がノズル51(52)に供給されると、ノズル51(52)は薬液L1(L2)を液柱状の液流として吐出する。ただし、薬液供給部53が備える開閉弁521(522)は、制御部130と電気的に接続されている図示省略のバルブ開閉機構によって、制御部130の制御下で開閉される。より詳細には、開閉弁521(522)は、その開度を制御部130の制御に応じて、変更することによって、薬液供給源531(532)から配管541(542)を介してノズル51(52)に供給される薬液L1(l2)の流量を変更することが出来る。バルブ開閉機構は、制御部130の制御下で、開閉弁521、522の開度を独立に変更できる。これにより、ノズル51が吐出する薬液L1の流量と、ノズル52が吐出する薬液L2の流量は、互いに独立に制御される。つまり、ノズル51(52)からの薬液L1(L2)の吐出態様(具体的には、吐出される薬液の吐出開始タイミング、吐出終了タイミング、吐出流量、等)は、制御部130によって制御される。すなわち、処理部5のノズル51(52)は、制御部130の制御によって、回転軸a1を中心に回転している基板9の上面に当たるように薬液L1(L2)の液流を吐出する。 When the chemical solution L1 (L2) is supplied to the nozzle 51 (52) from the chemical solution supply source 531 (532), the nozzle 51 (52) discharges the chemical solution L1 (L2) as a liquid columnar liquid stream. However, the on-off valve 521 (522) included in the chemical solution supply unit 53 is opened and closed under the control of the control unit 130 by a valve opening / closing mechanism (not shown) electrically connected to the control unit 130. More specifically, the on-off valve 521 (522) changes its opening degree according to the control of the control unit 130 from the chemical solution supply source 531 (532) to the nozzle 51 (542) via the pipe 541 (542). The flow rate of the chemical solution L1 (l2) supplied to 52) can be changed. The valve opening / closing mechanism can independently change the opening degree of the opening / closing valves 521 and 522 under the control of the control unit 130. As a result, the flow rate of the chemical solution L1 discharged by the nozzle 51 and the flow rate of the chemical solution L2 discharged by the nozzle 52 are controlled independently of each other. That is, the discharge mode of the chemical solution L1 (L2) from the nozzle 51 (52) (specifically, the discharge start timing, discharge end timing, discharge flow rate, etc. of the discharged chemical solution) is controlled by the control unit 130. .. That is, the nozzle 51 (52) of the processing unit 5 discharges the liquid flow of the chemical solution L1 (L2) so as to hit the upper surface of the substrate 9 rotating about the rotation axis a1 under the control of the control unit 130.

また、図2に示されるように、ノズル51が薬液L1を吐出する際の吐出方向u1は、ノズル51の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P1を通る円の着液位置P1における接線の方向に沿って基板9の回転方向の上流側に向かう成分(「方向成分」)u2と、接線と直交する基板9の径方向に沿って着液位置P1から回転軸a1に向かう成分(「方向成分」)u3とを有する方向である。ノズル51が薬液L1を吐出する際の吐出速度の水平方向の速度成分は、回転軸a1を中心として着液位置P1を通る円の着液位置P1における接線方向に沿って基板9の回転方向の上流側に向かう当該接線方向の速度成分と、当該接線方向と直交する基板9の径方向に沿って着液位置P1から回転軸a1に向かう当該径方向の速度成分とを合成した速度成分である。ノズル51が薬液L1を吐出する際の吐出速度の当該接線の方向の速度成分は、基板9の回転によって着液位置P1上の薬液L1に作用する基板9の回転方向の下流側向きの力に打ち勝って薬液L1が基板9の回転方向の上流側に流れることができる大きさを有する。当該吐出速度の当該径方向の速度成分は、着液位置P1上の薬液L1に作用する基板9の回転による遠心力に打ち勝って当該薬液L1が回転軸a1側に流れることができる大きさを有する。このため、ノズル51から吐出された薬液L1少なくとも一部は、着液位置P1に当たった直後に当該薬液に作用する基板の回転方向の下流側向きの力と遠心力との双方の力に打ち勝って、着液位置P1から液膜状に拡がりながら基板9の回転方向の上流側、かつ、回転軸a1側に流れ、その後、基板の中央域を通過して基板の周縁に到達する。より詳細には、当該薬液L1の少なくとも一部は、着液位置P1から、一旦、基板9の中心側に曲りながら、基板9の回転方向の上流側に向かった後、基板9の回転方向の下流側に曲りながら基板9の中心c1に向う弧状の経路に沿って、液膜状に拡がりながら基板9の中心c1に達する。そして、当該薬液L1は、基板9の中心を越えると、遠心力の影響によって基板9の回転方向の下流側に曲りながら基板9の周縁に向かう弧状の経路に沿って、拡がりながら流れていく(図4参照)。 Further, as shown in FIG. 2, the discharge direction u1 when the nozzle 51 discharges the chemical solution L1 is a liquid landing position centered on the rotation axis a1 when viewed from above the nozzle 51 in the rotation axis a1 direction of the substrate 9. A component (“directional component”) u2 toward the upstream side in the rotation direction of the substrate 9 along the direction of the tangent line at the liquid landing position P1 of the circle passing through P1 and the liquid landing along the radial direction of the substrate 9 orthogonal to the tangent line. It is a direction having a component (“directional component”) u3 toward the rotation axis a1 from the position P1. The horizontal velocity component of the discharge speed when the nozzle 51 discharges the chemical liquid L1 is the rotational direction of the substrate 9 along the tangential direction at the liquid landing position P1 of a circle passing through the liquid landing position P1 about the rotation axis a1. It is a velocity component obtained by synthesizing the velocity component in the tangential direction toward the upstream side and the velocity component in the radial direction from the liquid landing position P1 toward the rotation axis a1 along the radial direction of the substrate 9 orthogonal to the tangential direction. .. The velocity component of the discharge speed when the nozzle 51 discharges the chemical liquid L1 in the tangential direction is a force acting on the chemical liquid L1 on the liquid landing position P1 toward the downstream side in the rotation direction of the substrate 9 due to the rotation of the substrate 9. It has a size that allows the chemical solution L1 to overcome and flow upstream of the substrate 9 in the rotational direction. The radial velocity component of the discharge velocity has a magnitude that allows the chemical solution L1 to flow toward the rotation axis a1 by overcoming the centrifugal force due to the rotation of the substrate 9 acting on the chemical solution L1 on the liquid landing position P1. .. Therefore, at least a part of the chemical solution L1 discharged from the nozzle 51 overcomes both the force toward the downstream side in the rotational direction and the centrifugal force acting on the chemical solution immediately after hitting the liquid landing position P1. Then, while spreading like a liquid film from the liquid landing position P1, it flows to the upstream side in the rotation direction of the substrate 9 and to the rotation axis a1 side, and then passes through the central region of the substrate and reaches the peripheral edge of the substrate. More specifically, at least a part of the chemical solution L1 is once bent toward the center side of the substrate 9 from the liquid landing position P1 toward the upstream side in the rotation direction of the substrate 9, and then in the rotation direction of the substrate 9. It reaches the center c1 of the substrate 9 while bending downstream and spreading like a liquid film along an arc-shaped path toward the center c1 of the substrate 9. Then, when the chemical solution L1 exceeds the center of the substrate 9, it bends to the downstream side in the rotational direction of the substrate 9 due to the influence of centrifugal force and flows along an arcuate path toward the peripheral edge of the substrate 9 while spreading (). (See FIG. 4).

従って、図2に示されるノズル51は、着液位置P1に当たった直後に着液位置P1から回転軸a1側に向かう薬液L1の量が、着液位置P1に当たった直後に着液位置P1から回転軸a1とは反対側に向かう薬液L1の量よりも多くなるように、薬液L1を吐出している。また、着液位置P1に吐出された直後の薬液L1には、基板9の回転による遠心力が強く働かないので薬液L1の温度が下がりにくいという利点もある。 Therefore, in the nozzle 51 shown in FIG. 2, the amount of the chemical solution L1 from the liquid landing position P1 toward the rotation axis a1 immediately after hitting the liquid landing position P1 hits the liquid landing position P1 immediately after the liquid landing position P1. The chemical solution L1 is discharged so as to be larger than the amount of the chemical solution L1 toward the side opposite to the rotation shaft a1. Further, the chemical solution L1 immediately after being discharged to the liquid landing position P1 has an advantage that the temperature of the chemical solution L1 does not easily drop because the centrifugal force due to the rotation of the substrate 9 does not act strongly.

ノズル52が薬液L2を吐出する際の吐出方向v1は、ノズル52の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P2を通る円の着液位置P2における接線の方向に沿って基板9の回転方向の下流側に向かう成分(「方向成分」)v2を有する方向である。このため、ノズル52から吐出された薬液L2は、着液位置P2に当たった直後から遠心力の影響を強く受けて、基板9の回転方向の下流側へ曲りながら基板9の周縁に向かう弧状の経路に沿って、液膜状に拡がりつつ流れていく(図4参照)。 The discharge direction v1 when the nozzle 52 discharges the chemical solution L2 is a circular liquid landing position P2 that passes through the liquid landing position P2 about the rotation axis a1 when viewed from above the nozzle 52 toward the rotation axis a1 of the substrate 9. It is a direction having a component (“direction component”) v2 toward the downstream side in the rotation direction of the substrate 9 along the tangential direction. Therefore, the chemical solution L2 discharged from the nozzle 52 is strongly affected by the centrifugal force immediately after hitting the liquid landing position P2, and has an arc shape toward the peripheral edge of the substrate 9 while bending toward the downstream side in the rotational direction of the substrate 9. Along the path, it flows while spreading like a liquid film (see FIG. 4).

