JP5558841B2 - Magnesium alloy for casting and method for producing magnesium casting - Google Patents

Magnesium alloy for casting and method for producing magnesium casting Download PDF

Info

Publication number
JP5558841B2
JP5558841B2 JP2010002827A JP2010002827A JP5558841B2 JP 5558841 B2 JP5558841 B2 JP 5558841B2 JP 2010002827 A JP2010002827 A JP 2010002827A JP 2010002827 A JP2010002827 A JP 2010002827A JP 5558841 B2 JP5558841 B2 JP 5558841B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
casting
phase
atomic percent
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010002827A
Other languages
Japanese (ja)
Other versions
JP2011140701A (en
Inventor
裕一 家永
剣志 井上
光幹 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010002827A priority Critical patent/JP5558841B2/en
Publication of JP2011140701A publication Critical patent/JP2011140701A/en
Application granted granted Critical
Publication of JP5558841B2 publication Critical patent/JP5558841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、鋳造用マグネシウム合金及び該鋳造用マグネシウム合金を用いる鋳造体の製造方法に関する。   The present invention relates to a magnesium alloy for casting and a method for producing a cast body using the magnesium alloy for casting.

マグネシウム合金は、鉄、アルミニウムに比べて軽量であるため、鉄鋼材料や、アルミニウム合金材料からなる部材に代わる軽量代替材として用いることが検討されている。ところが、一般のマグネシウム合金は、200〜250℃の高温域において、引張強度及び伸び等の機械的特性が低下し、鋳造AC8B−T6材、鍛造A4032−T6材等の耐熱アルミニウム合金を上回る高温強度を得ることができない。   Since the magnesium alloy is lighter than iron and aluminum, it has been studied to use the magnesium alloy as a lightweight substitute material in place of a steel material or a member made of an aluminum alloy material. However, general magnesium alloys have high mechanical strength such as tensile strength and elongation at a high temperature range of 200 to 250 ° C., which is higher than heat-resistant aluminum alloys such as cast AC8B-T6 material and forged A4032-T6 material. Can't get.

そこで、従来、高温環境下において高強度を得ることができるマグネシウム合金として、Mg−Zn−Y合金が知られている。例えば、Zn2原子%と、Y2原子%とを含み、残部がMgと不可避の不純物とからなるMg−Zn−Y合金は、高温環境下において、アルミニウム合金に匹敵する前記高強度及び高延性を得ることができる。   Therefore, conventionally, an Mg—Zn—Y alloy is known as a magnesium alloy capable of obtaining high strength in a high temperature environment. For example, an Mg—Zn—Y alloy containing 2 atomic percent of Zn and 2 atomic percent of Y, with the balance being Mg and inevitable impurities, obtains the high strength and high ductility comparable to an aluminum alloy in a high temperature environment. be able to.

また、高温環境下において、前記従来のMg−Zn−Y合金を上回る高強度と高延性とを兼ね備える耐熱性マグネシウム合金として、例えば、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Zr0.01〜0.5原子%とを含み、残部がMgと不可避の不純物とからなるマグネシウム合金が提案されている(特許文献1参照)。前記耐熱性マグネシウム合金は、ZnとYとの組成比Zn/Yが0.6〜1.3の範囲にあると共に、α−Mg相と金属間化合物MgZn相とが微細に分散し、かつ、α−Mg相及び金属間化合物MgZn相の間に長周期積層構造相が三次元網目状に形成されている。この結果、前記耐熱性マグネシウム合金によれば、200〜250℃の高温域においても、高強度と高延性とを得ることができる。 Further, as a heat-resistant magnesium alloy having both high strength and high ductility exceeding the conventional Mg—Zn—Y alloy in a high temperature environment, for example, Zn 1 to 3 atom% and Y 1 to 3 atom with respect to the total amount And a magnesium alloy composed of Mg and unavoidable impurities are proposed (see Patent Document 1). The heat-resistant magnesium alloy has a composition ratio Zn / Y between Zn and Y in the range of 0.6 to 1.3, and an α-Mg phase and an intermetallic compound Mg 3 Y 2 Zn 3 phase are fine. A long-period laminated structure phase is formed in a three-dimensional network between the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase. As a result, according to the heat-resistant magnesium alloy, high strength and high ductility can be obtained even in a high temperature range of 200 to 250 ° C.

