JP6790054B2 - 撮像システム、撮像システムの制御方法、および制御プログラム - Google Patents

撮像システム、撮像システムの制御方法、および制御プログラム Download PDF

Info

Publication number
JP6790054B2
JP6790054B2 JP2018245853A JP2018245853A JP6790054B2 JP 6790054 B2 JP6790054 B2 JP 6790054B2 JP 2018245853 A JP2018245853 A JP 2018245853A JP 2018245853 A JP2018245853 A JP 2018245853A JP 6790054 B2 JP6790054 B2 JP 6790054B2
Authority
JP
Japan
Prior art keywords
calibration
characteristic
input
output
input voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018245853A
Other languages
English (en)
Other versions
JP2019193247A (ja
Inventor
田口 滋也
滋也 田口
誠一 濱
誠一 濱
伸之 芦田
伸之 芦田
飯塚 邦彦
邦彦 飯塚
剛宏 進藤
剛宏 進藤
中村 功
功 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to US16/373,319 priority Critical patent/US10866332B2/en
Priority to CN201910320131.0A priority patent/CN110401802B/zh
Publication of JP2019193247A publication Critical patent/JP2019193247A/ja
Application granted granted Critical
Publication of JP6790054B2 publication Critical patent/JP6790054B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子を備えた撮像システムに関する。
入射した放射線、例えばX線の線量に応じた電気信号を出力するセンサ素子には、X線を直接電気信号に変換する直接変換型のもの、X線をシンチレータにより光に変換してから光電変換素子により電気信号に変換する間接変換型のものがある。
X線画像撮像用のパネルは、上記のセンサ素子をピクセルごとに設け、当該ピクセルを基板(パネル)上に2次元マトリックス状に配置することにより構成されている。このようなパネルでは、各ピクセルの制御に薄膜トランジスタ素子(TFT(Thin Film Transistor)素子)が使われている。そして、直接変換型および間接変換型の何れにおいても、X線の線量に応じて発生した電気信号(電荷)が各ピクセル内の容量に蓄積されるようになっている。
この蓄積された容量を、TFT素子を介して、パネルの外部にある増幅器に転送するものをパッシブピクセル型と呼ぶ。また、蓄積された容量を、TFT素子を増幅素子として使うことで増幅して外部の回路に伝えるものをアクティブピクセル型と呼ぶ。アクティブピクセル型は、ピクセル内で増幅できるため、パッシブピクセル型と比較して、同一の線量に対して大きな信号を得ることができる。このため、低照射量であっても、適切な信号が得られるという利点がある。
センサ素子を用いてX線を検出する場合、パネル上には複数のセンサ素子が2次元マトリックス状に設けられているため、センサ素子の特性の相異に起因する出力電圧のばらつきを補正する必要がある(キャリブレーション)。特に、アクティブピクセル型は、ピクセル毎に増幅部が設けられ、当該増幅部は非線形性が高く、かつゲインやオフセットのばらつきが存在するため、補正を行う必要がある。
そこで、特許文献1には、互いに異なる濃度を有する2つの濃度基準板を光電走査して得られた濃度値と予め判明している濃度値とから求めた補正値を用いるキャリブレーション方法が記載されている。
また、特許文献2には、イメージセンサから出力されるアナログ信号の各ビット間のばらつきを、予め基準面を複数回読み取り、その結果からビットごとの補正値を求めることにより補正する方法が記載されている。
特開昭61−53868号公報(1986年3月17日公開) 特開昭57−119565号公報(1982年7月26日公開)
しかしながら、上述のような従来技術は以下の問題がある。特許文献1では、濃度値が判明している濃度基準板を前もって光電走査している。すなわち、撮像前に、濃度基準板に対しX線を照射することにより濃度値を得ている。しかし、X線の照射は厳しい管理下で行う必要があり、簡単に行う事はできない。
特許文献2も、予め読み取りを行っている点は同じであり、特許文献1と同様の弊害がある。
本発明の一態様は上記の問題に鑑みてなされたものであり、その目的は、容易に補正(キャリブレーション)を行うことができる撮像システムを実現することを目的とする。
上記の課題を解決するために、本発明の一態様に係る撮像システムは、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、前記キャリブレーション特性導出部は、前記電圧印加部が印加した前記入力電圧の一部を間引いた前記入力出力特性の逆特性に基づいて前記キャリブレーション特性を導出する
また、上記の課題を解決するために、本発明の一態様に係る撮像システムは、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、前記キャリブレーション特性導出部は、閾値以下の前記入力電圧に対応する第1区間と、該閾値より大きい前記入力電圧に対応する第2区間とで異なる補間式を用いて前記入力出力特性を導出する。
また、上記の課題を解決するために、本発明の一態様に係る撮像システムは、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、前記キャリブレーション特性導出部は、前記入力電圧の所定値からの変化量に基づいて前記入力出力特性を導出する。
また、上記の課題を解決するために、本発明の一態様に係る撮像システムは、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、撮像前の、前記キャリブレーション特性を用いて導出したキャリブレーション値と、撮像後の前記キャリブレーション値との差分値をキャリブレーションの結果として出力するキャリブレーション部を備えている。
また、上記の課題を解決するために、本発明の一態様に係る撮像システムは、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、前記キャリブレーション特性導出部は、前記キャリブレーション特性を導出後、所定期間経過後に、所定の前記入力電圧に対応する出力を取得し、当該出力と、前回、前記キャリブレーション特性を導出したときの当該入力電圧に対応する出力との差分が閾値を超える場合、再度、キャリブレーション特性を導出する。