従って、ノズル51から吐出された薬液L1の一部は、着液位置P1から液膜状に拡がりながら、基板9の中央部分を通過して基板9の周縁に到達し、ノズル52から吐出された薬液L2の一部は、着液位置P2から液膜状に拡がりながら基板9の周辺域K3を基板9の回転方向下流側に流れつつ基板9の周縁部に到達する。 Therefore, a part of the chemical solution L1 discharged from the nozzle 51 passes through the central portion of the substrate 9 and reaches the peripheral edge of the substrate 9 while spreading like a liquid film from the liquid landing position P1 and is discharged from the nozzle 52. A part of the chemical solution L2 reaches the peripheral edge of the substrate 9 while spreading from the liquid landing position P2 in the form of a liquid film and flowing through the peripheral region K3 of the substrate 9 to the downstream side in the rotation direction of the substrate 9.

図2の例では、仮想円201は、基板9の中心c1(回転軸a1)を中心として、着液位置P1、P2の双方を通っている。すなわち、着液位置P1と、着液位置P2とは、回転軸a1から同じ距離の位置である。また、薬液L1、L2は、液膜状に拡がりながら流れている。従って、薬液L1が着液位置P1の近傍に形成する液膜と、薬液L2が着液位置P2の近傍に形成する液膜とは、基板9の径方向において略同じ範囲に拡がる。従って、双方のノズルからそれぞれ吐出された薬液L1、L2を基板9の表面の全体に供給することがより容易になる。 In the example of FIG. 2, the virtual circle 201 passes through both the liquid landing positions P1 and P2 with the center c1 (rotation axis a1) of the substrate 9 as the center. That is, the liquid landing position P1 and the liquid landing position P2 are located at the same distance from the rotation axis a1. Further, the chemical solutions L1 and L2 are flowing while spreading like a liquid film. Therefore, the liquid film formed by the chemical solution L1 in the vicinity of the liquid landing position P1 and the liquid film formed by the chemical solution L2 in the vicinity of the liquid landing position P2 spread in substantially the same range in the radial direction of the substrate 9. Therefore, it becomes easier to supply the chemical solutions L1 and L2 discharged from both nozzles to the entire surface of the substrate 9.

図5は、基板9の半径と熱損失との関係の一例をグラフ形式で示す図である。図5に示される例では、半径150mmの基板9において、熱損失は、基板9の中心c1から周縁に向かうにつれて増加している。中心c1から半径約130mm以内の範囲では、熱損失の増加率は比較的低いが、半径約130mm以上の範囲では、周縁に向かって熱損失が指数関数的に増加している。従って、基板の上面に供給される薬液によって、基板の温度分布を均一化するためには、基板の周辺部分に供給される薬液の量を、基板の中央部分に供給される薬液に比べて増やす必要が有る。 FIG. 5 is a graph showing an example of the relationship between the radius of the substrate 9 and the heat loss. In the example shown in FIG. 5, in the substrate 9 having a radius of 150 mm, the heat loss increases from the center c1 of the substrate 9 toward the peripheral edge. In the range within a radius of about 130 mm from the center c1, the rate of increase in heat loss is relatively low, but in the range of a radius of about 130 mm or more, the heat loss increases exponentially toward the periphery. Therefore, in order to make the temperature distribution of the substrate uniform by the chemical solution supplied to the upper surface of the substrate, the amount of the chemical solution supplied to the peripheral portion of the substrate is increased as compared with the chemical solution supplied to the central portion of the substrate. There is a need.

図6は、図2に示される構成の基板処理装置1における薬液の吐出態様と、基板の温度分布との関係の一例をグラフ形式で示す図である。四角形で示される温度分布は、ノズル51、52のうちノズル(「第1ノズル」)51のみから薬液L1を吐出したときの基板9の温度分布を示している。黒塗りの菱形で示される温度分布は、ノズル51、52の双方から薬液L1、L2を吐出したときの基板9の温度分布を示している。基板9の回転速度は、200rpmであり、着液位置P1から一部が中心c1側に流れる薬液L1の吐出流量は、2L/min.であり、着液位置P2から主に基板9の周縁側に流れる薬液L2の吐出流量は、3L/min.である。すなわち、ノズル52が吐出する薬液L2の流量が、ノズル51が吐出する薬液L1の流量よりも多い。 FIG. 6 is a graph showing an example of the relationship between the discharge mode of the chemical solution in the substrate processing apparatus 1 having the configuration shown in FIG. 2 and the temperature distribution of the substrate. The temperature distribution shown by the quadrangle shows the temperature distribution of the substrate 9 when the chemical solution L1 is discharged only from the nozzle (“first nozzle”) 51 of the nozzles 51 and 52. The temperature distribution shown by the black diamonds shows the temperature distribution of the substrate 9 when the chemical solutions L1 and L2 are discharged from both the nozzles 51 and 52. The rotation speed of the substrate 9 is 200 rpm, and the discharge flow rate of the chemical solution L1 in which a part of the substrate 9 flows from the liquid landing position P1 to the center c1 side is 2 L / min. The discharge flow rate of the chemical solution L2 flowing mainly from the liquid landing position P2 to the peripheral edge side of the substrate 9 is 3 L / min. Is. That is, the flow rate of the chemical solution L2 discharged by the nozzle 52 is larger than the flow rate of the chemical solution L1 discharged by the nozzle 51.

ここで、薬液L1の吐出流量Xと、薬液L2の吐出流量Yとの関係は、基板9において、仮想円201(図2参照)よりも中心c1側の部分の面積をAcm、周縁側の部分の面積をBcmとすると、(1)式によって表わされている。αは、基板処理装置1を収容する不図示のチャンバー内の雰囲気がチャンバーから排気されるときの風速と、基板9の回転数などに応じて値が変動する変数である。 Here, the relationship between the discharge flow rate X of the chemical solution L1 and the discharge flow rate Y of the chemical solution L2 is such that the area of the portion of the substrate 9 on the center c1 side of the virtual circle 201 (see FIG. 2) is Acm 2 and the peripheral side. Assuming that the area of the portion is B cm 2 , it is expressed by Eq. (1). α is a variable whose value fluctuates according to the wind speed when the atmosphere in the chamber (not shown) accommodating the substrate processing device 1 is exhausted from the chamber, the rotation speed of the substrate 9, and the like.

Figure 0006812262
Figure 0006812262

図6のグラフに示されるように、ノズル51による薬液L1の吐出のみが行われる場合には、多くの薬液L1が供給される基板9の中央域K1、中間域K2において、基板9の径方向の温度分布は、比較的均一な分布となっているが、周辺域K3においては、供給される薬液L1が不足しているため、基板9の温度は、基板の周縁に向かって急激に低下している。しかしながら、基板9の回転速度、若しくは、薬液L1、L2が吐出される領域の大きさ等に応じて、薬液L1、L2の吐出流量を適宜調整して、ノズル51、52の双方から薬液L1、L2を吐出することによって、基板の上面全域にわたって比較的均一な温度分布を実現することが出来る。 As shown in the graph of FIG. 6, when only the chemical solution L1 is discharged by the nozzle 51, the radial direction of the substrate 9 in the central region K1 and the intermediate region K2 of the substrate 9 to which a large amount of the chemical liquid L1 is supplied. However, in the peripheral region K3, the temperature of the substrate 9 drops sharply toward the peripheral edge of the substrate because the chemical solution L1 to be supplied is insufficient. ing. However, the discharge flow rates of the chemical solutions L1 and L2 are appropriately adjusted according to the rotation speed of the substrate 9, the size of the region where the chemical solutions L1 and L2 are discharged, and the like, and the chemical solutions L1 and L2 are discharged from both the nozzles 51 and 52. By discharging L2, a relatively uniform temperature distribution can be realized over the entire upper surface of the substrate.

なお、図2に示されるように、基板処理装置1においては、薬液L2の着液位置P2は、好ましくは、薬液L1が着液位置P1から周囲に拡がって基板9上に形成している液膜の上に位置する。 As shown in FIG. 2, in the substrate processing apparatus 1, the liquid landing position P2 of the chemical liquid L2 is preferably a liquid in which the chemical liquid L1 spreads from the liquid landing position P1 to the periphery and is formed on the substrate 9. Located on the membrane.

図10は、ノズル51、52が吐出する薬液L1、L2の基板9の径方向における膜厚分布の一例をグラフ形式で示す図である。上述のように、ノズル51から着液位置P1に吐出された薬液L1は、着液位置P1から液膜状に拡がりながら基板9の回転方向の上流側、かつ、回転軸a1側に流れ、その後、基板9の中央域K1を通過して基板9の周縁に到達する。これにより、着液位置P1には多量の薬液が供給され、基板9の中央部分の各位置には少量の薬液L1が供給される。 FIG. 10 is a graph showing an example of the film thickness distribution in the radial direction of the substrate 9 of the chemical solutions L1 and L2 discharged by the nozzles 51 and 52. As described above, the chemical solution L1 discharged from the nozzle 51 to the liquid landing position P1 flows from the liquid landing position P1 to the upstream side in the rotation direction of the substrate 9 and to the rotation axis a1 side while spreading like a liquid film, and then flows. , Passes through the central region K1 of the substrate 9 and reaches the peripheral edge of the substrate 9. As a result, a large amount of chemical solution is supplied to the liquid landing position P1, and a small amount of chemical solution L1 is supplied to each position in the central portion of the substrate 9.

基板9の各箇所の周方向への回転速度は、回転軸a1から基板9の周縁に向かって増加する。また、基板9の各位置に供給された薬液L1、L2は、各位置の周方向への回転速度が増加するにつれて周方向に引き伸ばされて膜厚が減少する。そして、着液位置P1における基板9の周方向の回転速度は高く、中央域K1における基板9の周方向の回転速度は低い。 The rotational speed of each portion of the substrate 9 in the circumferential direction increases from the rotation axis a1 toward the peripheral edge of the substrate 9. Further, the chemical solutions L1 and L2 supplied to each position of the substrate 9 are stretched in the circumferential direction as the rotation speed of each position in the circumferential direction increases, and the film thickness decreases. The rotational speed of the substrate 9 in the circumferential direction at the liquid landing position P1 is high, and the rotational speed of the substrate 9 in the circumferential direction in the central region K1 is low.

