JP6784962B2 - Aluminum-based alloy - Google Patents

Aluminum-based alloy Download PDF

Info

Publication number
JP6784962B2
JP6784962B2 JP2016010567A JP2016010567A JP6784962B2 JP 6784962 B2 JP6784962 B2 JP 6784962B2 JP 2016010567 A JP2016010567 A JP 2016010567A JP 2016010567 A JP2016010567 A JP 2016010567A JP 6784962 B2 JP6784962 B2 JP 6784962B2
Authority
JP
Japan
Prior art keywords
aluminum
young
modulus
based alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016010567A
Other languages
Japanese (ja)
Other versions
JP2017128780A (en
Inventor
博之 渡邊
博之 渡邊
渉一 廣澤
渉一 廣澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yokohama National University NUC
Original Assignee
Honda Motor Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yokohama National University NUC filed Critical Honda Motor Co Ltd
Priority to JP2016010567A priority Critical patent/JP6784962B2/en
Priority to PCT/JP2017/001917 priority patent/WO2017126650A1/en
Priority to CN201780007795.0A priority patent/CN108699636A/en
Priority to US16/070,725 priority patent/US20190024220A1/en
Publication of JP2017128780A publication Critical patent/JP2017128780A/en
Application granted granted Critical
Publication of JP6784962B2 publication Critical patent/JP6784962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、特別な添加元素をアルミニウム母相に固溶させることによって高いヤング率を有するアルミニウム基合金に関する。 The present invention relates to an aluminum-based alloy having a high Young's modulus by dissolving a special additive element in an aluminum matrix.

車両や航空機などの軽量化の要請が強まるに伴い、アルミニウム合金の適用が広がってきたが、従来の鉄系材料からアルミニウム材へ材料を置換するに際しては、ヤング率の低下による剛性低下が大きな課題となっている。 このような課題に対処するために、従来、アルミニウムとセラミックスとの複合効果による剛性向上が図られてきた(たとえば、特許文献1〜4)。 The application of aluminum alloys has expanded as the demand for weight reduction of vehicles and aircraft has increased, but when replacing conventional iron-based materials with aluminum materials, the reduction in rigidity due to the decrease in Young's modulus is a major issue. It has become. In order to deal with such a problem, the rigidity has been improved by the combined effect of aluminum and ceramics (for example, Patent Documents 1 to 4).

特許第4825776号Patent No. 4825776 特許第4119357号Patent No. 4119357 特許第4119348号Patent No. 4119348 特許第3391636号Patent No. 3391636

しかしながら、セラミックスの強化材などを含んだ複合材は、製造工程が複雑なため製造コストが割高になるという課題がある。また、硬質粒子を含むため、機械加工などが困難になるという課題がある。したがって、本発明は、セラミックスなどの硬質粒子を含まずに高剛性とすることができ、製造工程が簡単で機械加工が容易なアルミニウム基合金を提供することを目的としている。 However, a composite material containing a reinforcing material for ceramics has a problem that the manufacturing cost is high because the manufacturing process is complicated. In addition, since it contains hard particles, there is a problem that machining becomes difficult. Therefore, an object of the present invention is to provide an aluminum-based alloy that can be made highly rigid without containing hard particles such as ceramics, has a simple manufacturing process, and is easy to machine.

本発明者等は、アルミニウム基合金のヤング率を高めるにあたり、固溶および時効による強化について鋭意研究を重ねた。その結果、Alよりも原子半径が小さい元素によってAlが置換されることで、高剛性化が可能であることを見出した(計算結果による)。すなわち、添加元素により電子密度が向上するとともに原子間距離(格子間距離)が近接化することにより、結合エネルギを上昇させることができ、高剛性化が可能となる。本発明者等が周期律表の第一周期から第五周期までの元素の原子半径を調査した結果、Cu、Zn、Ag、およびLiの原子半径は、Alの原子半径のそれぞれ−10.5%、−6.99%、+1.05%、および+5.70%であった。 In order to increase the Young's modulus of the aluminum-based alloy, the present inventors have conducted intensive studies on solid solution and strengthening by aging. As a result, it was found that high rigidity can be achieved by substituting Al with an element having an atomic radius smaller than that of Al (according to the calculation result). That is, the electron density is improved by the added element and the interatomic distance (interstitial distance) is shortened, so that the binding energy can be increased and the rigidity can be increased. As a result of investigating the atomic radii of the elements from the first period to the fifth period of the periodic table, the atomic radii of Cu, Zn, Ag, and Li are -10.5, respectively, of the atomic radii of Al. %, -6.99%, + 1.05%, and + 5.70%.