本発明の一態様によれば、センサ素子に放射線を入射させることなく当該ピクセルに対応するキャリブレーション特性を導出することができる。よって、容易に当該ピクセルの出力に対するキャリブレーションを行うことができるという効果を奏する。
本実施形態に係る撮像システムの概要を示す図である。 撮像センサ本体に含まれるピクセル内の回路構成を示す図である。 キャリブレーション装置の要部構成を示すブロック図である。 (a)は、入力電圧設定部が設定した入力電圧と設定用出力値取得部が取得した出力との関係を示すグラフであり、(b)は(a)に示すグラフの逆特性を示すグラフである。 キャリブレーション設定部がキャリブレーション特性を導出する処理の流れを示すフローチャートである。 キャリブレーション特性を導出する処理を説明するための回路図である。 一部を間引いて逆特性を導出する例を説明するための図である。 逆特性を3つのパラメータを含む式で表現する例を説明するための図である。 ピクセルごとに異なる基準電位を与えるための回路図である。 ピクセルごとに基準電位を異ならせることにより、ピクセルの特性を有効に利用できる理由を説明するための図であり、(a)はピクセルの基準電位を特定の電位とした場合の例を示す図であり、(b)はピクセルごとに基準電位を異ならせた場合の例を示す図である。 他の実施形態に係る入出力特性の導出例を説明するための図である。 さらに他の実施形態に係る入出力特性の導出例を説明するための図である。 (a)は、しきい値電圧が変動したときの入力−出力特性の変化を示す図であり、(b)はその逆特性を示す図である。 差分値を用いることによりしきい値電圧の変動の影響を受けない理由を説明するための図である。
〔実施形態1〕
〔概要〕
以下、本発明の一実施形態について、詳細に説明する。まず、図1を参照して本実施形態に係る撮像システム1の概要について説明する。図1は、撮像システム1の概要を示す図である。図1に示すように、撮像システム1はキャリブレーション装置10、撮像センサ20、および表示装置30を含む。撮像システム1では、キャリブレーション装置10においてキャリブレーション特性を導出し、導出したキャリブレーション特性を用いて、撮像センサ20で撮像した画像をキャリブレーションして表示装置30に表示する。キャリブレーション特性とは、キャリブレーション(補正)に用いる特性であり、例えば、補正式、補正値、補正係数等、撮像センサ20に含まれるピクセル211の相対的な差異を補正するために用いるものである。
詳細は後述するが、キャリブレーション装置10は、撮像センサ20の撮像センサ本体21に含まれる各ピクセル211に電圧を印加することによりピクセル211の特性を取得し、取得した特性に基づいてキャリブレーション特性を導出する。
これにより、キャリブレーション装置10は、予め撮像センサ20において撮像を行うことなくキャリブレーション特性を導出することができる。
よって、従来技術のように予めX線による撮像を行うために様々な準備、設定、管理等を行う必要がなく、容易にキャリブレーション特性を導出することができる。
そして、撮像システム1では、当該キャリブレーション特性を用いて、撮像画像のキャリブレーションを行うことができる。よって、撮像システム1では、容易にキャリブレーションを行うことができる。
撮像センサ20は、撮像センサ本体21、電圧生成部22、行選択部23、および読出部24を含む。
撮像センサ本体21は、2次元マトリックス状に配置された複数のピクセル211からなる撮像センサの本体である。
電圧生成部22は、ピクセル211に印加する電圧を生成し、列ごとに生成した電圧を印加する。
行選択部23は、電圧生成部22が生成した電圧を印加する行を選択する。電圧生成部22は列ごとに印加するので、行選択部23により行が選択されることにより、電圧生成部22で生成した電圧はピクセル211ごとに印加することができる。
読出部24は、ピクセル211からの出力を読み出し、キャリブレーション装置10に送信する。なお、読出部24には、後述するAFE241が含まれる。
〔ピクセル内回路〕
次に、図2を参照して、ピクセル211内の回路構成について説明する。図2は、ピクセル211内の回路構成を示す図である。図2に示すように、撮像センサ本体21は、複数のピクセル211が2次元マトリックス状に配置されたアレイ(図2では、縦512個×横512個の例を示す)と、アレイ前面を覆うシンチレータ(図示せず)で構成されている。シンチレータは、X線を受光し、受光したX線を光に変換するX線光変換機能を有する。
また、図2に示すように、ピクセル内回路250は、キャリブレーション/リセットスイッチ251、フォトダイオード(センサ素子)252、Ampトランジスタ(アンプトランジスタ)253、およびリードスイッチ254を含む。
キャリブレーション/リセットスイッチ251は、Ampトランジスタ253のゲート電極に、キャリブレーション設定電圧またはリセット電圧を印加するためのスイッチである。ここで、キャリブレーション設定電圧とは、キャリブレーション特性を導出するために印加する電圧である。また、リセット電圧とは、フォトダイオード252が発生した電荷をリセットする電圧である。
フォトダイオード252の出力がAmpトランジスタ253のゲート電極と接続されている。これにより、放射線が入射することによりフォトダイオード252が受光して電荷(電気信号)が発生すると、フォトダイオード252に接続されたAmpトランジスタ253のゲート電極の電圧が変化する。Ampトランジスタ253は、ゲート電極の電圧変化を、ドレインソース間の電流変化として出力する。
Ampトランジスタ253は、上記電気信号を増幅するトランジスタである。
リードスイッチ254は、Ampトランジスタ253のドレインソース間の電流をピクセル211の外部に出力するためのスイッチであり、読出部24により制御される。
また、ピクセル211から出力された電流は、読出部24のAFE(analog front end)241により増幅、A/D変換されてキャリブレーション装置10に出力される。
〔キャリブレーション装置10の構成〕
次に、図3を参照して、キャリブレーション装置10について説明する。図3は、キャリブレーション装置10の要部構成を示すブロック図である。図3に示すように、キャリブレーション装置10は、キャリブレーション設定部100、撮像出力値取得部110、キャリブレーション部120、および出力部130を含む。
キャリブレーション設定部100は、撮像センサ20の各ピクセル211のキャリブレーション特性を設定するものである。キャリブレーション特性とは、キャリブレーションに用いる特性である。撮像センサ20からの出力に対し、キャリブレーション特性を用いてキャリブレーションすることにより、適切な値を出力できる。
より詳細には、キャリブレーション設定部100は、入力電圧設定部(電圧印加部)101、設定用出力値取得部(取得部)102、キャリブレーション特性導出部103、およびキャリブレーション特性導出用データ104を含む。