従って、着液位置P1には基板9の中央域K1よりも多量の薬液L1がノズル51から供給されるが、その膜厚は中央域K1よりも薄くなり易い。中央域K1には着液位置P1よりも少量の薬液L1がノズル51供給されるが、その膜厚は着液位置P1に比べて薄くなりにくい。このため、図10に示されるように、基板9の表面のうち着液位置P1よりも基板9の中心側の部分における薬液L1の膜厚の均一性を、ノズル51によって向上することができる。 Therefore, a larger amount of the chemical solution L1 than the central region K1 of the substrate 9 is supplied to the liquid landing position P1 from the nozzle 51, but the film thickness tends to be thinner than that of the central region K1. A nozzle 51 is supplied with a smaller amount of the chemical solution L1 than the liquid landing position P1 to the central region K1, but the film thickness is less likely to be thinner than that of the liquid landing position P1. Therefore, as shown in FIG. 10, the uniformity of the film thickness of the chemical solution L1 on the portion of the surface of the substrate 9 on the center side of the substrate 9 with respect to the liquid landing position P1 can be improved by the nozzle 51.

また、ノズル52から吐出された薬液L2の多くは、着液位置P2から液膜状に拡がりながら基板9の周辺域を基板9の回転方向下流側に流れつつ基板9の周縁部に到達する。従って、ノズル51とノズル52とによって基板9の上面全域に薬液L1、L2を供給しつつ、着液位置P1よりも回転軸a1側の部分、すなわち基板9の中央域K1と、基板9の中間域K2のうち着液位置P1よりも回転軸a1側部分とに供給される薬液L1の膜厚の均一性を第1ノズルによって向上せさることができる。また、基板9の回転によって、基板9の中心側から周縁側に向かって基板9の熱損失が急激に増加するが、第2ノズルから吐出された薬液L2は、主に基板9の周辺域K3に供給されるので、基板9の周辺域K3の供給される薬液L1、L2を、基板9の中央部に供給される薬液L1に比べて増やすことが出来る。従って、基板9の表面の温度分布の均一性を改善することができる。 In addition, most of the chemical solution L2 discharged from the nozzle 52 reaches the peripheral edge of the substrate 9 while spreading in a liquid film shape from the liquid landing position P2 and flowing downstream of the substrate 9 in the rotational direction. Therefore, while the chemical solutions L1 and L2 are supplied to the entire upper surface of the substrate 9 by the nozzle 51 and the nozzle 52, the portion on the rotation axis a1 side of the liquid landing position P1, that is, the central region K1 of the substrate 9 and the middle of the substrate 9. The uniformity of the film thickness of the chemical solution L1 supplied to the portion of the region K2 on the rotation shaft a1 side of the liquid landing position P1 can be improved by the first nozzle. Further, the heat loss of the substrate 9 rapidly increases from the center side to the peripheral side of the substrate 9 due to the rotation of the substrate 9, but the chemical solution L2 discharged from the second nozzle is mainly in the peripheral region K3 of the substrate 9. The chemical solutions L1 and L2 supplied in the peripheral region K3 of the substrate 9 can be increased as compared with the chemical solutions L1 supplied to the central portion of the substrate 9. Therefore, the uniformity of the temperature distribution on the surface of the substrate 9 can be improved.

<4.ノズル51、52の配置関係の例>
図7〜図9は、基板処理装置1のノズル51、52の、図2に示される配置関係とは異なる他の配置関係の例をそれぞれ示す図である。図7〜図9において、ノズル51は、図2に記載のノズル51と同一の位置から同一の吐出態様で薬液L1を着液位置P1に吐出している。
<4. Example of arrangement of nozzles 51 and 52>
7 to 9 are diagrams showing examples of other arrangement relationships of the nozzles 51 and 52 of the substrate processing device 1 that are different from the arrangement relationships shown in FIG. 2, respectively. In FIGS. 7 to 9, the nozzle 51 discharges the chemical solution L1 from the same position as the nozzle 51 shown in FIG. 2 to the liquid landing position P1 in the same discharge mode.

図7に示される配置関係においては、薬液L2の着液位置P2が、薬液L1の着液位置P1よりも回転軸a1から遠く、かつ、着液位置P1と、基板9の周縁のうち着液位置P1に最も近い点との中点(「着目中点」)よりも回転軸a1に近い。仮想円202は、中心c1を中心として当該中点を通り、仮想円201は、中心c1を中心として着液位置P1を通っている。この場合には、着液位置P1と着液位置P2との間には、基板9の径方向において間隔が空いているが、薬液L1(L2)は、着液位置P1(P2)から周囲に拡がりながら流れていく。このため、基板9の径方向において、薬液L1が着液位置P1の近傍に形成する液膜と、薬液L2が着液位置P2の近傍に形成する液膜との間に隙間が生ずることが抑制される。 In the arrangement relationship shown in FIG. 7, the liquid landing position P2 of the chemical liquid L2 is farther from the rotation axis a1 than the liquid landing position P1 of the chemical liquid L1, and the liquid landing position P1 and the peripheral edge of the substrate 9 are landed. It is closer to the rotation axis a1 than the midpoint (“midpoint of interest”) with the point closest to the position P1. The virtual circle 202 passes through the midpoint centered on the center c1, and the virtual circle 201 passes through the liquid landing position P1 centered on the center c1. In this case, there is a gap between the liquid landing position P1 and the liquid landing position P2 in the radial direction of the substrate 9, but the chemical solution L1 (L2) is moved from the liquid landing position P1 (P2) to the periphery. It flows while spreading. Therefore, in the radial direction of the substrate 9, it is possible to prevent a gap from being formed between the liquid film formed by the chemical solution L1 in the vicinity of the liquid landing position P1 and the liquid film formed by the chemical liquid L2 in the vicinity of the liquid landing position P2. Will be done.

図8に示される配置関係においては、ノズル51が吐出する薬液L1の着液位置P1と、ノズル52が吐出する薬液L2の着液位置P2とは、基板9の直径を成す同一直線上に、回転軸a1を互いの間に挟んでそれぞれ位置している。 In the arrangement relationship shown in FIG. 8, the liquid landing position P1 of the chemical liquid L1 discharged by the nozzle 51 and the liquid landing position P2 of the chemical liquid L2 discharged by the nozzle 52 are on the same straight line forming the diameter of the substrate 9. The rotation axes a1 are sandwiched between each other and are located.

図9に示される配置関係においては、ノズル52が薬液L2を吐出する際の吐出方向v1は、ノズル52の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P2を通る円の着液位置P2における接線の方向に沿って基板9の回転方向の下流側に向かう成分v2と、当該接線と直交する基板9の径方向に沿って着液位置P2から回転軸a1とは反対側に向かう成分(「方向成分」)v3とを有する方向である。従って、当該接線と、吐出方向v1とがなす角度は、鋭角となる。従って、ノズル52から基板9の周辺域K3に対して効率的に薬液L2を供給することができる。 In the arrangement relationship shown in FIG. 9, the discharge direction v1 when the nozzle 52 discharges the chemical solution L2 is a liquid landing position centered on the rotation axis a1 when viewed from above the nozzle 52 in the rotation axis a1 direction of the substrate 9. A component v2 toward the downstream side in the rotation direction of the substrate 9 along the direction of the tangent line at the liquid landing position P2 of a circle passing through P2, and a rotation axis from the liquid landing position P2 along the radial direction of the substrate 9 orthogonal to the tangent line. It is a direction having a component (“directional component”) v3 toward the opposite side of a1. Therefore, the angle formed by the tangent line and the discharge direction v1 is an acute angle. Therefore, the chemical solution L2 can be efficiently supplied from the nozzle 52 to the peripheral region K3 of the substrate 9.

<5.基板処理装置の動作>
図11は、基板処理装置1の動作の一例を示すフローチャートである。基板処理装置1は、このフローチャートに沿って、薬液L1、L2によって基板9を処理する。このフローチャートに係る動作の開始に先立って、基板9はスピンチャック21によって予め保持されている。
<5. Operation of board processing equipment>
FIG. 11 is a flowchart showing an example of the operation of the substrate processing device 1. The substrate processing device 1 processes the substrate 9 with the chemical solutions L1 and L2 according to this flowchart. Prior to the start of the operation according to this flowchart, the substrate 9 is held in advance by the spin chuck 21.

先ず、回転機構231が、制御部130の制御に従って、スピンチャック21の回転を開始させることによって、スピンチャック21に保持された基板9の回転を開始させる(図11のステップS10)。 First, the rotation mechanism 231 starts the rotation of the spin chuck 21 under the control of the control unit 130 to start the rotation of the substrate 9 held by the spin chuck 21 (step S10 in FIG. 11).

次に、処理部5のバルブ開閉機構が、制御部130の制御下で、開閉弁521を所定の開度で開くことによって、ノズル51は、基板9の回転軌跡のうち中間域K2における着液位置P1に当たるように薬液L1の吐出を開始し(ステップS20)、バルブ開閉機構が、制御部130の制御下で、開閉弁522を所定の開度で開くことによって、ノズル52は、中間域K2における着液位置P2に当たるように薬液L2の吐出を開始する(ステップS30)。 Next, the valve opening / closing mechanism of the processing unit 5 opens the on / off valve 521 at a predetermined opening degree under the control of the control unit 130, so that the nozzle 51 is settled in the intermediate region K2 of the rotation locus of the substrate 9. Discharge of the chemical solution L1 is started so as to hit the position P1 (step S20), and the valve opening / closing mechanism opens the on / off valve 522 at a predetermined opening degree under the control of the control unit 130, so that the nozzle 52 has an intermediate region K2. The discharge of the chemical solution L2 is started so as to hit the liquid landing position P2 in (step S30).