また、本発明者等は、Alに25at%の添加元素を含有させた場合のアルミニウム基合金のヤング率を、周期律表の第一周期から第五周期までの元素について計算した。計算に用いた理論式は下記数1式であり、式中Eはヤング率、rは結晶格子(面心立方格子)における原子間距離、A、n、mは元素に依存する定数である。そして、下記数式を用いて解析ソフト(CASTEP、スーパーセルモデル)によりヤング率を計算した。なお、解析ソフトの設定は、一般化密度勾配近似、エナジーカットオフを350eV、Kポイントセットを6×6×6とした。 In addition, the present inventors calculated the Young's modulus of the aluminum-based alloy when Al contained an additive element of 25 at% for the elements from the first cycle to the fifth cycle of the periodic table. The theoretical formula used for the calculation is the following equation 1, in which E is Young's modulus, r is the interatomic distance in the crystal lattice (face-centered cubic lattice), and A, n, and m are element-dependent constants. Then, Young's modulus was calculated by analysis software (CASTEP, supercell model) using the following mathematical formula. The analysis software was set to generalize density gradient approximation, energy cutoff to 350 eV, and K point set to 6 × 6 × 6.

Figure 0006784962
Figure 0006784962

算出した各アルミニウム基合金のヤング率と純アルミニウムのヤング率と比較し、各アルミニウム基合金の添加元素の添加量を1wt%に換算してヤング率の増加率を求めたところ、Cu、Zn、Ag、およびLiのヤング率の増加率は、それぞれ0.65%、0.04%、0.24%、および0.95%であった。 Comparing the calculated Young's modulus of each aluminum-based alloy with the Young's modulus of pure aluminum, the amount of additive elements added to each aluminum-based alloy was converted to 1 wt% to obtain the Young's modulus increase rate. The rates of increase in Young's modulus of Ag and Li were 0.65%, 0.04%, 0.24%, and 0.95%, respectively.

さらに、本発明者等は、添加元素がAl中に多く過飽和固溶できれば、時効温度における固溶限との差により中間層(Alと添加元素の金属間化合物、添加元素どうしの金属間化合物など)を析出させることで、さらなる高剛性化を発現できることに思い至り、周期律表の第一周期から第五周期までの元素について調査した。その結果、Cu、Zn、AgおよびLiのAlに対する最大固溶量は、それぞれ2.48wt%、49.1wt%、23.9wt%、および13.9wt%であった。 Furthermore, the present inventors, if a large amount of additive elements can be supersaturated in solid solution in Al, an intermediate layer (intermetallic compound between Al and additive elements, intermetallic compound between additive elements, etc.) due to the difference from the solid solution limit at the aging temperature. ), We realized that further high rigidity could be achieved, and investigated the elements from the first cycle to the fifth cycle of the periodic table. As a result, the maximum solid solution amounts of Cu, Zn, Ag and Li in Al were 2.48 wt%, 49.1 wt%, 23.9 wt% and 13.9 wt%, respectively.

アルミニウム基合金の高剛性化は、前述のヤング率の増加率と最大固溶量との相乗効果と考えられるから、両者の積を計算すると、Cu:1.612、Zn:1.964、Ag:5.736、およびLi:13.205となり、他の元素は全て1未満となった。 Since increasing the rigidity of the aluminum-based alloy is considered to be a synergistic effect of the above-mentioned increase rate of Young's modulus and the maximum solid solution amount, the product of the two is calculated as Cu: 1.612, Zn: 1.964, Ag. : 5.736 and Li: 13.205, and all other elements were less than 1.

