JP6789650B2 - LED light emitting device - Google Patents

LED light emitting device Download PDF

Info

Publication number
JP6789650B2
JP6789650B2 JP2016062947A JP2016062947A JP6789650B2 JP 6789650 B2 JP6789650 B2 JP 6789650B2 JP 2016062947 A JP2016062947 A JP 2016062947A JP 2016062947 A JP2016062947 A JP 2016062947A JP 6789650 B2 JP6789650 B2 JP 6789650B2
Authority
JP
Japan
Prior art keywords
substrate
light emitting
heat conductive
conductive member
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016062947A
Other languages
Japanese (ja)
Other versions
JP2017183301A (en
Inventor
豪一郎 広瀬
豪一郎 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Electronics Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Electronics Co Ltd
Priority to JP2016062947A priority Critical patent/JP6789650B2/en
Publication of JP2017183301A publication Critical patent/JP2017183301A/en
Application granted granted Critical
Publication of JP6789650B2 publication Critical patent/JP6789650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Description

本発明は、LED素子と各種の蛍光体とを組合せることにより白色をはじめとしてLED素子の発光色とは異なる色の光を発する発光装置に関し、とりわけ小型でありながら高輝度と放熱性を改良したLED発光装置に関するものである。 The present invention relates to a light emitting device that emits light of a color different from the emission color of the LED element, including white, by combining the LED element and various phosphors, and improves high brightness and heat dissipation, particularly in a small size. It relates to the LED light emitting device.

近年、LED照明が従来の白熱灯や蛍光灯に変わり急速に普及している。これは、特に省エネルギー、長寿命等の長所がある為であり今後さらなる普及拡大が見込まれる。LED発光装置は更なる小型化、高輝度化の要求があり、それらの改良に関する発光装置が提案されている。 In recent years, LED lighting has replaced conventional incandescent lamps and fluorescent lamps and is rapidly becoming widespread. This is because it has advantages such as energy saving and long life, and further spread is expected in the future. There is a demand for further miniaturization and higher brightness of LED light emitting devices, and light emitting devices related to these improvements have been proposed.

特許文献1に示す従来技術は、基板上に実装された複数の青色光を発するLED素子と、シリコン等の放熱性の良い材料に貫通孔を形成することで基板に接合してLED素子を確実に分離する隔壁を備えた型枠と、貫通孔に配設されLED素子より発せられた光を所定の波長に変換する蛍光体フィルター板(以下、「波長変換部材」と呼ぶ)を備えた照明装置である。また、LED素子と波長変換部材は離間して配置されることで、波長変換部材はLED素子からの熱による影響を受けることがない。 In the prior art shown in Patent Document 1, a plurality of LED elements that emit blue light mounted on a substrate and a through hole are formed in a material having good heat dissipation such as silicon to join the LED element to the substrate to ensure the LED element. Illumination equipped with a mold having a partition wall that separates the two, and a phosphor filter plate (hereinafter referred to as a "wavelength conversion member") that is arranged in a through hole and converts light emitted from an LED element into a predetermined wavelength. It is a device. Further, since the LED element and the wavelength conversion member are arranged apart from each other, the wavelength conversion member is not affected by the heat from the LED element.

特開2009−134965号公報(5頁−6頁、図2)JP-A-2009-134965 (pages 5-6, FIG. 2)

しかしながら、特許文献1に記載の照明装置では、隔壁によってLED素子も波長変換部材も分離されているため、照明用光源として用いようとすると、枠体によって影ができるため、一般的な照明用光源としては不向きであるという課題があった。 However, in the lighting device described in Patent Document 1, since the LED element and the wavelength conversion member are separated by the partition wall, when the LED element and the wavelength conversion member are separated, a shadow is formed by the frame when the lighting device is used as the lighting light source, so that a general lighting light source is used. There was a problem that it was not suitable for.

そこで、上記課題を解決する方法として特許文献1に記載の照明装置から隔壁を取り除くことが考えられるが、隔壁を取り除くことで波長変換部材内にある蛍光体が励起する際に発せられる熱を効率的に逃がすことができなくなり、温度消光によって発光効率が低下するという新たな課題が発生する。 Therefore, as a method for solving the above-mentioned problems, it is conceivable to remove the partition wall from the lighting device described in Patent Document 1, but by removing the partition wall, the heat generated when the phosphor in the wavelength conversion member is excited is efficient. There is a new problem that the luminous efficiency is lowered due to the temperature quenching.

(発明の目的)
そこで本発明は、上記のような課題に鑑みてなされたものであり、本発明の目的は、発光効率を低下させることなく所定の基板面積において輝度を向上させると共に、一般的な照明用光源として有用な発光装置を提供することである。
(Purpose of Invention)
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to improve the brightness in a predetermined substrate area without lowering the luminous efficiency and as a general lighting light source. It is to provide a useful light emitting device.

第一のLED素子及び第二のLED素子と、上面に第一のLED素子が実装された第一の基板と、第一の基板の上にあって、複数の第二のLED素子が上面に実装された第二の基板と、第二の基板の上方に第二のLED素子の発光面と離間して配置された波長変換部材と、第二のLED素子を取り囲むように設けられ、波長変換部材を支持する枠体と、 透光性の熱伝導部材と、を備え、熱伝導部材は、第二の基板を貫通して、波長変換部材の下面と第一の基板の上面とを接続していることを特徴とする。 A first LED element, a second LED element, a first substrate on which the first LED element is mounted on the upper surface, and a plurality of second LED elements on the first substrate on the upper surface. A second substrate mounted, a wavelength conversion member arranged above the second substrate at a distance from the light emitting surface of the second LED element, and a wavelength conversion member provided so as to surround the second LED element for wavelength conversion. A frame body that supports the member and a translucent heat conductive member are provided, and the heat conductive member penetrates the second substrate and connects the lower surface of the wavelength conversion member and the upper surface of the first substrate. It is characterized by being.

これにより、基板を二層構造とすることによって、波長変換部材内の励起熱を透光性の
熱伝導部材により第一及び第二の基板へ効率的に逃がすことができる。一方、下層にある第一の基板上に実装されたLED素子から発せられた光を、上層にある第二の基板を貫通する透光性を有する熱伝導部材を介して波長変換部材へ届けることができるので、発光量を増加させて輝度を高めることができる。この結果、発光効率を低下させることなく所定の基板面積において輝度をさらに高めると共に、一般的な照明用光源として有用な発光装置を提供することができる。
As a result, by forming the substrate into a two-layer structure, the excitation heat in the wavelength conversion member can be efficiently released to the first and second substrates by the translucent heat conductive member. On the other hand, the light emitted from the LED element mounted on the first substrate in the lower layer is delivered to the wavelength conversion member via the heat conductive member having translucency penetrating the second substrate in the upper layer. Therefore, the amount of light emitted can be increased to increase the brightness. As a result, it is possible to provide a light emitting device useful as a general lighting light source while further increasing the brightness in a predetermined substrate area without lowering the luminous efficiency.

第一のLED素子の発光面が熱伝導部材に向かうように、第一の基板上面を傾斜させるとよい。 It is preferable to incline the upper surface of the first substrate so that the light emitting surface of the first LED element faces the heat conductive member.

第一のLED素子は、第一の基板の上面に前記熱伝導部材の周囲を取り囲むように設けられた凹部の内壁面に、前記第一のLED素子の発光面が前記熱伝導部材と対峙するように配置されている。 In the first LED element, the light emitting surface of the first LED element faces the heat conductive member on the inner wall surface of a recess provided on the upper surface of the first substrate so as to surround the periphery of the heat conductive member. as that have been placed.

熱伝導部材は、第一のLED素子の発光面の上方かつ第二の基板の下方の領域にて、第二の基板から第一のLED素子へ向けて断面積が漸増する領域を有するとよい。 The heat conductive member may have a region above the light emitting surface of the first LED element and below the second substrate, in which the cross-sectional area gradually increases from the second substrate toward the first LED element. ..

熱伝導部材は、波長変換部材と接続される上端部に光散乱剤を備えるとよい。 The heat conductive member may be provided with a light scattering agent at the upper end portion connected to the wavelength conversion member.

これにより、LED素子の発光面から離間して載置された波長変換部材内の励起熱を、熱伝導部材によって基板へ効率的に逃がすことで発光効率の低下を防ぎ、放熱性が向上した分発光量を増加させて輝度を高めることができる。また、熱伝導部材が透光性を有することから熱伝導部材による影をでき難くすることができる。この結果、発光効率を低下させることなく所定の基板面積において輝度を高めると共に、一般的な照明用光源として有用な発光装置を提供することができる。 As a result, the excitation heat in the wavelength conversion member placed apart from the light emitting surface of the LED element is efficiently released to the substrate by the heat conductive member, thereby preventing the decrease in luminous efficiency and improving the heat dissipation. The amount of light emitted can be increased to increase the brightness. Further, since the heat conductive member has translucency, it is possible to make it difficult for the heat conductive member to cast a shadow. As a result, it is possible to provide a light emitting device useful as a general lighting light source while increasing the brightness in a predetermined substrate area without lowering the luminous efficiency.

熱伝導部材は、枠体と離間し、波長変換部材の中央部に接続するように配置されているとよい。 The heat conductive member may be arranged so as to be separated from the frame and connected to the central portion of the wavelength conversion member .

上記の如く本発明によれば、LED素子の発光面から離間して載置された波長変換部材内の励起熱を、波長変換部材と基板とを接続する透光性の熱伝導部材によって基板へ効率的に逃がすことができるので放熱性が向上し、これにより波長変換部材からの発光量を増加させて輝度を高めることができる。また、基板を二層構造として発光量を増加させることで輝度をさらに高めると共に、波長変換部材の下面と下層側にある第一の基板の上面とを、上層側にある第二の基板を貫通して透光性の熱伝導部材で接続することによって波長変換部材内の励起熱を第一及び第二の基板に効率的に逃がすことができる。
これにより、所定の基板面積において、発光効率を低下させることなく輝度を向上させると共に、一般的な照明用光源として有用な発光装置を提供することができる。
As described above, according to the present invention, the excitation heat in the wavelength conversion member placed apart from the light emitting surface of the LED element is transferred to the substrate by the translucent heat conductive member that connects the wavelength conversion member and the substrate. Since it can be efficiently released, heat dissipation is improved, which makes it possible to increase the amount of light emitted from the wavelength conversion member and increase the brightness. Further, the brightness is further increased by increasing the amount of light emitted by forming the substrate into a two-layer structure, and the lower surface of the wavelength conversion member and the upper surface of the first substrate on the lower layer side pass through the second substrate on the upper layer side. By connecting with a translucent heat conductive member, the excitation heat in the wavelength conversion member can be efficiently released to the first and second substrates.
As a result, it is possible to provide a light emitting device that is useful as a general lighting light source while improving the brightness in a predetermined substrate area without lowering the luminous efficiency.