特開2009−149952号公報JP 2009-149952 A

しかしながら、特許文献1に記載の耐熱性マグネシウム合金は、前記高温域における高強度及び高延性を発現させるために、冷却速度を大きく保つことが必要とされ、肉厚の鋳造体では、前記高強度及び高延性を得ることが難しい。   However, the heat-resistant magnesium alloy described in Patent Document 1 is required to maintain a large cooling rate in order to develop high strength and high ductility in the high temperature range. And it is difficult to obtain high ductility.

また、鋳造体に対し熱処理を行うことにより強度を向上させることができるマグネシウム合金も知られているが、このようなマグネシウム合金では、所望の強度を得るためには熱処理が必要である。また、このようなマグネシウム合金では、時効温度以上の高温に加熱すると、過時効のために鋳造体の強度が著しく低下する。   Further, a magnesium alloy that can improve the strength by performing a heat treatment on the cast body is also known, but such a magnesium alloy requires a heat treatment to obtain a desired strength. In addition, when such a magnesium alloy is heated to a temperature higher than the aging temperature, the strength of the cast body is significantly reduced due to overaging.

そこで、本発明は、前記事情に鑑み、肉厚の鋳造体であっても200〜250℃の高温域で高強度及び高延性を得ることができる耐熱性の鋳造用マグネシウム合金を提供することを目的とする。   Therefore, in view of the above circumstances, the present invention provides a heat-resistant magnesium alloy for casting that can obtain high strength and high ductility in a high temperature range of 200 to 250 ° C. even if it is a thick cast body. Objective.

また、本発明の目的は、前記鋳造用マグネシウム合金を用い、加熱処理や塑性変形を行うことなく鋳造のみにより前記高温域で高強度及び高延性を発現させることができるマグネシウム合金鋳造体の製造方法を提供することにもある。   Another object of the present invention is to provide a method for producing a magnesium alloy cast body, which uses the magnesium alloy for casting and can exhibit high strength and high ductility in the high temperature range only by casting without performing heat treatment or plastic deformation. There is also to provide.

さらに、本発明の目的は、前記製造方法により得られ、α−Mg相と、金属間化合物MgZn相と、長周期積層構造相とを備え、該長周期積層構造相の一部にAgが濃縮されていることを特徴とするマグネシウム合金鋳造体を提供することにもある。 Furthermore, an object of the present invention is obtained by the above production method, and includes an α-Mg phase, an intermetallic compound Mg 3 Y 2 Zn 3 phase, and a long-period multilayer structure phase. Another object of the present invention is to provide a magnesium alloy casting characterized in that Ag is concentrated in the part.

かかる目的を達成するために、本発明の鋳造用マグネシウム合金は、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Ag3原子%とを含み、残部がMgと不可避の不純物とからなることを特徴とする。 In order to achieve such an object, the magnesium alloy for casting of the present invention contains Zn 1 to 3 atomic%, Y 1 to 3 atomic%, and Ag 3 atomic% with respect to the total amount, and the balance is inevitable with Mg. It consists of impurities.

