JP6791463B1 - モータ及びモータ装置 - Google Patents

モータ及びモータ装置 Download PDF

Info

Publication number
JP6791463B1
JP6791463B1 JP2020543826A JP2020543826A JP6791463B1 JP 6791463 B1 JP6791463 B1 JP 6791463B1 JP 2020543826 A JP2020543826 A JP 2020543826A JP 2020543826 A JP2020543826 A JP 2020543826A JP 6791463 B1 JP6791463 B1 JP 6791463B1
Authority
JP
Japan
Prior art keywords
flow path
motor
inner frame
groove
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020543826A
Other languages
English (en)
Other versions
JPWO2021199172A1 (ja
Inventor
加藤 健次
健次 加藤
秀哲 有田
秀哲 有田
大河 小松
大河 小松
勇気 日高
勇気 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6791463B1 publication Critical patent/JP6791463B1/ja
Publication of JPWO2021199172A1 publication Critical patent/JPWO2021199172A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

本開示におけるモータ(100)は、回転子(2)を囲う固定子(3)が内側に配置され、冷却液が流通する入口ヘッダ流路、出口ヘッダ流路(41)、第1の流路及び第2の流路が形成される筒状のインナーフレーム(4)と、インナーフレーム(4)の外周を囲う筒状の側壁部(50)、並びに入口ヘッダ流路(40)と連通して形成され、冷却液が流入する流入口(51)及び出口ヘッダ流路(41)と連通して形成され、冷却液が流出する流出口(52)を有するアウターフレーム(5)と、を備え、第1の流路及び第2の流路は、それぞれ一端が入口ヘッダ流路(40)と接続され、他端が出口ヘッダ流路(41)と接続され、第2の流路は、冷却液が第1の流路と反対方向に流通し、第1の流路よりも冷却液が流通する円周方向の長さが短く、冷却液が流通する流路断面積が、第1の流路の流路断面積より小さい。