本発明は上記知見に基づいてなされたものであり、Cu、Zn、AgおよびLiの2種以上と、残部が不可避的不純物およびAlからなり、質量%で、Cuは0%を超え4%以下であり、Znは10%以上20%以下であり、Agは0%を超え10%以下であり、Liは0.05%以上0.5%以下であり、Cu、Zn、AgおよびLiの総量は、14%以上で30%以下であるアルミニウム基合金である。 The present invention has been made based on the above findings, and is composed of two or more types of Cu, Zn, Ag and Li, and the balance is unavoidable impurities and Al. In mass%, Cu is more than 0% and more than 4%. Zn is 10% or more and 20% or less, Ag is more than 0% and 10% or less, Li is 0.05% or more and 0.5% or less, and the total amount of Cu, Zn, Ag and Li is Is an aluminum-based alloy that is 14% or more and 30% or less .

本発明のアルミニウム基合金の製造方法は、上記のアルミニウム基合金を、溶体化熱処理及び焼入れした後、時効処理を90〜170℃で120〜240時間行なうことを特徴とする。 The method for producing an aluminum-based alloy of the present invention is characterized in that the above-mentioned aluminum-based alloy is subjected to solution heat treatment and quenching, followed by aging treatment at 90 to 170 ° C. for 120 to 240 hours.

本発明によれば、アルミニウム母相に対する添加元素の固溶体および中間相の形成効果によって、ヤング率が飛躍的に向上し剛性を格段に高めたアルミニウム基合金を提供することができる。したがって、本発明によれば、高剛性化により、例えば、ブレーキキャリパ等のように剛性が支配する部品の肉厚低減により、軽量化が可能であり、また、肉厚低減により、コンパクトな形状設計が可能となる。 According to the present invention, it is possible to provide an aluminum-based alloy in which Young's modulus is dramatically improved and rigidity is remarkably increased due to the effect of forming a solid solution of an additive element and an intermediate phase on an aluminum matrix. Therefore, according to the present invention, it is possible to reduce the weight by increasing the wall thickness of parts such as brake calipers, which are dominated by rigidity, and to design a compact shape by reducing the wall thickness. Is possible.

ヤング率の測定装置を示す斜視図である。It is a perspective view which shows the Young's modulus measuring apparatus. 本発明の実施例におけるアルミニウム基合金の時効時間とヤング率との関係を示すグラフである。It is a graph which shows the relationship between the aging time and Young's modulus of the aluminum-based alloy in the Example of this invention.

1.第1実施例
次に、具体的な実施例により本発明を詳細に説明する。
表1に示す組成を有するアルミニウム基合金から幅10mm、長さ60mm、厚さ1.5mmの矩形状の試料を作製し、520℃で4時間保持して水中に投入する溶体化処理を行った後、110℃で24時間保持する時効処理を行った。次いで、試料のヤング率を複数回測定し、その最大値を表1に併記する。
1. 1. First Example Next, the present invention will be described in detail with reference to specific examples.
A rectangular sample having a width of 10 mm, a length of 60 mm, and a thickness of 1.5 mm was prepared from an aluminum-based alloy having the composition shown in Table 1, and a solution treatment was performed in which the sample was held at 520 ° C. for 4 hours and put into water. After that, an aging treatment was performed in which the mixture was held at 110 ° C. for 24 hours. Next, the Young's modulus of the sample is measured a plurality of times, and the maximum value thereof is also shown in Table 1.

Figure 0006784962
Figure 0006784962

図1はヤング率の測定装置(日本テクノプラス製JE−RT)を示すものである。この測定装置では、試料TPを2本の吊り線1で保持し、駆動極2で試料TPとの間の空間にコンデンサを構成することで固有振動を発生させ、それを非接触の振動センサ3で検出してヤング率を測定する。この測定方法はJIS Z 2280に準拠 するものである。 FIG. 1 shows a Young's modulus measuring device (JE-RT manufactured by Nippon Techno Plus). In this measuring device, the sample TP is held by two suspension wires 1, and a capacitor is formed in the space between the drive pole 2 and the sample TP to generate natural vibration, which is a non-contact vibration sensor 3. Detect with and measure Young's modulus. This measuring method complies with JIS Z 2280.

表1に示すように、実施例1〜5では、純アルミニウムからなる基準材よりもヤング率が高い。特に、Cu、Zn、Ag、Liを含有する実施例5では、極めて高いヤング率を得ることができた。 As shown in Table 1, in Examples 1 to 5, Young's modulus is higher than that of the reference material made of pure aluminum. In particular, in Example 5 containing Cu, Zn, Ag, and Li, an extremely high Young's modulus could be obtained.