本発明のLED発光装置の第1の実施形態を示す断面図及び斜視図である。It is sectional drawing and perspective view which show 1st Embodiment of the LED light emitting device of this invention. 本発明のLED発光装置の第2の実施形態を示す断面図である。It is sectional drawing which shows the 2nd Embodiment of the LED light emitting device of this invention. 図2の第2の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of the 2nd Embodiment of FIG. 本発明のLED発光装置の第3の実施形態を示す断面図である。It is sectional drawing which shows the 3rd Embodiment of the LED light emitting device of this invention. 本発明のLED発光装置の第4の実施形態を示す断面図である。It is sectional drawing which shows the 4th Embodiment of the LED light emitting device of this invention. 本発明のLED発光装置の第5の実施形態を示す断面図である。It is sectional drawing which shows the 5th Embodiment of the LED light emitting device of this invention. 図6の第5の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of 5th Embodiment of FIG.

以下、図面に基づいて本発明の実施形態を詳述する。
ただし、以下に示す実施形態は、本発明の思想を具体化するためのLED発光装置を例示するものであって、本発明は以下に説明する構成に特定するものではない。特に実施形態に記載されている構成部材の材質、形状、その相対的配置等は特定的な記載がない限りは本発明の範囲をそれのみに限定する趣旨ではなく説明例に過ぎない。また、各図面が示す部材の大きさや位置関係等は説明をわかりやすくするために誇張していることがある。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
However, the embodiments shown below exemplify an LED light emitting device for embodying the idea of the present invention, and the present invention does not specify the configuration described below. In particular, the materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are merely explanatory examples, not intended to limit the scope of the present invention to those, unless otherwise specified. In addition, the size and positional relationship of the members shown in each drawing may be exaggerated to make the explanation easier to understand.

説明にあっては、同一要素には同一番号を付し、重複する説明は省略するものとする。また、発明に関係のない部分は省略している。
尚、各実施形態において、「発光方向の中心線を通る断面図」を掲示しているが、「発光方向」とは、図1(c)の矢印Pの方向を示す。また、「中心線を通る断面図」とは、図1(c)のY−Y´断面を示す。
In the explanation, the same elements are given the same number, and duplicate explanations are omitted. In addition, parts not related to the invention are omitted.
In each embodiment, a "cross-sectional view passing through the center line of the light emitting direction" is posted, and the "light emitting direction" indicates the direction of the arrow P in FIG. 1 (c). Further, the "cross-sectional view passing through the center line" indicates a YY'cross section of FIG. 1 (c).

[第1の実施形態の説明:図1]
図1を用いて、第1の実施形態のLED発光装置100を説明する。図1(a)はLED発光装置100の発光方向の中心線を通る断面図を示し、図1(b)は、図1(a)の切断線A−A´における断面図を示す。また、図1(c)は、図1(a)の断面を説明する斜視図である(各実施形態に共通)。
[Explanation of First Embodiment: FIG. 1]
The LED light emitting device 100 of the first embodiment will be described with reference to FIG. FIG. 1A shows a cross-sectional view of the LED light emitting device 100 passing through the center line in the light emitting direction, and FIG. 1B shows a cross-sectional view taken along the cutting line AA'of FIG. 1A. Further, FIG. 1 (c) is a perspective view illustrating a cross section of FIG. 1 (a) (common to each embodiment).

第1の実施形態の特徴は、波長変換部材3の下面と基板20の上面とを透光性の熱伝導部材4で接続した点である。 The feature of the first embodiment is that the lower surface of the wavelength conversion member 3 and the upper surface of the substrate 20 are connected by a translucent heat conductive member 4.

図1(a)に示す様に、LED発光装置100は、上面(実装面)に図示しないボンディングパッドが設けられた基板20と、ボンディングパッドに実装された複数のLED素子1と、貫通孔10を備え複数のLED素子1を取り囲むように基板20に接合された枠体2と、枠体2の上面に支持されLED素子1の発光面から離間して接合された波長変換部材3と、波長変換部材3の下面の中央と基板20の上面の中央とを接続する透光性の熱伝導部材4とから構成されている。 As shown in FIG. 1A, the LED light emitting device 100 includes a substrate 20 provided with a bonding pad (not shown) on the upper surface (mounting surface), a plurality of LED elements 1 mounted on the bonding pad, and a through hole 10. A frame 2 joined to a substrate 20 so as to surround a plurality of LED elements 1, a wavelength conversion member 3 supported on the upper surface of the frame 2 and joined away from the light emitting surface of the LED element 1, and wavelengths. It is composed of a translucent heat conductive member 4 that connects the center of the lower surface of the conversion member 3 and the center of the upper surface of the substrate 20.

基板20に実装された複数のLED素子1は、例えば、GaN系の材料からなる発光層を持つ紫外LED素子あるいは青色LED素子を用いることができる。複数のLED素子1は、例えばAuバンプを備えており、フリップチップ実装等によって実装することができる。尚、本実施例ではLED素子1の発光面と波長変換部材3の下面は離間して配置されているので、フリップチップ実装に限定されずワイヤボンディング実装を用いることができる。 As the plurality of LED elements 1 mounted on the substrate 20, for example, an ultraviolet LED element or a blue LED element having a light emitting layer made of a GaN-based material can be used. The plurality of LED elements 1 are provided with Au bumps, for example, and can be mounted by flip-chip mounting or the like. In this embodiment, since the light emitting surface of the LED element 1 and the lower surface of the wavelength conversion member 3 are arranged apart from each other, wire bonding mounting is not limited to flip chip mounting, and wire bonding mounting can be used.

基板20は、例えば、表面が酸化絶縁処理された熱伝導性の高い金属基板を用い、図示しないボンディングパッド、入力電極、それらを接続する配線等が、スルーホール技術やフォトリソグラフィ技術等を用いて形成されている。また、基板20の中央には熱伝導部材4を位置決めする凹部12が設けられている。枠体2は、例えば、熱伝導性及び光反射性の高い金属を用い、貫通孔10を有し、基板20に、例えば、ハンダ、低融点ガラス、又は高い熱伝導性を有する接着剤等により接合されている。 For the substrate 20, for example, a metal substrate having a high thermal conductivity whose surface is oxidatively insulated is used, and bonding pads, input electrodes, wirings connecting them, etc., which are not shown, are subjected to through-hole technology, photolithography technology, or the like. It is formed. Further, a recess 12 for positioning the heat conductive member 4 is provided in the center of the substrate 20. The frame 2 is made of, for example, a metal having high thermal conductivity and light reflectivity, has through holes 10, and is formed on the substrate 20 by, for example, solder, low melting point glass, or an adhesive having high thermal conductivity. It is joined.

波長変換部材3は、例えば、ガラスに所定量の蛍光体を均一に含有させ所定の厚さの平板状に形成したものを用い、枠体2に、例えば低融点ガラスや接着剤等により接合されて
いる。熱伝導部材4は、例えば、ガラスや透光性のセラミックスなどの熱伝導性の高い透光性部材からなり、下端側は基板20に設けられた凹部12に嵌合させて位置決めされ、ハンダ、低融点ガラス、又は高い熱伝導性を有する接着剤等により接着されており、上端側は波長変換部材3の下面と当接又は低融点ガラスや透明接着剤等により接合されている。
As the wavelength conversion member 3, for example, a glass in which a predetermined amount of phosphor is uniformly contained and formed into a flat plate having a predetermined thickness is used, and the wavelength conversion member 3 is bonded to the frame 2 with, for example, low melting point glass or an adhesive. ing. The heat conductive member 4 is made of a heat conductive member having high heat conductivity such as glass or translucent ceramics, and its lower end side is positioned by being fitted into a recess 12 provided in the substrate 20 to be soldered. It is bonded with low melting point glass or an adhesive having high thermal conductivity, and the upper end side is abutted with the lower surface of the wavelength conversion member 3 or is joined with low melting point glass, a transparent adhesive or the like.

また、図1(b)に示す様に、複数のLED素子1は、基板20の上面にマトリックス状に配置されていて、中央には透光性の熱伝導部材4が配置されている。また、基板20の外周部は貫通孔10を有する枠体2が複数のLED素子1を囲うように配置されている。 Further, as shown in FIG. 1B, the plurality of LED elements 1 are arranged in a matrix on the upper surface of the substrate 20, and the translucent heat conductive member 4 is arranged in the center. Further, on the outer peripheral portion of the substrate 20, a frame body 2 having a through hole 10 is arranged so as to surround a plurality of LED elements 1.

[動作の説明:図1]
図1(a)に示す様に、LED発光装置100は、所定の面積の基板20に複数のLED素子1が実装されており、図示しない入力電極に駆動電圧が供給されると、各LED素子1が例えば青色光を発光する。LED素子1は発光するとともに発熱するが、波長変換部材3は各LED素子1の発光面から離間して配置されているので、LED素子1の熱によって直接影響を受けることはない。また、各LED素子1の光の多くは、直接又は枠体2の内側面で反射して波長変換部材3に入射する。そしてLED素子1から発せられた光は波長変換部材3内の蛍光体を励起し、LED素子1の光とは異なる色の励起光(例えば黄色光)を放出し、蛍光体と遭遇しなかったLED素子1の光と混色してLED素子1の光とは異なる色の光(例えば白色光)を放出する。また、各LED素子1の光の一部は、熱伝導部材4に取り込まれて波長変換部材3に導光され蛍光体を励起し、一部は熱伝導部材4を透過する。これにより、熱伝導部材5による影をでき難くしている。
[Explanation of operation: Fig. 1]
As shown in FIG. 1A, in the LED light emitting device 100, a plurality of LED elements 1 are mounted on a substrate 20 having a predetermined area, and when a drive voltage is supplied to an input electrode (not shown), each LED element 1 emits blue light, for example. The LED element 1 emits light and generates heat, but since the wavelength conversion member 3 is arranged away from the light emitting surface of each LED element 1, it is not directly affected by the heat of the LED element 1. Further, most of the light of each LED element 1 is reflected directly or on the inner surface of the frame body 2 and is incident on the wavelength conversion member 3. Then, the light emitted from the LED element 1 excites the phosphor in the wavelength conversion member 3, emits excitation light (for example, yellow light) having a color different from that of the light of the LED element 1, and does not encounter the phosphor. It mixes with the light of the LED element 1 and emits light of a color different from that of the LED element 1 (for example, white light). Further, a part of the light of each LED element 1 is taken into the heat conductive member 4 and guided to the wavelength conversion member 3 to excite the phosphor, and a part of the light is transmitted through the heat conductive member 4. This makes it difficult for the heat conductive member 5 to cast a shadow.

