JP6794971B2 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP6794971B2
JP6794971B2 JP2017206225A JP2017206225A JP6794971B2 JP 6794971 B2 JP6794971 B2 JP 6794971B2 JP 2017206225 A JP2017206225 A JP 2017206225A JP 2017206225 A JP2017206225 A JP 2017206225A JP 6794971 B2 JP6794971 B2 JP 6794971B2
Authority
JP
Japan
Prior art keywords
positive electrode
extreme pressure
negative electrode
pressure agent
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206225A
Other languages
English (en)
Other versions
JP2019079712A (ja
Inventor
敦史 杉原
敦史 杉原
直利 小野寺
直利 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017206225A priority Critical patent/JP6794971B2/ja
Publication of JP2019079712A publication Critical patent/JP2019079712A/ja
Application granted granted Critical
Publication of JP6794971B2 publication Critical patent/JP6794971B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は非水電解質二次電池に関する。
特開2016−072221号公報(特許文献1)は、正極集電体と正極合材層との間に、主成分の熱伝導率、比抵抗などが特定された高熱伝導性および高抵抗性の中間層を備える非水電解質二次電池が開示されている。
特開2016−072221号公報
図2を参照して、特許文献1に開示される非水電解質二次電池では、正極集電体11と正極合材層12との間に高熱伝導性および高抵抗性の中間層14を配置することで、釘差し試験において、釘6を介した短絡電流(図中の矢印)が発生しても、中間層14によって短絡箇所から熱を効率的に逃すことができる。また、釘6が正極まで達していなければ、また正極集電体11と負極20との間の短絡電流を抑制することができる。このため、短絡時の発熱を抑制する効果が期待される。しかし、釘6が図2に示されるように正極集電体11まで達している場合は、正極集電体11と負極20との間の短絡電流を抑制することができず、短絡電流を十分に抑制することができないため、釘6による短絡時の発熱を抑制する効果には、改善の余地があった。
本開示の目的は、釘差し等による短絡時の発熱を抑制する効果が向上した非水電解質二次電池を提供することである。
以下、本開示の技術的構成および作用効果が説明される。ただし本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により特許請求の範囲が限定されるべきではない。
非水電解質二次電池は、正極および負極を備える。
正極は、正極集電体、正極合材層、および、正極集電体と正極合材層との間に介在する中間層を含む。
中間層は、極圧剤を含有する。
本開示においては、正極集電体11と正極合材層12との間に中間層13を設けることで、釘差し等による短絡時の発熱を抑制する効果が向上した非水電解質二次電池が提供される。
図1は、本開示の作用メカニズムを説明するための概念図である。
本開示の非水電解質二次電池の正極10においては、図1(a)に示されるように、正極集電体11と正極合材層12との間に中間層13が設けられている。
たとえば、図1(b)に示されるように、釘差し試験において、釘6を介して、正極10(特に正極集電体11)と負極20とが短絡することが考えられる。これにより短絡電流(図1(b)に示される矢印)が発生し、発熱部7の周辺において発熱が生じる。
しかし、正極集電体11と正極合材層12との間に中間層13が設けられているため、釘差し時の発熱に伴う短絡部(発熱部7)の高温化により、中間層13中の極圧剤が釘6の構成金属と反応して、釘6の表面の中間層13付近に絶縁性化合物8を形成する(図1(b))。この絶縁性化合物8によって、正極10(特に正極集電体11)と負極20との間の短絡電流を効率的に抑制することができる。