本発明の鋳造用マグネシウム合金は、鋳造のみにより成形することにより、α−Mg相と、粗大に析出した金属間化合物MgZn相と、三次元網目状に析出した長周期積層構造相とを備える金属組織からなるマグネシウム合金鋳造体を得ることができる。前記長周期積層構造相は、前記α−Mg相及び金属間化合物MgZn相の間に析出しており、該長周期積層構造相中の一部にAgが濃縮されている。この結果、本発明のマグネシウム合金鋳造体によれば、前記長周期積層構造相の一部に前記Agを含む新規な相が形成され、該Agを含む新規な相を備えることにより、肉厚の鋳造体であっても200〜250℃の高温域で高強度及び高延性を得ることができる。 The magnesium alloy for casting according to the present invention is formed by casting alone to form an α-Mg phase, a coarsely precipitated intermetallic compound Mg 3 Y 2 Zn 3 phase, and a long-period laminated structure precipitated in a three-dimensional network. A magnesium alloy casting made of a metal structure having a phase can be obtained. The long-period multilayer structure phase is precipitated between the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase, and Ag is concentrated in a part of the long-period multilayer structure phase. As a result, according to the magnesium alloy cast body of the present invention, a new phase containing Ag is formed in a part of the long-period laminated structure phase, and the thickness is increased by including the new phase containing Ag. Even in a cast body, high strength and high ductility can be obtained in a high temperature range of 200 to 250 ° C.

本発明の鋳造用マグネシウム合金において、Agの含有量が全量に対して原子%未満では、前記マグネシウム合金鋳造体の高温域での強度を、Agを全く含まないマグネシウム合金鋳造体に対して2倍近い強度とする効果がない。一方、構造部材は通常1%以上の伸びが要求されるが、本発明の鋳造用マグネシウム合金において、Agの含有量が全量に対して3原子%を超えると、前記マグネシウム合金鋳造体の伸びを1%以上とすることができない。 In the magnesium alloy for casting of the present invention, when the Ag content is less than 3 atomic% with respect to the total amount, the strength of the magnesium alloy cast body at a high temperature range is 2 with respect to the magnesium alloy cast body containing no Ag. There is no effect of nearly double the strength . On the other hand, the structural member is usually required to have an elongation of 1% or more. However, in the magnesium alloy for casting of the present invention, when the Ag content exceeds 3 atomic%, the elongation of the magnesium alloy cast body is increased. It cannot be made 1% or more.

また、本発明のマグネシウム合金鋳造体は、前記鋳造用マグネシウム合金を鋳造のみにより成形してなり、加熱処理や塑性変形を行うことなく前記高温域で高強度及び高延性が発現するので、加熱処理や塑性変形に要する時間やコストを不要とすることができる。   Further, the magnesium alloy cast body of the present invention is formed by molding the magnesium alloy for casting only by casting, and exhibits high strength and high ductility at the high temperature range without performing heat treatment or plastic deformation. And the time and cost required for plastic deformation can be eliminated.

本発明のマグネシウム合金鋳造体のAg含有量とロックウェル硬度との関係を示すグラフ。The graph which shows the relationship between Ag content of the magnesium alloy castings of this invention, and Rockwell hardness. 本発明のマグネシウム合金鋳造体のAg含有量と伸びとの関係を示すグラフ。The graph which shows the relationship between Ag content and elongation of the magnesium alloy casting of this invention. (a)は実施例のマグネシウム合金鋳造体の金属組織を示す電子顕微鏡写真であり、(b)は(a)の一部拡大図。(A) is the electron micrograph which shows the metal structure of the magnesium alloy casting of an Example, (b) is the elements on larger scale of (a). (a)は比較例のマグネシウム合金鋳造体の金属組織を示す電子顕微鏡写真であり、(b)は(a)の一部拡大図。(A) is the electron micrograph which shows the metal structure of the magnesium alloy casting of a comparative example, (b) is the partially expanded view of (a). マグネシウム合金鋳造体の金属組織のX線回折結果を示すチャートであり、(a)は実施例、(b)は比較例。It is a chart which shows the X-ray-diffraction result of the metal structure of a magnesium alloy casting, (a) is an Example, (b) is a comparative example.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

本実施形態では、まず、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Ag3原子%とを含み、残部がMgと不可避の不純物とからなる合金材料を、600〜900℃の温度で溶融し、溶融合金を得る。 In the present embodiment, first, an alloy material containing Zn 1 to 3 atomic%, Y 1 to 3 atomic%, and Ag 3 atomic%, with the balance being Mg and inevitable impurities, is 600 to It melts at a temperature of 900 ° C. to obtain a molten alloy.