一方、波長変換部材3内では励起光の放出とともに励起熱を発生する。この励起熱の一部は、波長変換部材3の外周部から枠体2を経由して基板20に放熱されるが、波長変換部材3の枠体から離れている中央付近には励起熱が溜まりやすい。ここで、波長変換部材4の中央と基板20の中央を繋ぐように設けられた熱伝導部材4により、励起熱を熱伝導部材4から基板20に効率的に逃がすことができる。このようにして、波長変換部材3は放熱性が向上するので、励起光の輝度を高めることができる。 On the other hand, in the wavelength conversion member 3, excitation heat is generated along with emission of excitation light. A part of this excitation heat is dissipated from the outer peripheral portion of the wavelength conversion member 3 to the substrate 20 via the frame body 2, but the excitation heat accumulates near the center away from the frame body of the wavelength conversion member 3. Cheap. Here, the heat conduction member 4 provided so as to connect the center of the wavelength conversion member 4 and the center of the substrate 20 allows the excitation heat to be efficiently released from the heat conduction member 4 to the substrate 20. In this way, the wavelength conversion member 3 has improved heat dissipation, so that the brightness of the excitation light can be increased.

[効果の説明]
LED発光装置100は、このような構造とすることによって、熱伝導部材4によって発光の一部を取り込んで波長変換部材3に導光し、一部は透過する。これにより、熱伝導部材による影をでき難くすることができる。また、波長変換部材の熱を枠体にのみに逃がしていた従来の放熱ルートでは、波長変換部材3の中央付近に溜まりやすかった励起熱を、波長変換部材の中央と接する熱伝導部材4を経由して基板20の中央に逃がすことができる。これにより波長変換部材3の温度消光が低下するので発光効率の低下を防ぐことができる。この結果、発光効率を低下させることなく所定の基板面積において輝度を高めると共に、一般的な照明用光源として有用な発光装置を提供することができる。
[Explanation of effect]
With such a structure, the LED light emitting device 100 takes in a part of the light emission by the heat conductive member 4 and guides the light to the wavelength conversion member 3, and the part is transmitted. This makes it difficult for the heat conductive member to cast a shadow. Further, in the conventional heat dissipation route in which the heat of the wavelength conversion member is released only to the frame, the excitation heat that tends to accumulate near the center of the wavelength conversion member 3 passes through the heat conductive member 4 in contact with the center of the wavelength conversion member 3. Then, it can be released to the center of the substrate 20. As a result, the temperature quenching of the wavelength conversion member 3 is reduced, so that the reduction in luminous efficiency can be prevented. As a result, it is possible to provide a light emitting device useful as a general lighting light source while increasing the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、基板20に凹部12を設けて熱伝導部材4を位置決めするようにしたが、これに限定されるものではなく、凹部12を設けずに治具等を用いて位置決めして接着してもよい。また、熱伝導部材4の上端面と波長変換部材3の下面との接合において低融点ガラスや透明接着剤等を用いる場合は、接合面における屈折または界面反射等の悪影響を避けるために屈折率が互いに近い材料を選択することが望ましい。また、枠体2の貫通孔10の形状は図に示すような角型に限定されず円形または他の形状でもよい。また、複数のLED素子1は図のような配列や個数に限定されず輝度と放熱性を考慮して決めることが好ましい。また、熱伝導部材4は円柱状としたが、これに限定されず、角柱状としてもよく、また、直径(又は断面積)は輝度と放熱性を考慮して決めることが好ましい。また、熱伝導
部材4は波長変換部材3及び基板20の中央以外に配置されても良く、例えば枠体と接するように配置しても良いが、波長変換部材3及び基板20の中央に配置した時に波長変換部材3の励起熱を最も効率的に放熱することができる。
The heat conductive member 4 is positioned by providing the recess 12 on the substrate 20, but the present invention is not limited to this, and the substrate 20 may be positioned and bonded using a jig or the like without providing the recess 12. Good. Further, when low melting point glass, a transparent adhesive or the like is used for joining the upper end surface of the heat conductive member 4 and the lower surface of the wavelength conversion member 3, the refractive index is increased in order to avoid adverse effects such as refraction or interfacial reflection on the joint surface. It is desirable to select materials that are close to each other. Further, the shape of the through hole 10 of the frame body 2 is not limited to the square shape as shown in the figure, and may be a circular shape or another shape. Further, the plurality of LED elements 1 are not limited to the arrangement and the number as shown in the figure, and are preferably determined in consideration of brightness and heat dissipation. Further, the heat conductive member 4 has a columnar shape, but is not limited to this, and may be a prismatic shape, and the diameter (or cross-sectional area) is preferably determined in consideration of brightness and heat dissipation. Further, the heat conductive member 4 may be arranged outside the center of the wavelength conversion member 3 and the substrate 20, for example, may be arranged so as to be in contact with the frame, but may be arranged at the center of the wavelength conversion member 3 and the substrate 20. Sometimes, the excitation heat of the wavelength conversion member 3 can be dissipated most efficiently.

ここで、特に限定はしないが、基板20に用いる主な材料をあげておく。
例えば、金属であるアルミニウムにAlの酸化被膜を形成したものや、セラミックスであるAl、AlNなどであり、より熱伝導性が高く高反射性を備えた材料であることが望ましい。
また、特に限定はしないが、枠体2に用いる主な材料をあげておく。
例えば、金属であるアルミニウムや、セラミックスであるAl、AlNなどであり、より熱伝導性が高く高反射性を備えた材料であることが望ましい。
また、特に限定はしないが、波長変換部材3に用いる主な材料をあげておく。
例えば、ガラスに蛍光体を含有したもの、シリコーン樹脂に蛍光体を含有させたシートをサファイアに貼り付けたもの、シリコーン樹脂に蛍光体を含有したものなど透光性を備えたものであり、より熱伝導性が高い材料であることが望ましい。
また、特に限定はしないが、熱伝導部材4に用いる主な材料をあげておく。
例えば、サファイア、ガラス、透光性セラミックスなどであり、より熱伝導性が高く、より透明であることが望ましい。
以上にあげた各部材に用いる主な材料は、以下に説明する他の実施形態又は変形例に用いる部材にも適用することができる。
Here, although not particularly limited, the main materials used for the substrate 20 are listed.
For example, metal and that to form an oxide film of Al 2 O 3 in aluminum is, and the like Al 2 O 3, AlN is ceramic, it is a material with more high thermal conductivity highly reflective desirable.
Further, although not particularly limited, the main materials used for the frame 2 are listed.
For example, aluminum which is a metal, Al 2 O 3 which is a ceramic, Al N, and the like, and it is desirable that the material has higher thermal conductivity and high reflectivity.
Further, although not particularly limited, the main materials used for the wavelength conversion member 3 are listed.
For example, a glass containing a fluorescent substance, a sheet containing a fluorescent substance in a silicone resin attached to sapphire, a silicone resin containing a fluorescent substance, and the like having translucency. It is desirable that the material has high thermal conductivity.
Further, although not particularly limited, the main materials used for the heat conductive member 4 are listed.
For example, sapphire, glass, translucent ceramics, etc., which have higher thermal conductivity and are more transparent.
The main materials used for each of the above-mentioned members can also be applied to the members used in other embodiments or modifications described below.

[第2の実施形態の説明:図2]
次に、図2を用いて、第2の実施形態のLED発光装置200を説明する。図2(a)は、LED発光装置200の発光方向で中心線を通る断面図を示し、図2(b)は、図2(a)の切断線B−B´における断面図を示し、図2(c)は、図2(a)の切断線C−C´における断面図を示す。
[Explanation of the Second Embodiment: FIG. 2]
Next, the LED light emitting device 200 of the second embodiment will be described with reference to FIG. FIG. 2A shows a cross-sectional view of the LED light emitting device 200 passing through the center line in the light emitting direction, and FIG. 2B shows a cross-sectional view taken along the cutting line BB'of FIG. 2A. 2 (c) shows a cross-sectional view taken along the cutting line CC'of FIG. 2 (a).

第2の実施形態のLED発光装置200の特徴は、2つの基板を用いて二層構造とし、波長変換部材3の下面と下層側の基板30(第一の基板)の上面とを、熱伝導部材5によって、上層側の基板40(第二の基板)を貫通して接続した点である。また、熱伝導部材5は第二の基板40とも接触している。尚、LED発光装置200における第二の基板40よりも上層側は、LED発光装置100と基本的に共通するので、同一要素には同一番号又は同一符号を付し重複する説明は省略する。 The feature of the LED light emitting device 200 of the second embodiment is that it has a two-layer structure using two substrates, and heat conduction between the lower surface of the wavelength conversion member 3 and the upper surface of the lower substrate 30 (first substrate). This is a point where the member 5 penetrates and connects the upper layer side substrate 40 (second substrate). The heat conductive member 5 is also in contact with the second substrate 40. Since the upper layer side of the LED light emitting device 200 above the second substrate 40 is basically the same as the LED light emitting device 100, the same elements are given the same number or the same reference numeral, and the overlapping description will be omitted.

図2(a)に示す様に、LED発光装置200は、中央に貫通孔14を備え複数のLED素子21(第二のLED素子)を実装した第二の基板40と、第二の基板40の下にあって中央に凹部12を備え複数のLED素子11(第一のLED素子)を実装した基板30と、第二の基板40の上面に接合された枠体2と、第1の基板30と第二の基板40との間に接合された枠体2aと、第二のLED素子21の発光面から離間するように枠体2の上面に接合された波長変換部材3と、波長変換部材3の下面と第一の基板30の上面とを、第二の基板40を貫通して接続し、上端部に光散乱剤9を備える透光性の熱伝導部材5とから構成されている。 As shown in FIG. 2A, the LED light emitting device 200 includes a second substrate 40 having a through hole 14 in the center and mounting a plurality of LED elements 21 (second LED elements), and a second substrate 40. A substrate 30 underneath and having a recess 12 in the center and mounted with a plurality of LED elements 11 (first LED elements), a frame 2 joined to the upper surface of the second substrate 40, and a first substrate. The frame body 2a joined between the 30 and the second substrate 40, the wavelength conversion member 3 joined to the upper surface of the frame body 2 so as to be separated from the light emitting surface of the second LED element 21, and the wavelength conversion. The lower surface of the member 3 and the upper surface of the first substrate 30 are connected through the second substrate 40, and are composed of a translucent heat conductive member 5 having a light scattering agent 9 at the upper end portion. ..