Description

本開示は、モータ及びモータ装置に関するものである。
電動機の液体ジャケット付きフレーム(以下、「フレーム」という)において、冷媒(以下、「冷却液」という)は、フレームに形成された流入口からフレームの内部に流入して、流入口に隣接して形成された流出口からフレームの外部に流出する。フレームの内部には、複数の仕切り板部が形成され、冷却液は、フレームの内部を蛇行しながら円周方向に流れる技術が開示されている(例えば、特許文献1参照)。
特開2016−059109号公報
しかしながら、特許文献1に記載の電動機(以下、「モータ」という)では、フレームの内部に冷却液を流すことによって、モータ全体を冷却することはできるが、冷却液の流入口及び流出口を隣接させて配置する必要があり、冷却液の流入口及び流出口を離して配置しなければならない場合、モータ全体を冷却できないという課題があった。
本開示は、上述の課題を解決するためになされたもので、モータの固定子コイルを効率よく冷却し、モータ全体を冷却できるため、モータの効率を向上できるモータ及びモータ装置を提供することを目的とする。
本開示にかかるモータは、回転子を囲う固定子が内側に配置され、冷却液が流通する入口ヘッダ流路、出口ヘッダ流路、第1の流路及び第2の流路が形成される筒状のインナーフレームと、インナーフレームの外周を囲う筒状の側壁部、並びに入口ヘッダ流路と連通して形成され、冷却液が流入する流入口及び出口ヘッダ流路と連通して形成され、冷却液が流出する流出口を有するアウターフレームと、を備え、第1の流路及び第2の流路は、それぞれ一端が入口ヘッダ流路と接続され、他端が出口ヘッダ流路と接続され、第2の流路は、冷却液が第1の流路と反対方向に流通し、第1の流路よりも冷却液が流通する円周方向の長さが短く、冷却液が流通する流路断面積が、第1の流路の流路断面積より小さいものである。
本開示にかかるモータ装置は、本開示に記載のモータと、モータの回転数及びトルクを制御するインバータと、モータの動作状態の情報から、モータに給電する電流の振幅及び位相を決定し、決定した電流の振幅及び位相を、インバータに送る制御装置とを備えるものである。
本開示によれば、固定子コイルを効率よく冷却し、モータ全体を冷却できるため、モータの効率を向上できる。
実施の形態1にかかるモータの断面図。 実施の形態1にかかるモータの斜視図。 実施の形態1にかかるモータのインナーフレームの斜視図。 実施の形態1にかかるモータのインナーフレームの断面図。 実施の形態2にかかるモータのインナーフレームの斜視図。 実施の形態2にかかるモータのインナーフレームの断面図。 実施の形態3にかかるモータのインナーフレームの斜視図。 実施の形態3にかかるモータのインナーフレームの断面図。 実施の形態3にかかる入口ニップルから出口ニップルまでの流路長さを説明する模式図。 実施の形態4にかかるモータのインナーフレームの斜視図。 実施の形態4にかかるモータのインナーフレームの断面図。 実施の形態5にかかるモータのインナーフレームの斜視図。 実施の形態5にかかるモータのインナーフレームの断面図。 実施の形態6にかかるモータのインナーフレームの斜視図。 実施の形態6にかかるモータのインナーフレームの正面図。 実施の形態7にかかるモータの第2の流路側のインナーフレームの斜視図。 実施の形態7にかかるモータの第2の流路側のインナーフレームの正面図。 実施の形態7にかかるモータの第1の流路側のインナーフレームの斜視図。 実施の形態7にかかるモータの第1の流路側のインナーフレームの正面図。 実施の形態8にかかるモータの第2の流路側のインナーフレームの斜視図。 実施の形態8にかかるモータの第2の流路側のインナーフレームの正面図。 実施の形態8にかかるモータの第1の流路側のインナーフレームの斜視図。 実施の形態8にかかるモータの第1の流路側のインナーフレームの正面図。 実施の形態9にかかるモータの第2の流路側のインナーフレームの斜視図。 実施の形態9にかかるモータの第2の流路側のインナーフレームの正面図。 実施の形態9にかかるモータの第1の流路側のインナーフレームの斜視図。 実施の形態9にかかるモータの第1の流路側のインナーフレームの正面図。 実施の形態10にかかるモータ装置の斜視図。 実施の形態10にかかるモータ装置の動作を示す図。
実施の形態1.
図1は、実施の形態1にかかるモータ100の断面図、図2は、実施の形態1にかかるモータの斜視図、図3は、実施の形態1にかかるモータ100のインナーフレーム4の斜視図、図4は、実施の形態1にかかるモータ100のインナーフレーム4の断面図である。図4(a)は、後述する第1の流路の断面図であり、図4(b)は、後述する第2の流路の断面図である。
モータ100は、回転子2、固定子3、インナーフレーム4及びアウターフレーム5を備える。モータ100は、さらに、負荷側ベアリング60を有する負荷側ブラケット6と、反負荷側ベアリング70を有する反負荷側ブラケット7とを備える。以下、詳細を説明する。
回転子2は、円柱状である。回転子2は、回転子コア20、磁石21、及びシャフト22を有する。シャフト22は、回転子コア20、負荷側ブラケット6、反負荷側ブラケット7、負荷側ベアリング60、及び反負荷側ベアリング70を貫通して配置される。また、シャフト22は、負荷側ベアリング60と反負荷側ベアリング70とを介して、それぞれ負荷側ブラケット6と反負荷側ブラケット7とに回転自在に支持される。以下、シャフト22が延伸する方向を、モータ100の軸方向という。
固定子3は、筒状である。筒状の固定子3が、回転子2を囲うように配置される。固定子3は、固定子コア30及び固定子コイル31を有している。回転子2及び固定子3は、同心である。
インナーフレーム4は、筒状である。筒状のインナーフレーム4の内側に、固定子3が配置される。固定子3及びインナーフレーム4は、同心である。以下、インナーフレーム4の、アウターフレーム5(後述する)側を外周側といい、シャフト22側を内周側という。
アウターフレーム5は、筒状の側壁部50を有する。さらに、アウターフレーム5は、側壁部50上に形成された入口ニップル51(流入口)と出口ニップル52(流出口)とを有する。出口ニップル52は、入口ニップル51から円周方向に離れた位置に形成される。本開示では、入口ニップル51及び出口ニップル52は、円周方向に90°離れた位置に形成される例を示すが、この限りではない。筒状のアウターフレーム5の内側に、インナーフレーム4が配置される。すなわち、インナーフレーム4の外周に、アウターフレーム5が配置される。インナーフレーム4及びアウターフレーム5は、同心である。インナーフレーム4及びアウターフレーム5の一端には、負荷側ブラケット6が設置され、他端には、反負荷側ブラケット7が設置される。
インナーフレーム4とアウターフレーム5の側壁部50とで囲まれた空間領域には、冷却液が流通する流路(後述する)が形成される。インナーフレーム4とアウターフレーム5との接続部分に、例えば、Oリングを挟んだり、又は溶接したりすること等によって、流路からモータ100の外部に冷却液が漏れないようにすればよい。
インナーフレーム4には、入口ヘッダ流路40及び出口ヘッダ流路41が形成される。入口ヘッダ流路40及び出口ヘッダ流路41は、インナーフレーム4の軸方向に延伸した流路である。入口ニップル51は、入口ヘッダ流路40と連通して形成される。入口ヘッダ流路40及び入口ニップル51は、対向して配置される。出口ニップル52は、出口ヘッダ流路41と連通して形成される。出口ヘッダ流路41及び出口ニップル52は、対向して配置される。冷却液は、モータ100の外部から、入口ニップル51を介し、入口ヘッダ流路40へ流入する。入口ニップル51及び出口ニップル52が、側壁部50上の円周方向に離れた位置に形成されるため、入口ヘッダ流路40へ流入した冷却液は、反時計回りの方向と時計回りの方向とに分かれ、インナーフレーム4の外周に沿って流通する。反時計回りの方向と時計回りの方向とに分かれて流れた冷却液は、それぞれ出口ヘッダ流路41に流入し、合流する。出口ヘッダ流路41で合流した冷却液は、出口ニップル52からモータ100の外部へ流出する。