次に、前記溶融合金を金型に注入して鋳造を行う。前記鋳造は、例えば、鉄製の金型を用い、重力鋳造方式により、前記溶融合金を780℃前後の温度で該金型に鋳込むことにより行う。   Next, the molten alloy is poured into a mold and cast. The casting is performed, for example, by using an iron mold and casting the molten alloy into the mold at a temperature of about 780 ° C. by a gravity casting method.

この結果、全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Ag3原子%とを含み、残部がMgと不可避の不純物とからなるマグネシウム合金鋳造体を、時効のための加熱処理や塑性加工を行うことなく得ることができる。前記マグネシウム合金鋳造体は、α−Mg相と、金属間化合物MgZn相と、前記α−Mg相及び金属間化合物MgZn相の間に析出した長周期積層構造相とを備えると共に、該長周期積層構造相の一部にAgが濃縮されている。 As a result, with respect to the total amount, a magnesium alloy cast body containing 1 to 3 atomic percent of Zn, 1 to 3 atomic percent of Y, and 3 atomic percent of Ag, and the balance of Mg and inevitable impurities is used for aging. It can be obtained without performing heat treatment or plastic working. The magnesium alloy casting has an α-Mg phase, an intermetallic compound Mg 3 Y 2 Zn 3 phase, and a long-period laminated structure precipitated between the α-Mg phase and the intermetallic compound Mg 3 Y 2 Zn 3 phase. And Ag is concentrated in a part of the long-period laminated structure phase.

前記マグネシウム合金鋳造体は、前記長周期積層構造相中にAgを含む新規な相が形成されており、このAgを含む新規な相により、200〜250℃の高温域においても、高強度及び高延性を得ることができる。   In the magnesium alloy casting, a new phase containing Ag is formed in the long-period laminated structure phase, and the new phase containing Ag enables high strength and high strength even in a high temperature range of 200 to 250 ° C. Ductility can be obtained.

次に、前述のようにして、全量に対して、Zn2原子%と、Y2原子%と、Ag0〜3原子%とを含み、残部がMgからなるマグネシウム合金鋳造体を鋳造し、25℃及び200℃におけるロックウェル硬さと25℃における伸びとを測定した。図1にAgの含有量とロックウェル硬さとの関係を、図2にAgの含有量と伸びとの関係をそれぞれ示す。   Next, as described above, a magnesium alloy cast body containing 2 atomic percent of Zn, 2 atomic percent of Y, and 0 to 3 atomic percent of Ag, with the balance being Mg, is cast at 25 ° C. and 200 atomic percent. The Rockwell hardness at 0 ° C. and the elongation at 25 ° C. were measured. FIG. 1 shows the relationship between the Ag content and Rockwell hardness, and FIG. 2 shows the relationship between the Ag content and elongation.

図1から、Agの含有量が原子%未満では、25℃及び200℃の温度環境下でロックウェル硬さを、Agを全く含まないマグネシウム合金鋳造体に対して2倍近い強度とする効果が得られないことが明らかである。また、図2から、Agの含有量が3原子%を超えると、構造部材に必要とされる1%以上の伸びを、25℃では得ることができないことが明らかである。 From FIG. 1, when the Ag content is less than 3 atomic% , the effect of making the Rockwell hardness nearly double that of a magnesium alloy casting containing no Ag at 25 ° C. and 200 ° C. It is clear that cannot be obtained. Moreover, it is clear from FIG. 2 that when the Ag content exceeds 3 atomic%, the elongation of 1% or more required for the structural member cannot be obtained at 25 ° C.

次に、本発明の実施例と比較例とを示す。   Next, examples of the present invention and comparative examples will be described.

本実施例では、まず、全量に対して、Zn2原子%と、Y2原子%と、Ag3原子%とを含み、残部がMgからなる合金材料を、600〜900℃の温度で溶融し、溶融合金を得た。   In this example, first, an alloy material containing 2 atomic% of Zn, 2 atomic% of Y and 3 atomic% of Ag with the balance being Mg is melted at a temperature of 600 to 900 ° C. Got.