入力電圧設定部101は、キャリブレーション特性を導出するための入力電圧を設定し、電圧生成部22に指示して、ピクセル211に印加させる。より詳細には、入力電圧設定部101は、所定の条件に従って入力電圧を順次設定し、その都度、ピクセル211に印加する。また、設定した入力電圧を示す情報をキャリブレーション特性導出用データ104に格納する。入力電圧の設定処理の流れについては後述する。
設定用出力値取得部102は、入力電圧設定部101によって設定された入力電圧がピクセル211に印加されたときの出力を、ピクセル211ごとに取得し、キャリブレーション特性導出用データ104に格納する。
キャリブレーション特性導出部103は、キャリブレーション特性導出用データ104に格納されている、入力電圧設定部101が設定した入力電圧と設定用出力値取得部102が取得した出力との関係からキャリブレーション特性を導出する。図4を参照してキャリブレーション特性の一例を導出する方法について説明する。図4の(a)は、入力電圧設定部101が設定した入力電圧と設定用出力値取得部102が取得した出力との関係を示すグラフである。なお、図4では、1つのピクセル211の例を示している。図4の(a)に示すグラフの横軸は入力(電圧に対応)、縦軸は出力(コード値)である。ここでは、入力を0から128まで変化させたときの、或るピクセル211の出力を示している。図4の(a)に示す例では、入力が0から32を超えるところまでは出力が0であり、その後、入力が70くらいまでの間に出力は0から65536まで変化し、入力が70を超えると、出力は65536のままである。
キャリブレーション特性導出部103は、入力電圧設定部101が設定した入力電圧と設定用出力値取得部102が取得した出力とから、図4の(a)に示すような入力−出力特性(入力出力特性)が得られたときに、入力−出力特性の逆特性をキャリブレーション特性として導出する。導出したキャリブレーション特性の例を図4の(b)に示す。図4の(b)では、横軸が出力(コード値)、縦軸が入力(電圧に対応)となっている。このように、入力−出力特性の逆特性をキャリブレーション特性とすることにより、ピクセル211から出力された値から、当該ピクセル211への入力を導出することができる。
これにより、ピクセル211ごとに特性が異なっていても、ピクセル211に対応したキャリブレーション特性を導出することができ、適切にキャリブレーションを行うことができる。例えば、ピクセル211A、ピクセル211B、およびピクセル211Cの3つのピクセルがあり、これらの入力−出力特性が下記の通りであったとする。
Figure 0006790054
ここで、ピクセル211Aからの出力が3000、ピクセル211Bからの出力が3300、ピクセル211Cからの出力が2940であった場合、出力された値は3つのピクセルで異なる。しかし、キャリブレーション特性を用いてキャリブレーションすれば、3つのピクセル全て入力はV2であったこと、すなわち、同じ光量(線量)が3つのピクセルに入力されていたことが分かる。このように、キャリブレーション特性として、入力−出力特性の逆特性を用いることにより、容易かつ適切にキャリブレーションを行うことができる。
撮像出力値取得部110は、撮像センサ20において撮像処理が行われたときの出力を取得する。そして取得した出力をキャリブレーション部120に送信する。
キャリブレーション部120は、撮像出力値取得部110から送信された出力に対し、キャリブレーション設定部100によって設定されたキャリブレーション特性を用いてキャリブレーションを行い、キャリブレーション後の値を出力部130に送信する。
出力部130は、キャリブレーション部120によってキャリブレーションが行われた値を、例えば外部の表示装置30に送信する。そして、表示装置30では、撮像センサ20による撮像結果を表示する。なお、表示装置30は、キャリブレーション装置10の外部の装置で実現されてもよいし、キャリブレーション装置10に含まれていてもよい。
〔処理の流れ〕
次に、図5、6を参照して、キャリブレーション設定部100がキャリブレーション特性を導出する処理の流れを説明する。図5は、キャリブレーション設定部100がキャリブレーション特性を導出する処理の流れを示すフローチャートである。図6は、キャリブレーション特性を導出する処理を説明するための回路図である。なお、以下では、入力電圧をV0からV127まで変化させる例を挙げて説明するが、与える入力電圧は、V0からV127の128段階に限られるものではない。また、与える入力電圧は、V0からV127の昇順であってもよいし、V127からV0への降順であってもよい。また、単調に変化させなくてもよい。また、変化させる入力電圧の範囲は、実際の撮像時に変化しうる範囲にわたって設定すればよい。
図5に示すように、まず、入力電圧設定部101は入力電圧を設定し、ピクセル211に印加する(S101、電圧印加ステップ)。回路図で説明すれば、図6に示すキャリブレーション/リセットスイッチ251を全て接続して、キャリブレーション特性を導出するための入力電圧V0を与える。
次に、設定用出力値取得部102は、ピクセル211ごとに当該入力電圧に対応する出力を取得する(S102、取得ステップ)。すなわち、入力電圧V0が与えられた状態で、読出部24は、順次、全ピクセルの出力を読み出す。そして、撮像センサ本体21に配置された全てのピクセル211の出力を取得すると、キャリブレーション設定部100は、印加すべき全ての電圧を印加したか否かを判定する(S103)。印加すべき全ての電圧の印加を行っていない場合(S103でNO)、入力電圧設定部101は入力電圧を変更する(S104)。すなわち、入力電圧をV0からV1に変化させる。そして、ステップS101に戻る。
一方、印加すべき全ての電圧を印加していれば(S103でYES)、すなわち、入力電圧をV127まで変化させ終えていれば、キャリブレーション特性導出部103は、入力−出力特性からキャリブレーション特性を導出する(S105、キャリブレーション特性導出ステップ)。
〔実施形態2〕
本発明の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
上述した実施形態では、入力−出力特性において得られた全点(入力電圧と出力との関係を示す点)を用いて逆特性を導出していた。本実施形態では、入力−出力特性における全点を用いず、一部を間引いて逆特性を導出する。例えば、入力電圧と出力との関係が略線形となるような区間について、一部を間引いて逆特性を導出する。図7を参照して説明する。図7は、一部を間引いて逆特性を導出する例を説明するための図である。図7に示すように、入力電圧と出力との関係が略線形となるような区間(図7の点Bから点Gまで)について、全点ではなく一部を間引いて逆特性を導出する。そして、間引いた区間については、得られた出力の前後の点(得られた出力よりも大きい出力に対応する点と小さい出力に対応する点)から入力電圧を導出する。例えば、図7に示す例で、得られた出力が49152であれば点Cと点Dとを用いて線形補間することにより対応する入力電圧を導出する。また、得られた出力が16384であれば点Eと点Fとを用いて線形補間することにより対応する入力電圧を導出する。