図2の負荷側ブラケット6側から見て、冷却液が反時計回りに流通する流路を第1の流路という。第1の流路は、一端が入口ニップル51と接続され、他端が出口ニップル52と接続される。インナーフレーム4のアウターフレーム5側、すなわち外周側には、内周側に向かって溝部8(第1の溝部)が形成される。以下、第1の流路の流路長さと記した場合、溝部8の流路長さを指す。溝部8は、インナーフレーム4を切削することにより形成する。溝部8と溝部8との間が、放熱フィン80である。溝部8には、冷却液が流通する。溝部8は、インナーフレーム4の外周に沿って形成される。そのため、第1の放熱フィン80は、インナーフレーム4の外周に沿って形成される。つまり、第1の放熱フィン80は、インナーフレーム4の円周方向に延伸している。図3及び4では、アウターフレーム5を省略しているが、第1の流路は、インナーフレーム4、第1の放熱フィン80、及びアウターフレーム5の側壁部50によって囲まれ形成される。第1の放熱フィン80は、アウターフレーム5側の端部とアウターフレーム5の側壁部50とが接している。インナーフレーム4に形成される溝部8が1つの場合、第1の流路は、溝部8とアウターフレーム5の側壁部50とによって囲まれ形成される。
また、図2の負荷側ブラケット6側から見て、冷却液が時計回りに流通する流路を第2の流路という。第1の流路は、一端が入口ニップル51と接続され、他端が出口ニップル52と接続される。インナーフレーム4の外周側には、内周側に向かって溝部9(第2の溝部)が形成される。以下、第2の流路の流路長さと記した場合、溝部9の流路長さを指す。溝部9は、インナーフレーム4を切削することにより形成する。なお、溝部8及び溝部9の形成は、インナーフレーム4の切削に限らず、鋳造等によって形成してもよい。溝部9と溝部9との間が、放熱フィン90である。溝部9には、冷却液が流通する。溝部9は、インナーフレーム4の外周に沿って形成される。そのため、第2の放熱フィン90は、インナーフレーム4の外周に沿って形成される。つまり、第2の放熱フィン90は、インナーフレーム4の円周方向に延伸している。図3及び4では、アウターフレーム5を省略しているが、第2の流路は、インナーフレーム4、第2の放熱フィン90、及びアウターフレーム5の側壁部50によって囲まれ形成される。第2の放熱フィン90は、アウターフレーム5側の端部とアウターフレーム5の側壁部50とが接している。インナーフレーム4に形成される溝部9が1つの場合、第2の流路は、溝部9とアウターフレーム5の側壁部50とによって囲まれ形成される。インナーフレーム4に形成される溝部8が1つの場合、第1の流路は、溝部8とアウターフレーム5の側壁部50とによって囲まれ形成される。なお、インナーフレーム4に形成される溝部9(溝部8)が1つの場合、第2の流路(第1の流路)と入口ヘッダ流路40及び出口ヘッダ流路41とを、区別して形成しなくてもよい。
モータ100では、上述したように、入口ニップル51及び出口ニップル52が、円周方向に90°離れた位置に形成されるため、第1の流路及び第2の流路の流路長さが異なる。本開示では、第2の流路の流路長さは、第1の流路の流路長さより短い。
ここで、第1の流路側のインナーフレーム4の、軸方向側の長さと、第2の流路側のインナーフレーム4の、軸方向側の長さは、同一又はほぼ同一とする。以下の実施の形態においても、同様である。図3及び図4に示すように、モータ100では、溝部8は、溝部9よりも多く形成される。このとき、溝部8及び溝部9のシャフト22側の深さ(以下、「溝部8及び溝部9の深さ」という)及び軸方向側の幅(以下、「溝部8及び溝部9の幅」という)は同一である。溝部9は、溝部8よりも少なく形成される。また、第2の放熱フィン90の幅Wは、第1の放熱フィン80の幅Wよりも広い。これにより、モータ100では、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。
このように、モータ100は、回転子2を囲う固定子3が内側に配置され、冷却液が流通する入口ヘッダ流路、出口ヘッダ流路41、第1の流路及び第2の流路が形成される筒状のインナーフレーム4と、インナーフレーム4の外周を囲う筒状の側壁部50、並びに入口ヘッダ流路40と連通して形成され、冷却液が流入する入口ニップル51及び出口ヘッダ流路41と連通して形成され、冷却液が流出する出口ニップル52を有するアウターフレーム5と、を備え、第1の流路及び第2の流路は、それぞれ一端が入口ヘッダ流路40と接続され、他端が出口ヘッダ流路41と接続され、第2の流路は、冷却液が第1の流路と反対方向に流通し、第1の流路よりも冷却液が流通する円周方向の長さが短く、冷却液が流通する流路断面積が、第1の流路の流路断面積より小さいものである。
ここで、第1の流路の流路長さと第2の流路の流路長さとが異なる従来のモータについて説明する。このとき、第1の流路及び第2の流路の流路断面積は同一又はほぼ同一とする。従来のモータでは、第1の流路の流路長さが、第2の流路の流路長さよりも長い場合、第2の流路と比べて第1の流路は圧力損失が大きく、冷却液の流量が小さくなる。このため、冷却性能が低下して、固定子コイル31の温度が上昇し、モータ全体の温度も上昇し、モータの効率が低下する。
しかしながら、モータ100では、第2の流路の流路断面積を小さくすることによって、第2の流路の圧力損失が大きくなる。これにより、第1の流路及び第2の流路の圧力損失の差を小さくできるため、第1の流路を流通する冷却液と、第2の流路を流通する流量の差を小さくできる。よって、それぞれの流路の内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ100の効率を向上できる。
また、固定子コイル31の熱が、それぞれの流路を介して、どれほど冷却液へ移動するかは、流路の熱伝達率と、冷却液と接する流路の表面積と、流路の温度及び冷却液の温度の差との乗算によって求められる。ここで、流路の熱伝達率と、冷却液と接する流路の表面積と、流路の温度及び冷却液の温度の差の円周方向での平均値との乗算の結果を、第1の流路及び第2の流路でそれぞれの流路長さの比と同程度の比となり,且つ流路の温度及び冷却液の温度の差が小さくなるようにそれぞれの流路を設計することで、冷却効率が向上する。
さらに、第1の流路では流路長さが第2の流路より長く、固定子コイル31からの熱が冷却液に多く移動してくるため、出口ニップル52付近で冷却液の温度が高くなる。そのため、第1の流路及び第2の流路を設計すれば、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少する。これにより、第1の流路を流通する冷却液の流量が増加し、出口ニップル52付近でも冷却液の温度が低くなるため、冷却液の温度ムラを低減でき、さらに冷却効率が向上する。
実施の形態2.
図5は実施の形態2にかかるモータ101のインナーフレーム4の斜視図であり、図6は、実施の形態2にかかるモータ101のインナーフレーム4の断面図である。図6(a)は、第1の流路側のインナーフレーム4の断面図であり、図6(b)は、第2の流路側のインナーフレーム4の断面図である。
図6に示すように、溝部9の深さは、溝部8の深さよりも浅い。また、第2の放熱フィン90の高さLは、第1の放熱フィン80の高さLよりも低くなる。換言すると、第2の流路の深さは、第1の流路の深さよりも浅い。これにより、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。すなわち、第2の流路の圧力損失を、上述した従来のモータの第2の流路よりも大きくできる。
上述の構成によって、第1の流路及び第2の流路の圧力損失の差を小さくできるため、第1の流路を流通する冷却液の流量と、第2の流路を流通する冷却液の流量の差を小さくできる。よって、第1の流路及び第2の流路のそれぞれの内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ101の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
なお、実施の形態2において、複数の溝部8及び溝部9を形成した例を示したが、溝部8の深さを、溝部9の深さよりも深く形成すれば、溝部8及び溝部9はそれぞれ1つずつでもよい。このとき、放熱フィン80及び放熱フィン90は形成されないが、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。
実施の形態3.