次に、前記溶融合金を鉄製の金型を用い、重力鋳造方式により、前記溶融合金を780℃前後の温度で該金型に鋳込むことにより鋳造を行った。この結果、全量に対して、Zn2原子%と、Y2原子%と、Ag3原子%とを含み、残部がMgからなる厚肉のマグネシウム合金鋳造体を、時効のための加熱処理や塑性加工を行うことなく得ることができた。   Next, the molten alloy was cast by casting the molten alloy into the mold at a temperature of about 780 ° C. by a gravity casting method using an iron mold. As a result, with respect to the total amount, a thick magnesium alloy cast body containing Zn 2 atom%, Y2 atom%, and Ag 3 atom% with the balance being Mg is subjected to heat treatment and plastic working for aging. I was able to get it without.

本実施例で得られた前記マグネシウム合金鋳造体の金属組織の電子顕微鏡写真を図3(a)及び図3(b)に示す。また、本実施例で得られた前記マグネシウム合金鋳造体の金属組織のX線回折結果を図5(a)に示す。   3A and 3B show electron micrographs of the metal structure of the magnesium alloy casting obtained in this example. Moreover, the X-ray-diffraction result of the metal structure of the said magnesium alloy casting obtained in the present Example is shown to Fig.5 (a).

尚、本実施例で得られた前記マグネシウム合金鋳造体は、図1及び図2のグラフにおいて、Ag=3の場合に当たる。
〔比較例〕
本比較例では、Agを全く含まない合金材料を用いた以外は、前記実施例と全く同一にして厚肉のマグネシウム合金鋳造体を得た。
The magnesium alloy cast obtained in this example corresponds to the case of Ag = 3 in the graphs of FIGS.
[Comparative example]
In this comparative example, a thick magnesium alloy casting was obtained in exactly the same manner as in the above example except that an alloy material containing no Ag was used.

本比較例で得られた前記マグネシウム合金鋳造体の金属組織の電子顕微鏡写真を図4(a)及び図4(b)に示す。また、本比較例で得られた前記マグネシウム合金鋳造体の金属組織のX線回折結果を図5(b)に示す。   4A and 4B show electron micrographs of the metal structure of the magnesium alloy casting obtained in this comparative example. Moreover, the X-ray-diffraction result of the metal structure of the said magnesium alloy casting obtained by this comparative example is shown in FIG.5 (b).

尚、本比較例で得られた前記マグネシウム合金鋳造体は、図1及び図2のグラフにおいて、Ag=0の場合に当たる。   The magnesium alloy cast obtained in this comparative example corresponds to the case of Ag = 0 in the graphs of FIGS.

図3(a)から、前記実施例で得られたマグネシウム合金鋳造体は、その金属組織中にα−Mg相1と、金属間化合物MgZn相2と、α−Mg相1及び金属間化合物MgZn相2の間に析出した長周期積層構造相3とを備えている。そして、前記実施例で得られたマグネシウム合金鋳造体は、図3(b)に図3(a)の一部を拡大して示すように、長周期積層構造相3の一部にAgが濃縮されて形成されたAgを含む新たな相4を備えている。 From FIG. 3A, the magnesium alloy casting obtained in the above example has an α-Mg phase 1, an intermetallic compound Mg 3 Y 2 Zn 3 phase 2 and an α-Mg phase 1 in its metal structure. And an intermetallic compound Mg 3 Y 2 Zn 3 phase 2, and a long-period laminated structure phase 3 deposited between them. In the magnesium alloy casting obtained in the above example, Ag is concentrated in a part of the long-period laminated structure phase 3 as shown in FIG. 3 (b) with an enlarged part of FIG. 3 (a). And a new phase 4 containing the formed Ag.