これにより、逆変換に用いる計算量を削減することができる。
〔実施形態3〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本実施形態では、キャリブレーション特性導出部103は、キャリブレーション特性を、入力−出力特性の逆特性を3つのパラメータ(α、β、γ)を含む式(α×Xβ+γ)で表現する。ここで、Xは得られた出力を示す。例えば、図8に示す例では、α=0.059839149、β=0.584761691、γ=35.39547187である。これにより、Xに得られた出力を上記式に代入するのみで、対応する入力電圧を得ることができる。なお、3つパラメータは入力−出力特性の逆特性を示すグラフから従来技術を用いて導出できるので、その説明は省略する。
〔実施形態4〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本実施形態では、キャリブレーション設定部100に含まれるリセット電圧決定部(図示せず)が、ピクセル211ごとに異なる基準電位を与える。これにより、各ピクセル211の特性に対応させた基準電位をとすることができ、各ピクセル211の特性を有効に利用することができる。図9、10を参照して、詳細に説明する。図9は、ピクセル211ごとに異なる基準電位を与えるための回路図を示す。また、図10は、ピクセル211ごとに基準電位を異ならせることにより、ピクセル211の特性を有効に利用できる理由を説明するための図であり、(a)はピクセル211の基準電位を特定の電位とした場合の例を示し、(b)は、ピクセル211ごとに基準電位を異ならせた場合の例を示す。
図9に示すように、本実施形態では、キャリブレーション/リセット電圧線910は、キャリブレーション/リセット制御線911と直交する方向にのみ共通化されている。これにより、キャリブレーション/リセット電圧線910は行方向のピクセル211に対し同じ基準電位を与えることができる。そして、キャリブレーション/リセット制御線911は列方向のピクセル211に対してキャリブレーション/リセットスイッチ251を制御することができる。これにより、ピクセル211ごとに異なる基準電位を与えることができる。
図10の(a)は、3つのピクセル211の入力−出力特性の例を示す。図10の(a)に示すような特性の異なる3つのピクセル211があった場合、基準電位を特定の電位(例えば70)とすると、特性1002で示されるピクセル211は、特性が変化する部分を有効に利用することができるが、特性1001および特性1003で示されるピクセル211では、特性が変化する部分をほとんど利用できない。これに対し、図10の(b)に示すように、ピクセル211ごとに基準電位を異ならせるようにし、例えば特性1001で示されるピクセル211の基準電位を90、特性1002で示されるピクセル211の基準電位を70、特性1003で示されるピクセル211の基準電位を48とすれば、それぞれのピクセル211において特性が変化する部分を有効に利用することができる。
なお、ピクセル211ごとに異なる基準電位となるため、そのままでは、ピクセル211ごとに異なる基準電位に対応する値が出力されてしまうことになる。これに対しては、得られた出力と測定時の全体の基準電位(例えば70)の場合の出力との差分を導出し、これに適切なゲインを掛け、所望のビット数のデータとすればよい。
〔実施形態5〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本実施形態では、キャリブレーション設定部100は、キャリブレーション特性を導出後、所定期間経過後に、キャリブレーション特性の導出が再度必要かどうかの判定を行い、必要と判定した場合、再度、キャリブレーション特性の導出を行う。
具体的には、キャリブレーション特性を導出後、所定期間経過後に、入力電圧設定部101は、特定の入力電圧(例えばV60)を設定し、電圧生成部22に指示して、ピクセル211に印加させる。そして、設定用出力値取得部102は当該入力電圧をピクセル211に印加したときの出力を取得する。そして、キャリブレーション設定部100は、前回、入力電圧V60を印加したときの出力と今回の出力とを比較し、差分が所定値を超える場合、再度、キャリブレーション特性の導出を行う。キャリブレーション特性の導出方法は上述した方法と同様である。
これにより、温度、湿度、動作時間等の周囲環境の変化によってピクセル211のゲインやオフセットが変化してしまい、特性が変化した場合であっても適切にキャリブレーション特性を導出することができる。
なお、再度、キャリブレーションを行うか否かの判定は、複数の入力電圧を用いて行ってもよい。また、再度のキャリブレーションを自動的に行うのではなく、再度のキャリブレーションを行った方がよい旨をユーザに対し通知する構成であってもよい。
〔実施形態6〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本実施形態では、キャリブレーション設定部100は、入力−出力特性における全点を用いず、所定数の測定点を用い、測定点の間を補間することにより入力−出力特性を導出する。さらに、キャリブレーション設定部100は、測定点の区間により異なる補間式を用いて入力−出力特性を導出する。
具体的に、図11を参照して説明する。図11は、区間により異なる補間式を用いて入力−出力特性を導出する例を説明するための図である。図11において、縦軸は入力電圧V (V)、横軸は入力電圧V に対応する出力電流I (μA)を示す。本実施形態では、キャリブレーション設定部100は、入力電圧V が、リセット電圧VRESET(点1101)から閾値Vborder(点1102)までの区間A(VRESET>V >Vborder、IRESET>I >Iborder)(第1区間)については、測定間隔を短くし、線形(一次式)補間により補間する。また、閾値Vborder(点1102)より小さい区間B(V <Vborder、I <Iborder)(第2区間)については、測定間隔を大きくし、非線形(二次以上の多項式、または指数関数等)補間により補間する。例えば、区間Aでは、V =a・I +b(a、bは係数)により補間し、区間Bでは、V =fnl(I )(fnl()は、非線形関数(二次以上の多項式、指数関数等))により補間する。二次以上の多項式の例としては、Lagrange補間、Spline補間、Hermite補間等が挙げられる。
リセット電圧から変化量が少ない区間Aでは、S/N比(signal-to-noise ratio、信号対雑音比)が小さくなるので、測定間隔を短くし、線形補間を行うことにより、導出精度を高める。一方、リセット電圧からの変化量が大きい区間Bでは、S/N比が高くなるので、測定間隔を大きくする。これにより、測定時間、データ量を削減することができる。なお、測定間隔が大きい場合、入力電圧と出力電流との関係が線形とはならなくなるので非線形補間を行う。
一般に、入力−出力特性(また、その逆特性)時間とともに変動する。よって、適切な特性を用いるためには、できるだけ撮像の直前で測定した値を用いて入力−出力特性を導出することが望ましい。しかし、測定箇所が多いと、測定に時間がかかり、適切な特性を導出することが困難になる。