図7は実施の形態3にかかるモータ102のインナーフレーム4の斜視図であり、図8は、実施の形態3にかかるモータ102のインナーフレーム4の断面図である。図8(a)は、第1の流路側のインナーフレーム4の断面図であり、図8(b)は、第2の流路側のインナーフレーム4の断面図である。このとき、入口ニップル51及び出口ニップル52は、それぞれアウターフレーム5の側壁部50の中央部に配置されている。そのため、入口ニップル51から第1の流路に流入した冷却液は、モータ102の軸方向において、入口ニップル51から出口ニップル52の流路長さが短い溝部8aのほうが、入口ニップル51から出口ニップル52の流路長さが長い溝部8bよりも流れやすい。したがって、溝部8aを流通する冷却液の流量は、溝部8bを流通する冷却液の流量よりも多くなる。第2の流路も、第1の流路と同様に、モータ102の軸方向において、入口ニップル51から出口ニップル52の流路長さが短い溝部9aを流通する冷却液の流量は、入口ニップル51から出口ニップル52の流路長さが長い溝部9bを流通する冷却液の流量よりも多くなる。ここで、入口ニップル51から出口ニップル52の流路長さとは、入口ニップル51から流入した冷却液が、出口ニップル52から流出するまでに流通する流路の流路長さを指す。モータ102では、溝部8a及び溝部8b、並びに溝部9a及び溝部9bの流路幅を異なる大きさにすることによって、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくするものである。以下、モータ102の第1の流路及び第2の流路について、詳細を説明する。
図8に示すように、モータ102では、溝部9は、溝部8よりも少なく形成する。また、第2の放熱フィン90の幅Wは、第1の放熱フィン80の幅Wよりも広い。これにより、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。よって、第2の流路の圧力損失を大きくすることにより、第1の流路及び第2の流路の圧力損失の差を小さくできるため、第1の流路を流通する冷却液の流量と、第2の流路を流通する冷却液の流量の差を小さくできる。このとき、各第1の放熱フィン80の幅W及び各第2の放熱フィン90の幅Wは、同一又はほぼ同一とする。
さらに、溝部8及び溝部9の流路幅を、入口ニップル51から出口ニップル52の流路長さが短いほど狭くして、入口ニップル51から出口ニップル52の流路長さが長いほど広くする。モータ102では、入口ニップル51及び出口ニップル52はいずれもアウターフレーム5の中央部に位置するため、溝部8及び溝部9の流路幅は、インナーフレーム4の中央部では狭く形成され、端部側では広く形成される。溝部8の流路幅を流路幅W、溝部9の流路幅を流路幅Wとしたとき、流路幅W及び流路幅Wは、インナーフレーム4の端部側は広く、中央部側は狭い。図8に示すように、インナーフレーム4の中央部側の流路幅WA1よりも、端部側の流路幅WA2の方が広い。また、インナーフレーム4の中央部側の流路幅WB1よりも、端部側の流路幅WB2の方が広い。これにより、インナーフレーム4の端部側を流通する冷却液の流量が増加し、中央部側を流通する冷却液の流量が減少するため、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできる。
なお、インナーフレーム4の中央部側では、流路幅を狭くすることにより冷却液の流量は減少するが、冷却液と放熱フィンとの接触面積を大きくして冷却効率を向上させる。流通する冷却液の流量と接触面積とのバランスを踏まえて、溝部8及び溝部9の流路幅、数、又は間隔等を設計すればよい。
上述の構成によって、第1の流路及び第2の流路のそれぞれの内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ102の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
また、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできるため、固定子コイル31の軸方向の温度のムラを低減でき、固定子コイル31をより効率よく冷却できるとともに、モータ102の効率を向上できる。
なお、実施の形態3において、入口ニップル51及び出口ニップル52が、それぞれアウターフレーム5の側壁部50の中央部に配置されている例を示したが、流路幅W及び流路幅Wを、入口ニップル51及び出口ニップル52から近い溝部8及び溝部9では狭くし、溝部8及び溝部9では広くすれば、軸方向の冷却液の流量の差を小さくできる。これは、以下の実施の形態においても同様である。
ここで、図9は、入口ニップル51から出口ニップル52までの流路長さと流通する冷却液の流量について説明する模式図である。図9は、第1の流路を示しているが、第2の流路も同様である。図9において、流路Lα及び流路Lβは、それぞれ入口ニップル51から流入した冷却液が、入口ヘッダ流路40、第1の流路、及び出口ヘッダ流路41を流通し、出口ニップル52から流出するまでの流路を示す。
図9(a)は、後述するモータ103の第1の流路を示す。図9(a)は、入口ニップル51及び出口ニップル52が、それぞれインナーフレーム4の中央部に形成される例を示す。インナーフレーム4の中央部を通る流路Lαの流路長さは、インナーフレーム4の端部側を通る流路Lβの流路長さよりも短い。そのため、流路Lαを流通する冷却液の流量は、流路Lβを流通する冷却液の流量よりも多くなる。図9(a)では、流路Lαの溝部8の流路幅を狭くするとともに、放熱フィン80の幅を広くして、圧力損失を増加させ、流路Lαを流通する冷却液の流量を減少させる。さらに、流路Lβの溝部8の流路幅を広くするとともに、放熱フィン80の幅を狭くして、流路Lβを流通する冷却液の流量を増加させる。モータ102のように、溝部8の流路幅のみを変えてもよい。
図9(b)は、入口ニップル51が、アウターフレーム5の一方の端部側に、出口ニップル52が、アウターフレーム5の他方の端部側に形成される例を示す。流路Lαの流路長さ及び流路Lβの流路長さは、ほぼ同等となる。それぞれの流路を流通する冷却液の流量に差がないため、図9(b)は、インナーフレーム4の軸方向において、溝部8の流路幅及び放熱フィン80の幅は同一である。
図9(c)は、入口ニップル51が、アウターフレーム5の中央部から、一方の端部側にずれて形成され、出口ニップル52が、アウターフレーム5の中央部から、他方の端部側にずれて形成される例を示す。このとき、アウターフレーム5の中央部から、端部側にずれている量は、入口ニップル51及び出口ニップル52でそれぞれ同量とする。そのため、インナーフレーム4の中央部を通る流路Lα1の流路長さ及び流路Lα2の流路長さは、ほぼ同等である。また、流路Lα1及び流路Lα2の流路長さは、インナーフレーム4の端部側を流通する流路Lβの流路長さよりも短い。流路Lα1及び流路Lα2付近の溝部8の流路幅及び放熱フィン80の幅は変えず、流路Lβに近付くほど、溝部8の流路幅を広くするとともに、放熱フィン80の幅を狭くして、流路Lβを流通する冷却液の流量を増加させる。
図9(d)は、入口ニップル51が、アウターフレーム5の一方の端部側に形成され、出口ニップル52が、アウターフレーム5の中央部に形成される例を示す。流路Lαの流路長さは、流路Lβの流路長さよりも短い。そのため、流路Lαを流通する冷却液の流量は、流路Lβを流通する冷却液の流量よりも多くなる。したがって、流路Lαの溝部8の流路幅を狭くするとともに、放熱フィン80の幅を広くして、流路Lαを流通する冷却液の流量を減少させる。さらに、流路Lβの溝部8の流路幅を広くするとともに、放熱フィン80の幅を狭くして、流路Lβを流通する冷却液の流量を増加させる。
図9(e)は、入口ニップル51及び出口ニップル52が、いずれもアウターフレーム5の一方の端部側に形成される例を示す。図9(d)と同様に、流路Lαの流路長さは、流路Lβの流路長さよりも短い。そのため、流路Lαを流通する冷却液の流量は、流路Lβを流通する冷却液の流量よりも多くなる。したがって、流路Lαの溝部8の流路幅を狭くするとともに、放熱フィン80の幅を広くして、流路Lαを流通する冷却液の流量を減少させる。さらに、流路Lβの溝部8の流路幅を広くするとともに、放熱フィン80の幅を狭くして、流路Lβを流通する冷却液の流量を増加させる。
以上のように、アウターフレーム5に形成される入口ニップル51及び出口ニップル52の位置によって、流通する冷却液の流量が変わるため、入口ニップル51から出口ニップル52までの流路長さに基づき溝部8の流路幅及び放熱フィン80の幅等を変えて、軸方向の流量の差を小さくし、軸方向の温度のムラを低減させる。
実施の形態4.