一方、図4(a)と、図4(a)の一部を拡大して示す図4(b)とから、前記比較例で得られたマグネシウム合金鋳造体は、その金属組織中にα−Mg相1と、金属間化合物MgZn相2と、α−Mg相1及び金属間化合物MgZn相2の間に析出した長周期積層構造相3とを備えるのみで、長周期積層構造相3中にAgが濃縮された相4は形成されていないことが明らかである。 On the other hand, from FIG. 4 (a) and FIG. 4 (b) showing an enlarged view of part of FIG. 4 (a), the magnesium alloy casting obtained in the comparative example has α- Only provided with Mg phase 1, intermetallic compound Mg 3 Y 2 Zn 3 phase 2, and long-period laminated structure phase 3 deposited between α-Mg phase 1 and intermetallic compound Mg 3 Y 2 Zn 3 phase 2 Thus, it is apparent that the phase 4 enriched with Ag in the long-period laminated structure phase 3 is not formed.

また、図5(a)に示す前記実施例で得られたマグネシウム合金鋳造体のX線回折結果は、図5(b)に示す前記比較例で得られたマグネシウム合金鋳造体のX線回折結果と同一のピーク(◇、●、▲で示す)を備えるとともに、さらにこれとは異なるピーク(★で示す)を備えることが明らかである。ここで、◇で示すピークはα−Mg相、●で示すピークは金属間化合物MgZn相、▲で示すピークは長周期積層構造相である。従って、図5(a)に★で示すピークは、長周期積層構造相3中にAgが濃縮されることにより形成されたAgを含む新規な相4に対応するものと考えられる。 Moreover, the X-ray diffraction result of the magnesium alloy cast body obtained in the example shown in FIG. 5A is the X-ray diffraction result of the magnesium alloy cast body obtained in the comparative example shown in FIG. It is clear that the same peak (shown by ◇, ●, ▲) and a different peak (shown by ★) are provided. Here, the peak indicated by ◇ is the α-Mg phase, the peak indicated by ● is the intermetallic compound Mg 3 Y 2 Zn 3 phase, and the peak indicated by ▲ is the long-period stacked structure phase. Therefore, it is considered that the peak indicated by * in FIG. 5A corresponds to the novel phase 4 containing Ag formed by the Ag concentration in the long-period laminated structure phase 3.

そして、前記実施例で得られたマグネシウム合金鋳造体は、図1に示すように、前記比較例で得られたマグネシウム合金鋳造体に比較して2倍近い強度を備えていることが明らかである。また、前記実施例で得られたマグネシウム合金鋳造体は、図2に示すように、構造部材に要求される1%以上の伸びを備えていることが明らかである。   Then, as shown in FIG. 1, it is clear that the magnesium alloy cast obtained in the above example has nearly twice the strength as compared with the magnesium alloy cast obtained in the comparative example. . Moreover, as shown in FIG. 2, it is clear that the magnesium alloy casting obtained in the above example has an elongation of 1% or more required for the structural member.

1…α−Mg相、 2…金属間化合物MgZn相、 3…長周期積層構造相、 4…Agを含む新規な相。 1 ... alpha-Mg phase, 2 ... intermetallic compound Mg 3 Y 2 Zn 3 phase, 3 ... the long period stacking ordered structure phase, novel phase containing 4 ... Ag.

Claims (3)