図1は、本開示の作用メカニズムを説明するための概念図である。 図2は、従来の非水電解質二次電池の一例を説明するための概略図である。 図3は、本実施形態の非水電解質二次電池の構成の一例を示す概略図である。 図4は、本実施形態の電極群の構成の一例を示す概略図である。 図5は、本実施形態の正極の構成の一例を示す概略図である。 図6は、本実施形態の負極の構成の一例を示す概略図である。
以下、本開示の実施形態(本明細書では「本実施形態」と記される)が説明される。ただし以下の説明は、特許請求の範囲を限定するものではない。以下「非水電解質二次電池」が「電池」と略記される場合がある。
<非水電解質二次電池>
図3は、本実施形態の非水電解質二次電池の構成の一例を示す概略図である。
電池100はケース90を含む。ケース90は角形(扁平直方体)である。もちろんケースは円筒形であってもよい。ケース90は容器91および蓋92を含む。蓋92は、たとえばレーザ溶接により容器91と接合されている。ケース90は密閉されている。ケース90は、たとえばアルミニウム(Al)合金製等であってもよい。ケースが密閉され得る限り、ケースは、たとえばAlラミネートフィルム製のパウチ等であってもよい。すなわち電池はラミネート型電池であってもよい。
蓋92には、外部端子93が設けられている。蓋92には、たとえば、注液孔、電流遮断機構(CID)、ガス排出弁等が設けられていてもよい。
ケース90には、電極群50および電解質(図3中の一点鎖線は電解質の液面を示している)が収納されている。なお、電解質は電極群50内の空隙にも存在している。電極群50は、少なくとも正極10および負極20を含む。したがって、電池100は、正極10および負極20を備える。
《電解質》
電解質は非水電解質である。すなわち電解質(電解液)は非プロトン性溶媒および支持塩を含む。非プロトン性溶媒は特に限定されるべきではない。非プロトン性溶媒は、たとえば、環状カーボネートおよび鎖状カーボネートを含んでもよい。環状カーボネートおよび鎖状カーボネートの混合比は、たとえば「環状カーボネート/鎖状カーボネート=1/9〜5/5(体積比)」であってもよい。
環状カーボネートは、たとえば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、フルオロエチレンカーボネート(FEC)等であってもよい。
鎖状カーボネートは、たとえば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等であってもよい。
非プロトン性溶媒は、たとえば、ラクトン、環状エーテル、鎖状エーテル、カルボン酸エステル等を含んでもよい。ラクトンは、たとえば、γ−ブチロラクトン(GBL)、δ−バレロラクトン等であってもよい。環状エーテルは、たとえば、テトラヒドロフラン(THF)、1,3−ジオキソラン、1,4−ジオキサン等であってもよい。鎖状エーテルは、1,2−ジメトキシエタン(DME)等であってもよい。カルボン酸エステルは、たとえば、メチルホルメート(MF)、メチルアセテート(MA)、メチルプロピオネート(MP)等であってもよい。
電解質は、たとえば0.5〜2mоl/L程度の支持塩を含んでもよい。支持塩は、たとえばLiPF6、LiBF4、Li[N(FSO22]、Li[N(CF3SO22]等であってもよい。
電解質は、非プロトン性溶媒および支持塩に加えて、各種の機能性添加剤をさらに含んでもよい。電解質は、たとえば1〜5質量%程度の機能性添加剤を含んでもよい。機能性添加剤としては、たとえば、ガス発生剤(いわゆる過充電添加剤)、SEI(solid electrolyte interface)膜形成剤等が挙げられる。ガス発生剤は、たとえば、シクロヘキシルベンゼン(CHB)、ビフェニル(BP)等であってもよい。SEI膜形成剤は、たとえば、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、Li[B(C242]、LiPO22、プロパンサルトン(PS)、エチレンサルファイト(ES)等であってもよい。
《電極群》
図4は、本実施形態の電極群の構成の一例を示す概略図である。
電極群50は巻回型である。すなわち電極群50は、正極10、セパレータ30、負極20およびセパレータ30がこの順序で積層され、さらにこれらが渦巻状に巻回されることにより形成されている。もちろん電極群は積層(スタック)型であってもよい。スタック型の電極群は、正極および負極が交互に積層されることにより形成され得る。各電極間には、それぞれセパレータが配置される。
《正極》