図10は実施の形態4にかかるモータ103のインナーフレームの斜視図であり、図11は、実施の形態4にかかるモータ103のインナーフレームの断面図である。図11(a)は、第1の流路側のインナーフレーム4の断面図であり、図11(b)は、第2の流路側のインナーフレーム4の断面図である。モータ103は、インナーフレーム4の端部側の第1の放熱フィン80の幅W1bが、中央部側の第1の放熱フィン80の幅W1aよりも狭く、インナーフレーム4の端部側の第2の放熱フィン90の幅W2bが、中央部側の第2の放熱フィン90の幅W2aよりも狭い点で、モータ102と異なる。
図11に示すように、モータ103では、溝部9を溝部8よりも少なく形成する。そのため、第2の放熱フィン90の幅Wは、第1の放熱フィン80の幅Wよりも大きくなる。これにより、モータ103では、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。よって、第2の流路の圧力損失を大きくすることにより、第1の流路及び第2の流路の圧力損失の差を小さくできるため、第1の流路を流通する冷却液の流量と、第2の流路を流通する冷却液の流量の差を小さくできる。
さらに、モータ103では、溝部8の流路幅Wを、インナーフレーム4の端部側は広く、中央部側は狭くする。すなわち、流路幅WA1よりも流路幅WA2を広くする。また、溝部9の流路幅Wを、インナーフレーム4の端部側は広く、中央部側は狭くする。すなわち、流路幅WB1よりも第2の流路の流路幅WB2を広くする。これにより、インナーフレーム4の端部側を流通する冷却液の流量と、中央部側を流通する冷却液の流量の差を小さくできる。すなわち、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできる。
上述の構成によって、第1の流路及び第2の流路のそれぞれの内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ103の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
また、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできるため、固定子コイル31の軸方向の温度のムラを低減でき、固定子コイル31をより効率よく冷却できるとともに、モータ103の効率を向上できる。
なお、実施の形態4において、溝部8(溝部9)の流路幅W(流路幅W)を、インナーフレーム4の端部側は広く、中央部側は狭くする例を示したが、流路幅W及び流路幅Wは、入口ニップル51から出口ニップル52までの流路長さに基づいて設計すればよい。
実施の形態5.
図12は実施の形態5にかかるモータ104のインナーフレームの斜視図であり、図13は、実施の形態5にかかるモータ104のインナーフレームの断面図である。図13(a)は、第1の流路側のインナーフレーム4の断面図であり、図13(b)は、第2の流路側のインナーフレーム4の断面図である。モータ104は、インナーフレーム4の端部側及び中央部側で溝部8及び溝部9の深さが異なる点で、モータ101と異なる。
モータ104では、溝部8及び溝部9の深さは、インナーフレーム4の端部側は浅く、中央部側は深い。そのため、第1の放熱フィン80の高さL及び第2の放熱フィン90の高さLは、それぞれインナーフレーム4の端部側は高く、中央部側は低い。これにより、インナーフレーム4の端部側を流通する冷却液の流量と、中央部側を流通する冷却液の流量の差を小さくできる。すなわち、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできる。このとき、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計よりも小さくなるように、溝部8及び溝部9の深さを設定する。
上述の構成によって、第1の流路及び第2の流路のそれぞれの内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ104の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
また、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできるため、固定子コイル31の軸方向の温度のムラを低減でき、固定子コイル31をより効率よく冷却できるとともに、モータ104の効率を向上できる。
なお、実施の形態5において、第1の放熱フィン80の高さL及び第2の放熱フィン90の高さLを、それぞれインナーフレーム4の端部側では高く、中央部側では低くする例を示したが、高さL及び高さLは、入口ニップル51から出口ニップル52までの流路長さに基づいて設計すればよい。
実施の形態6.
図14は実施の形態6にかかるモータ105のインナーフレームの斜視図であり、図15は、実施の形態6にかかるモータ105のインナーフレームの正面図である。
モータ105では、第2の放熱フィン90に、突起部10(第1の突起部)が形成される。突起部10は、図15に示すように、第2の放熱フィン90の両側の溝部9に突出して形成された凸部を有する。これにより、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。
上述の構成によって、第2の流路は、突起部10によって、圧力損失が増加する。そのため、第1の流路を流通する冷却液と、第2の流路を流通する冷却液の流量の差が小さくなるため、第1の流路及び第2の流路のそれぞれの内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ105の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
なお、実施の形態6において、各第2の放熱フィン90に突起部10を形成する例を示したが、すべての第2の放熱フィン90に形成しなくてもよい。
また、第2の放熱フィン90の両側の溝部9に凸部を有する突起部10を例に示したが、第2の放熱フィン90の片側の溝部9だけに凸部を有してもよい。
実施の形態7.
図16は、実施の形態7にかかるモータ106の第2の流路側のインナーフレーム4の斜視図であり、図17は、実施の形態7にかかるモータ106の第2の流路側のインナーフレーム4の正面図である。図18は、実施の形態7にかかるモータ106の第1の流路側のインナーフレーム4の斜視図であり、図19は、実施の形態7にかかるモータ106の第1の流路側のインナーフレーム4の正面図である。
モータ106は、第2の放熱フィン90に、突起部10が形成されるとともに、第1の放熱フィン80に、突起部11(第2の突起部)が形成される点で、モータ105と異なる。突起部11は、図19に示すように、第1の放熱フィン80の両側の溝部8に突出して形成された凸部を有する。また、突起部10の凸部は、突起部11の凸部より大きい。これにより、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。以下、突起部10の凸部及び突起部11の凸部の大きさを、単に突起部10及び突起部11の大きさという。
さらに、モータ106では、突起部10及び突起部11の大きさは、それぞれインナーフレーム4の端部側を小さく、中央部側を大きくする。すなわち、図17に示すように、突起部10aよりも突起部10bを小さくする。また、図19に示すように、突起部11aよりも突起部11bを小さくする。これにより、インナーフレーム4の端部側を流通する冷却液の流量と、中央部側を流通する冷却液の流量の差を小さくできる。
上述の構成によって、第1の流路及び第2の流路のそれぞれの直下に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ106の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
また、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできるため、固定子コイル31の軸方向の温度のムラを低減でき、固定子コイル31をより効率よく冷却できるとともに、モータ106の効率を向上できる。
なお、実施の形態7において、各第2の放熱フィン90に突起部10を形成する例を示したが、すべての第2の放熱フィン90に形成しなくてもよい。
また、実施の形態7において、各第1の放熱フィン80に突起部11を形成する例を示したが、すべての第1の放熱フィン80に形成しなくてもよい。