図2(b)に示す様に、第二の基板40に実装されるLED素子1の配列及び実装方法等はLED発光装置100と同様である(図1参照)。また、図2(c)に示す様に、第一の基板30に実装されるLED素子1の配列及び実装方法等はLED発光装置100と同様である。
また、図2(a)に示す様に、第一の基板30及び第二の基板40に用いる材質、枠体2及び枠体2aに用いる材質はLED発光装置100と同様である。また、接合方法等も同様である。
As shown in FIG. 2B, the arrangement and mounting method of the LED elements 1 mounted on the second substrate 40 are the same as those of the LED light emitting device 100 (see FIG. 1). Further, as shown in FIG. 2C, the arrangement and mounting method of the LED elements 1 mounted on the first substrate 30 are the same as those of the LED light emitting device 100.
Further, as shown in FIG. 2A, the materials used for the first substrate 30 and the second substrate 40, and the materials used for the frame body 2 and the frame body 2a are the same as those of the LED light emitting device 100. The same applies to the joining method and the like.

熱伝導部材5は、例えば、ガラスや透光性のセラミックスなどの熱伝導性の高い透光性部材からなり、下端側は、第二の基板40に設けられた貫通孔14を貫通して、さらに第一の基板30に形成された凹部12に嵌合されて位置決めされ、例えばハンダ、低融点ガラス、又は高い熱伝導性を有する接着剤等により接着されている。一方、熱伝導部材5の上端側は、光散乱剤9を備え、波長変換部材3に当接又は低融点ガラスや透明接着剤等により接合されている。光散乱剤9は、例えば、熱伝導部材5と同様の透光性部材に、例えば、アルミナ粒子等の反射性を有する部材を所定量含有させて用いている。 The heat conductive member 5 is made of a heat conductive member having high heat conductivity such as glass or translucent ceramics, and the lower end side penetrates through a through hole 14 provided in the second substrate 40. Further, it is fitted and positioned in the recess 12 formed in the first substrate 30, and is bonded with, for example, solder, low melting point glass, or an adhesive having high thermal conductivity. On the other hand, the upper end side of the heat conductive member 5 is provided with a light scattering agent 9, and is in contact with the wavelength conversion member 3 or is bonded to the wavelength conversion member 3 with low melting point glass, a transparent adhesive or the like. The light scattering agent 9 is used, for example, by including a predetermined amount of a reflective member such as alumina particles in a translucent member similar to the heat conductive member 5.

[動作の説明:図2]
図2(a)に示す様に、所定の面積を有する第一の基板30及び第二の基板40に、それぞれ複数の第一のLED素子11、第二のLED素子21が実装されており、図示しない入力電極に電圧が供給されると、下層側の第一の基板30及び上層側の第二の基板40に実装された第一のLED素子11及び第二のLED素子21が発光する。上層側の第二の基板40の発光動作は前述したLED発光装置100と同様である。下層側の第一の基板30に実装された第一のLED素子11からの発光は、すべてではないが透光性の熱伝導部材5に取り込まれて波長変換部材3に向けて導光される。そして第二の基板40と波長変換部材3との間において、第一の基板30の各第一のLED素子11から取り込まれた光と、第二の基板40の各LED素子21から取り込まれた光が合流する。したがって、前述したLED発光装置100に比べて、波長変換部材3と熱伝導部材5(または光散乱剤9)との接合部では、光量が増加して輝度を高めることができる。ここで、光散乱剤9は、例えばアルミナ粒子の様な反射性を有する粒子を含有して用いるので、増加した光の一部を、接合部より下方の領域(光散乱剤部)において拡散させることができる。これにより、熱伝導部材5に導光された光を波長変換部材3との接合部から離れた領域に、拡散させて入射させることができる。
[Explanation of operation: Fig. 2]
As shown in FIG. 2A, a plurality of first LED elements 11 and second LED elements 21 are mounted on the first substrate 30 and the second substrate 40 having a predetermined area, respectively. When a voltage is supplied to an input electrode (not shown), the first LED element 11 and the second LED element 21 mounted on the first substrate 30 on the lower layer side and the second substrate 40 on the upper layer side emit light. The light emitting operation of the second substrate 40 on the upper layer side is the same as that of the LED light emitting device 100 described above. The light emitted from the first LED element 11 mounted on the first substrate 30 on the lower layer side is taken in by the translucent heat conductive member 5 and guided toward the wavelength conversion member 3. .. Then, between the second substrate 40 and the wavelength conversion member 3, the light captured from each of the first LED elements 11 of the first substrate 30 and the light captured from each LED element 21 of the second substrate 40 are captured. The light merges. Therefore, as compared with the LED light emitting device 100 described above, the amount of light can be increased and the brightness can be increased at the joint portion between the wavelength conversion member 3 and the heat conductive member 5 (or the light scattering agent 9). Here, since the light scattering agent 9 contains particles having reflectivity such as alumina particles, a part of the increased light is diffused in a region below the junction (light scattering agent portion). be able to. As a result, the light guided by the heat conductive member 5 can be diffused and incident on a region away from the junction with the wavelength conversion member 3.

一方、波長変換部材3内では励起光の放出とともに励起熱を発生する。この励起熱の一部は波長変換部材3から枠体2及び枠体2aを経て第一の基板30及び第二の基板40に放熱されるが、波長変換部材3の枠体から離れている中央付近には励起熱が溜まりやすい。ここで、波長変換部材3の中央に接するように設けられた熱伝導部材5により、励起熱を熱伝導部材5から第一の基板30及び第二の基板40に効率的に逃がすことができる。尚、第二の基板40より上層側の各LED素子21の発光の一部は、熱伝導部材5に取り込まれて波長変換部材3に導光されるが、このとき熱伝導部材5は、透光性を有することから熱伝導部材5による影をでき難くしている。 On the other hand, in the wavelength conversion member 3, excitation heat is generated along with emission of excitation light. A part of this excitation heat is dissipated from the wavelength conversion member 3 to the first substrate 30 and the second substrate 40 via the frame body 2 and the frame body 2a, but the center away from the frame body of the wavelength conversion member 3. Excitation heat tends to accumulate in the vicinity. Here, the heat conductive member 5 provided so as to be in contact with the center of the wavelength conversion member 3 can efficiently release the excitation heat from the heat conductive member 5 to the first substrate 30 and the second substrate 40. A part of the light emitted from each LED element 21 on the upper layer side of the second substrate 40 is taken into the heat conductive member 5 and guided to the wavelength conversion member 3. At this time, the heat conductive member 5 is transparent. Since it has lightness, it is difficult for the heat conductive member 5 to cast a shadow.

[効果の説明]
LED発光装置200は、このような構造とすることによって、2層構造によって発光量を増加させて輝度を高めることができる。また、第一のLED素子11、第二のLED素子21より出射された光のうち熱伝導部材5に入った光を光散乱剤9によって拡散させることによって、輝度ムラや色ムラを低減することができる。一方、前述したLED発光装置100と同様に、波長変換部材3の励起熱の放熱ルートが、従来は枠体2のみであったのに対し、さらに熱伝導部材5を経由して第一の基板30及び第二の基板40に逃がす放熱ルートができるので、温度消光による発光効率の低下を防ぐことができる。また、熱伝導部材5が透光性を有することから熱伝導部材による影をでき難くすることができる。この結果、発光効率を低下させることなく所定の基板面積において輝度を高めると共に、一般的な照明用光源として有用な発光装置を提供することができる。
[Explanation of effect]
By having such a structure, the LED light emitting device 200 can increase the light emitting amount and increase the brightness by the two-layer structure. Further, among the light emitted from the first LED element 11 and the second LED element 21, the light entering the heat conductive member 5 is diffused by the light scattering agent 9, thereby reducing the brightness unevenness and the color unevenness. Can be done. On the other hand, similarly to the LED light emitting device 100 described above, the heat dissipation route of the excitation heat of the wavelength conversion member 3 is conventionally only the frame 2, but further via the heat conductive member 5 to the first substrate. Since a heat dissipation route is provided to the 30 and the second substrate 40, it is possible to prevent a decrease in luminous efficiency due to temperature quenching. Further, since the heat conductive member 5 has translucency, it is possible to make it difficult for the heat conductive member to cast a shadow. As a result, it is possible to provide a light emitting device useful as a general lighting light source while increasing the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、光散乱剤9は、熱伝導部材5と同様の透光性部材に光散乱粒子を均一に含有させた部材を接着してもよく、あるいは、熱伝導部材5の所定領域に光散乱粒子を含有させたものでも良い。また、光散乱剤9の位置を熱伝導部材5の上端側としたがこれに限定されず
、波長変換部材3の下面と第二の基板40の上面との間の任意の位置でもよく、場合によっては設けなくてもよい。また、第一の基板30に凹部12を設けて熱伝導部材5を位置決めするようにしたがこれに限定されず、凹部を設けずに治具等を用いて位置決めして接着剤等により接着してもよい。また、枠体2及び枠体2aの貫通孔10の形状は図に示すような角型に限定されず円形または他の形状でもよい。また、第一の基板30及び第二の基板40に実装される複数の第一のLED素子11及び第二のLED21は、図のような配列や個数に限定されず輝度と放熱性を考慮して決めることが好ましい。また、熱伝導部材4は円柱状としたが、これに限定されず、角柱状または多角柱状としてもよい。また、本実施形態では、2つの基板を用いた2層構造としたが、これに限定されず、3層以上の複数層とすることもできる。
The light scattering agent 9 may be a light-transmitting member similar to the heat-conducting member 5 to which a member uniformly containing the light-scattering particles is adhered, or the light-scattering particles may be formed in a predetermined region of the heat-conducting member 5. May be contained. Further, the position of the light scattering agent 9 is set to the upper end side of the heat conductive member 5, but the position is not limited to this, and any position between the lower surface of the wavelength conversion member 3 and the upper surface of the second substrate 40 may be used. It may not be provided depending on the case. Further, the first substrate 30 is provided with a recess 12 to position the heat conductive member 5, but the present invention is not limited to this, and the heat conductive member 5 is positioned by using a jig or the like without providing the recess and adhered with an adhesive or the like. You may. Further, the shape of the through hole 10 of the frame body 2 and the frame body 2a is not limited to the square shape as shown in the figure, and may be a circular shape or another shape. Further, the plurality of first LED elements 11 and the second LED 21 mounted on the first substrate 30 and the second substrate 40 are not limited to the arrangement and the number as shown in the figure, and the brightness and heat dissipation are taken into consideration. It is preferable to decide. Further, the heat conductive member 4 has a columnar shape, but is not limited to this, and may be a prismatic columnar shape or a polygonal columnar shape. Further, in the present embodiment, a two-layer structure using two substrates is used, but the present invention is not limited to this, and a plurality of three or more layers may be used.