全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Ag3原子%とを含み、残部がMgと不可避の不純物とからなることを特徴とする鋳造用マグネシウム合金。 A magnesium alloy for casting containing 1 to 3 atomic percent of Zn, 1 to 3 atomic percent of Y, and 3 atomic percent of Ag with respect to the total amount, the balance being composed of Mg and inevitable impurities. 全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Ag3原子%とを含み、残部がMgと不可避の不純物とからなるマグネシウム合金を鋳造のみにより成形してなることを特徴とするマグネシウム合金鋳造体の製造方法。 A magnesium alloy containing 1 to 3 atomic percent of Zn, 1 to 3 atomic percent of Y, and 3 atomic percent of Ag, and the balance of Mg and inevitable impurities is formed by casting alone with respect to the total amount. A method for producing a magnesium alloy casting. 全量に対して、Zn1〜3原子%と、Y1〜3原子%と、Ag3原子%とを含み、残部がMgと不可避の不純物とからなるマグネシウム合金を鋳造のみにより成形してなり、α−Mg相と、金属間化合物MgZn相と、長周期積層構造相とを備え、該長周期積層構造相の一部にAgが濃縮されていることを特徴とするマグネシウム合金鋳造体。 A magnesium alloy containing 1 to 3 atomic percent of Zn, 1 to 3 atomic percent of Y, and 3 atomic percent of Ag and the balance of Mg and inevitable impurities with respect to the total amount is formed only by casting, α- A magnesium alloy cast comprising: an Mg phase; an intermetallic compound Mg 3 Y 2 Zn 3 phase; and a long-period laminate structure phase, wherein Ag is concentrated in a part of the long-period laminate structure phase. .
JP2010002827A 2010-01-08 2010-01-08 Magnesium alloy for casting and method for producing magnesium casting Active JP5558841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002827A JP5558841B2 (en) 2010-01-08 2010-01-08 Magnesium alloy for casting and method for producing magnesium casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002827A JP5558841B2 (en) 2010-01-08 2010-01-08 Magnesium alloy for casting and method for producing magnesium casting

Publications (2)

Publication Number Publication Date
JP2011140701A JP2011140701A (en) 2011-07-21
JP5558841B2 true JP5558841B2 (en) 2014-07-23

Family

ID=44456755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002827A Active JP5558841B2 (en) 2010-01-08 2010-01-08 Magnesium alloy for casting and method for producing magnesium casting

Country Status (1)

Country Link
JP (1) JP5558841B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103774069B (en) * 2014-01-18 2016-01-13 中南大学 A kind of forging and forming technology of large size high-strength heat-resistant magnesium alloy slab
CN109161767B (en) * 2018-10-23 2020-08-21 北京工业大学 Creep-resistant magnesium alloy containing W phase and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101705404A (en) * 2003-11-26 2010-05-12 河村能人 High strength and high toughness magnesium alloy and method of producing the same
JP2008075183A (en) * 2004-09-30 2008-04-03 Yoshihito Kawamura High-strength and high-toughness metal and process for producing the same

Also Published As

Publication number Publication date
JP2011140701A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
Shu et al. Effects of Fe, Co and Ni elements on the ductility of TiAl alloy
JP5305323B2 (en) Zinc alloy for die casting and method for producing die cast member using Zn alloy for die casting
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
US10023943B2 (en) Casting aluminum alloy and casting produced using the same
JP2007522348A5 (en)
JP2012197491A (en) High strength magnesium alloy and method of manufacturing the same
WO2016034857A1 (en) A casting al-mg-zn-si based aluminium alloy for improved mechanical performance
JP2012214853A (en) Magnesium alloy and method for producing the same
EP2623620A8 (en) Method for melting a pseudo beta-titanium alloy comprising (4.0-6.0)% al - (4.5-6.0)% mo - (4.5-6.0)% v - ( 2.0-3.6)% cr, (0.2-0.5)% fe - (0.1-2.0)% zr
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JP2008280565A (en) Magnesium alloy and its manufacturing method
JP2009114513A (en) TiAl-BASED ALLOY
JP5558841B2 (en) Magnesium alloy for casting and method for producing magnesium casting
JP2023542129A (en) aluminum casting alloy
WO2021070890A1 (en) Aluminum alloy material
CN103103425A (en) Heat resisting magnesium alloy
JP2008231488A (en) Magnesium alloy for plastic working, and plastically worked member of magnesium alloy
JP6040488B2 (en) Magnesium alloy and manufacturing method thereof
JP5531274B2 (en) High strength magnesium alloy
JP2012214852A (en) Method for producing magnesium alloy
KR101346808B1 (en) The Titanium alloy improved mechanical properties and the manufacturing method thereof
JP6692409B2 (en) Heat resistant magnesium alloy
JP5699774B2 (en) Aluminum alloy material and manufacturing method thereof
JP2007231313A (en) beta-TYPE TITANIUM ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Effective date: 20140409

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5558841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150