2.第2実施例
90℃で10日間保持する時効処理を行った以外は第1実施例と同じ条件で試料を作製し、ヤング率を測定した。その結果を表2に示す。また、前述の数1を用いて算出したヤング率を表2に併記する。
2. Second Example A sample was prepared under the same conditions as in the first example except that the aging treatment was carried out at 90 ° C. for 10 days, and the Young's modulus was measured. The results are shown in Table 2. In addition, the Young's modulus calculated using the above-mentioned equation 1 is also shown in Table 2.

Figure 0006784962
Figure 0006784962

表2に示すように、数1を用いて計算したヤング率は実測値に極めて近似しており、Cu、Zn、Ag、Liを選定したことの正当性が確認された。 As shown in Table 2, the Young's modulus calculated using Equation 1 is very close to the measured value, confirming the validity of selecting Cu, Zn, Ag, and Li.

3.第3実施例
成分と時効処理条件を図2に示すものとした以外は第1実施例と同じ条件でアルミニウム基合金の試料を作製した。図2に示すとおり、時効温度が170℃の場合には、240時間の時効で77GPa以上のヤング率を得ることが確認された。また、時効温度が110℃の場合には、1500時間の時効で78GPa以上のヤング率を得ることも確認された。
3. 3. Third Example A sample of an aluminum-based alloy was prepared under the same conditions as in the first example except that the components and aging treatment conditions were as shown in FIG. As shown in FIG. 2, it was confirmed that when the aging temperature was 170 ° C., a Young's modulus of 77 GPa or more was obtained by aging for 240 hours. It was also confirmed that when the aging temperature was 110 ° C., a Young's modulus of 78 GPa or more was obtained by aging for 1500 hours.

本発明は、高剛性化により、剛性が求められる自動車部品などに利用可能である。
The present invention can be used for automobile parts and the like where rigidity is required due to high rigidity.

Claims (2)

Cu、Zn、AgおよびLiの2種以上と、残部が不可避的不純物およびAlからなり、質量%で、Cuは0%を超え4%以下であり、Znは10%以上20%以下であり、Agは0%を超え10%以下であり、Liは0.05%以上0.5%以下であり、Cu、Zn、AgおよびLiの総量は、14%以上で30%以下であるアルミニウム基合金 Two or more kinds of Cu, Zn, Ag and Li, and the balance is composed of unavoidable impurities and Al, and in mass%, Cu is more than 0% and 4% or less, Zn is 10% or more and 20% or less. Ag is more than 0% and 10% or less, Li is 0.05% or more and 0.5% or less, and the total amount of Cu, Zn, Ag and Li is 14% or more and 30% or less. .. 請求項に記載のアルミニウム基合金を、溶体化熱処理及び焼入れした後、時効処理を90〜170℃で120〜240時間行なうことを特徴とするアルミニウム基合金の製造方法。 A method for producing an aluminum-based alloy, which comprises subjecting the aluminum-based alloy according to claim 1 to solution heat treatment and quenching, and then performing an aging treatment at 90 to 170 ° C. for 120 to 240 hours.
JP2016010567A 2016-01-22 2016-01-22 Aluminum-based alloy Active JP6784962B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016010567A JP6784962B2 (en) 2016-01-22 2016-01-22 Aluminum-based alloy
PCT/JP2017/001917 WO2017126650A1 (en) 2016-01-22 2017-01-20 Aluminum-based alloy
CN201780007795.0A CN108699636A (en) 2016-01-22 2017-01-20 Acieral
US16/070,725 US20190024220A1 (en) 2016-01-22 2017-01-20 Aluminum-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016010567A JP6784962B2 (en) 2016-01-22 2016-01-22 Aluminum-based alloy

Publications (2)

Publication Number Publication Date
JP2017128780A JP2017128780A (en) 2017-07-27
JP6784962B2 true JP6784962B2 (en) 2020-11-18

Family

ID=59361765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016010567A Active JP6784962B2 (en) 2016-01-22 2016-01-22 Aluminum-based alloy

Country Status (4)