ここで、特に限定はしないが、光散乱剤に用いる主な材料をあげておく。
例えば、アルミナ粒子、酸化チタン粒子等である。
Here, although not particularly limited, the main materials used for the light scattering agent are listed.
For example, alumina particles, titanium oxide particles and the like.

[第2の実施形態の変形例の説明:図3]
次に、図3を用いて、第2の実施形態の変形例のLED発光装置210を説明する。
図3(a)は、LED発光装置210の発光方向で中心線を通る断面図を示し、図3(b)は、図3(a)の切断線D−D´における断面図を示し、図3(c)は、図3(a)の切断線E−E´における断面図を示す。
[Explanation of a modified example of the second embodiment: FIG. 3]
Next, the LED light emitting device 210 of the modified example of the second embodiment will be described with reference to FIG.
FIG. 3 (a) shows a cross-sectional view of the LED light emitting device 210 passing through the center line in the light emitting direction, and FIG. 3 (b) shows a cross-sectional view taken along the cutting line DD'of FIG. 3 (a). 3 (c) shows a cross-sectional view taken along the cutting line EE'of FIG. 3 (a).

第2の実施形態の変形例のLED発光装置210の特徴は、LED発光装置200に対して、熱伝導部材の数量を増した点である。尚、LED発光装置210は、LED発光装置200と基本的な構成は同一であるので、同一要素には同一番号又は同一符号を付し重複する説明は省略する。 The feature of the LED light emitting device 210 of the modified example of the second embodiment is that the number of heat conductive members is increased with respect to the LED light emitting device 200. Since the LED light emitting device 210 has the same basic configuration as the LED light emitting device 200, the same elements are designated by the same number or the same reference numerals, and duplicate description will be omitted.

図3(a)に示す様に、LED発光装置210は第2の実施形態に記載のLED発光装置200に比べ、熱伝導部材5の両側に透光性を備えた熱伝導部材6が追加されている。これを図3(b)、及び図3(c)で見ると、第一の基板35の四隅に熱伝導部材6が第二の基板45を貫通して配置されていることがわかる。これらの4つの熱伝導部材6は、それぞれ、第二の基板45に設けられた貫通孔14(破線で示す)を貫通して波長変換部材3の下面と第一の基板35の上面とを接続している。また、4つの熱伝導部材6の下端側は、熱伝導部材5と同様に第一の基板35に設けられた凹部12(破線で示す)に嵌合して位置決めされハンダ、低融点ガラス、又は高い熱伝導性を有する接着剤等により接着されている。また、上端側は波長変換部材3に当接又は低融点ガラスや透明接着剤等により接合されている。 As shown in FIG. 3A, compared to the LED light emitting device 200 described in the second embodiment, the LED light emitting device 210 has additional heat conductive members 6 having translucency on both sides of the heat conductive member 5. ing. Looking at this in FIGS. 3B and 3C, it can be seen that the heat conductive members 6 are arranged at the four corners of the first substrate 35 so as to penetrate the second substrate 45. Each of these four heat conductive members 6 penetrates a through hole 14 (indicated by a broken line) provided in the second substrate 45 and connects the lower surface of the wavelength conversion member 3 and the upper surface of the first substrate 35. doing. Further, the lower end sides of the four heat conductive members 6 are positioned by being fitted into the recesses 12 (indicated by the broken lines) provided in the first substrate 35 like the heat conductive member 5, and are soldered, low melting point glass, or It is bonded with an adhesive or the like having high thermal conductivity. Further, the upper end side is in contact with the wavelength conversion member 3 or is joined with a low melting point glass, a transparent adhesive or the like.

LED発光装置210は、このような構造とすることで、熱伝導部材5、及び熱伝導部材6により上層側第二のLED素子21及び下層側の第一のLED素子11からの光を効率的に取り込んで波長変換部材3へ導光することができるので輝度をいっそう高めることができる。また、波長変換部材3と熱伝導部材5及び複数の熱伝導部材6との接合部に光を分散させるので熱伝導部材が一本の第2の実施形態に比べ輝度ムラ及び色むらをより低減することが出来る。一方、波長変換部材3に発生する励起熱を熱伝導部材5及び熱伝導部材6から第一の基板35及び第二の基板45に効率的に逃がすことができるので、放熱性がさらに向上し温度消光よる発光効率の低下を防ぐことができる。また、熱伝導部材5及び熱伝導部材6が透光性を有することから熱伝導部材による影をでき難くすることができる。この結果、発光効率を低下させることなく所定の基板面積において輝度をさらに向上させると共に、一般的な照明用光源として有用な発光装置を提供することができる。 By adopting such a structure, the LED light emitting device 210 efficiently transmits light from the second LED element 21 on the upper layer side and the first LED element 11 on the lower layer side by the heat conductive member 5 and the heat conductive member 6. Since it can be taken into the light and guided to the wavelength conversion member 3, the brightness can be further increased. Further, since the light is dispersed at the joint portion between the wavelength conversion member 3, the heat conductive member 5, and the plurality of heat conductive members 6, the heat conductive member further reduces brightness unevenness and color unevenness as compared with the second embodiment. Can be done. On the other hand, the excitation heat generated in the wavelength conversion member 3 can be efficiently released from the heat conductive member 5 and the heat conductive member 6 to the first substrate 35 and the second substrate 45, so that the heat dissipation is further improved and the temperature is improved. It is possible to prevent a decrease in luminous efficiency due to quenching. Further, since the heat conductive member 5 and the heat conductive member 6 have translucency, it is possible to make it difficult for the heat conductive member to cast a shadow. As a result, it is possible to provide a light emitting device useful as a general lighting light source while further improving the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、熱伝導部材6の直径は、熱伝導部材5よりも少し細い直径としたが、これに限定されるものではなく、輝度と放熱性を考慮してそれぞれの断面積を決めることが好ましい。
また、熱伝導部材6は、枠体2又は枠体2aに対して離間して配置したが、これに限定されるものではなく、枠体2又は枠体2aに接するようにしてもよい。また、4つの熱伝導部材6の上端側には光散乱剤9を配置していないが、輝度と放熱性を考慮して必要に応じて配置してもよい。また、各熱伝導部材6は円柱状としたがこれに限定されず角柱状としてもよい。
The diameter of the heat conductive member 6 is slightly smaller than that of the heat conductive member 5, but the diameter is not limited to this, and it is preferable to determine the cross-sectional area of each in consideration of brightness and heat dissipation.
Further, the heat conductive member 6 is arranged apart from the frame body 2 or the frame body 2a, but the present invention is not limited to this, and the heat conductive member 6 may be in contact with the frame body 2 or the frame body 2a. Further, although the light scattering agent 9 is not arranged on the upper end side of the four heat conductive members 6, it may be arranged as needed in consideration of brightness and heat dissipation. Further, each heat conductive member 6 has a columnar shape, but the present invention is not limited to this and may be a prismatic shape.

また、熱伝導部材5と熱伝導部材6の配置は、図3(b)に示すような配置に限定されず、熱伝導部材5又は熱伝導部材6を好適に配置することができる。また、熱伝導部材5又は熱伝導部材6を配置することによって放熱性が向上するので、枠体2又は枠体2aは、例えば、シリコーンなどの樹脂を用いてもよい。 Further, the arrangement of the heat conductive member 5 and the heat conductive member 6 is not limited to the arrangement as shown in FIG. 3 (b), and the heat conductive member 5 or the heat conductive member 6 can be preferably arranged. Further, since the heat dissipation is improved by arranging the heat conductive member 5 or the heat conductive member 6, a resin such as silicone may be used for the frame 2 or the frame 2a.

[第3の実施形態の説明:図4]
次に、図4を用いて、第3の実施形態のLED発光装置300を説明する。図4(a)は、LED発光装置300の発光方向の中心線を通る断面図を示し、図4(b)は、図4(a)の切断線F−F´における断面図を示し、図4(c)は、図4(a)の切断線G−G´における断面図を示す。
[Explanation of the Third Embodiment: FIG. 4]
Next, the LED light emitting device 300 of the third embodiment will be described with reference to FIG. FIG. 4A shows a cross-sectional view of the LED light emitting device 300 passing through the center line in the light emitting direction, and FIG. 4B shows a cross-sectional view taken along the cutting line FF'of FIG. 4A. 4 (c) shows a cross-sectional view taken along the cutting line GG'in FIG. 4 (a).

第3の実施形態のLED発光装置300の特徴は、LED発光装置200に対して、下層側の基板50に実装された第一のLED素子11の発光面が熱伝導部材5に向くように基板50の上面を傾斜させた点である。LED発光装置300は、LED発光装置200と基本的な構成は同一であるので、同一要素には同一番号又は同一符号を付し重複する説明は省略する。 The feature of the LED light emitting device 300 of the third embodiment is that the light emitting surface of the first LED element 11 mounted on the substrate 50 on the lower layer side faces the heat conductive member 5 with respect to the LED light emitting device 200. It is a point where the upper surface of 50 is inclined. Since the LED light emitting device 300 has the same basic configuration as the LED light emitting device 200, the same elements are designated by the same number or the same reference numerals, and duplicate description will be omitted.

図4(a)及び図4(b)に示す様に、LED発光装置300は、第二の基板40よりも上層側の構造は前述したLED発光装置200と同様である(図2参照)。一方、第二の基板40よりも下層側の構造において、第一の基板50の実装面が熱伝導部材5に向かって2つの面が傾斜している。また、図4(c)に示す様に、第一の基板50の4つの傾斜面が互いに傾斜して対向していることを示している。このように、4つの傾斜した実装面に、それぞれ所定数の第一のLED素子11が実装され、各第一のLED素子11の発光面が熱伝導部材5に向かって配置されている。 As shown in FIGS. 4A and 4B, the structure of the LED light emitting device 300 on the upper layer side of the second substrate 40 is the same as that of the LED light emitting device 200 described above (see FIG. 2). On the other hand, in the structure on the lower layer side of the second substrate 40, the mounting surface of the first substrate 50 is inclined toward the heat conductive member 5. Further, as shown in FIG. 4C, it is shown that the four inclined surfaces of the first substrate 50 are inclined and face each other. In this way, a predetermined number of first LED elements 11 are mounted on each of the four inclined mounting surfaces, and the light emitting surfaces of the first LED elements 11 are arranged toward the heat conductive member 5.