図5は、本実施形態の正極の構成の一例を示す概略図である。
本実施形態の正極10は帯状のシートである。正極10は、正極集電体11、正極合材層12、および、正極集電体と正極合材層との間に介在する中間層13を含む。
(正極集電体)
正極集電体11は、たとえばAl箔等であってもよい。正極集電体11は、たとえば5μm以上50μm以下の厚さを有してもよい。
なお、本実施形態において各構成の厚さは、たとえばマイクロメータ等により測定され得る。各構成の厚さは、各構成の断面顕微鏡画像等において測定されてもよい。厚さは、少なくとも3箇所で測定され得る。3箇所の厚さの算術平均が測定結果として採用され得る。測定個所の間隔は略均等であることが望ましい。
(正極合材層)
正極合材層12は、正極集電体11の表面に形成された後述する中間層13(図1参照。なお、図5では中間層13は省略されている。)の表面に形成されている。正極合材層12は、正極集電体11の表裏両面に中間層13を介して形成されていてもよい。正極合材層12は、たとえば10μm以上200μm以下の厚さを有してもよい。図5のx軸方向において、正極集電体11が正極合材層12よりも外側に突出した部分は、外部端子93との接続に利用され得る。
正極合材層12は正極活物質を少なくとも含む。正極合材層12は、たとえば、正極活物質、導電材およびバインダを含んでもよい。正極活物質は特に限定されるべきではない。正極活物質は、たとえば、LiCoO2、LiNiO2、LiMnO2、LiMn24、Li(Ni,Co,Mn)O2〔たとえばLiNi1/3Co1/3Mn1/32等〕、Li(Ni,Co,Al)O2〔たとえばLiNi0.82Co0.15Al0.032等〕、LiFePO4等であってもよい。1種の正極活物質が単独で使用されてもよい。2種以上の正極活物質が組み合わされて使用されてもよい。
導電材は特に限定されるべきではない。導電材は、たとえばアセチレンブラック(AB)等であってもよい。導電材は、100質量部の正極活物質に対して、たとえば1質量部以上20質量部以下であってもよい。
バインダは特に限定されるべきではない。バインダは、たとえばポリフッ化ビニリデン(PVDF)等であってもよい。バインダは、100質量部の正極活物質に対して、たとえば0.5質量部以上5質量部以下であってもよい。
(中間層)
中間層13は、正極集電体11と正極合材層12との間に介在する。中間層13は、極圧剤を含有する。
極圧剤は、高温下(所定温度以上の温度下)において、金属(鉄など)と反応して絶縁性化合物を生成する化合物である。なお、極圧剤は、「極圧添加剤」とも呼ばれ、一般的には潤滑油の添加剤として用いられ、この場合、絶縁性化合物は絶縁性の固体潤滑膜として機能する。本実施形態において、極圧剤は、電池の抵抗増加を抑制するために、正極集電体に含まれる金属材料(Alなど)および正極合材層に含まれる金属材料(Li、Ni、Co、Mnなど)とは反応し難い材料であることが好ましい。
極圧剤としては、例えば、塩素系極圧剤、硫黄系極圧剤、リン系極圧剤が挙げられる。
塩素系極圧剤としては、例えば、塩素化炭化水素(塩素化パラフィン等)、塩素化脂肪酸エステル(メチルトリクロロステアレート等)が挙げられる。
硫黄系極圧剤としては、例えば、スルフィド、硫化油脂、硫化エステルが挙げられる。スルフィドとしては、例えば、モノスルフィド、ジスルフィド(ジベンジルジスルフィド等)、ポリスルフィド(アルキルポリスルフィド、オレフィンポリスルフィド等)が挙げられる。硫化油脂としては、例えば、硫化スパーム油が挙げられる。硫化エステルとしては、例えば、硫化脂肪酸エステルが挙げられる。
リン系極圧剤としては、例えば、リン酸化合物(リン酸トリクレジル等)が挙げられる。
極圧剤は、上記の成分に限定されず、他の極圧剤を用いることもできる。他の極圧剤としては、例えば、ナフテン酸鉛が挙げられる。また、他の極圧剤として、塩素、硫黄およびリンの中の2種以上を含む化合物(塩素および硫黄を含むクロロアルキルザンテート、硫黄およびリンを含むアルキルチオリン酸アミン等)を用いることもできる。
極圧剤としては、例えば、金属異物の構成材料として可能性の高い金属の種類に応じて、高温下で当該金属と反応して絶縁性化合物(絶縁性の固体潤滑膜)を生成し得る極圧剤を選択すればよい。例えば、金属異物が鉄製の釘であるとき、極圧剤として塩素系極圧剤、硫黄系極圧剤、リン系極圧剤などを用いることで、高温下において絶縁性化合物(塩化鉄、硫化鉄、リン酸鉄など)が、金属異物の表面に生成され得る。例えば、塩素系極圧剤は、150℃程度以上の温度で、鉄等の金属と反応して塩化鉄等の塩化物(絶縁性化合物)を生成し得る。また、硫黄系極圧剤は、200℃程度以上の温度で、鉄等の金属と反応して硫化鉄等の硫化物(絶縁性化合物)を生成し得る。このため、塩素系極圧剤は、硫黄系極圧剤に比べて、本開示における短絡時の発熱抑制効果が高いと考えられる。