本実施形態では、少ない測定箇所により適切な入力−出力特性を導出することが可能となるので、撮像の直前でも適切な入力−出力特性を導出することができる。
なお、図11では、線形補間を行う区間Aにおける測定箇所は、点1101および点1102の2点のみとなっているが、線形補間を行う区間における測定箇所は2点に限られるものではなく、3点以上であってもよい。
〔実施形態7〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
上述した実施形態6では、区間に応じて用いる補間式を異ならせて入力−出力特性を導出していた。本実施形態では、実施形態6と同じ補間式を用いて入力−出力特性を導出するものであるが、区間に応じて測定頻度を異ならせるものである。
具体的には、本実施形態に係るキャリブレーション設定部100は、区間Aについて、区間Bよりも高い頻度で測定を行い、入力−出力特性を導出する。例えば、区間Aに含まれる測定点については、撮像の直前および直後に必ず測定を行い、区間Bに含まれる測定点については、前回の測定から所定時間経過後に測定する。
上述したように、区間AはS/N比が低いので、時間の経過とともに入力−出力特性を導出した時点と撮像時点とにおける誤差の影響が大きい。よって、区間Aについては、可能な限り撮像の直前に測定を行い入力−出力特性を導出する。一方、区間Bについては、S/N比が高いので区間Aほど入力−出力特性を導出した時点と撮像時点とにおける誤差の影響は小さい。
〔実施形態8〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
上述した実施形態6では、測定点における入力電圧と出力電流との関係を用いて、入力−出力特性を導出していた。本実施形態では、測定点における入力電圧と出力電流との関係ではなく、リセット電圧VRESETおよびそのときの電流値であるリセット電流IRESETからの変化量に基づいて入力−出力特性を導出する。
具体的に図12を参照して説明する。図12は、変化量に基づいて入力−出力特性を導出する例を説明するための図である。図12において縦軸は入力電圧のリセット電圧からの差分、横軸は出力電流のリセット電流からの差分を示す。
本実施形態では、キャリブレーション設定部100は、上述した区間Aに対応する原点から点1201までの区間A’(ΔV <Vborder、ΔI <Iborder)について線形補間を行い、上述した区間Bに対応する、入力電圧の差分が点1201よりも大きい区間B’(ΔV >Vborder、ΔI >Iborder)については非線形補間を行って、入力−出力特性を導出する。例えば、区間A’については、ΔV =a’・ΔI +b’(a’、b’は係数)により補間を行い、区間B’については、ΔV =f’nl(ΔI )(f’nl()は、非線形関数(二次以上の多項式、指数関数等))により補間を行う。
上述したように入力−出力特性は、キャリブレーション特性を導出するために導出している。そして、導出したキャリブレーション特性は、出力電流から入力電圧に対応するX線の照射量を導出するために用いる。従って、最終的には出力電流に対応するX線の照射量を導出できればよいことになる。そして、X線の照射量を導出するためには、必ずしも入力電圧および出力電流の値が必要となるわけではなく、リセット時(X線照射無し)からの変化量が分かればよい。よって、本実施形態にようにリセット時からの変化量の特性を用いて入力−出力特性を導出してもよい。
〔実施形態9〕
本発明のさらに他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
一般的に、TFT(薄膜トランジスタ)やMOSFET(MOS型の電界効果トランジスタ)のしきい値電圧は経時変化することが知られている。しきい値電圧が変動する前と後とでは、入力−出力特性は変化するので、しきい値電圧が変動する前の入力−出力特性を用いて導出したキャリブレーション特性は、しきい値電圧変化後には不適切なものとなってしまう。
図13を参照して、しきい値電圧の変動による入力−出力特性の変化について説明する。図13の(a)は、しきい値電圧が変動したときの入力−出力特性の変化を示す図であり、(b)はその逆特性を示す図である。
図13の(a)に示すように、例えば、しきい値電圧が0.5V増加した場合、しきい値変動後の入力−出力特性は、しきい値変動前の入力−出力特性において、入力電圧に0.5Vのオフセットがかかったような特性となる。また、入力−出力特性の逆特性も、図13の(b)に示すように、しきい値変動前の出力−入力特性において、入力電圧に0.5Vのオフセットがかかったような特性となる。
したがって、しきい値電圧が変動する前の入力−出力特性を用いて導出したキャリブレーション特性を用いて、キャリブレーション値(出力値に対応する入力の推定値)を導出すると、実際の入力値とのズレが発生してしまう。
そこで、本実施形態に係るキャリブレーション部120は、出力する値を、キャリブレーション値ではなく、X線照射前後のキャリブレーション値の差分値とする。これにより、上述したしきい値電圧の変動による影響を排除することができる。以下に、差分値とすることによりしきい値電圧の変動による影響を排除することができる理由を説明する。
上述したように、しきい値電圧の変動による入力-出力特性への影響は、入力電圧にオフセットがかかるだけである。よって、しきい値電圧変動前に導出したキャリブレーション特性を用いて導出したX線照射前の出力に対するキャリブレーション値とX線照射後の出力に対するキャリブレーション値との差は、しきい値電圧変動後に導出したキャリブレーション特性を用いて導出したX線照射前の出力に対するキャリブレーション値とX線照射後の出力に対するキャリブレーション値との差、すなわち実際の値とのズレが無い場合における差と同じとなる。
そして、X線照射前後のキャリブレーション値の差が受光した光量(線量)に相当する。よって、キャリブレーション部120は、X線照射前後のキャリブレーション値の差を、出力部に送信するデータとする。これにより、しきい値電圧の変動の影響を受けずに正確な値を出力データとすることができる。
図14を参照して、具体的に説明する。図14は、差分値を用いることによりしきい値電圧の変動の影響を受けない理由を説明するための図である。なお、図14では、しきい値変動前の入力−出力特性に基づいて導出したキャリブレーション特性を「キャリブレーション特性」と明記し、実際の特性を「真の出力−入力特性」と記載している。
X線照射前の出力値(電流)をIpre、X線照射後の出力値(電流)をIpostとする。しきい値電圧が変動した場合、Ipreに対するキャリブレーション値Vcalib_preと実際の入力値Vtrue_preは異なる値となり、Ipostに対するキャリブレーション値Vcalib_postと実際の入力値Vtrue_postも異なる値となる。ただし、X線照射前後のキャリブレーション値の差(Vcalib_pre−Vcalib_post)と実際の入力値の差(Vtrue_pre−Vtrue_post)は等しい。よって、差分値を用いることにより、しきい値電圧の変動の影響を排除することができる。