また、図4(a)に示す様に、下層側の貫通孔10を有する枠体2bは、下面が傾斜して基板50の4つの斜面に当接し、上面は基板30の下面に当接し、それぞれ接着剤等により接合されている。特に図示はしないが、基板30及び基板50にはボンディングパッド、入力電極、それらを接続する配線等がスルーホール技術やフォトリソグラフィ技術等を用いて形成され、また、基板側面及び枠体側面を利用して外部との電気的な接続ができるようになっている。 Further, as shown in FIG. 4A, the lower surface of the frame body 2b having the through hole 10 on the lower layer side is inclined and abuts on the four slopes of the substrate 50, and the upper surface abuts on the lower surface of the substrate 30. Each is joined with an adhesive or the like. Although not shown in particular, bonding pads, input electrodes, wirings connecting them, etc. are formed on the substrate 30 and the substrate 50 by using through-hole technology, photolithography technology, etc., and the side surfaces of the substrate and the side surface of the frame are used. It is possible to make an electrical connection with the outside.

LED発光装置300は、このような構造とすることによって、第二の基板40よりも下層側にあるLED素子11から発せられた光を、より効率的に透光性の熱伝導部材5に取り込んで輝度を高めることができる。この結果、所定の基板面積において、発光効率を低下させることなく輝度をさらに向上させると共に、一般的な照明用光源として有用な発光装置を提供することができる。 With such a structure, the LED light emitting device 300 more efficiently takes in the light emitted from the LED element 11 on the lower layer side of the second substrate 40 into the translucent heat conductive member 5. The brightness can be increased with. As a result, it is possible to provide a light emitting device useful as a general lighting light source while further improving the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、下層側の基板50の斜面を4つの斜面として説明したが、これに限定されず、すり鉢状等、目的を同一とする他の斜面形状としてもよい。 Although the slope of the substrate 50 on the lower layer side has been described as four slopes, the present invention is not limited to this, and other slope shapes having the same purpose such as a mortar shape may be used.

[第4の実施形態の説明:図5]
次に、図5を用いて、第4の実施形態のLED発光装置400を説明する。図5(a)は、LED発光装置400の発光方向の中心線を通る断面図を示し、図5(b)は、図5
(a)の切断線H−H´における断面図を示し、図5(c)は、図5(a)の切断線I−I´における断面図を示す。
[Explanation of Fourth Embodiment: FIG. 5]
Next, the LED light emitting device 400 of the fourth embodiment will be described with reference to FIG. FIG. 5A shows a cross-sectional view of the LED light emitting device 400 passing through the center line in the light emitting direction, and FIG. 5B is FIG.
A cross-sectional view taken along the cutting line HH ′ of FIG. 5A is shown, and FIG. 5C shows a cross-sectional view taken along the cutting line I-I ′ of FIG. 5A.

第4の実施形態のLED発光装置400の特徴は、LED発光装置200に対して、下層側の第一の基板60の上面に熱伝導部材5の周囲を取り囲む凹部を備え、凹部の内壁面に第一のLED素子11の発光面が熱伝導部材5に対峙するように配置した点である。LED発光装置400は、LED発光装置200と基本的な構成は同一であるので、同一要素には同一番号又は同一符号を付し重複する説明は省略する。 The feature of the LED light emitting device 400 of the fourth embodiment is that the LED light emitting device 200 is provided with a recess that surrounds the periphery of the heat conductive member 5 on the upper surface of the first substrate 60 on the lower layer side, and is formed on the inner wall surface of the recess. This is a point where the light emitting surface of the first LED element 11 is arranged so as to face the heat conductive member 5. Since the LED light emitting device 400 has the same basic configuration as the LED light emitting device 200, the same elements are assigned the same number or the same reference numeral, and duplicate description will be omitted.

図5(a)及び図5(b)に示す様に、LED発光装置400は、第二の基板40の上層側の構造は前述したLED発光装置200と同様である(図1参照)。一方、第二の基板40の下層側の構造において、基板60の中央部に凹部13が形成されておりLED素子1の実装面は熱伝導部材5の長手方向と平行になっている。また、LED素子1の発光面が熱伝導部材5の外周面に当接するように配置されている。また、図5(c)に示す様に、下層側の第一の基板60に形成された凹部13の4つの内壁面に実装されたLED素子1が熱伝導部材5の外周面に当接している。 As shown in FIGS. 5A and 5B, the structure of the LED light emitting device 400 on the upper layer side of the second substrate 40 is the same as that of the LED light emitting device 200 described above (see FIG. 1). On the other hand, in the structure on the lower layer side of the second substrate 40, a recess 13 is formed in the central portion of the substrate 60, and the mounting surface of the LED element 1 is parallel to the longitudinal direction of the heat conductive member 5. Further, the light emitting surface of the LED element 1 is arranged so as to abut on the outer peripheral surface of the heat conductive member 5. Further, as shown in FIG. 5C, the LED element 1 mounted on the four inner wall surfaces of the recess 13 formed in the first substrate 60 on the lower layer side comes into contact with the outer peripheral surface of the heat conductive member 5. There is.

図5(a)に示す様に、本実施形態では第二の基板40は第一の基板60上に直接配置されているので、下層側の枠体は不要となっている。特に図示はしないが、基板60は、熱伝導部材5を中心にして長手方向に分割(例えば、2分割、4分割等)して実装面を露出させることにより、第一のLED素子11の実装を容易にすることができる。第二の基板40及び第一の基板60にはボンディングパッド、入力電極、それらを接続する配線等がスルーホール技術やフォトリソグラフィ技術等を用いて形成され、基板側面及び枠体側面を利用して各分割面の電気的な接続ができるようになっている。 As shown in FIG. 5A, in the present embodiment, since the second substrate 40 is directly arranged on the first substrate 60, the frame on the lower layer side is unnecessary. Although not particularly shown, the substrate 60 is divided in the longitudinal direction (for example, divided into two, four, etc.) around the heat conductive member 5 to expose the mounting surface, thereby mounting the first LED element 11. Can be facilitated. Bonding pads, input electrodes, wirings connecting them, etc. are formed on the second substrate 40 and the first substrate 60 by using through-hole technology, photolithography technology, etc., and the side surfaces of the substrate and the side surface of the frame are used. Electrical connection of each dividing surface is possible.

LED発光装置400は、このような構造とすることによって、第一のLED素子11から放熱部材5に直接光を入射できるので、より効率的に熱伝導部材5に光を取り込んで輝度を高めることができる。一方、波長変換部材3内の励起熱を、熱伝導部材5によって効率良く第一の基板60及び第二の基板40へ逃がすことができるだけでなく、第一のLED11の熱も第一の基板60に加えて放熱部材5へ逃がすことが出来る。さらに、第二の基板40は前述の通り第一の基板60に枠体を介さず直接配置されるため、第二のLED素子21から発せられた熱が、第二の実施形態に比べてより第一の基板60へ放熱されやすくなる。これらにより、波長変換部材3、第一のLED素子11及び第二のLED素子21の発光効率が向上する。この結果、所定の基板面積において、発光効率を低下させることなく輝度をさらに向上させると共に、一般的な照明用光源として有用な発光装置を提供することができる。 With such a structure, the LED light emitting device 400 can directly inject light from the first LED element 11 into the heat radiating member 5, so that the light can be taken into the heat conductive member 5 more efficiently to increase the brightness. Can be done. On the other hand, not only the excitation heat in the wavelength conversion member 3 can be efficiently released to the first substrate 60 and the second substrate 40 by the heat conductive member 5, but also the heat of the first LED 11 is also transferred to the first substrate 60. In addition, it can be released to the heat radiating member 5. Further, since the second substrate 40 is directly arranged on the first substrate 60 without passing through the frame as described above, the heat generated from the second LED element 21 is more than that of the second embodiment. Heat is easily dissipated to the first substrate 60. As a result, the luminous efficiency of the wavelength conversion member 3, the first LED element 11, and the second LED element 21 is improved. As a result, it is possible to provide a light emitting device useful as a general lighting light source while further improving the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、第一の基板60の凹部13を1か所として説明したが、これに限定されず第2の実施形態2の変形例で説明したように(図3参照)、熱伝導部材6を複数設け、それぞれに対応した凹部13を形成し、第一のLED素子11を実装できるようにしてもよい。また、第一のLED素子11と熱伝導部材5を当接させるとしたが、これに限定されず、熱伝導部材5と離間して配置し、第一のLED素子と熱伝導部材5の間を透明樹脂等によって充填する構造としてもよい。また、熱伝導部材5は円柱状としたがこれに限定されず角柱状としてもよい。 Although the recess 13 of the first substrate 60 has been described as one place, the present invention is not limited to this, and as described in the modified example of the second embodiment (see FIG. 3), a plurality of heat conductive members 6 are provided. A recess 13 corresponding to each of the recesses 13 may be provided so that the first LED element 11 can be mounted. Further, the first LED element 11 and the heat conductive member 5 are brought into contact with each other, but the present invention is not limited to this, and the first LED element 11 and the heat conductive member 5 are arranged apart from each other and between the first LED element and the heat conductive member 5. May be a structure in which is filled with a transparent resin or the like. Further, the heat conductive member 5 has a columnar shape, but the present invention is not limited to this and may be a prismatic shape.

[第5の実施形態の説明:図6]
次に、図6を用いて、第5の実施形態のLED発光装置500を説明する。図6(a)は、LED発光装置500の発光方向の中心線を通る断面図を示し、図6(b)は、図6(a)の切断線J−J´における断面図を示し、図6(c)は、図6(a)の切断線K−K´における断面図を示す。
[Explanation of Fifth Embodiment: FIG. 6]
Next, the LED light emitting device 500 of the fifth embodiment will be described with reference to FIG. FIG. 6 (a) shows a cross-sectional view of the LED light emitting device 500 passing through the center line in the light emitting direction, and FIG. 6 (b) shows a cross-sectional view taken along the cutting line JJ'of FIG. 6 (a). 6 (c) shows a cross-sectional view taken along the cutting line KK'of FIG. 6 (a).

第5の実施形態のLED発光装置500の特徴は、LED発光装置200に対して、上層側の第二の基板40の下面から下層側の第一の基板70の上面に向けて、断面積が漸増する領域を有する熱伝導部材7を設けた点である。LED発光装置500は、LED発光装置200と基本的な構成は同一であるので、同一要素には同一番号又は同一符号を付し重複する説明は省略する。 The feature of the LED light emitting device 500 of the fifth embodiment is that the cross-sectional area of the LED light emitting device 200 is larger than that of the LED light emitting device 200 from the lower surface of the second substrate 40 on the upper layer side to the upper surface of the first substrate 70 on the lower layer side. This is a point where the heat conductive member 7 having a gradually increasing area is provided. Since the LED light emitting device 500 has the same basic configuration as the LED light emitting device 200, the same elements are designated by the same number or the same reference numerals, and duplicate description will be omitted.