中間層13中の極圧剤の添加量は、本開示の効果をより確実に発揮するためには、40質量%以上であることが好ましい。また、電池の抵抗増加を抑制する観点からは、80質量%以下であることが好ましい。
中間層13は、極圧剤以外に、導電材、バインダなどを含んでいてもよい。これにより、正極集電体と正極合材層との間の電子伝導性、密着性などを向上させる効果が期待される。導電材およびバインダとしては、上記の正極合材層に用いられる材料と同様の材料を用いることができる。
なお、本開示においては、極圧剤を含有する中間層13を、正極集電体11と正極合材層12との間に介在させているため、特に多くの電流が流れる正極集電体11と負極20と間での短絡電流を抑制することができ、釘差し試験時等の短絡電流による発熱を効果的に抑制することができる。
《負極》
図6は、本実施形態の負極の構成の一例を示す概略図である。
本実施形態の負極20は帯状のシートである。負極20は、負極集電体21および負極合材層22を含む。負極集電体21は、たとえば銅(Cu)箔等であってもよい。負極集電体21は、たとえば5〜50μm程度の厚さを有してもよい。負極合材層22は、負極集電体21の表面に形成されている。負極合材層22は、負極集電体21の表裏両面に形成されていてもよい。負極合材層22は、たとえば10〜50μm程度の厚さを有してもよい。図6のx軸方向において、負極集電体21が負極合材層22よりも外側に突出した部分は、外部端子93との接続に利用され得る。
負極合材層22は負極活物質を少なくとも含む。負極合材層22は、たとえば、負極活物質およびバインダを含んでもよい。負極活物質は特に限定されるべきではない。負極活物質は、たとえば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、珪素、酸化珪素、珪素基合金、錫、酸化錫、錫基合金等であってもよい。1種の負極活物質が単独で使用されてもよい。2種以上の負極活物質が組み合わされて使用されてもよい。バインダは、100質量部の負極活物質に対して、たとえば0.5質量部以上10質量部以下であってもよい。バインダは特に限定されるべきではない。バインダは、たとえば、カルボキシメチルセルロース(CMC)およびスチレンブタジエンゴム(SBR)等であってもよい。
《セパレータ》
本実施形態のセパレータ30は帯状のシートである。セパレータ30は、たとえば5〜50μm程度の厚さを有してもよい。セパレータ30は多孔質である。セパレータ30は絶縁体である。セパレータ30は、たとえば、ポリエチレン(PE)製、ポリプロピレン(PP)製等であってもよい。
セパレータ30は、たとえば単層構造を有してもよい。セパレータ30は、たとえばPE製の多孔質シートのみから形成されていてもよい。セパレータ30は、たとえば多層構造を有してもよい。セパレータ30は、たとえば、PP製の多孔質シート、PE製の多孔質シートおよびPP製の多孔質シートがこの順序で積層されることにより形成されていてもよい。
セパレータ30の表面に耐熱層が形成されていてもよい。耐熱層は、たとえば1〜8μm程度の厚さを有してもよい。耐熱層は耐熱材料を含む。耐熱材料は、たとえばアルミナ等であってもよい。
以下、本開示の実施例が説明される。ただし以下の説明は、特許請求の範囲を限定するものではない。
<実施例1>
《正極の製造》
以下の材料が準備された。
(正極集電体)
Al箔(厚さ:20μm)
(中間層の材料)
極圧剤: 塩素化パラフィン
導電材: アセチレンブラック(AB)
バインダ: ポリフッ化ビニリデン(PVDF)
溶媒: N−メチル−2−ピロリドン(NMP)
(正極合材層の材料)
正極活物質:Li(Ni,Co,Mn)O2
導電材:AB
バインダ:PVDF
溶媒:NMP
中間層の材料である極圧剤(塩素化パラフィン)、導電材およびバインダが溶媒中で混合されることにより、中間層用ペーストが調製された。固形分の混合比は、「極圧剤/導電材/バインダ=60/30/10(質量部)である。グラビア塗工により、中間層用ペーストが正極集電体11の表面(表裏両面)に塗工され、乾燥されることにより、中間層13が形成された。
次に、正極活物質、導電材、バインダおよび溶媒が混合されることにより、正極合材ペーストが調製された。固形分の混合比は「正極活物質/導電材/バインダ=100/8/2(質量比)」である。正極合材ペーストが正極集電体11の両面に形成された中間層13の表面に塗布され、乾燥されることにより、正極合材層12が形成された。正極合材層12が圧延された。正極合材層12および正極集電体11が裁断された。以上より正極10が製造された。正極10は以下の外形寸法を有する。