また、第1の放熱フィン80の両側の溝部8に凸部を有する突起部11を例に示したが、第1の放熱フィン80の片側の溝部8だけに凸部を有してもよい。
また、実施の形態7において、突起部10及び突起部11の数を、それぞれインナーフレーム4の端部側を小さく、中央部側を大きくする例を示したが、突起部10及び突起部11の数は、入口ニップル51から出口ニップル52までの流路長さに基づいて設計すればよい。
実施の形態8.
図20は、実施の形態8にかかるモータ107の第2の流路側のインナーフレーム4の斜視図であり、図21は、実施の形態8にかかるモータ107の第2の流路側のインナーフレーム4の正面図である。図22は、実施の形態8にかかるモータ107の第1の流路側のインナーフレーム4の斜視図であり、図23は、実施の形態8にかかるモータ107の第1の流路側のインナーフレーム4の正面図である。
モータ107は、各第1の放熱フィン80及び各第2の放熱フィン90が、それぞれ複数の突起部10及び突起部11を有する点で、モータ106と異なる。さらに、モータ107では、突起部10の数を、突起部11の数より多くする。これにより、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。
さらに、モータ107では、突起部10及び突起部11の数は、それぞれインナーフレーム4の端部側を少なく、中央部側を多くする。これにより、インナーフレーム4の端部側を流通する冷却液の流量と、中央部側を流通する冷却液の流量の差を小さくできる。
上述の構成によって、第1の流路及び第2の流路のそれぞれの内側に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ107の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
さらに、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできるため、固定子コイル31の軸方向の温度のムラを低減でき、固定子コイル31をより効率よく冷却できるとともに、モータ107の効率を向上できる。
なお、実施の形態8において、突起部10及び突起部11の大きさを、それぞれインナーフレーム4の端部側を少なく、中央部側を多くする例を示したが、突起部10及び突起部11の大きさは、入口ニップル51から出口ニップル52までの流路長さに基づいて設計すればよい。
実施の形態9.
図24は、実施の形態9にかかるモータ108の第2の流路側のインナーフレーム4の斜視図であり、図25は、実施の形態9にかかるモータ108の第2の流路側のインナーフレーム4の正面図である。図26は、実施の形態9にかかるモータ108の第1の流路側のインナーフレーム4の斜視図であり、図27は、実施の形態9にかかるモータ108の第1の流路側のインナーフレーム4の正面図である。
モータ108は、第1の放熱フィン80及び第2の放熱フィン90が、それぞれ複数の突起部10及び突起部11を有し、突起部10が、突起部11よりも大きい点で、モータ107と異なる。突起部10が、突起部11よりも大きいことにより、第2の流路の流路断面積の合計を、第1の流路の流路断面積の合計より小さくできる。
さらに、モータ108では、突起部10及び突起部11の数は、それぞれインナーフレーム4の端部側を少なく、中央部側を多くする。これにより、インナーフレーム4の端部側を流通する冷却液の流量と、中央部側を流通する冷却液の流量の差を小さくできる。
上述の構成によって、第1の流路及び第2の流路のそれぞれの直下に配置される固定子コイル31の円周方向の温度差を小さくすることができ、固定子コイル31を効率よく冷却できるとともに、モータ108の効率を向上できる。
また、第2の流路の圧力損失が増加し、第2の流路を流通する冷却液の流量が減少し、第1の流路を流通する冷却液の流量が増加することによって、出口ニップル52付近でも冷却液の温度が低くなり、さらに冷却効率が向上する。
また、第1の流路及び第2の流路を流通する冷却液の、軸方向の流量の差を小さくできるため、固定子コイル31の軸方向の温度のムラを低減でき、固定子コイル31をより効率よく冷却できるとともに、モータ108の効率を向上できる。
実施の形態10.
図28は、実施の形態10にかかるモータ装置200の斜視図であり、図29は、実施の形態10にかかるモータ装置200の動作を示す図である。モータ装置200は、モータ100、インバータ1、及び制御装置(図28に図示せず)を備える。
制御装置は、モータ100の回転子2の回転数、トルク、又はモータ100の温度等、モータ100の動作状態の情報をモータ100から受け取る。制御装置は、これらの情報から、モータ100に給電する電流の振幅及び位相を決定し、インバータ1に指令を送る。
インバータ1は、モータ100の反負荷側ブラケット7に設置される。インバータ1は、制御装置からの指令に基づいた振幅及び位相の電流を、モータ100の固定子コイル31に給電する。指令に基づいた振幅及び位相の電流がモータ100の固定子コイル31に給電されると、回転子2が回転する。回転子2が回転することにより、回転子2の中心部に固定されたシャフト22から、モータ100の外部へ動力が伝わる。このように、インバータ1は、モータ100の回転子2の回転数及びトルクを制御する。
このとき、固定子コイル31に電流が流れることにより、固定子コイル31で銅損が発生する。さらに、固定子コア30と回転子コア20とが積層された電磁鋼板(図28に図示せず)で鉄損が発生し、回転子2が回転することによって負荷側ベアリング60と反負荷側ベアリング70とで機械損等の損失が発生する。発生した損失は、熱となってモータ100の内部を移動し、固定子コイル31等、各部の温度を上昇させる。また、各部を通った熱は、主としてインナーフレーム4から第1の流路と第2の流路を流れる冷却液に熱伝達により放熱される。
このように、モータ装置200は、モータ100と、モータ100の回転数及びトルクを制御するインバータ1と、モータ100の動作状態の情報から、モータ100に給電する電流の振幅及び位相を決定し、決定した電流の振幅及び位相を、インバータ1に送る制御装置とを備えるものである。
上述の構成によって、固定子コイル31をより効率よく冷却できるため、モータ100を効率よく冷却できる。これにより、モータ装置200のインバータ1からモータ100に流す電流を大きくすることできるため、より高出力、すなわち、高回転数及び高トルクのモータ装置200を得ることができる。
また、モータ装置200は、モータ100とインバータ1とを一体としているため、配線及び部品が少なく、機器にモータ100を搭載する作業が容易になり、作業性を向上できる。
なお、実施の形態10において、モータ装置200は制御装置26と別体であるが、制御装置もモータ100及びインバータ1と一体としてもよい。
また、実施の形態10において、インバータ1はモータ100の反負荷側ブラケット7側、すなわち、モータ100の後方に配置しているが、モータ100の側面又は前方等、どこに配置してもよい。
なお、実施の形態10において、モータ装置200がモータ100を備える例を示したが、モータ101〜108のいずれであってもよい。
なお、本開示において、入口ニップル51及び出口ニップル52が、アウターフレーム5の側壁部50上の中央部に配置された例を示したが、側壁部50の端部側に配置してもよい。
また、本開示において、入口ニップル51及び出口ニップル52が、モータ100〜108の軸方向と直交する方向に延伸している例を示したが、他の角度であってもよい。
また、本開示において、突起部10及び突起部11を正面から見た形状を円形とする例を示したが、他の形状、例えば楕円形であってもよいし、四角形又は三角形等の多角形であってもよい。
なお、本開示は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。
1 インバータ、2 回転子、3 固定子、4 インナーフレーム、
5 アウターフレーム、6 負荷側ブラケット、7 反負荷側ブラケット、8、9 溝部、
10、11 突起部、20 回転子コア、21 磁石、22 シャフト、26 制御装置、
30 固定子コア、31 固定子コイル、40 入口ヘッダ流路、41 出口ヘッダ流路、
50 側壁部、51 入口ニップル、52 出口ニップル52 負荷側ベアリング、
70 反負荷側ベアリング、80 第1の放熱フィン、90 第2の放熱フィン、
100、101、102、103、104、105、106、107、108 モータ、
200 モータ装置。