図6(a)及び図6(b)に示す様に、LED発光装置500は、第二の基板40より上層側の構造が前述したLED発光装置200と同様である(図2参照)。一方、図6(a)及び図6(c)に示す様に、第二の基板40より下層側の構造は、基板70の実装面に複数の第一のLED素子11を実装し、熱伝導部材7は、基板40の下面と基板70の上面との間において、断面積が漸増する領域Sを有する円錐状部を形成している。また、熱伝導部材7は、下端側において広い底面16を有し、底面16には、各LED素子1が挿入される複数の凹部15を備え、底面16は、基板70に当接している。 As shown in FIGS. 6A and 6B, the LED light emitting device 500 has the same structure as the LED light emitting device 200 described above in the structure on the upper layer side of the second substrate 40 (see FIG. 2). On the other hand, as shown in FIGS. 6A and 6C, in the structure on the lower layer side of the second substrate 40, a plurality of first LED elements 11 are mounted on the mounting surface of the substrate 70, and heat conduction The member 7 forms a conical portion having a region S in which the cross-sectional area gradually increases between the lower surface of the substrate 40 and the upper surface of the substrate 70. Further, the heat conductive member 7 has a wide bottom surface 16 on the lower end side, the bottom surface 16 is provided with a plurality of recesses 15 into which each LED element 1 is inserted, and the bottom surface 16 is in contact with the substrate 70.

図6(a)に示す様に、下層側の枠体2cは、熱伝導部材7の断面積が漸増する領域Sを覆うように形成されており熱伝導部材7から枠体2cへの放熱を良くしている。また、枠体2cは、基板40の下面と基板70の上面とを接続するように配置され、接着剤等により接合されている。また、図6(c)に示す様に、熱伝導部材7の広い底面16は円状であるために、第一のLED素子11の実装数に制限が有り、LED発光装置200の基板30の実装数より若干少なくなっている。 As shown in FIG. 6A, the lower layer side frame 2c is formed so as to cover the region S where the cross-sectional area of the heat conductive member 7 gradually increases, and heat is dissipated from the heat conductive member 7 to the frame 2c. I'm doing well. Further, the frame body 2c is arranged so as to connect the lower surface of the substrate 40 and the upper surface of the substrate 70, and is joined by an adhesive or the like. Further, as shown in FIG. 6C, since the wide bottom surface 16 of the heat conductive member 7 has a circular shape, the number of mounted first LED elements 11 is limited, and the substrate 30 of the LED light emitting device 200 has a limitation. It is slightly less than the number of implementations.

LED発光装置500は、このような構造とすることによって、LED素子1を熱伝導部材7の凹部15に挿入して、発光面と凹部15の底面とを近接して対向させることができるので、LED素子1の発光をさらに効率的に熱伝導部材7に導光して輝度を高めることができる。一方、波長変換部材3内の励起熱を熱伝導部材7から効率的に第二の基板40、枠体2c及び第一の基板70へ逃がすことができる。特に、熱伝導部材7の領域Sを有する円錐状部は、枠体2cの内壁面と接しているのでより効率的に放熱ができる。この結果、所定の基板面積において、発光効率を低下させることなく輝度をさらに向上させると共に、一般的な照明用光源として有用な発光装置を提供することができる。 With such a structure, the LED light emitting device 500 can insert the LED element 1 into the recess 15 of the heat conductive member 7 so that the light emitting surface and the bottom surface of the recess 15 face each other in close proximity to each other. The light emission of the LED element 1 can be more efficiently guided to the heat conductive member 7 to increase the brightness. On the other hand, the excitation heat in the wavelength conversion member 3 can be efficiently released from the heat conductive member 7 to the second substrate 40, the frame body 2c and the first substrate 70. In particular, since the conical portion having the region S of the heat conductive member 7 is in contact with the inner wall surface of the frame body 2c, heat can be dissipated more efficiently. As a result, it is possible to provide a light emitting device useful as a general lighting light source while further improving the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、熱伝導部材7の領域S部の外周面に、金属膜による反射面を形成して、より熱伝導部材7内の導光を効率的に行えるようにしてもよい。 It should be noted that a reflective surface made of a metal film may be formed on the outer peripheral surface of the region S portion of the heat conductive member 7 so that the light guiding in the heat conductive member 7 can be performed more efficiently.

[第5の実施形態の変形例の説明:図7]
次に、図7を用いて、第5の実施形態の変形例のLED発光装置510を説明する。
図7(a)は、LED発光装置510の発光方向の中心線を通る断面図を示し、図7(b)は、図7(a)の切断線L−L´における断面図を示し、図7(c)は、図7(a)の切断線M−M´における断面図を示す。
[Explanation of Modified Example of Fifth Embodiment: FIG. 7]
Next, the LED light emitting device 510 of the modified example of the fifth embodiment will be described with reference to FIG. 7.
FIG. 7 (a) shows a cross-sectional view of the LED light emitting device 510 passing through the center line in the light emitting direction, and FIG. 7 (b) shows a cross-sectional view taken along the cutting line LL'of FIG. 7 (a). 7 (c) shows a cross-sectional view taken along the line MM'of FIG. 7 (a).

第5の実施形態の変形例のLED発光装置510の特徴は、LED発光装置500に対して、下層側の枠体2dは開口部10を有し、熱伝導部材7の断面積が漸増する領域Sの外周部に空気層8を設けた点である。LED発光装置510は、LED発光装置500と基本的な構成は同一であるので、同一要素には同一番号又は同一符号を付し重複する説明は省略する。 The feature of the LED light emitting device 510 of the modified example of the fifth embodiment is that the frame body 2d on the lower layer side has an opening 10 with respect to the LED light emitting device 500, and the cross-sectional area of the heat conductive member 7 gradually increases. This is a point where the air layer 8 is provided on the outer peripheral portion of S. Since the LED light emitting device 510 has the same basic configuration as the LED light emitting device 500, the same elements are designated by the same number or the same reference numerals, and duplicate description will be omitted.

図7(a)に示す様に、LED発光装置510は、第二の基板40より上層側の構造は前述したLED発光装置500と同様である(図6参照)。一方、下層側の枠体2dは、貫通孔10を有しており、熱伝導部材7の断面積が漸増する領域Sの外周部を覆わずに空気層8を形成している。また、熱伝導部材7、第一の基板70の構成はLED発光装置5
00と同様である。このように、熱伝導部材7の断面積が漸増する領域Sの外周部に空気層8を設けることによって、熱伝導部材7の底面16側から取り込まれた発光が領域Sの斜面に入射するときに全反射を起こし易くして導光を改善することができる。
As shown in FIG. 7A, the structure of the LED light emitting device 510 on the upper layer side of the second substrate 40 is the same as that of the LED light emitting device 500 described above (see FIG. 6). On the other hand, the frame body 2d on the lower layer side has a through hole 10 and forms the air layer 8 without covering the outer peripheral portion of the region S where the cross-sectional area of the heat conductive member 7 gradually increases. Further, the structure of the heat conductive member 7 and the first substrate 70 is the LED light emitting device 5.
Same as 00. In this way, when the air layer 8 is provided on the outer peripheral portion of the region S where the cross-sectional area of the heat conductive member 7 gradually increases, the light emitted from the bottom surface 16 side of the heat conductive member 7 is incident on the slope of the region S. It is possible to improve the light guide by easily causing total reflection.

その理由として、例えば、熱伝導部材7の内部に取り込まれた発光の多くは、熱伝導部材7の断面積が漸増する領域Sの内面に到達する。ここで、熱伝導部材7にガラスを用いた場合、到達した光は、屈折率の高い媒質(ガラス:n=1.5とする)から低い方の媒質(空気層:n=1)へ入射する界面反射に相当し、よく知られたスネルの法則を適用できる。詳しい計算は省略するが、全反射する臨界角をθcとすると、θc=約41.8°となり、臨界角θcより大きい入射角で入射する光は全反射して内部へ取り込むことができる。これにより、断面積が漸増する領域Sにおいて、より効率的な導光を行うことができ、領域Sの外側への漏光を減らすことができる。 The reason is that, for example, most of the light emitted inside the heat conductive member 7 reaches the inner surface of the region S where the cross-sectional area of the heat conductive member 7 gradually increases. Here, when glass is used for the heat conductive member 7, the light that reaches is incident on the medium having a high refractive index (glass: n = 1.5) to the medium having a low refractive index (air layer: n = 1). The well-known Snell's law can be applied, which corresponds to the interfacial reflection. Although detailed calculation is omitted, if the critical angle for total reflection is θc, θc = about 41.8 °, and light incident at an incident angle larger than the critical angle θc can be totally reflected and taken into the inside. As a result, more efficient light guiding can be performed in the region S where the cross-sectional area gradually increases, and light leakage to the outside of the region S can be reduced.

LED発光装置510は、このような構成とすることにより、熱伝導部材7の底面16に形成された凹部15から入射したLED素子1の発光を、より効率的に上端側へ導光して輝度を高めることができる。一方、波長変換部材3内の励起熱を熱伝導部材7から効率的に第二の基板40、枠体2c及び第一の基板70へ逃がすことができる。この結果、所定の基板面積において、発光効率を低下させることなく輝度をさらに向上させると共に、一般的な照明用光源として有用な発光装置を提供することができる。 With such a configuration, the LED light emitting device 510 more efficiently guides the light emitted from the LED element 1 incident from the recess 15 formed in the bottom surface 16 of the heat conductive member 7 to the upper end side and has brightness. Can be enhanced. On the other hand, the excitation heat in the wavelength conversion member 3 can be efficiently released from the heat conductive member 7 to the second substrate 40, the frame body 2c and the first substrate 70. As a result, it is possible to provide a light emitting device useful as a general lighting light source while further improving the brightness in a predetermined substrate area without lowering the luminous efficiency.