正極10の厚さ寸法(図5のy軸方向の寸法):70μm
正極10の長さ寸法(図5のz軸方向の寸法):3000mm
正極10の幅寸法(図5のx軸方向の寸法):114mm
正極合材層12の幅寸法(図5のx軸方向の寸法):94mm
《負極の製造》
以下の材料が準備された。
負極活物質:黒鉛
バインダ:CMCおよびSBR
溶媒:水
負極集電体:Cu箔(厚さ:10μm)
負極活物質、バインダおよび水が混合されることにより、ペーストが調製された。固形分の混合比は「負極活物質/バインダ=100/2」である。CMCおよびSBRは等量である。ペーストが負極集電体21の表面(表裏両面)に塗布され、乾燥されることにより、負極合材層22が形成された。負極合材層22が圧延された。負極合材層22および負極集電体21が裁断された。以上より負極20が製造された。負極20は以下の外形寸法を有する。
負極20の厚さ寸法(図6のy軸方向の寸法):80μm
負極20の長さ寸法(図6のz軸方向の寸法):3300mm
負極20の幅寸法(図6のx軸方向の寸法):120mm
負極合材層22の幅寸法(図6のx軸方向の寸法):100mm
《電解質の調製》
以下の非プロトン性溶媒およびLi塩を含む電解質が調製された。
Li塩:LiPF6(1mоl/L)
非プロトン性溶媒:[EC/DMC/EMC=30/35/35(体積比)]
《組み立て》
セパレータ30が準備された。セパレータ30は20μmの厚さを有する。セパレータ30は、PP製の多孔質シート、PE製の多孔質シートおよびPP製の多孔質シートがこの順序で積層されることにより形成されている。
アルミナ、アクリル系バインダおよび溶媒が混合されることにより、ペーストが調製された。ペーストがセパレータ30の表面(片面)に塗布され、乾燥されることにより耐熱層が形成された。
正極10、セパレータ30、負極20およびセパレータ30がこの順序で積層され、さらに渦巻状に巻回されることにより電極群50が形成された。セパレータ30は、耐熱層が負極20と対向するように配置された。電極群50が扁平状に成形された。ケース90(角型のアルミニウム製ケース)が準備された。電極群50がケース90に収納された。
電解質が、ケース90に注入された。ケース90が密閉された。以上より電池100(リチウムイオン二次電池:非水電解質二次電池)が製造された。電池100は、3〜4.1Vの電圧範囲において4Ahの定格容量を有するように設計されている。
4Aの電流で電池100が4.1Vまで充電された。4Aの電流により電池100が3Vまで放電された。これにより電池100が初期状態とされた。
<実施例2>
中間層(固形分)中の極圧剤の添加量を30質量%とし、導電材の添加量を60質量%としたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例3>
中間層(固形分)中の極圧剤の添加量を40質量%とし、導電材の添加量を50質量%としたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例4>
中間層(固形分)中の極圧剤の添加量を50質量%とし、導電材の添加量を40質量%としたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例5>
中間層(固形分)中の極圧剤の添加量を70質量%とし、導電材の添加量を20質量%としたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例6>
中間層(固形分)中の極圧剤の添加量を80質量%とし、導電材の添加量を10質量%としたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例7>
中間層(固形分)中の極圧剤の添加量を90質量%とし、導電材の添加量を0質量%としたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例8>
極圧剤として、塩素化パラフィンの代わりに塩素化脂肪酸エステル(塩素化ステアリン酸メチル)を用いたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例9>
極圧剤として、塩素化パラフィンの代わりに塩素化脂肪酸エステル(塩素化ステアリン酸メチル)を用いたこと以外は、実施例6と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例10>
極圧剤として、塩素化パラフィンの代わりにジベンジルジスルフィドを用いたこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<実施例11>