Claims (14)

  1. 回転子を囲う固定子が内側に配置され、冷却液が流通する入口ヘッダ流路、出口ヘッダ流路、第1の流路及び第2の流路が形成される筒状のインナーフレームと、
    前記インナーフレームの外周を囲う筒状の側壁部、並びに前記入口ヘッダ流路と連通して形成され、前記冷却液が流入する流入口及び前記出口ヘッダ流路と連通して形成され、前記冷却液が流出する流出口を有するアウターフレームと、を備え、
    前記第1の流路及び前記第2の流路は、それぞれ一端が前記入口ヘッダ流路と接続され、他端が前記出口ヘッダ流路と接続され、
    前記第2の流路は、前記冷却液が前記第1の流路と反対方向に流通し、前記第1の流路よりも前記冷却液が流通する円周方向の長さが短く、前記冷却液が流通する流路断面積が、前記第1の流路の流路断面積より小さい、
    モータ。
  2. 前記第1の流路は、前記アウターフレームの前記側壁部と、前記インナーフレームの外周側から内周側に向かって形成されるとともに前記インナーフレームの外周に沿って延伸する第1の溝部とによって形成され、
    前記第2の流路は、前記アウターフレームの前記側壁部と、前記インナーフレームの外周側から内周側に向かって形成されるとともに前記インナーフレームの外周に沿って延伸する第2の溝部とによって形成され、
    前記第2の溝部の数は、前記第1の溝部の数より少ない、
    請求項1に記載のモータ。
  3. 前記第1の流路は、前記アウターフレームの前記側壁部と、前記インナーフレームの外周側から内周側に向かって形成されるとともに前記インナーフレームの外周に沿って延伸する第1の溝部とによって形成され、
    前記第2の流路は、前記アウターフレームの前記側壁部と、前記インナーフレームの外周側から内周側に向かって形成されるとともに前記インナーフレームの外周に沿って延伸する第2の溝部とによって形成され、
    前記第2の溝部の深さは、前記第1の溝部の深さより浅い、
    請求項1又は請求項2に記載のモータ。
  4. 前記第1の流路は、前記アウターフレームの前記側壁部と、前記インナーフレームの外周側から内周側に向かって形成されるとともに前記インナーフレームの外周に沿って延伸する第1の溝部とによって形成され、
    前記第2の流路は、前記アウターフレームの前記側壁部と、前記インナーフレームの外周側から内周側に向かって形成されるとともに前記インナーフレームの外周に沿って延伸する第2の溝部とによって形成され、
    前記冷却液が流通する流路幅は、前記第1の溝部より前記第2の溝部が狭い、
    請求項1〜3のいずれか一項に記載のモータ。
  5. 前記インナーフレームは、前記第1の溝部及び前記第2の溝部をそれぞれ複数有し、前記第1の溝部及び隣接する前記第1の溝部の間には、前記インナーフレームの外周に沿って第1の放熱フィンが形成され、前記第2の溝部及び隣接する前記第2の溝部の間には、前記インナーフレームの外周に沿って第2の放熱フィンが形成される、
    請求項2〜4のいずれか一項に記載のモータ。
  6. 前記第1の放熱フィン及び前記第2の放熱フィンの少なくとも一方は、モータの軸方向において、前記流入口から前記流出口までの流路長さが短いと軸方向の幅が広く、長いと軸方向の幅が狭い、
    請求項5に記載のモータ。
  7. 前記第1の溝部及び前記第2の溝部の少なくとも一方は、モータの軸方向において、前記流入口から前記流出口までの流路長さが短いと流路幅が狭く、長いと流路幅が広い、
    請求項2〜6のいずれか一項に記載のモータ。
  8. 前記第1の溝部及び前記第2の溝部の少なくとも一方は、モータの軸方向において、前記流入口から前記流出口までの流路長さが短いと深さが浅く、長いと深さが深い、
    請求項2〜7のいずれか一項に記載のモータ。
  9. 前記第2の放熱フィンは、前記第2の溝部側に突出した第1の突起部を有する、
    請求項5〜8のいずれか一項に記載のモータ。
  10. 前記第1の放熱フィンは、前記第1の溝部側に突出した第2の突起部を有し、
    前記第1の突起部は、前記第2の突起部より大きい、
    請求項9に記載のモータ。
  11. 前記第1の放熱フィンは、前記第1の溝部側に突出した第2の突起部を有し、
    前記第1の突起部の数は、前記第2の突起部の数より多い、
    請求項9又は請求項10に記載のモータ。
  12. 前記第1の突起部及び前記第2の突起部の少なくとも一方は、モータの軸方向において、前記流入口から前記流出口までの流路長さが短いと数が多く、長いと数が少ない、
    請求項9〜11のいずれか一項に記載のモータ。
  13. 前記第1の突起部及び前記第2の突起部の少なくとも一方は、モータの軸方向において、前記流入口から前記流出口までの流路長さが短いと大きく、長いと小さい、
    請求項9〜12のいずれか一項に記載のモータ。
  14. 請求項1〜13のいずれか一項に記載のモータと、
    前記モータの回転数及びトルクを制御するインバータと、
    前記モータの動作状態の情報から、前記モータに給電する電流の振幅及び位相を決定し、決定した前記電流の振幅及び位相を、前記インバータに送る制御装置と
    を備えるモータ装置。
JP2020543826A 2020-03-30 2020-03-30 モータ及びモータ装置 Active JP6791463B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014602 WO2021199172A1 (ja) 2020-03-30 2020-03-30 モータ及びモータ装置