ステップS20において吐出される薬液L1の吐出方向は、当該薬液L1を上方から回転軸a1方向に見て、回転軸a1を中心として着液位置P1を通る円の着液位置P1における接線方向に沿って基板9の回転方向の上流側に向かう成分と、当該接線と直交する基板9の径方向に沿って着液位置P1から回転軸a1に向かう成分とを有する方向である。 The discharge direction of the chemical liquid L1 discharged in step S20 is along the tangential direction at the liquid landing position P1 of a circle passing through the liquid landing position P1 centering on the rotation axis a1 when the chemical liquid L1 is viewed from above in the rotation axis a1 direction. It is a direction having a component toward the upstream side in the rotation direction of the substrate 9 and a component toward the rotation axis a1 from the liquid landing position P1 along the radial direction of the substrate 9 orthogonal to the tangent line.

ステップS20においてノズル51が吐出する薬液L1の吐出速度の当該接線方向の速度成分は、基板9の回転によって着液位置P1上の薬液に作用する基板9の回転方向の下流側向きの力に打ち勝って当該薬液が基板9の回転方向の上流側に流れることができる大きさを有する。薬液L1の吐出速度の径方向の速度成分は、着液位置P1上の薬液L1に作用する基板9の回転による遠心力に打ち勝って当該薬液L1が回転軸a1側に流れることができる大きさを有している。ステップS20において、ノズル51は、好ましくは、着液位置P1に当たった直後に着液位置P1から回転軸a1側に向かう薬液L1の量が、着液位置P1に当たった直後に着液位置P1から回転軸a1とは反対側に向かう薬液L1の量よりも多くなるように、薬液L1を吐出する。ステップS30においてノズル52が吐出する薬液L2の吐出方向は、当該薬液L2を上方から回転軸a1方向に見て、回転軸a1を中心として着液位置P2を通る円の着液位置P2における接線方向に沿って基板9の回転方向の下流側に向かう成分を有する吐出方向である。 The velocity component of the discharge speed of the chemical liquid L1 discharged by the nozzle 51 in step S20 in the tangential direction overcomes the force downstream of the rotation direction of the substrate 9 acting on the chemical liquid on the liquid landing position P1 due to the rotation of the substrate 9. The chemical solution has a size capable of flowing upstream of the substrate 9 in the rotational direction. The radial velocity component of the discharge rate of the chemical solution L1 has a size that allows the chemical solution L1 to flow toward the rotation axis a1 by overcoming the centrifugal force due to the rotation of the substrate 9 acting on the chemical solution L1 on the landing position P1. Have. In step S20, the nozzle 51 preferably hits the liquid landing position P1 and immediately after the amount of the chemical solution L1 from the liquid landing position P1 toward the rotation axis a1 side hits the liquid landing position P1. The chemical solution L1 is discharged so as to be larger than the amount of the chemical solution L1 toward the side opposite to the rotation shaft a1. The discharge direction of the chemical liquid L2 discharged by the nozzle 52 in step S30 is the tangential direction at the liquid landing position P2 of a circle passing through the liquid landing position P2 about the rotation axis a1 when the chemical liquid L2 is viewed from above in the direction of the rotation axis a1. It is a discharge direction having a component toward the downstream side in the rotation direction of the substrate 9 along the above.

制御部130は、薬液L1、L2による処理の所要時間が経過するのを待って、処理部5のバルブ開閉機構に開閉弁521、522を閉じさせて、ノズル51、52による薬液L1、L2の吐出を停止し(ステップS40)、その後、回転機構231にスピンチャック21の回転を停止させて基板9の回転を停止する(ステップS50)。図11に示される基板処理装置1の処理動作が終了する。 The control unit 130 waits for the time required for processing by the chemical solutions L1 and L2 to elapse, causes the valve opening / closing mechanism of the processing unit 5 to close the on-off valves 521 and 522, and causes the chemical solutions L1 and L2 by the nozzles 51 and 52 to close. Discharge is stopped (step S40), and then the rotation mechanism 231 stops the rotation of the spin chuck 21 to stop the rotation of the substrate 9 (step S50). The processing operation of the substrate processing apparatus 1 shown in FIG. 11 is completed.

以上のように構成された本実施形態に係る基板処理装置によれば、ノズル51が薬液L1を吐出する際の吐出方向u1は、ノズル51の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P1を通る円の着液位置P1における接線の方向に沿って基板9の回転方向の上流側に向かう成分u2と、当該接線と直交する基板9の径方向に沿って着液位置P1から回転軸a1に向かう成分u3とを有する方向である。ノズル51が薬液L1を吐出する際の吐出速度の接線方向の速度成分は、基板9の回転によって着液位置P1上の薬液L1に作用する基板9の回転方向の下流側向きの力に打ち勝って薬液L1が基板9の回転方向の上流側に流れることができる大きさを有する。当該吐出速度の当該径方向の速度成分は、着液位置P1上の薬液L1に作用する基板9の回転による遠心力に打ち勝って当該薬液L1が回転軸a1側に流れることができる大きさを有する。このため、第1ノズルから吐出された薬液L1の少なくとも一部は、着液位置P1に当たった直後に、薬液L1に作用する基板9の回転方向の下流側向きの力に打ち勝って、着液位置P1から、一旦、基板9の中心側に曲りながら、基板9の回転方向の上流側に向かった後、基板9の回転方向の下流側に曲りながら基板9の中心c1に向う弧状の経路に沿って、液膜状に拡がりながら基板9の中心c1に達する。そして、当該薬液L1は、基板9の中心を越えると、遠心力の影響によって基板9の回転方向の下流側に曲りながら基板9の周縁に向かう弧状の経路に沿って、拡がりながら流れていく。ノズル52が薬液L2を吐出する際の吐出方向v1は、ノズル52の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P2を通る円の着液位置P2における接線の方向に沿って基板9の回転方向の下流側に向かう成分v2を有する方向である。このため、薬液L2は、着液位置P2に当たった直後から遠心力の影響を強く受けて、基板9の回転方向の下流側へ曲りながら基板9の周縁に向かう弧状の経路に沿って、液膜状に拡がりつつ流れていく。従って、ノズル51から吐出された薬液L1の一部は、着液位置P1から液膜状に拡がりながら、基板9の中央部分を通過して基板9の周縁に到達し、ノズル52から吐出された薬液L2の一部は、着液位置P2から液膜状に拡がりながら基板9の周辺域K3を基板9の回転方向下流側に流れつつ基板9の周縁部に到達する。このため、ノズル51、52から吐出された薬液L1、L2は、全体として、基板9の表面の全体に供給される。また、基板9の回転によって、基板9の中心側から周縁側に向かって基板9の熱損失が急激に増加するが、第2ノズルから吐出された薬液L2は、主に基板9の周辺域K3に供給されるので、基板9の周辺域K3の供給される薬液L1、L2の量を増やすことが出来る。 According to the substrate processing apparatus according to the present embodiment configured as described above, the ejection direction u1 when the nozzle 51 ejects the chemical solution L1 is viewed from above the nozzle 51 in the direction of the rotation axis a1 of the substrate 9. In the radial direction of the substrate 9 orthogonal to the tangent line with the component u2 toward the upstream side of the rotation direction of the substrate 9 along the direction of the tangent line at the liquid landing position P1 of the circle passing through the liquid landing position P1 about the rotation axis a1. Along the direction, the component u3 is provided from the liquid landing position P1 toward the rotation axis a1. The tangential velocity component of the discharge speed when the nozzle 51 discharges the chemical solution L1 overcomes the force downstream of the rotation direction of the substrate 9 acting on the chemical solution L1 on the liquid landing position P1 due to the rotation of the substrate 9. The chemical solution L1 has a size that allows it to flow upstream of the substrate 9 in the rotational direction. The radial velocity component of the discharge velocity has a magnitude that allows the chemical solution L1 to flow toward the rotation axis a1 by overcoming the centrifugal force due to the rotation of the substrate 9 acting on the chemical solution L1 on the liquid landing position P1. .. Therefore, at least a part of the chemical solution L1 discharged from the first nozzle overcomes the force toward the downstream side in the rotational direction of the substrate 9 acting on the chemical solution L1 immediately after hitting the liquid landing position P1 to land the liquid. From the position P1, while temporarily bending toward the center side of the substrate 9, heading toward the upstream side in the rotation direction of the substrate 9, then bending toward the downstream side in the rotation direction of the substrate 9 and forming an arc-shaped path toward the center c1 of the substrate 9. Along the same, it reaches the center c1 of the substrate 9 while spreading like a liquid film. Then, when the chemical solution L1 exceeds the center of the substrate 9, it flows while bending along the arcuate path toward the peripheral edge of the substrate 9 while bending to the downstream side in the rotational direction of the substrate 9 due to the influence of centrifugal force. The discharge direction v1 when the nozzle 52 discharges the chemical solution L2 is a circular liquid landing position P2 that passes through the liquid landing position P2 about the rotation axis a1 when viewed from above the nozzle 52 in the direction of the rotation axis a1 of the substrate 9. It is a direction having a component v2 toward the downstream side in the rotation direction of the substrate 9 along the tangential direction. Therefore, the chemical solution L2 is strongly affected by the centrifugal force immediately after hitting the liquid landing position P2, and the liquid is bent along the arcuate path toward the peripheral edge of the substrate 9 while bending downstream in the rotational direction of the substrate 9. It flows while spreading like a film. Therefore, a part of the chemical solution L1 discharged from the nozzle 51 passes through the central portion of the substrate 9 and reaches the peripheral edge of the substrate 9 while spreading like a liquid film from the liquid landing position P1 and is discharged from the nozzle 52. A part of the chemical solution L2 reaches the peripheral edge of the substrate 9 while spreading from the liquid landing position P2 in the form of a liquid film and flowing through the peripheral region K3 of the substrate 9 to the downstream side in the rotation direction of the substrate 9. Therefore, the chemical solutions L1 and L2 discharged from the nozzles 51 and 52 are supplied to the entire surface of the substrate 9 as a whole. Further, the heat loss of the substrate 9 sharply increases from the center side to the peripheral side of the substrate 9 due to the rotation of the substrate 9, but the chemical solution L2 discharged from the second nozzle is mainly in the peripheral region K3 of the substrate 9. The amount of the chemical solutions L1 and L2 supplied to the peripheral region K3 of the substrate 9 can be increased.