極圧剤として、塩素化パラフィンの代わりにジベンジルジスルフィドを用いたこと以外は、実施例6と同様に、電池100が製造され、電池100が初期状態とされた。
<比較例1>
中間層13を形成しなかったこと以外は、実施例1と同様に、電池100が製造され、電池100が初期状態とされた。
<比較例2,3>
正極合材層中に極圧剤(塩素化パラフィン)を添加したこと以外は、比較例1と同様に、電池100が製造され、電池100が初期状態とされた。なお、比較例2および3の各々における極圧剤の添加率(正極活物質の総質量に対する質量比率)は、表1に示されるとおりである。
<評価>
《釘刺し試験》
4Aの電流により、電池100が4.1Vまで充電された。釘が準備された。釘は3mmの胴部径を有する。1mm/秒の速度で釘が電池100に刺し込まれた。釘が電池100に刺し込まれてから1秒後の電圧降下量が測定された。結果は表1に示される。なお、電圧降下量が小さい程、短絡電流の抑制効果が高いと考えられる。
《初期抵抗》
電池100が3.7Vまで充電された。25℃の温度環境において、40A(10C)の電流により電池100が放電された。放電開始から10秒後の電圧降下量が測定された。電圧降下量が電流で除されることにより抵抗が算出された。結果は表1に示される。なお、「C」は電流レートの単位である。「1C」は、1時間の充電により、SOC(充電率:State of Charge)が0%から100%に到達する電流レートを示す。
Figure 0006794971
<結果>
表1に示されるように、実施例1〜11の電池では、比較例1に比べて、釘刺し試験における電圧降下量が低減されている。これは、正極集電体と正極合材層との間に設けられた中間層に含まれる極圧剤が、釘差しによる内部短絡時の発熱に伴う高温化により、釘を構成する金属(鉄等)と反応して絶縁性化合物(塩化鉄、硫化鉄等)を形成し、釘の表面を被覆して絶縁化することで、短絡電流を抑制したためであると考えられる。このため、実施例1〜11により、釘差し時の短絡電流が従来よりも抑制されるため、釘差し等による短絡時の発熱を抑制する効果が向上すると考えられる。
一方、正極合材層中に極圧剤を添加した比較例2および3では、比較例1に対して釘刺し試験における電圧降下量はあまり低減されていない。このことから、極圧剤を含有する中間層を、正極集電体と正極合材層との間に介在させることで、特に多くの電流が流れる正極集電体と負極と間での短絡電流を抑制することができ、釘差し試験時等の短絡電流による発熱を効果的に抑制することができると考えられる。
実施例1〜7の結果から、釘刺し試験の電圧降下量の低減効果をより確実に得るためには、極圧剤の添加量を40質量%以上にすることが好ましいと考えられる。一方、初期抵抗の増加を抑制するためには、極圧剤の添加量を80質量%以下にすることが好ましいと考えられる。
実施例1、6、8〜11の結果から、極圧剤として、塩素化パラフインだけでなく、他の塩素系極圧剤である塩素化脂肪酸エステル、硫黄系極圧剤であるジベンジルジスルフィドを用いた場合でも、釘差し時の短絡電流が従来よりも抑制され、釘差し等による短絡時の発熱を抑制する効果が向上すると考えられる。なお、金属との反応温度の低い塩素系極圧剤の方が硫黄系極圧剤よりも、電圧降下量が低減効果(釘差し時の短絡電流の抑制効果)が高い傾向があると考えられる。
今回開示された実施形態および実施例はすべての点で例示であって制限的なものではない。特許請求の範囲の記載によって確定される技術的範囲は、特許請求の範囲と均等の意味および範囲内でのすべての変更を含む。
100 電池(非水電解質二次電池)、10 正極、11 正極集電体、12 正極合材層、13,14 中間層、20 負極、21 負極集電体、22 負極合材層、30 セパレータ、50 電極群、6 釘、7 発熱部、8 絶縁性化合物、90 ケース、91 容器、92 蓋、93 外部端子。

Claims (1)

  1. 正極および負極を備え、
    前記正極は、正極集電体、正極合材層、および、前記正極集電体と前記正極合材層との間に介在する中間層を含み、
    前記中間層は、30質量%以上の極圧剤を含有し、
    前記極圧剤は、150℃以上の温度で金属と反応して絶縁性化合物を生成し得る塩素系化合物、および、200℃以上の温度で金属と反応して絶縁性化合物を生成し得る硫黄系化合物の少なくともいずれかである、非水電解質二次電池。