Publications (2)

Publication Number Publication Date
JP6791463B1 true JP6791463B1 (ja) 2020-11-25
JPWO2021199172A1 JPWO2021199172A1 (ja) 2021-10-07

Family

ID=73452949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020543826A Active JP6791463B1 (ja) 2020-03-30 2020-03-30 モータ及びモータ装置

Country Status (2)

Country Link
JP (1) JP6791463B1 (ja)
WO (1) WO2021199172A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097534A (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 回転電機ユニット
JP7014344B1 (ja) * 2021-03-24 2022-02-01 三菱電機株式会社 モータ及びモータ装置
JP7400888B1 (ja) 2022-07-14 2023-12-19 株式会社明電舎 回転機における冷却液の流路構造

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023079719A1 (ja) * 2021-11-08 2023-05-11 日立Astemo株式会社 回転電機
CN116073740B (zh) * 2023-04-06 2023-07-25 精效悬浮(苏州)科技有限公司 一种高速电机控制方法及控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111374A1 (ja) * 2011-02-18 2012-08-23 本田技研工業株式会社 回転電機のケース
US8492952B2 (en) * 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
JP2014138542A (ja) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp 電動機
JP2016220298A (ja) * 2015-05-15 2016-12-22 日立オートモティブシステムズ株式会社 アキシャルギャップ型回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492952B2 (en) * 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
WO2012111374A1 (ja) * 2011-02-18 2012-08-23 本田技研工業株式会社 回転電機のケース
JP2014138542A (ja) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp 電動機
JP2016220298A (ja) * 2015-05-15 2016-12-22 日立オートモティブシステムズ株式会社 アキシャルギャップ型回転電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021097534A (ja) * 2019-12-18 2021-06-24 本田技研工業株式会社 回転電機ユニット
JP7014344B1 (ja) * 2021-03-24 2022-02-01 三菱電機株式会社 モータ及びモータ装置
WO2022201374A1 (ja) * 2021-03-24 2022-09-29 三菱電機株式会社 モータ及びモータ装置
JP7400888B1 (ja) 2022-07-14 2023-12-19 株式会社明電舎 回転機における冷却液の流路構造
WO2024014464A1 (ja) * 2022-07-14 2024-01-18 株式会社明電舎 回転機における冷却液の流路構造

Also Published As

Publication number Publication date
WO2021199172A1 (ja) 2021-10-07
JPWO2021199172A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6791463B1 (ja) モータ及びモータ装置
US10707726B2 (en) Cooling structure for dynamo-electric machine
US10523084B2 (en) Cooling system for an electric machine
JP2019176648A (ja) 固定子枠、固定子及び回転電機
US20190280536A1 (en) Rotary electric machine cooling structure
JP2006311750A (ja) 回転電機の冷却装置
JP4066982B2 (ja) ディスク型回転電機のステータ冷却構造
KR100934206B1 (ko) 전동기 냉각장치
JP2014087248A (ja) 液冷式の回転電機および回転電機システム
KR20200093868A (ko) 모터의 냉각 구조
JP2016093014A (ja) 全閉式回転電機
JP5892091B2 (ja) マルチギャップ型回転電機
JP5955235B2 (ja) 電動機
JP2022070634A (ja) 回転電機用ロータ
JP7014344B1 (ja) モータ及びモータ装置
JP2023000723A (ja) 回転電機用ケース、及び回転電機
KR20140066880A (ko) 하이브리드 차량용 구동모터 방열장치
JP6684318B2 (ja) 回転電気機械の冷却構造
US20220263358A1 (en) Rotating electric machine
CN220210039U (zh) 定子冲片、定子组件、电机以及车辆
JP2013158161A (ja) 回転電機
JP6775715B1 (ja) ロータおよび回転電機
CN220210038U (zh) 定子冲片、定子组件、电机以及车辆
JP6684320B2 (ja) 回転電機の冷却構成
JP2010259146A (ja) モータステータおよび分割ステータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200817

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200817

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6791463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250