〔ソフトウェアによる実現例〕
キャリブレーション装置10の制御ブロック(特にキャリブレーション設定部100(入力電圧設定部101、設定用出力値取得部102、キャリブレーション特性導出部103))は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
後者の場合、キャリブレーション装置10は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
〔まとめ〕
本発明の態様1に係る撮像システム(1)は、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子(フォトダイオード252)と、前記電気信号を増幅するアンプトランジスタ(Ampトランジスタ253)とを含むピクセル(211)を複数備えた撮像システムであって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部(入力電圧設定部101)と、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部(設定用出力値取得部102)と、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部(103)と、を備えている。
前記の構成によれば、ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出する。これにより、センサ素子に放射線を入射させることなく当該ピクセルに対応するキャリブレーション特性を導出することができる。よって、容易に当該ピクセルの出力に対するキャリブレーションを行うことができる。
本発明の態様2に係る撮像システムでは、前記態様1において、前記キャリブレーション特性導出部は、前記電圧印加部が印加した前記入力電圧の一部を間引いた前記入力出力特性の逆特性に基づいて前記キャリブレーション特性を導出するものであってもよい。
前記の構成によれば、入力電圧の一部を間引いた前記入力出力特性の逆特性に基づいて前記キャリブレーション特性を導出するので、逆特性の導出にかかる処理量を削減することができる。
本発明の態様3に係る撮像システムでは、前記態様1において、前記キャリブレーション特性導出部は、前記逆特性をパラメータを3つ含む式で表現することにより前記キャリブレーション特性を導出するものであってもよい。
前記の構成によれば、パラメータを3つ含む式によりキャリブレーション特性を導出することができる。
本発明の態様4に係る撮像システムでは、前記態様1において、前記アンプトランジスタに印加するリセット電圧を、前記入力出力特性に基づいて決定するリセット電圧決定部を備えているものであってもよい。
前記の構成によれば、入力出力特性に基づいてリセット電圧を決定するので、全ピクセルに対し同じリセット電圧とする場合と比較して、ピクセルごとに入力出力特性を有効に利用できる。
本発明の態様5に係る撮像システムでは、前記態様1〜3のいずれかにおいて、前記キャリブレーション特性導出部は、前記キャリブレーション特性を導出後、所定期間経過後に、所定の前記入力電圧に対応する出力を取得し、当該出力と、前回、前記キャリブレーション特性を導出したときの当該入力電圧に対応する出力との差分が閾値を超える場合、再度、キャリブレーション特性を導出するものであってもよい。
前記の構成によれば、前回、導出したキャリブレーション特性が不適切となった場合に、再度、適切なキャリブレーション特性を導出することができる。
本発明の態様6に係る撮像システムの制御方法は、入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムの制御方法であって、前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加ステップと、前記入力電圧に対応する出力を前記ピクセルごとに取得する取得ステップと、前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出ステップと、を含むことを特徴としている。
本発明の態様7に係る撮像システムでは、前記態様1において、前記キャリブレーション特性導出部は、閾値以下の前記入力電圧に対応する第1区間と、該閾値より大きい前記入力電圧に対応する第2区間とで異なる補間式を用いて前記入力出力特性を導出するものであってもよい。
前記の構成によれば、閾値の前後で用いる補間式を異ならせるので、それぞれの区間に適切に対応した補間式を用いて入力出力特性を導出することができる。そして、補間式により補間することにより入力出力特性を導出することができるので、処理量を削減することができ、処理時間を短縮することができる。
本発明の態様8に係る撮像システムでは、前記態様7において、前記キャリブレーション特性導出部は、前記第1区間と前記第2区間とで前記入力出力特性を導出する頻度を異ならせるものであってもよい。
前記の構成によれば、区間に応じて適切な頻度で入力出力特性を導出することができるので、無駄に入力出力特性を導出することを抑制することができる。
本発明の態様9に係る撮像システムでは、前記態様1において、前記キャリブレーション特性導出部は、前記入力電圧の所定値からの変化量に基づいて前記入力出力特性を導出するものであってもよい。
前記の構成によれば、所定値からの変化量に基づいて入力出力特性を導出することができる。
本発明の態様10に係る撮像システムでは、前記態様1〜5、7〜9のいずれかにおいて、撮像前の、前記キャリブレーション特性を用いて導出したキャリブレーション値と、撮像後の前記キャリブレーション値との差分値をキャリブレーションの結果として出力するキャリブレーション部を備えているものであってもよい。
前記の構成によれば、アンプトランジスタのしきい値電圧が変動した場合でも適切な値を出力することができる。
本発明の各態様に係る撮像システムは、コンピュータによって実現してもよく、この場合には、コンピュータを上記撮像システムが備える各部(ソフトウェア要素)として動作させることにより上記撮像システムをコンピュータにて実現させる撮像システムの制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1 撮像システム
10 キャリブレーション装置
20 撮像センサ
21 撮像センサ本体
22 電圧生成部
23 行選択部
24 読出部
30 表示装置
100 キャリブレーション設定部
101 入力電圧設定部(電圧印加部)
102 設定用出力値取得部(取得部)
103 キャリブレーション特性導出部
104 キャリブレーション特性導出用データ
110 撮像出力値取得部
120 キャリブレーション部
130 出力部
211 ピクセル
241 AFE
250 ピクセル内回路
251 キャリブレーション/リセットスイッチ
252 フォトダイオード(センサ素子)
253 Ampトランジスタ(アンプトランジスタ)
254 リードスイッチ
910 キャリブレーション/リセット電圧線
911 キャリブレーション/リセット制御線