JP2017206225A 2017-10-25 2017-10-25 非水電解質二次電池 Active JP6794971B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206225A JP6794971B2 (ja) 2017-10-25 2017-10-25 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206225A JP6794971B2 (ja) 2017-10-25 2017-10-25 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2019079712A JP2019079712A (ja) 2019-05-23
JP6794971B2 true JP6794971B2 (ja) 2020-12-02

Family

ID=66628844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206225A Active JP6794971B2 (ja) 2017-10-25 2017-10-25 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP6794971B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532083A (en) * 1994-07-26 1996-07-02 Mccullough; Francis P. Flexible carbon fiber electrode with low modulus and high electrical conductivity, battery employing the carbon fiber electrode, and method of manufacture
JP3589021B2 (ja) * 1998-04-17 2004-11-17 新神戸電機株式会社 リチウムイオン二次電池
JP5114788B2 (ja) * 2007-09-28 2013-01-09 三菱重工業株式会社 リチウム二次電池
JP6777388B2 (ja) * 2015-02-27 2020-10-28 パナソニック株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JP2019079712A (ja) 2019-05-23

Similar Documents

Publication Publication Date Title
US9960448B2 (en) Nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolytic solution
JPWO2014196177A1 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2010267475A (ja) リチウムイオン二次電池
JP6981164B2 (ja) 正極板および非水電解質二次電池
CN110739448B (zh) 非水电解质二次电池、负极合材层的评价方法和非水电解质二次电池的制造方法
KR102243458B1 (ko) 비수 전해질 이차전지, 및, 비수 전해질 이차전지의 제조 방법
JP7234529B2 (ja) 非水電解質及び蓄電素子
CN109713219B (zh) 正极和具备该正极的非水电解质二次电池
JP2016048624A (ja) リチウム二次電池
JP6208560B2 (ja) リチウム二次電池
JP2019153542A (ja) 正極、非水電解質二次電池、および正極の製造方法
US20210119255A1 (en) Non-aqueous electrolyte for power storage device, and power storage device
JP6702287B2 (ja) 非水電解液二次電池
JP6224382B2 (ja) リチウム二次電池
WO2015037560A1 (ja) 二次電池
JP2014035807A (ja) 電池パック
JP2016207447A (ja) 非水電解液二次電池
JP6794971B2 (ja) 非水電解質二次電池
JP7174335B2 (ja) 非水電解質二次電池
JP6813008B2 (ja) 非水電解液二次電池
JP6729642B2 (ja) 非水電解質二次電池
JP6778396B2 (ja) 非水電解質二次電池
JP6766737B2 (ja) 非水系電池
JP6702345B2 (ja) リチウムイオン二次電池
KR102183188B1 (ko) 비수 전해질 이차전지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250