また、本実施形態に係る基板処理装置によれば、ノズル51が吐出する薬液L1の着液位置P1と、ノズル52が吐出する薬液L2の着液位置P2とは、回転軸a1から同じ距離である。従って、双方のノズルからそれぞれ吐出された薬液L1、L2を基板9の表面の全体に供給することがより容易になる。 Further, according to the substrate processing apparatus according to the present embodiment, the liquid landing position P1 of the chemical liquid L1 discharged by the nozzle 51 and the liquid landing position P2 of the chemical liquid L2 discharged by the nozzle 52 are at the same distance from the rotation axis a1. is there. Therefore, it becomes easier to supply the chemical solutions L1 and L2 discharged from both nozzles to the entire surface of the substrate 9.

また、本実施形態に係る基板処理装置によれば、ノズル51が吐出する薬液L1の着液位置P1と、ノズル52が吐出する薬液L2の着液位置P2とは、基板9の直径を成す同一直線上に、回転軸a1を互いの間に挟んでそれぞれ位置する。従って、例えば、双方のノズルが吐出する薬液L1、L2が、基板9の上方から見て、互いに平行で、かつ、同じ向きに吐出された場合には、ノズル52が吐出した薬液L2の吐出方向v1を、基板9の上方から見て、基板9の中心側に向かう成分を有さない方向とすることができる。従って、ノズル52から基板9の周辺域K3に薬液L2を効率的に供給することが出来る。 Further, according to the substrate processing apparatus according to the present embodiment, the liquid landing position P1 of the chemical liquid L1 discharged by the nozzle 51 and the liquid landing position P2 of the chemical liquid L2 discharged by the nozzle 52 form the diameter of the substrate 9. The rotation axes a1 are located on a straight line with the rotation axes a1 sandwiched between them. Therefore, for example, when the chemicals L1 and L2 discharged by both nozzles are parallel to each other and are discharged in the same direction when viewed from above the substrate 9, the discharge direction of the chemicals L2 discharged by the nozzle 52 is v1 can be in a direction having no component toward the center side of the substrate 9 when viewed from above the substrate 9. Therefore, the chemical solution L2 can be efficiently supplied from the nozzle 52 to the peripheral region K3 of the substrate 9.

また、本実施形態に係る基板処理装置によれば、ノズル52が吐出する薬液L2の着液位置P2は、ノズル51が吐出した薬液L1が着液位置P1から周囲に拡がって基板9上に形成している液膜の上に位置する。これにより、着液位置P2が、基板9上においてノズル51から吐出された薬液L1が形成する液膜以外の部分に位置する場合に比べて、ノズル52から吐出された薬液L2の液跳ねを低減できる。 Further, according to the substrate processing apparatus according to the present embodiment, the liquid landing position P2 of the chemical liquid L2 discharged by the nozzle 52 is formed on the substrate 9 by the chemical liquid L1 discharged by the nozzle 51 spreading from the liquid landing position P1 to the periphery. It is located on the liquid film. As a result, the liquid splash of the chemical liquid L2 discharged from the nozzle 52 is reduced as compared with the case where the liquid landing position P2 is located on the substrate 9 at a portion other than the liquid film formed by the chemical liquid L1 discharged from the nozzle 51. it can.

また、本実施形態に係る基板処理装置によれば、ノズル51は、着液位置P1に当たった直後に着液位置P1から回転軸a1側に向かう薬液L1の量が、着液位置P1に当たった直後に着液位置P1から回転軸a1とは反対側に向かう薬液L1の量よりも多くなるように、薬液L1を吐出し、ノズル52が薬液L2を吐出する際の吐出方向v1は、ノズル52の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P2を通る円の着液位置P2における接線の方向に沿って基板9の回転方向の下流側に向かう成分v2を有する方向である。従って、ノズル51から吐出された薬液L1が、着液位置P1から液膜状に拡がりつつ基板9の中心に向かって流れ、さらに基板9の中心に対して着液位置P1とは反対側の基板9の周縁に到達することが容易となる。これにより、第1着液位置には多量の薬液が供給され、基板の中央部分の各位置には第1着液位置よりも少量の薬液が供給される。基板の各箇所の周方向への回転速度は、回転軸から基板の周縁に向かって増加する。また、基板の各位置に供給された薬液は、各位置の周方向への回転速度が増加するにつれて周方向に引き伸ばされて膜厚が減少する。従って、第1着液位置には基板の中央域よりも多量の薬液が供給されるが、その膜厚は基板の中央域よりも薄くなり易い一方、基板の中央域には第1着液位置よりも少量の薬液が供給されるが、その膜厚は第1着液位置に比べて薄くなりにくい。このため、基板表面のうち第1着液位置よりも基板の中心側の部分における薬液の膜厚の均一性を、第1ノズルによって向上することができる。また、ノズル52から吐出された薬液L2の一部は、着液位置P2から液膜状に拡がりながら基板9の周辺域K3を基板9の回転方向下流側に流れつつ基板9の周縁部に到達する。従って、第1ノズルと第2ノズルとによって基板の表面の全体に薬液を供給しつつ、第1着液位置よりも回転軸側部分、すなわち基板の中央域と、基板の中間域のうち第1着液位置よりも回転軸側部分とに供給される薬液の膜厚の均一性を第1ノズルによって向上せさることができる。また、基板9の回転によって、基板9の中心側から周縁側に向かって基板9の熱損失が急激に増加するが、第2ノズルから吐出された薬液L2は、主に基板9の周辺域K3に供給されるので、基板9の周辺域K3の供給される薬液L1、L2を、基板9の中央部に供給される薬液L1に比べて増やすことが出来る。従って、基板9の表面の温度分布の均一性を改善することができる。 Further, according to the substrate processing apparatus according to the present embodiment, the amount of the chemical solution L1 from the liquid landing position P1 toward the rotation axis a1 side hits the liquid landing position P1 immediately after the nozzle 51 hits the liquid landing position P1. Immediately after, the chemical solution L1 is discharged so as to be larger than the amount of the chemical solution L1 from the liquid landing position P1 toward the side opposite to the rotation axis a1, and the discharge direction v1 when the nozzle 52 discharges the chemical solution L2 is the nozzle. Seen from above 52 in the direction of the rotation axis a1 of the substrate 9, it goes toward the downstream side in the rotation direction of the substrate 9 along the tangential direction at the liquid landing position P2 of a circle passing through the liquid landing position P2 about the rotation axis a1. It is a direction having the component v2. Therefore, the chemical solution L1 discharged from the nozzle 51 flows from the liquid landing position P1 toward the center of the substrate 9 while spreading like a liquid film, and further, the substrate on the side opposite to the liquid landing position P1 with respect to the center of the substrate 9. It becomes easy to reach the peripheral edge of 9. As a result, a large amount of chemical solution is supplied to the first landing position, and a smaller amount of chemical solution than the first landing position is supplied to each position in the central portion of the substrate. The rotational speed of each part of the substrate in the circumferential direction increases from the rotation axis toward the peripheral edge of the substrate. Further, the chemical solution supplied to each position of the substrate is stretched in the circumferential direction as the rotational speed of each position in the circumferential direction increases, and the film thickness decreases. Therefore, a larger amount of chemical solution is supplied to the first liquidation position than in the central region of the substrate, but the film thickness tends to be thinner than the central region of the substrate, while the first liquidation position is in the central region of the substrate. Although a smaller amount of the chemical solution is supplied, the film thickness is less likely to be thinner than that of the first liquid landing position. Therefore, the uniformity of the film thickness of the chemical solution on the portion of the substrate surface on the center side of the substrate with respect to the first liquid landing position can be improved by the first nozzle. Further, a part of the chemical solution L2 discharged from the nozzle 52 reaches the peripheral edge of the substrate 9 while flowing from the liquid landing position P2 in the form of a liquid film and flowing through the peripheral region K3 of the substrate 9 to the downstream side in the rotational direction of the substrate 9. To do. Therefore, while supplying the chemical solution to the entire surface of the substrate by the first nozzle and the second nozzle, the portion on the rotation axis side from the first liquid landing position, that is, the central region of the substrate and the first of the intermediate regions of the substrate. The uniformity of the film thickness of the chemical solution supplied to the portion on the rotation shaft side of the liquid landing position can be improved by the first nozzle. Further, the heat loss of the substrate 9 rapidly increases from the center side to the peripheral side of the substrate 9 due to the rotation of the substrate 9, but the chemical solution L2 discharged from the second nozzle is mainly in the peripheral region K3 of the substrate 9. The chemical solutions L1 and L2 supplied in the peripheral region K3 of the substrate 9 can be increased as compared with the chemical solutions L1 supplied to the central portion of the substrate 9. Therefore, the uniformity of the temperature distribution on the surface of the substrate 9 can be improved.

また、本実施形態に係る基板処理装置によれば、ノズル52が吐出する薬液L2の流量が、ノズル51が吐出する薬液L1の流量よりも多いので、基板9の周辺域K3に対して、ノズル52からより多くの薬液L2を供給することが出来る。 Further, according to the substrate processing apparatus according to the present embodiment, since the flow rate of the chemical solution L2 discharged by the nozzle 52 is larger than the flow rate of the chemical solution L1 discharged by the nozzle 51, the nozzle is relative to the peripheral region K3 of the substrate 9. More chemicals L2 can be supplied from 52.