Country Link
US (1) US20190024220A1 (en)
JP (1) JP6784962B2 (en)
CN (1) CN108699636A (en)
WO (1) WO2017126650A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562154B1 (en) * 2000-06-12 2003-05-13 Aloca Inc. Aluminum sheet products having improved fatigue crack growth resistance and methods of making same
CN104674090A (en) * 2007-12-04 2015-06-03 美铝公司 Improved aluminum-copper-lithium alloys
CN101533911B (en) * 2009-04-08 2011-06-22 西安交通大学 Application of aluminum based ternary alloy as anode material of Li-ion batteries
CA2771585C (en) * 2009-09-04 2015-11-24 Alcoa Inc. Methods of aging aluminum alloys to achieve improved ballistics performance
MX2013002636A (en) * 2010-09-08 2013-05-09 Alcoa Inc Improved aluminum-lithium alloys, and methods for producing the same.
CN102011030A (en) * 2010-09-27 2011-04-13 中国计量学院 Design of aluminum component for preparing hydrogen and preparation method thereof
CN102021457B (en) * 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 High-toughness aluminum lithium alloy and preparation method thereof
CN101967589B (en) * 2010-10-27 2013-02-20 中国航空工业集团公司北京航空材料研究院 Medium-strength high-toughness aluminum lithium alloy and preparation method thereof
EP2789706B1 (en) * 2013-04-11 2015-07-15 Aleris Rolled Products Germany GmbH Method of casting lithium containing aluminium alloys
JP6344816B2 (en) * 2013-08-30 2018-06-20 株式会社Uacj High-strength aluminum alloy extruded thin section and method for producing the same
CN103540876B (en) * 2013-09-30 2015-09-16 中国航空工业集团公司北京航空材料研究院 The preparation method of a kind of Al-Cu-Li-X system Al-Li alloy thin plate
CN104060130A (en) * 2014-07-01 2014-09-24 张家港市佳晟机械有限公司 Lithium aluminum alloy used for aviation

Also Published As

Publication number Publication date
CN108699636A (en) 2018-10-23
US20190024220A1 (en) 2019-01-24
JP2017128780A (en) 2017-07-27
WO2017126650A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
Warren X-ray studies of deformed metals
Mertens et al. Thermal treatments of AlSi10Mg processed by laser beam melting
Jin et al. A common regularity of stoichiometry-induced morphology evolution of transition metal carbides, nitrides, and diborides during self-propagating high-temperature synthesis
KR102414064B1 (en) high strength aluminum alloy
Edalati et al. High-pressure torsion of machining chips and bulk discs of amorphous Zr50Cu30Al10Ni10
JP6634912B2 (en) Low thermal expansion alloy
Friák et al. Determining the Elasticity of Materials Employing Quantum‐mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability
KR20160150644A (en) Magnesium alloy and method for producing same
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
Akopyan et al. Al-matrix composite based on Al-Ca-Ni-La system additionally reinforced by L12 type nanoparticles
CN113053464A (en) Novel titanium alloy and component design method thereof
Moheimani et al. Fabrication and characterization of the modified EV31-based metal matrix nanocomposites
CN107075613A (en) grain refiner for magnesium alloy
JP6784962B2 (en) Aluminum-based alloy
Liu et al. First principles calculations of formation energies and elastic constants of inclusions α-Al2O3, MgO and AlN in aluminum alloy
Niu et al. Effect of transition-metal substitution on electronic and mechanical properties of Fe3Al: First-principles calculations
JP5531274B2 (en) High strength magnesium alloy
JP6341337B1 (en) Aluminum alloy plastic working material and manufacturing method thereof
KR20130110689A (en) Work hardenable metallic glass matrix composite
JP2010222632A (en) HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP5558841B2 (en) Magnesium alloy for casting and method for producing magnesium casting
JP2020033648A (en) Process for producing hot worked spinodal alloy having uniform grain size
Beltrán et al. Statistical and microstructural analyses of al–C–cu composites synthesized using the state solid route
JP6774787B2 (en) Magnesium alloy manufacturing method
JP6809693B2 (en) Aluminum alloy material for heat treatment and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201009

R150 Certificate of patent or registration of utility model

Ref document number: 6784962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150