Claims (11)

  1. 入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、
    前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、
    前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、
    前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、
    前記キャリブレーション特性導出部は、前記電圧印加部が印加した前記入力電圧の一部を間引いた前記入力出力特性の逆特性に基づいて前記キャリブレーション特性を導出することを特徴とする撮像システム。
  2. 入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、
    前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、
    前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、
    前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、
    前記キャリブレーション特性導出部は、閾値以下の前記入力電圧に対応する第1区間と、該閾値より大きい前記入力電圧に対応する第2区間とで異なる補間式を用いて前記入力出力特性を導出することを特徴とする撮像システム。
  3. 前記キャリブレーション特性導出部は、前記第1区間と前記第2区間とで前記入力出力特性を導出する頻度を異ならせることを特徴とする請求項に記載の撮像システム。
  4. 入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、
    前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、
    前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、
    前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、
    前記キャリブレーション特性導出部は、前記入力電圧の所定値からの変化量に基づいて前記入力出力特性を導出することを特徴とする撮像システム。
  5. 入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、
    前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、
    前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、
    前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、
    撮像前の、前記キャリブレーション特性を用いて導出したキャリブレーション値と、撮像後の前記キャリブレーション値との差分値をキャリブレーションの結果として出力するキャリブレーション部を備えていることを特徴とする撮像システム。
  6. 入射した放射線の線量に基づいた電気信号を発生させるセンサ素子と、前記電気信号を増幅するアンプトランジスタとを含むピクセルを複数備えた撮像システムであって、
    前記アンプトランジスタに入力電圧を所定の間隔で印加する電圧印加部と、
    前記入力電圧に対応する出力を前記ピクセルごとに取得する取得部と、
    前記ピクセルごとに、前記入力電圧および該入力電圧に対応する前記出力の対応関係を示す入力出力特性を導出し、該入力出力特性の逆特性に基づいてキャリブレーションに用いるキャリブレーション特性を導出するキャリブレーション特性導出部と、を備え、
    前記キャリブレーション特性導出部は、前記キャリブレーション特性を導出後、所定期間経過後に、所定の前記入力電圧に対応する出力を取得し、当該出力と、前回、前記キャリブレーション特性を導出したときの当該入力電圧に対応する出力との差分が閾値を超える場合、再度、キャリブレーション特性を導出することを特徴とする撮像システム。
  7. 前記キャリブレーション特性導出部は、前記逆特性をパラメータを3つ含む式で表現することにより前記キャリブレーション特性を導出することを特徴とする請求項5または6に記載の撮像システム。
  8. 撮像前の、前記キャリブレーション特性を用いて導出したキャリブレーション値と、撮像後の前記キャリブレーション値との差分値をキャリブレーションの結果として出力するキャリブレーション部を備えていることを特徴とする請求項1〜4、6、7のいずれか1項に記載の撮像システム。
  9. 前記アンプトランジスタに印加するリセット電圧を、前記入力出力特性に基づいて決定するリセット電圧決定部を備えていることを特徴とする請求項1〜のいずれか1項に記載の撮像システム。
  10. 前記キャリブレーション特性導出部は、前記キャリブレーション特性を導出後、所定期間経過後に、所定の前記入力電圧に対応する出力を取得し、当該出力と、前回、前記キャリブレーション特性を導出したときの当該入力電圧に対応する出力との差分が閾値を超える場合、再度、キャリブレーション特性を導出することを特徴とする請求項1〜5、7〜9のいずれか1項に記載の撮像システム。
  11. 請求項1〜6のいずれか1項に記載の撮像システムとしてコンピュータを機能させるための制御プログラムであって、上記電圧印加部、上記取得部、および上記キャリブレーション特性導出部としてコンピュータを機能させるための制御プログラム。
JP2018245853A 2018-04-20 2018-12-27 撮像システム、撮像システムの制御方法、および制御プログラム Active JP6790054B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/373,319 US10866332B2 (en) 2018-04-20 2019-04-02 Imaging system, control method of imaging system, and storage medium
CN201910320131.0A CN110401802B (zh) 2018-04-20 2019-04-19 拍摄系统、以及拍摄系统的控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018081760 2018-04-20
JP2018081760 2018-04-20