また、本実施形態に係る基板処理装置によれば、ノズル52が薬液L2を吐出する際の吐出方向v1は、ノズル52の上方から基板9の回転軸a1方向に見て、回転軸a1を中心として着液位置P2を通る円の着液位置P2における接線の方向に沿って基板9の回転方向の下流側に向かう成分v2と、接線と直交する基板9の径方向に沿って着液位置P2から回転軸a1とは反対側に向かう成分v3とを有する方向である。従って、ノズル52から基板9の周辺域K3に対して効率的に薬液L2を供給することができる。 Further, according to the substrate processing apparatus according to the present embodiment, the ejection direction v1 when the nozzle 52 ejects the chemical solution L2 is centered on the rotation axis a1 when viewed from above the nozzle 52 in the rotation axis a1 direction of the substrate 9. As a component v2 toward the downstream side in the rotational direction of the substrate 9 along the direction of the tangent line at the liquid landing position P2 of the circle passing through the liquid landing position P2, and the liquid landing position P2 along the radial direction of the substrate 9 orthogonal to the tangent line. It is a direction having a component v3 toward the side opposite to the rotation axis a1. Therefore, the chemical solution L2 can be efficiently supplied from the nozzle 52 to the peripheral region K3 of the substrate 9.

また、本実施形態に係る基板処理装置によれば、ノズル51、52が薬液L1、L2を吐出する際の各吐出方向u1、u2は、ノズル51、52に対して回転軸a1とは反対側の各位置から基板9の径方向に見て、基板9の上方から斜め下向きに向かう方向である。ノズル51、52は、着液位置P1、P2に向けて、より正確に薬液L1、L2を吐出することが出来る。 Further, according to the substrate processing apparatus according to the present embodiment, the discharge directions u1 and u2 when the nozzles 51 and 52 discharge the chemical liquids L1 and L2 are on the opposite sides of the rotation shaft a1 with respect to the nozzles 51 and 52. When viewed in the radial direction of the substrate 9 from each position of the above, the direction is diagonally downward from the upper side of the substrate 9. The nozzles 51 and 52 can more accurately discharge the chemical solutions L1 and L2 toward the liquid landing positions P1 and P2.

また、以上のような本実施形態にかかる基板処理方法によれば、薬液L1の少なくとも一部は、着液位置P1に当たった直後に、当該薬液L1に作用する基板9の回転方向の下流側向きの力と遠心力との双方の力に打ち勝って、着液位置P1から液膜状に拡がりながら基板9の回転方向の上流側、かつ、回転軸a1側に流れ、その後、基板9の中央域を通過して基板9の周縁に到達する。これにより、着液位置P1には多量の薬液L1が供給され、基板9の中央部分の各位置には着液位置P1よりも少量の薬液L1が供給される。着液位置P1には基板9の中央域よりも多量の薬液L1が供給されるが、その膜厚は基板9の中央域よりも薄くなり易い一方、基板9の中央域には着液位置P1よりも少量の薬液L1が供給されるが、その膜厚は着液位置P1に比べて薄くなりにくい。このため、基板9表面のうち着液位置P1よりも基板9の中心c1側の部分における薬液の膜厚の均一性を、着液位置P1への薬液L1の吐出によって向上することができる。また、着液位置P2に吐出された薬液L2の多くは、着液位置P2から液膜状に拡がりながら基板9の周辺域を基板9の回転方向下流側に流れつつ基板9の周縁部に到達する。従って、基板9の表面の全体に薬液L1、L2を供給しつつ、着液位置P1よりも回転軸a1側部分、すなわち基板9の中央域と、基板9の中間域のうち着液位置P1よりも回転軸a1側部分とに供給される薬液L1の膜厚の均一性を向上せさることができる。 Further, according to the substrate processing method according to the present embodiment as described above, at least a part of the chemical solution L1 is on the downstream side in the rotation direction of the substrate 9 acting on the chemical solution L1 immediately after hitting the liquid landing position P1. It overcomes both the directional force and the centrifugal force, and flows from the liquid landing position P1 to the upstream side in the rotation direction of the substrate 9 and to the rotation axis a1 side while spreading like a liquid film, and then flows to the center of the substrate 9. It passes through the region and reaches the peripheral edge of the substrate 9. As a result, a large amount of the chemical solution L1 is supplied to the liquid landing position P1, and a small amount of the chemical solution L1 is supplied to each position of the central portion of the substrate 9 than the liquid landing position P1. A larger amount of chemical solution L1 is supplied to the liquid landing position P1 than in the central region of the substrate 9, but the film thickness tends to be thinner than the central region of the substrate 9, while the liquid landing position P1 is in the central region of the substrate 9. Although a smaller amount of the chemical solution L1 is supplied, the film thickness is less likely to be thinner than that of the liquid landing position P1. Therefore, the uniformity of the film thickness of the chemical solution on the portion of the surface of the substrate 9 on the center c1 side of the substrate 9 with respect to the liquid landing position P1 can be improved by discharging the chemical solution L1 to the liquid landing position P1. In addition, most of the chemical solution L2 discharged to the liquid landing position P2 reaches the peripheral edge of the substrate 9 while spreading in a liquid film shape from the liquid landing position P2 and flowing downstream of the substrate 9 in the rotational direction. To do. Therefore, while supplying the chemical solutions L1 and L2 to the entire surface of the substrate 9, the portion on the rotation axis a1 side of the liquid landing position P1, that is, the central region of the substrate 9 and the intermediate region of the substrate 9 from the liquid landing position P1. It is also possible to improve the uniformity of the film thickness of the chemical solution L1 supplied to the portion on the rotating shaft a1 side.

本発明は詳細に示され記述されたが、上記の記述は全ての態様において例示であって限定的ではない。したがって、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。 Although the present invention has been shown and described in detail, the above description is exemplary and not limiting in all embodiments. Therefore, in the present invention, the embodiments can be appropriately modified or omitted within the scope of the invention.

1 基板処理装置
9 基板
21 スピンチャック
231 回転機構
K1 中央域
K2 中間域
K3 周辺域
P1 着液位置(第1着液位置)
P2 着液位置(第2着液位置)
L1,L2 薬液
51 ノズル(第1ノズル)
52 ノズル(第2ノズル)
u1,v1 吐出方向
u2,u3,v2,v3 成分
a1 回転軸
c1 中心
1 Substrate processing device 9 Substrate 21 Spin chuck 231 Rotation mechanism K1 Central area K2 Intermediate area K3 Peripheral area P1 Liquid landing position (first liquid landing position)
P2 landing position (second liquid landing position)
L1, L2 chemical solution 51 nozzles (1st nozzle)
52 nozzles (second nozzle)
u1, v1 Discharge direction u2, u3, v2, v3 Component a1 Rotation axis c1 Center

Claims (18)