尚、LED発光装置500及び510における熱伝導部材7の底面16について、円状であると説明したが、これに限らず底面16は例えば三角形や四角形などの多角形でもよい。また、熱伝導部材7は第二の基板40の下面と第一の基板70の上面との間において、円錐上部を形成すると説明したが、これに限らず底面16に合わせて多角錘形状としてもよい。 The bottom surface 16 of the heat conductive member 7 in the LED light emitting devices 500 and 510 has been described as having a circular shape, but the bottom surface 16 is not limited to this and may be a polygon such as a triangle or a quadrangle. Further, although it has been explained that the heat conductive member 7 forms the upper part of the cone between the lower surface of the second substrate 40 and the upper surface of the first substrate 70, the present invention is not limited to this, and the heat conductive member 7 may be formed into a polygonal weight shape according to the bottom surface 16. Good.

以上、LED発光装置の各種実施形態及びその変形例について詳細に説明したが、本発明は、このような実施形態及び変形例に限定されるものではなく、細部の構成、素材、数量において、本発明の思想を逸脱しない範囲で、任意に変更、組合せ、削除することができる。即ち、上述したLED発光装置の実施形態又は変形例に限定されることはなく、それらのすべてを行う必要もなく、特許請求の範囲の各請求項に記載した内容の範囲で種々に変更、組合せ、省略をすることができる。 Although various embodiments of the LED light emitting device and modifications thereof have been described in detail above, the present invention is not limited to such embodiments and modifications, and the present invention is not limited to such embodiments and modifications, and the present invention is described in terms of detailed configuration, material, and quantity. It can be arbitrarily changed, combined, or deleted without departing from the idea of the invention. That is, the present invention is not limited to the above-described embodiment or modification of the LED light emitting device, and it is not necessary to perform all of them, and various changes and combinations are made within the scope of the contents described in each claim. , Can be omitted.

本発明は、LED素子と各種の蛍光体とを組合せることにより、白色をはじめとしてLED素子の発光色とは異なる色の光を発する一般的な照明用として使用可能な発光装置、とりわけ、小型でありながら発光効率を低下させることがなく高輝度を必要とする照明用製品に好適である。 The present invention is a light emitting device that can be used for general lighting that emits light of a color different from the emission color of the LED element, including white, by combining the LED element and various phosphors, particularly small size. However, it is suitable for lighting products that require high brightness without lowering the luminous efficiency.

1 LED素子
2、2a、2b、2c、2d 枠体
3 波長変換部材
4、5、6、7 熱伝導部材(透光性)
8 空気層
9 光散乱剤(光散乱剤を含有した透光性の熱伝導部材)
10、14 貫通孔
11 第一のLED素子
12、13、15 凹部
16 底面
20 基板
30、35、50、60、70 第一の基板
40、45 第二の基板
21 第二のLED素子
100、200、210、300、400、500、510 LED発光装置
1 LED element 2, 2a, 2b, 2c, 2d frame 3 Wavelength conversion member 4, 5, 6, 7 Heat conductive member (translucency)
8 Air layer 9 Light scattering agent (translucent heat conductive member containing light scattering agent)
10, 14 Through holes 11 First LED element 12, 13, 15 Recessed 16 Bottom surface 20 Substrate 30, 35, 50, 60, 70 First substrate 40, 45 Second substrate 21 Second LED element 100, 200 , 210, 300, 400, 500, 510 LED light emitting device

Claims (6)

第一のLED素子及び第二のLED素子と、
複数の前記第一のLED素子が上面に実装された第一の基板と、
前記第一の基板の上にあって、複数の第二のLED素子が上面に実装された第二の基板と、
前記第二の基板の上方に前記第二のLED素子の発光面と離間して配置された波長変換部材と、
複数の前記第二のLED素子を取り囲むように設けられ、前記波長変換部材を支持する枠体と、
透光性の熱伝導部材と、
を備え
前記熱伝導部材は、前記第二の基板を貫通して、前記波長変換部材の下面と前記第一の基板の上面とを接続している
ことを特徴とするLED発光装置。
The first LED element and the second LED element,
A first substrate on which a plurality of the first LED elements are mounted on the upper surface,
A second substrate on the first substrate on which a plurality of second LED elements are mounted on the upper surface.
A wavelength conversion member arranged above the second substrate and separated from the light emitting surface of the second LED element.
A frame body provided so as to surround the plurality of the second LED elements and supporting the wavelength conversion member, and
Translucent heat conductive member and
The LED light emitting device is characterized in that the heat conductive member penetrates the second substrate and connects the lower surface of the wavelength conversion member and the upper surface of the first substrate.
前記第一のLED素子の発光面が前記熱伝導部材に向くように、前記第一の基板上面を傾斜させた
ことを特徴とする請求項1に記載のLED発光装置。
The LED light emitting device according to claim 1, wherein the upper surface of the first substrate is inclined so that the light emitting surface of the first LED element faces the heat conductive member.
第一のLED素子及び第二のLED素子と、
複数の前記第一のLED素子が実装される凹部を有する第一の基板と、
前記第一の基板の上にあって、複数の第二のLED素子が上面に実装された第二の基板と、
前記第二の基板の上方に前記第二のLED素子の発光面と離間して配置された波長変換部材と、
複数の前記第二のLED素子を取り囲むように設けられ、前記波長変換部材を支持する枠体と、
透光性の熱伝導部材と、を備え
前記熱伝導部材は、前記第二の基板を貫通して、前記波長変換部材の下面と前記第一の基板とを接続し、
前記第一のLED素子は、前記第一の基板の上面に前記熱伝導部材の周囲を取り囲むように設けられた前記凹部の内壁面に、前記第一のLED素子の発光面が前記熱伝導部材と対峙するように配置されていることを特徴とするLED発光装置。
The first LED element and the second LED element,
A first substrate having a recess on which the plurality of first LED elements are mounted,
A second substrate on the first substrate on which a plurality of second LED elements are mounted on the upper surface.
A wavelength conversion member arranged above the second substrate and separated from the light emitting surface of the second LED element.
A frame body provided so as to surround the plurality of the second LED elements and supporting the wavelength conversion member, and
Equipped with a translucent heat conductive member
The heat conductive member penetrates the second substrate and connects the lower surface of the wavelength conversion member and the first substrate.
The first LED element has a heat emitting surface of the first LED element on the inner wall surface of the recess provided on the upper surface of the first substrate so as to surround the periphery of the heat conductive member. L ED light emitting device you characterized in that it is arranged so as to face the.
前記熱伝導部材は、前記第一のLED素子の発光面の上方かつ前記第二の基板の下方の領域にて、前記第二の基板から前記第一のLED素子へ向けて断面積が漸増する領域を有する
ことを特徴とする請求項1に記載のLED発光装置。
The cross-sectional area of the heat conductive member gradually increases from the second substrate toward the first LED element in a region above the light emitting surface of the first LED element and below the second substrate. The LED light emitting device according to claim 1, wherein the LED light emitting device has a region.
前記熱伝導部材は、前記波長変換部材と接続される上端部に光散乱剤を備える
ことを特徴とする請求項1から4のいずれか一項に記載のLED発光装置。
The LED light emitting device according to any one of claims 1 to 4, wherein the heat conductive member includes a light scattering agent at an upper end portion connected to the wavelength conversion member.
前記熱伝導部材は、前記枠体と離間し、前記波長変換部材の中央部に接続するように配置されている
ことを特徴とする請求項1からのいずれか一項に記載のLED発光装置。
The LED light emitting device according to any one of claims 1 to 5 , wherein the heat conductive member is arranged so as to be separated from the frame body and connected to a central portion of the wavelength conversion member. ..
JP2016062947A 2016-03-28 2016-03-28 LED light emitting device Active JP6789650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016062947A JP6789650B2 (en) 2016-03-28 2016-03-28 LED light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016062947A JP6789650B2 (en) 2016-03-28 2016-03-28 LED light emitting device

Publications (2)

Publication Number Publication Date
JP2017183301A JP2017183301A (en) 2017-10-05
JP6789650B2 true JP6789650B2 (en) 2020-11-25

Family

ID=60006320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062947A Active JP6789650B2 (en) 2016-03-28 2016-03-28 LED light emitting device

Country Status (1)

Country Link
JP (1) JP6789650B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329893A (en) * 2001-05-02 2002-11-15 Kansai Tlo Kk Led surface light emission device
JP4754723B2 (en) * 2001-06-07 2011-08-24 星和電機株式会社 Light emitting diode lamp
JP2006339060A (en) * 2005-06-03 2006-12-14 Akita Denshi Systems:Kk Lighting system
JP4764181B2 (en) * 2006-01-17 2011-08-31 三菱重工業株式会社 Light source lamp and projector
JP4124479B1 (en) * 2007-10-16 2008-07-23 株式会社モモ・アライアンス Lighting device
JP2009295309A (en) * 2008-06-03 2009-12-17 Calsonic Kansei Corp Lighting system
JP2010129615A (en) * 2008-11-25 2010-06-10 Toshiba Lighting & Technology Corp Light emitting device, and illuminating apparatus
JP5327601B2 (en) * 2008-12-12 2013-10-30 東芝ライテック株式会社 Light emitting module and lighting device
US8450756B2 (en) * 2010-06-14 2013-05-28 Micron Technology, Inc. Multi-dimensional LED array system and associated methods and structures
KR20140040778A (en) * 2011-06-01 2014-04-03 코닌클리케 필립스 엔.브이. A light emitting module comprising a thermal conductor, a lamp and a luminaire

Also Published As

Publication number Publication date
JP2017183301A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6331389B2 (en) Light emitting device
JP5736203B2 (en) Light emitting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
TWI753156B (en) Light-emitting device
JP2007335798A (en) Light-emitting device
JP2011054736A (en) Light-emitting device, plane light source, and liquid crystal display device
JP2017117858A (en) Light-emitting device
JP4718405B2 (en) Lighting equipment
JP6493308B2 (en) Light emitting device
JP2016058689A (en) Semiconductor light-emitting device
US10991859B2 (en) Light-emitting device and method of manufacturing the same
JP2016171188A (en) Semiconductor light emission device and manufacturing method for the same
JP2017152475A (en) Light-emitting device
JP2020061543A (en) Light-emitting device
CN112885943A (en) Light emitting device and LED package
JP2017162940A (en) Light-emitting device and illuminating device
JP4938255B2 (en) Light emitting element storage package, light source, and light emitting device
JP2011171504A (en) Light-emitting device
JP2009206228A (en) Side emission type light emitting device and manufacturing method thereof, and lighting device
JP2008251664A (en) Illumination apparatus
JP6485503B2 (en) Method for manufacturing light emitting device
JP5970215B2 (en) Light emitting device and manufacturing method thereof
JP6789650B2 (en) LED light emitting device
JP6087098B2 (en) Light source device, LED lamp, and liquid crystal display device
JP2019165237A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200303

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201104

R150 Certificate of patent or registration of utility model

Ref document number: 6789650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250