Publications (2)

Publication Number Publication Date
JP2019193247A JP2019193247A (ja) 2019-10-31
JP6790054B2 true JP6790054B2 (ja) 2020-11-25

Family

ID=68390846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245853A Active JP6790054B2 (ja) 2018-04-20 2018-12-27 撮像システム、撮像システムの制御方法、および制御プログラム

Country Status (1)

Country Link
JP (1) JP6790054B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2314227B (en) * 1996-06-14 1998-12-23 Simage Oy Calibration method and system for imaging devices
JP2016144079A (ja) * 2015-02-03 2016-08-08 シャープ株式会社 放射線検出器および放射線撮像システム

Also Published As

Publication number Publication date
JP2019193247A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6385179B2 (ja) 放射線撮像装置及びその駆動方法
JP6853729B2 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法及びプログラム
US20140239186A1 (en) Radiation imaging apparatus, radiation inspection apparatus, method for correcting signal, and computer-readable storage medium
JP2017073756A (ja) 放射線撮像装置および放射線撮像装置の制御方法
CN102891952A (zh) 对多传感器检测器的增益特性进行拼接的方法
US6393098B1 (en) Amplifier offset and gain correction system for X-ray imaging panel
JP4169787B2 (ja) イメージングデバイスの較正法及びシステム
US20110134289A1 (en) Image pickup apparatus and image pickup system
US9453924B2 (en) Radiation control apparatus and method for acquiring correction data for an imaging device
US10866332B2 (en) Imaging system, control method of imaging system, and storage medium
US8547464B2 (en) Solid-state imaging device and frame data correcting method which determine a voltage value corresponding to a pixel portion in frame data
TWI511555B (zh) Solid state camera device
JPWO2017183260A1 (ja) 赤外線撮像素子及び赤外線カメラ
JP6790054B2 (ja) 撮像システム、撮像システムの制御方法、および制御プログラム
JP4699925B2 (ja) 赤外線撮像装置
US10165999B2 (en) Radiological-image acquisition device
JP4575564B2 (ja) マトリックス・アドレス式x線撮像パネル用のアーチファクト補償システム
JP4812503B2 (ja) X線撮影装置
US8294793B2 (en) Solid-state imaging device and frame data correcting method
CN115220081A (zh) 辐射成像设备和辐射成像系统
JPH10108075A (ja) 信号増幅型撮像装置
EP2197198A2 (en) Image pickup apparatus and image pickup system
KR101656220B1 (ko) 상보형금속산화막반도체 엑스-선 영상 검출기를 위한 이득 교정 방법 및 장치
JP2001177697A (ja) 光電変換装置
JPH04355576A (ja) 撮像デバイスの感度補正方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201104

R150 Certificate of patent or registration of utility model

Ref document number: 6790054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150