基板を略水平姿勢で保持しつつ回転可能な保持部材と、
前記保持部材を、回転軸を中心に回転させる回転機構と、
前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように前記基板よりも上方から薬液を液柱状の液流として吐出する第1ノズルと、
前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2ノズルと、
を備え、
前記第1ノズルが前記薬液を吐出する際の吐出方向は、前記第1ノズルの上方から前記基板の前記回転軸方向に見て、前記回転軸を中心として前記第1着液位置を通る円の前記第1着液位置における接線方向に沿って前記基板の回転方向の上流側に向かう成分と、当該接線と直交する前記基板の径方向に沿って前記第1着液位置から前記回転軸に向かう成分とを有する方向であり、
前記第1ノズルが前記薬液を吐出する際の吐出速度の前記接線方向の速度成分は、前記基板の回転によって前記第1着液位置上の前記薬液に作用する前記基板の回転方向の下流側向きの力に打ち勝って当該薬液が前記基板の回転方向の上流側に流れることができる大きさを有し、
前記吐出速度の前記径方向の速度成分は、前記第1着液位置上の前記薬液に作用する前記基板の回転による遠心力に打ち勝って当該薬液が前記回転軸側に流れることができる大きさを有し、
前記第2ノズルが前記薬液を吐出する際の吐出方向は、前記第2ノズルの上方から前記基板の回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する方向である、基板処理装置。
A holding member that can rotate while holding the board in a substantially horizontal position,
A rotation mechanism that rotates the holding member around a rotation axis,
A first nozzle that discharges a chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the central region and the peripheral region of the rotation locus of the substrate.
A second nozzle that discharges the chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region, and
With
The discharge direction when the first nozzle discharges the chemical solution is a circle that passes through the first liquid landing position with the rotation axis as the center when viewed from above the first nozzle in the rotation axis direction of the substrate. A component toward the upstream side in the rotation direction of the substrate along the tangential direction at the first liquid landing position and a component from the first liquid landing position toward the rotation axis along the radial direction of the substrate orthogonal to the tangent line. It is the direction to have the ingredients
The tangential velocity component of the discharge speed when the first nozzle discharges the chemical solution is directed to the downstream side in the rotation direction of the substrate that acts on the chemical solution on the first liquid landing position by the rotation of the substrate. Has a size that allows the chemical solution to flow upstream in the rotational direction of the substrate by overcoming the force of
The radial velocity component of the discharge speed has a magnitude that allows the chemical solution to flow toward the rotation shaft side by overcoming the centrifugal force due to the rotation of the substrate acting on the chemical solution on the first liquid landing position. Have and
The discharge direction when the second nozzle discharges the chemical solution is a circle that passes through the second liquid landing position with the rotation axis as the center when viewed from above the second nozzle in the rotation axis direction of the substrate. A substrate processing apparatus having a component toward the downstream side in the rotational direction of the substrate along the tangential direction at the second liquid landing position.
請求項1に記載の基板処理装置であって、
前記第1ノズルが吐出する前記薬液の前記第1着液位置と、前記第2ノズルが吐出する前記薬液の前記第2着液位置とは、前記回転軸から同じ距離である、基板処理装置。
The substrate processing apparatus according to claim 1.
A substrate processing apparatus in which the first landing position of the chemical solution discharged by the first nozzle and the second landing position of the chemical solution discharged by the second nozzle are the same distance from the rotation axis.
請求項1に記載の基板処理装置であって、
前記第1ノズルが吐出する前記薬液の前記第1着液位置と、前記基板の周縁のうち前記第1着液位置に最も近い点との中点によって着目中点を定義したとき、
前記第2ノズルが吐出する前記薬液の前記第2着液位置は、前記第1着液位置よりも前記回転軸から遠く、前記着目中点よりも前記回転軸に近い、基板処理装置。
The substrate processing apparatus according to claim 1.
When the midpoint of interest is defined by the midpoint between the first landing position of the chemical solution discharged by the first nozzle and the point closest to the first landing position on the periphery of the substrate.
A substrate processing apparatus in which the second landing position of the chemical solution discharged by the second nozzle is farther from the rotation axis than the first liquid landing position and closer to the rotation axis than the midpoint of interest.
請求項1から請求項3の何れか1つの請求項に記載の基板処理装置であって、
前記第1ノズルが吐出する前記薬液の前記第1着液位置と、前記第2ノズルが吐出する前記薬液の前記第2着液位置とは、前記基板の直径を成す同一直線上に、前記回転軸を互いの間に挟んでそれぞれ位置する、基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 3.
The first liquidation position of the chemical solution discharged by the first nozzle and the second liquidation position of the chemical solution discharged by the second nozzle are rotated on the same straight line forming the diameter of the substrate. A substrate processing device that is located with the shafts sandwiched between them.
請求項1から請求項4の何れか1つの請求項に記載の基板処理装置であって、
前記第2ノズルが吐出する前記薬液の前記第2着液位置は、前記第1ノズルが吐出した前記薬液が前記第1着液位置から周囲に拡がって前記基板上に形成している液膜の上に位置する、基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 4.
The second liquidation position of the chemical solution discharged by the second nozzle is the liquid film formed on the substrate by the chemical solution discharged by the first nozzle spreading from the first liquidation position to the periphery. Board processing equipment located above.
基板を略水平姿勢で保持しつつ回転可能な保持部材と、
前記保持部材を、回転軸を中心に回転させる回転機構と、
前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように基板よりも上方から薬液を液柱状の液流として吐出する第1ノズルと、
前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2ノズルと、
を備え、
前記第1ノズルは、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸側に向かう前記薬液の量が、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸とは反対側に向かう前記薬液の量よりも多くなるように、前記薬液を吐出し、
前記第2ノズルが前記薬液を吐出する際の吐出方向は、前記第2ノズルの上方から前記基板の回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する方向である、基板処理装置。
A holding member that can rotate while holding the board in a substantially horizontal position,
A rotation mechanism that rotates the holding member around a rotation axis,
A first nozzle that discharges a chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the central region and the peripheral region of the rotation locus of the substrate.
A second nozzle that discharges the chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region, and
With
Immediately after the first nozzle hits the first liquid landing position, the amount of the chemical solution from the first liquid landing position toward the rotation axis side hits the first liquid landing position. The chemical solution is discharged so as to be larger than the amount of the chemical solution toward the side opposite to the rotation axis from the liquid landing position.
The discharge direction when the second nozzle discharges the chemical solution is a circle that passes through the second liquid landing position with the rotation axis as the center when viewed from above the second nozzle in the rotation axis direction of the substrate. A substrate processing apparatus having a component toward the downstream side in the rotational direction of the substrate along the tangential direction at the second liquid landing position.
請求項1から請求項6の何れか1つの請求項に記載の基板処理装置であって、
前記第2ノズルが吐出する前記薬液の流量が、前記第1ノズルが吐出する前記薬液の流量よりも多い、基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 6.
A substrate processing apparatus in which the flow rate of the chemical solution discharged by the second nozzle is larger than the flow rate of the chemical solution discharged by the first nozzle.
請求項1から請求項7の何れか1つの請求項に記載の基板処理装置であって、
前記第2ノズルが前記薬液を吐出する際の吐出方向は、前記第2ノズルの上方から前記基板の回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分と、当該接線と直交する前記基板の径方向に沿って前記第2着液位置から前記回転軸とは反対側に向かう成分とを有する方向である、基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 7.
The discharge direction when the second nozzle discharges the chemical solution is a circle that passes through the second liquid landing position with the rotation axis as the center when viewed from above the second nozzle in the rotation axis direction of the substrate. The component toward the downstream side in the rotation direction of the substrate along the tangential direction at the second liquid landing position and the rotation axis opposite to the rotation axis from the second liquid landing position along the radial direction of the substrate orthogonal to the tangent line. A substrate processing device that is in the direction of having components towards the side.
請求項1から請求項8の何れか1つの請求項に記載の基板処理装置であって、
前記第1ノズルと前記第2ノズルとの各ノズルが前記薬液を吐出する際の各吐出方向は、前記各ノズルに対して前記回転軸とは反対側の各位置から前記基板の径方向に見て、前記基板の上方から斜め下向きに向かう方向である、基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 8.
Each discharge direction when each nozzle of the first nozzle and the second nozzle discharges the chemical solution is viewed in the radial direction of the substrate from each position on the side opposite to the rotation axis with respect to each nozzle. The substrate processing apparatus is in a direction diagonally downward from above the substrate.
基板を略水平姿勢で保持しつつ回転軸を中心に回転させる回転ステップと、
前記回転ステップと並行して、前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように前記基板よりも上方から薬液を液柱状の液流として吐出する第1吐出ステップと、
前記回転ステップおよび前記第1吐出ステップと並行して、前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2吐出ステップと、
を備え、
前記第1吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第1着液位置を通る円の前記第1着液位置における接線方向に沿って前記基板の回転方向の上流側に向かう成分と、前記接線と直交する前記基板の径方向に沿って前記第1着液位置から前記回転軸に向かう成分とを有する方向であり、
前記第1吐出ステップにおいて吐出される前記薬液の吐出速度の前記接線方向の速度成分は、前記基板の回転によって前記第1着液位置上の前記薬液に作用する前記基板の回転方向の下流側向きの力に打ち勝って当該薬液が前記基板の回転方向の上流側に流れることができる大きさを有し、
前記吐出速度の前記径方向の速度成分は、前記第1着液位置上の前記薬液に作用する前記基板の回転による遠心力に打ち勝って当該薬液が前記回転軸側に流れることができる大きさを有し、
前記第2吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する吐出方向に前記薬液を吐出するステップである、基板処理方法。
A rotation step that rotates the board around the rotation axis while holding the board in a substantially horizontal position,
In parallel with the rotation step, the chemical solution is discharged as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the central region and the peripheral region of the rotation locus of the substrate. The first discharge step to be performed and
In parallel with the rotation step and the first discharge step, a second discharge step of discharging the chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region.
With
The discharge direction of the chemical solution discharged in the first discharge step is the first landing of a circle that passes through the first landing position about the rotation axis when the chemical solution is viewed from above in the direction of the rotation axis. A direction having a component toward the upstream side in the rotation direction of the substrate along the tangential direction at the position and a component toward the rotation axis from the first liquid landing position along the radial direction of the substrate orthogonal to the tangent line. And
The tangential velocity component of the discharge rate of the chemical solution discharged in the first discharge step is directed to the downstream side in the rotation direction of the substrate that acts on the chemical solution on the first liquid landing position by the rotation of the substrate. It has a size that allows the chemical solution to flow upstream in the rotational direction of the substrate by overcoming the force of
The radial velocity component of the discharge speed has a magnitude that allows the chemical solution to flow toward the rotation shaft side by overcoming the centrifugal force due to the rotation of the substrate acting on the chemical solution on the first liquid landing position. Have and
The discharge direction of the chemical solution discharged in the second discharge step is such that the chemical solution is viewed from above in the direction of the rotation axis, and the second liquid is formed in a circle that passes through the second landing position about the rotation axis. A substrate processing method, which is a step of discharging the chemical solution in a discharge direction having a component toward the downstream side in the rotation direction of the substrate along the tangential direction at the position.
請求項10に記載の基板処理方法であって、
前記第1吐出ステップにおいて吐出される前記薬液の前記第1着液位置と、前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置とは、前記回転軸から同じ距離である、基板処理方法。
The substrate processing method according to claim 10.
The first liquidation position of the chemical solution discharged in the first discharge step and the second liquidation position of the chemical solution discharged in the second discharge step are the same distance from the rotation axis. Substrate processing method.
請求項10に記載の基板処理方法であって、
前記第1吐出ステップにおいて吐出される前記薬液の前記第1着液位置と、前記基板の周縁のうち前記第1着液位置に最も近い点との中点によって着目中点を定義したとき、
前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置は、前記第1着液位置よりも前記回転軸から遠く、前記着目中点よりも前記回転軸に近い、基板処理方法。
The substrate processing method according to claim 10.
When the midpoint of interest is defined by the midpoint between the first landing position of the chemical solution discharged in the first discharge step and the point closest to the first landing position on the periphery of the substrate.
A substrate processing method in which the second landing position of the chemical solution discharged in the second discharge step is farther from the rotation axis than the first liquid landing position and closer to the rotation axis than the midpoint of interest.
請求項10から請求項12の何れか1つの請求項に記載の基板処理方法であって、
前記第1吐出ステップにおいて吐出される前記薬液の前記第1着液位置と、前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置とは、前記基板の直径を成す同一直線上に、前記回転軸を互いの間に挟んでそれぞれ位置する、基板処理方法。
The substrate processing method according to any one of claims 10 to 12.
The first landing position of the chemical solution discharged in the first discharge step and the second landing position of the chemical solution discharged in the second discharge step are on the same straight line forming the diameter of the substrate. In addition, a substrate processing method in which the rotating shafts are sandwiched between each other and located.
請求項10から請求項13の何れか1つの請求項に記載の基板処理方法であって、
前記第2吐出ステップにおいて吐出される前記薬液の前記第2着液位置は、前記第1吐出ステップにおいて吐出される前記薬液が前記第1着液位置から周囲に拡がって前記基板上に形成している液膜の上に位置する、基板処理方法。
The substrate processing method according to any one of claims 10 to 13.
The second liquidation position of the chemical solution discharged in the second discharge step is formed on the substrate by spreading the chemical solution discharged in the first discharge step to the periphery from the first liquidation position. Substrate processing method located on the liquid film.
基板を略水平姿勢で保持しつつ回転軸を中心に回転させる回転ステップと、
前記回転ステップと並行して、前記基板の回転軌跡のうち中央域と周辺域との間の中間域における第1着液位置に当たるように基板よりも上方から薬液を液柱状の液流として吐出する第1吐出ステップと、
前記回転ステップおよび前記第1吐出ステップと並行して、前記中間域における第2着液位置に当たるように基板よりも上方から前記薬液を液柱状の液流として吐出する第2吐出ステップと、
を備え、
前記第1吐出ステップは、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸側に向かう前記薬液の量が、前記第1着液位置に当たった直後に前記第1着液位置から前記回転軸とは反対側に向かう前記薬液の量よりも多くなるように、前記薬液を吐出するステップであり、
前記第2吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分を有する方向である、基板処理方法。
A rotation step that rotates the board around the rotation axis while holding the board in a substantially horizontal position,
In parallel with the rotation step, the chemical solution is discharged as a liquid columnar liquid flow from above the substrate so as to hit the first liquid landing position in the intermediate region between the central region and the peripheral region of the rotation locus of the substrate. The first discharge step and
In parallel with the rotation step and the first discharge step, a second discharge step of discharging the chemical solution as a liquid columnar liquid flow from above the substrate so as to hit the second liquid landing position in the intermediate region.
With
In the first discharge step, immediately after the first liquid landing position is hit, the amount of the chemical solution from the first liquid landing position toward the rotation axis side hits the first liquid landing position. It is a step of discharging the chemical solution so as to be larger than the amount of the chemical solution from the liquid landing position toward the side opposite to the rotation axis.
The discharge direction of the chemical solution discharged in the second discharge step is such that the chemical solution is viewed from above in the direction of the rotation axis, and the second liquid is formed in a circle that passes through the second landing position about the rotation axis. A substrate processing method, which is a direction having a component toward the downstream side in the rotation direction of the substrate along a tangential direction at a position.
請求項10から請求項15の何れか1つの請求項に記載の基板処理方法であって、
前記第2吐出ステップにおいて吐出される前記薬液の流量が、前記第1吐出ステップにおいて吐出される前記薬液の流量よりも多い、基板処理方法。
The substrate processing method according to any one of claims 10 to 15.
A substrate processing method in which the flow rate of the chemical solution discharged in the second discharge step is larger than the flow rate of the chemical solution discharged in the first discharge step.
請求項10から請求項16の何れか1つの請求項に記載の基板処理方法であって、
前記第2吐出ステップにおいて吐出される前記薬液の吐出方向は、当該薬液を上方から前記回転軸方向に見て、前記回転軸を中心として前記第2着液位置を通る円の前記第2着液位置における接線方向に沿って前記基板の回転方向の下流側に向かう成分と、当該接線と直交する前記基板の径方向に沿って前記第2着液位置から前記回転軸とは反対側に向かう成分とを有する方向である、基板処理方法。
The substrate processing method according to any one of claims 10 to 16.
The discharge direction of the chemical solution discharged in the second discharge step is such that the chemical solution is viewed from above in the direction of the rotation axis, and the second liquid is formed in a circle passing through the second landing position about the rotation axis. A component that goes downstream in the rotation direction of the substrate along the tangential direction at the position and a component that goes from the second liquid landing position to the side opposite to the rotation axis along the radial direction of the substrate that is orthogonal to the tangent line. A substrate processing method in the direction of having and.
請求項10から請求項17の何れか1つの請求項に記載の基板処理方法であって、
前記第1吐出ステップと前記第2吐出ステップとの各吐出ステップにおいて前記薬液が吐出される際の各吐出方向は、前記各吐出ステップにおいて吐出されている各薬液に対して前記回転軸とは反対側から前記基板の径方向に前記各薬液を見て、前記基板の上方から斜め下向きに向かう方向である、基板処理方法。
The substrate processing method according to any one of claims 10 to 17.
Each discharge direction when the chemical liquid is discharged in each discharge step of the first discharge step and the second discharge step is opposite to the rotation axis with respect to each chemical liquid discharged in each discharge step. A substrate processing method in which each chemical solution is viewed from the side in the radial direction of the substrate, and the direction is diagonally downward from above the substrate.
JP2017022006A 2017-02-09 2017-02-09 Substrate processing equipment and substrate processing method Active JP6812262B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017022006A JP6812262B2 (en) 2017-02-09 2017-02-09 Substrate processing equipment and substrate processing method
CN201780083713.0A CN110192267B (en) 2017-02-09 2017-11-17 Substrate processing apparatus and substrate processing method
PCT/JP2017/041506 WO2018146897A1 (en) 2017-02-09 2017-11-17 Substrate processing apparatus and substrate processing method
KR1020197020576A KR102269436B1 (en) 2017-02-09 2017-11-17 Substrate processing apparatus and substrate processing method
TW106140563A TWI686243B (en) 2017-02-09 2017-11-22 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017022006A JP6812262B2 (en) 2017-02-09 2017-02-09 Substrate processing equipment and substrate processing method

Publications (2)

Publication Number Publication Date
JP2018129422A JP2018129422A (en) 2018-08-16
JP6812262B2 true JP6812262B2 (en) 2021-01-13

Family

ID=63107352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017022006A Active JP6812262B2 (en) 2017-02-09 2017-02-09 Substrate processing equipment and substrate processing method

Country Status (5)

Country Link
JP (1) JP6812262B2 (en)
KR (1) KR102269436B1 (en)
CN (1) CN110192267B (en)
TW (1) TWI686243B (en)
WO (1) WO2018146897A1 (en)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931285B2 (en) * 2000-04-20 2012-05-16 アイメック Method and apparatus for localized liquid treatment of the surface of a substrate
JP2005138053A (en) * 2003-11-07 2005-06-02 Sumitomo Precision Prod Co Ltd Substrate washing apparatus
JP4451175B2 (en) * 2004-03-19 2010-04-14 大日本スクリーン製造株式会社 Nozzle cleaning apparatus and substrate processing apparatus
JP4347765B2 (en) * 2004-07-21 2009-10-21 大日本スクリーン製造株式会社 Substrate processing equipment
JP2006120666A (en) * 2004-10-19 2006-05-11 Dainippon Screen Mfg Co Ltd Substrate-treating device
JP2007237363A (en) * 2006-03-10 2007-09-20 Komatsu Machinery Corp Substrate surface machining apparatus
JP2008098227A (en) * 2006-10-06 2008-04-24 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP5516447B2 (en) * 2011-02-08 2014-06-11 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
JP6265702B2 (en) * 2012-12-06 2018-01-24 株式会社荏原製作所 Substrate cleaning apparatus and substrate cleaning method
JP2015015284A (en) * 2013-07-03 2015-01-22 株式会社荏原製作所 Substrate cleaning device and substrate cleaning method
JP6298277B2 (en) * 2013-12-03 2018-03-20 株式会社Screenホールディングス Substrate processing equipment
JP5994804B2 (en) * 2014-03-17 2016-09-21 東京エレクトロン株式会社 Substrate cleaning method
JP6600470B2 (en) 2014-04-01 2019-10-30 株式会社荏原製作所 Cleaning device and cleaning method
US9460944B2 (en) * 2014-07-02 2016-10-04 SCREEN Holdings Co., Ltd. Substrate treating apparatus and method of treating substrate
JP6375160B2 (en) * 2014-07-08 2018-08-15 株式会社Screenホールディングス Substrate processing method
KR102285832B1 (en) * 2014-07-25 2021-08-05 삼성전자주식회사 Apparatus and methods for treating substrates
US10037902B2 (en) * 2015-03-27 2018-07-31 SCREEN Holdings Co., Ltd. Substrate processing device and substrate processing method

Also Published As

Publication number Publication date
TW201829073A (en) 2018-08-16
KR20190094427A (en) 2019-08-13
WO2018146897A1 (en) 2018-08-16
CN110192267A (en) 2019-08-30
CN110192267B (en) 2023-03-17
KR102269436B1 (en) 2021-06-24
TWI686243B (en) 2020-03-01
JP2018129422A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
TWI284933B (en) A substrate processing apparatus and method
JP3725809B2 (en) Substrate processing apparatus and substrate processing method
US10279368B2 (en) Coating method and coating apparatus
JP6755962B2 (en) Liquid treatment method and liquid treatment equipment
TW201535490A (en) Substrate processing apparatus and substrate processing method
KR101950047B1 (en) Substrate cleaning and drying method and substrate developing method
JP2008108829A (en) Two-fluid nozzle and substrate processing apparatus employing the same
JP5954776B2 (en) Substrate processing equipment
JP2003303804A (en) Substrate treatment device
JP6812262B2 (en) Substrate processing equipment and substrate processing method
US10840083B2 (en) Substrate cleaning method, method for creating substrate cleaning recipe, and device for creating substrate cleaning recipe
JP2002151455A (en) Cleaning apparatus for semiconductor wafer
JP4179592B2 (en) Substrate peripheral processing apparatus and substrate peripheral processing method
JP6298277B2 (en) Substrate processing equipment
JP2007048814A (en) Substrate holding device, semiconductor manufacturing apparatus and method of manufacturing semiconductor device
JP2010153474A (en) Substrate treatment device and substrate treatment method
JP6211910B2 (en) Substrate processing apparatus and substrate processing method
JP2017011269A (en) Substrate processing apparatus
JP5198223B2 (en) Substrate processing apparatus and substrate processing method
JP2009047740A (en) Developing device
JP5621282B2 (en) Substrate processing apparatus and substrate processing method
JP6376863B2 (en) Substrate processing equipment
JP2012174933A (en) Substrate processing apparatus and substrate processing method
JP6649837B2 (en) Substrate processing apparatus and substrate processing method
JP2001307986A (en) Semiconductor substrate fixing/holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250